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Abstract
Accurate confidence estimation of large lan-001
guage models (LLMs) is crucial for improv-002
ing their generation reliability. While existing003
methods typically estimate confidence from004
limited perspectives and specific token posi-005
tions, they fail to provide continuous confi-006
dence estimation throughout the generation007
process. In this paper, we introduce FineCE,008
a novel fine-grained confidence estimation009
method that provides the accurate and real-010
time confidence scores during the generation.011
Specifically, we develop a pipeline for con-012
struction training data to capture the inherent013
responses of LLMs, and design data formats014
for three different tasks to teach LLMs to ex-015
press confidence. Additionally, we propose the016
Backward Confidence Integration (BCI) strat-017
egy, which integrates confidence scores from018
subsequent text sequences to provide a holistic019
confidence estimation for the current text se-020
quence. Furthermore, we provide three strate-021
gies to identify the optimal positions to perform022
confidence estimation. Extensive experiments023
demonstrate that FineCE consistently outper-024
forms existing baselines in various confidence025
estimation tasks. Our code and all baselines026
used in the paper are available in the GitHub027
https://anonymous.4open.science/r/FineCE/.028

1 Introduction029

Large language models (LLMs) have achieved re-030

markable capabilities across various tasks through031

extensive pre-training on text corpora followed032

by instruction fine-tuning on supervised datasets033

(Ouyang et al., 2022; Wei et al., 2021). Despite034

their impressive performance, LLMs still face prob-035

lems with reliable generation, such as hallucina-036

tion (Han et al., 2024). Confidence estimation has037

emerged as a crucial approach for estimating the038

probability of correctness in LLM outputs.039

However, existing confidence estimation meth-040

ods are limited by their coarse-grained confidence041

Figure 1: The difference between our proposed FineCE
and existing confidence estimation method. (Top):
LLMs either respond to queries within their knowledge
scope or refuse queries beyond their capabilities. (Mid-
dle): The model provides a confidence score alongside
an answer. (Bottom): Our proposed method FineCE
provides the fine-grained confidence scores for any
given text sequence during the generation process.

scores and a limited perspective, failing to pro- 042

vide a feasible confidence estimation. These works 043

generally fall into question-oriented and outcome- 044

oriented confidence estimation. The question- 045

oriented confidence estimation task instructs LLMs 046

to only respond to questions within their domain 047

of knowledge scope and refuse to answer unknown 048

questions (Zhang et al., 2023). When confronted 049

with uncertain questions, LLMs refuse to answer 050

the question (Kadavath et al., 2022) rather than 051

attempting to deduce a potential answer from avail- 052

able information. This overly cautious strategy 053

diminished the utility of LLMs. The outcome- 054

oriented confidence estimation task requires LLMs 055

to evaluate the quality of their entire generated an- 056

swers (Zhang et al., 2024a; Zhao et al., 2024; Kuhn 057

et al., 2023; Abbasi-Yadkori et al., 2024). Even 058

if the final answer has a high confidence score, it 059

does not represent that the generation process is 060

completely accurate and reliable (Jiao et al., 2024). 061

The difference between them is shown in Figure 1. 062

Therefore, it is necessary to develop fine-grained 063

confidence estimation method, which provides ac- 064

curate and real-time confidence scores for the in- 065

termediate generation steps. The direct benefit is 066
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to predict the likelihood of the LLM generating067

the correct answer in advance, without waiting for068

the entire answer generation to be completed. In069

addition, the confidence scores serve as supervi-070

sory signals for advanced LLMs, like O11, to guide071

their next generation action, whether to proceed or072

correct the previous errors. Furthermore, questions073

with consistently low confidence scores reveal defi-074

ciencies in LLM, which provides valuable insights075

for model improvements.076

However, implementing fine-grained confidence077

estimation for LLMs presents three significant chal-078

lenges. Firstly, (Task Learning:) How to teach079

LLMs to express their confidence? The inherent080

capabilities of LLM, including internal state repre-081

sentations (Su et al., 2024; Chen et al., 2024) and082

prompt-based instruction Branwen (2020), prove083

insufficient for reliable confidence estimation, ne-084

cessitating dedicated training to enhance its confi-085

dence estimation abilities. But in practical scenar-086

ios, the LLM typically generates unstructured, free-087

form text sequences, making it difficult to assign088

the correct confidence scores to arbitrary text con-089

tent. Secondly, (Effectiveness:) How to provide090

an accurate and unbiased confidence estimate for091

the current text? Even when provided with the092

same input text, LLMs generate highly variable093

subsequent outputs (Atil et al., 2024). Consider-094

ing only local confidence estimate for the current095

text, while ignoring the confidence estimate of the096

subsequent texts, leads to biased confidence scores.097

Thirdly, (Efficiency:) Where are the optimal po-098

sitions to perform confidence estimation? it is099

blind to output confidence score after each token,100

which is computationally redundant and unneces-101

sary. Moreover, following the error propagation102

principle(Wang et al., 2024b; Liang et al., 2024),103

early errors in the generation sequence tend to am-104

plify through subsequent steps, leading to devia-105

tions from the correct response. Therefore, it is106

essential to identify appropriate positions for confi-107

dence estimation during the generation process.108

To address these challenges, in this paper, we109

introduce FinCE, a fine-grained confidence esti-110

mation method for LLMs. Specifically, we de-111

vise a complete pipeline for constructing training112

data to empower LLMs to estimate the fine-grained113

confidence score for any text during the genera-114

tion process. Additionally, we introduce the Back-115

ward Confidence Integration (BCI) strategy for in-116
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ference time, which provides more holistic con- 117

fidence score by incorporating uncertainty infor- 118

mation from subsequent text. Furthermore, to bal- 119

ance the trade-off between confidence estimation 120

accuracy and computational efficiency, we propose 121

three strategies for identifying optimal positions 122

during the generation process. 123

Experiments demonstrate that FineCE signifi- 124

cantly outperforms existing confidence estimation 125

baselines across multiple metrics on two widely- 126

used open-source LLMs. We further validated its 127

performance in a downstream task where we imple- 128

ment a confidence score threshold filtering mech- 129

anism, accepting only responses above the setting 130

thresholds. FineCE leads to a substantial 39.5% 131

improvement in answer accuracy on the GSM8K 132

dataset. 133

Our contributions are mainly four-fold: 1) We 134

introduce a fine-grained confidence estimation 135

method FineCE. 2)We provide a complete data 136

construction pipeline and utilize Instruction Fine- 137

tuning to enhance the capability of confidence esti- 138

mation. 3) We introduce BCI to generate a holistic 139

confidence estimate for the current text by integrat- 140

ing the confidence of the subsequent text. 4) We 141

devise three strategies to find the optimal position 142

to perform confidence estimation. 143

2 Related Work 144

Verifier and Calibration Model Formally, the 145

trained calibration model is very similar to the 146

trained verifier. The function of these two mod- 147

els are distinct. However, the verifier model is 148

employed to evaluate the generation quality, select- 149

ing the better answer with the highest evaluation 150

score from multiple generated samples(McAleese 151

et al., 2024; Ke et al., 2023; Huang et al., 2024). 152

The verifier model provides a unique and consis- 153

tent score for the same text, independent of the 154

generation model used. In contrast, confidence 155

estimation measures the probability of an LLM 156

generates the correct answer. Different LLMs may 157

generate different answers for the same input, with 158

different probabilities of getting the correct answer 159

(Atil et al., 2024; Song et al., 2024; Renze, 2024). 160

Therefore, the calibration model assigns different 161

confidence scores to the same text, which usually 162

depends on the generative model used. 163

The similar to our work is to evaluate the rea- 164

soning steps (Wang et al., 2024a; Lightman et al., 165

2023) or the generation answers (Cobbe et al., 166

2

https://openai.com/openai-o1-contributions


Figure 2: The process of constructing training data for confidence estimation. In the Sampling part, confidence
scores for Questions and Questions with Partial Answers are calculated by Formula 2. Each sampling answer
obtains a confidence score for the Question with Answer based on its correctness.

2021a) by training a reward model. These methods167

aimed to rank the multiple generated answers and168

select the best one or construct the step-wise data169

(Lai et al., 2024). However, they were designed for170

a particular task such as mathematical reasoning,171

and provided the discrete evaluation score for the172

reasoning steps to improve the final reasoning per-173

formance. Besides, they overlooked discussing the174

accuracy of evaluation. In contrast, we focus on175

exploring a universal method that can provide the176

fine-grained and accurate confidence estimates for177

any given text.178

Confidence Expression in LLMs. In terms of179

confidence expression in LLMs, existing works180

have focused on evaluating the certainty or un-181

certainty of LLMs in generating correct answers182

to specific questions. One approach was to use183

carefully designed prompts to guide LLMs to ex-184

press their confidence level in words along with185

the generated answers (Zhou et al., 2023; Xiong186

et al., 2023; Li and Nian, 2024; Zhang et al.,187

2024c). Branwen (2020) displayed GPT-3’s ca-188

pability to convey uncertainty on basic questions189

through few-shot prompts. Lin et al. (2022) in-190

troduced the concept of “verbalized confidence”,191

which directly guided LLMs to output the confi-192

dence. Tian et al. (2023a) employed external an-193

notations to instruct LLMs to express uncertainty194

in words during the answers generation processes.195

However, it was shown that LLMs exhibit high196

confidence when prompted to verbalize their confi-197

dence (Xiong et al., 2023), and they often struggle198

to follow complex instructions.199

Another line of works focused on leveraging200

the logit values of specific tokens (e.g. A, B, C,201

etc) in the generated answer to measure the un-202

certainty of the entire answer sequence (Robinson 203

et al., 2023). Kadavath et al. (2022) proposed prob- 204

ing the self-awareness of LLMs by incorporating 205

a dedicated “Value Head". However, this method 206

faced challenges when applied to general tasks due 207

to its reliance on structured datasets, like multiple- 208

choice questions. Moreover, there has been signifi- 209

cant progress in developing metrics to measure the 210

certainty of LLM responses. Kuhn et al. (2013) 211

proposed utilizing semantic entropy among multi- 212

ple sampled answers under the same questions to 213

estimate model’s uncertainty. The semantic similar- 214

ity is quantified using a separated natural language 215

inference classification system (NLI). Zhang et al. 216

(2024b) decomposed LLMs’ confidence into two 217

dimensions, including the uncertainty about the 218

question and the fidelity to the answer generated 219

by the LLM. 220

Overall, current methods usually utilize the in- 221

herent capabilities or signals of LLMs to instruct 222

their expression of confidence. These methods pri- 223

marily rely on the capabilities of the model itself, 224

targeting tasks with standardized answers. In this 225

paper, we consider the ability to express confidence 226

as a meta-capability that requires explicit training 227

within LLMs. 228

3 Method 229

3.1 Task Formalization 230

Existing LLMs generally generate responses in 231

an auto-regressive manner, sequentially predicting 232

the next token based on the preceding sequence. 233

Specifically, for a sequence of generated tokens 234

{t1, t2, · · · , tn}, each token ti (i ∈ 1, 2, · · · , n) 235

is sampled from the probability distribution Pi = 236

P(·|x, t<i), where n represents the total number of 237
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tokens generated, x represents the input text, and238

t<i = {t1, t2, · · · , ti−1} refers to the preceding239

tokens prior to ti.240

Considering that the outputs generated by LLMs241

are often unstructured, free-form, it becomes chal-242

lenging to evaluate the confidence score about these243

texts. Our goal is to provide confidence scores at244

any given position during the model’s text genera-245

tion process. In this paper, we define confidence as246

the probability of the model generating the correct247

answer. The confidence estimation task aims to en-248

hance the model’s calibration capabilities, ensuring249

better alignment between predicted probabilities250

and actual performance. Furthermore, different251

LLMs exhibit varying probabilities of generating252

correct responses even when presented with the253

same input text. We argue that the confidence es-254

timation task is model-dependent, and formally255

define the confidence estimation task as follows:256

Confs = p(y = Ȳ |s,M) (1)257

Here, M represents the generation model, Confs258

is the confidence score of sequence s, which takes259

the value [0, 1]. The larger the value, the higher260

the probability that M generates the correct an-261

swer based on s. Besides, y = {t1, t2, · · · , tn}262

represents the complete generated sequence, Ȳ cor-263

responds to the golden answer, and p denotes the264

probability.265

Notably, when the input text s comprises solely266

a question, the task transforms into the question-267

oriented confidence estimation task; When the in-268

put contains a question and a partial answer, it269

offers confidence scores throughout the generation270

process; When s represents a complete answer, the271

task shifts to the outcome-oriented confidence esti-272

mation task. Here, we definePartial Answer as any273

intermediate output in the overall response genera-274

tion process.275

Above task formalization not only unifies exist-276

ing confidence estimation tasks, also extends the277

scope of confidence estimation to cover the en-278

tire model generation process. Consequently, our279

method provides a comprehensive confidence es-280

timation, capable of producing appropriate confi-281

dence estimation for any given text input at any282

stage of the generation process.283

3.2 FineCE284

3.2.1 Data Preparation285

Preliminary. Traditional deep learning approaches286

for classification fail to capture the model uncer-287

Figure 3: This is an example illustration of Backward
Confidence Integration strategy.

tainty. The predictive probabilities provided by 288

the softmax output are frequently misinterpreted 289

as a measure of the model’s confidence. How- 290

ever, the model may still be uncertain in its pre- 291

dictions despite producing a high softmax output 292

(Gal and Ghahramani, 2016). Therefore, to obtain 293

the LLM’s inherent real responses based on the text 294

s, we adopt the idea of Monte Carlo Sampling(Li 295

et al., 2024) and employ the generative LLM M 296

to repeatedly sample k answers {A1
s, A

2
s, · · · , Ak

s} 297

at hight temperature. In our work, the input text 298

sequence s includes three distinct types: Question, 299

Question with Partial Answer and Question with 300

Answer. The confidence score Confs is computed 301

by evaluating the accuracy ration of these k gener- 302

ated answers with respect to a reference or golden 303

answer Ȳ . Specifically, the confidence score is 304

calculated as follows: 305

Confs =

∑k
i=1I(A

i
s) = ȳs

k
, (2) 306

where Ai
s represents the ith sampling answer gen- 307

erated based on sequence s. For closed-ended ques- 308

tions, ȳs represents the predefined ground-truth an- 309

swer. The indicator function I evaluates the degree 310

of match between generated answer and standard 311

answers, returning 1 for matches and 0 otherwise. 312

For open-ended questions, the evaluation results 313

can be derived either through human or advanced 314

LLMs such as GPT-4. 315

Construction Data. The complete pipeline 2 of 316

constructing the training data is shown in Figure 317

2Note: Diagram notation may differ from main text nota-
tion for clarity and better visualization of the data preparation
process.
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Datasets Process Metrics Llama2-13B Llama2-7B
Multi-Step LECO FineCE Multi-Step LECO FineCE

GSM8K

para(1)
ECE 23.5 19.2 9.3 24.5 23.7 12.9

AUROC 55.6 60.5 73.8 54.4 59.6 75.3

para(z − 1)
ECE 22.8 21.3 8.4 29.2 25.6 13.8

AUROC 57.3 59.5 77.7 54.6 58.4 76.8

avg
ECE 21.1 19.6 6.7 23.1 18.3 7.2

AUROC 57.1 61.1 78.1 59.5 63.4 78.6

CSQA

para(1)
ECE 24.8 23.8 18.3 30.6 26.2 15.9

AUROC 54.6 57.1 66.2 51.4 60.2 69.5

para(z − 1)
ECE 26.9 25.7 16.2 23.4 24.7 16.7

AUROC 53.2 56.0 69.3 54.7 58.9 69.8

avg
ECE 23.1 21.4 11.7 24.4 19.7 12.8

AUROC 58.6 59.6 71.3 56 61.7 72.5

TriviaQA

para(1)
ECE 22.2 26.8 14.5 27.9 32.4 20.1

AUROC 56.1 53.4 70.8 60.3 55.7 73.6

para(z − 1)
ECE 25.6 27.3 15.0 27.4 29.9 21.0

AUROC 56.4 58.3 74.2 59.0 56.1 73.3

avg
ECE 22.8 25.5 11.3 26.7 28.3 16.1

AUROC 57.2 58.1 76.1 60.1 57.4 77.2

Table 1: Confidence estimation results throughout the generation process: the first paragraph, preceding z − 1
paragraphs and overall average confidence scores.

2. First, starting from a question x, the model M318

generates k diverse answers A1
x, A

2
x, · · · , Ak

x using319

high temperature sampling. Here, Ai
x represents320

the ith response conditioned on input x. The con-321

fidence score for x is calculated according to For-322

mula 2. Subsequently, to generate partial answer323

A1
x
∗
, A2

x
∗
, · · · , Ak

x
∗, we randomly truncate each of324

k responses at selected positions (The red vertical325

line indicates the truncation position for the cur-326

rent text). These partial answers are then grouped327

into m(1 ≤ m ≤ k) clusters based on their se-328

mantic similarity. We randomly sample cluster329

centroids as representatives and concatenate the330

original question with the selected partial answers331

as the model input for continue sampling, and thus332

obtain the confidence scores of the generation tra-333

jectory.334

It is worth to note that the truncation of answer335

Ai
x to obtain partial answers can be implemented336

through various human-defined rules such as steps-,337

paragraphs-, or fixed lengths based partitioning. To338

enhance the robustness and diversity of the training339

dataset, we also apply multiple truncation strategies340

simultaneously and perform truncations multiple341

times.342

Upon completion of the aforementioned process,343

we obtain a diverse set of candidate responses for344

a question, responses that align with the ground345

truth are assigned a confidence score of 1, while346

those that deviate from the expected output receive 347

a confidence score of 0. 348

Therefore, we construct a training dataset com- 349

prising tuples in the form of ⟨s, Confs⟩. The train- 350

ing data format is shown in the Appendix. 351

Training Technique To optimize the confidence 352

estimation capability, we investigate two distinct 353

training technique, including the Additional Value 354

Head and Instruction Fine-Tuning (IFT) (Ouyang 355

et al., 2022). The additional value head, reformu- 356

lates confidence estimation as a multi-classification 357

task, enabling token-level confidence predictions 358

throughout the generation sequence. In contrast, 359

the IFT leverages natural language generation capa- 360

bilities to produce confidence estimates in a more 361

interpretable format. In the Appendix (Figure 8) 362

provides a comprehensive comparison of these 363

two technique in our proposed task. In this paper, 364

FineCE adopts the IFT training paradigm. 365

3.2.2 Identify the Calibration Position 366

While existing confidence estimation methods typ- 367

ically perform at a coarse-grained level, FineCE 368

introduces fine-grained confidence estimation for 369

LLMs. However, it is unnecessary to perform 370

confidence calibration after each token generation. 371

Therefore, we propose three strategies to identify 372

optimal positions for confidence estimation during 373

the generation process. 374

Paragraph-End Calibration. This strategy per- 375
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Base Models Baselines GSM8K CSQA TriviaQA
ACC↑ ECE↓ AUROC↑ ACC↑ ECE↓ AUROC↑ ACC↑ ECE↓ AUROC↑

Llama2-13B

P(IK) 30.4 14.5 64.8 69.9 29.9 59.5 66.2 18.7 65.0
FineCE 33.6 8.9 67.3 65.6 16.2 69.3 64.8 15.5 68.4

First-Prob 30.4 23.3 59.7 62.5 22.3 60.1 63.1 27.6 57.1
SuC 31.0 28.8 57.3 60.1 27.2 56.7 62.8 23.5 58.2
Verb 31.0 29.3 56.2 64.3 21.7 58.3 65.1 27.1 53.7

Fidelity - - - 54.5 18.3 67.1 - - -
FineCE 33.6 5.1 77.8 65.6 11.5 70.5 64.8 12.0 76.9

Llama2-7B

P(IK) 30.7 16.3 62.8 64.8 24.7 57.4 57.4 20.9 68.3
FineCE 30.3 13.1 72.9 63.7 15.9 69.5 53.9 19.1 68.9

First-Prob 29.7 25.4 58.1 62.1 25.3 57.7 52.8 25.7 55.1
SuC 29.1 28.7 57.3 63.4 22.7 55.8 52.1 29.3 57.4
Verb 30.3 28.10 56.2 62.5 26.4 55.4 54.2 28.6 55.8

Fidelity - - - 40.6 14.1 68.9 - - -
FineCE 30.3 6.5 78.9 63.7 11.7 72.3 53.9 15.4 76.8

Table 2: The confidence estimation results across baselines for question-oriented and outcome-oriented tasks.

forms confidence estimation at natural sentence376

boundaries, leveraging linguistic breaks in the gen-377

eration process. By calibrating at paragraph end-378

points, it minimizes the disruption to the generation379

flow while preserving semantic coherence and con-380

textual integrity.381

Periodic Calibration. It implements confidence382

estimation at fixed tokens intervals throughout the383

generation process, such as each 50 tokens This384

regular, interval-based strategy offers a determinis-385

tic mechanism for confidence monitoring, ensuring386

consistent quality assessment across the entire gen-387

erated sequence.388

Entropy-based Calibration. We can set a en-389

tropy threshold to decide whether to start the confi-390

dence estimation. Though entropy is also a signal391

to measure model uncertainty during generation, it392

alone is insufficient to accurately predict the proba-393

bility of generating the correct answer. The calibra-394

tion is more meaningful and reliable when entropy395

values are higher.396

We aim to identify an effective strategy and es-397

tablish basic guidelines for selecting appropriate398

confidence estimation positions in different genera-399

tion scenarios.400

3.2.3 Backward Confidence Integration (BCI)401

For the same LLM, it may generate diverse402

answers even if the input is the same. To revise403

either excessively high or low confidence level404

and mitigate output confidence bias, we introduce405

the Backward Confidence Integration strategy.406

This strategy not only considers the confidence407

score of the current text, also incorporates the408

confidence of its subsequent text, thereby deriving 409

a more holistic confidence score for the current 410

text sequence. Specifically, for a text sequence, 411

Confsj denotes confidence estimation at the jth 412

calibration position, and w represents the number 413

of sampled answers. The adjusted confidence 414

score Conf
′
sj is calculated as follows: 415

Conf ′
sh

=

{
αConfsh + (1 − α) 1

w

w∑
b=1

Conf ′
sb
h+1

, h ∈ (j, j + d)

Confsh , h = j + d
416

where α controls the revision ratio, which deter- 417

mines the degree to which the subsequent context 418

is integrated into the current confidence calculation. 419

A smaller α A smaller places greater emphasis on 420

the confidence scores of subsequent text genera- 421

tions. Parameters w and d represents the depth and 422

width of fusion respectively. This back-to-forward 423

inference strategy enables a global and accurate 424

confidence estimation for sj . Confsbh
represents 425

the confidence score of the text at the hth cali- 426

bration position in the bth sampled answer. An 427

illustrative example is provided in Figure 3. 428

4 Experiments 429

4.1 Experiment Setting 430

Dataset. We evaluate the performance of confi- 431

dence estimation across three datasets including 432

GSM8K (Cobbe et al., 2021b), TriviaQA(Joshi 433

et al., 2017) and CommonsenseQA(CSQA; Talmor 434

et al., 2018). 435

Models and Baselines. We employ two widely- 436

used open-source models, including Llama2-7B 437

and Llama2-13B (Touvron et al., 2023). And the 438

baselines we compared include the following three 439
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Strategy Dataset ACC ACCδ ECE1 ECEavg Ratio

Paragraph
GSM8K 33.6 73.1 (+39.5) 9.8 7.7 30.4
CSQA 65.6 73.5 (+7.9) 26.8 13.0 22.0

TriviaQA 64.8 80.0 (+15.2) 17.2 14.5 28.5

Entropy
GSM8K 33.6 72.5 (+38.9) 13.2 7.7 10.0
CSQA 65.6 81.1 (+15.5) 27.1 18.8 7.0

TriviaQA 64.8 80.2 (+15.4) 18.5 15.4 13.4

Fixed-token
GSM8K 33.6 71.6 (+38.0) 13.1 10.8 23.5
CSQA 65.6 78.9 (+13.3) 24.2 20.7 34.7

TriviaQA 64.8 78.8 (+14.0) 20.0 18.0 34.1

Table 3: Performance comparison of three strategies for identifying optimal calibration positions in Llama2-13B.
Ration(%) denotes the proportion of tokens preceding the calibration position relative to token count.

types: 1) Question-oriented: P(IK)(Kadavath440

et al., 2022); 2) Outcome-oriented: First-Prob441

(Santurkar et al., 2023), SuC(Lin et al., 2022), Ver-442

balized Porb (Verb Tian et al., 2023b), Fidelity443

(Zhang et al., 2024a) ; 3) Step-wise estimation:444

Multi-Step (MP; Xiong et al., 2023), LECO(Yao445

et al., 2024)446

Evaluation Metrics. We adopt several widely447

used metrics including Expected Calibration Error448

(ECE), Receiver Operating Characteristic Curve449

(AUROC) and Accuracy (ACC).450

Further details about datasets, baselines, imple-451

mentations (including all prompts used in this pa-452

per, important parameters, and platforms) can be453

found in Appendix A.1.454

4.2 Main Results and Analysis455

RQ1: How does FineCE perform compared456

with baselines? We demonstrate that base models457

provide the accurate confidence estimates for any458

given text sequence on three datasets after using459

FineCE. The overall results are shown in Table 1460

and Table 2. The results in the two tables are the461

average values.462

From Table 1, we observe that FineCE delivers463

the accurate confidence estimates during the gen-464

eration process. Notably, the AUROC values ob-465

tained by our method are greater than 70% in most466

cases, showing a strong performance for accurate467

identification. In contrast, the AUROC for the other468

two baselines are always around 60% across these469

datasets, which is almost close to random guessing.470

Besides, the outstanding performance on process-471

oriented confidence estimation task shows that our472

proposed method FineCE can provide the accurate473

estimates for any given text sequence, which is474

significantly different from other methods. In the475

table, para(1) and para(z − 1) respectively repre-476

sent the first paragraph and the z − 1 paragraphs 477

of the generated answer. avg represents the aver- 478

age confidence estimates for the entire generation 479

process. 480

From Table 2, our method consistently outper- 481

forms all baselines in terms of ECE and AUROC, 482

and shows excellent calibration capability. Taking 483

the GSM8K dataset as an example, on the answer- 484

oriented confidence estimation task, Llama2-13B 485

achieves a lower ECE 5.1%, and the AUROC is 486

as high as 78.9%. At the same time, we observe 487

that although FineCE improves the confidence cali- 488

bration ability through fine-tuning, it does not lead 489

to a decrease in accuracy, showing close accuracy 490

of the outcomes achieved through the prompt en- 491

gineering method. This is because we conduct the 492

replaying strategy during fine-tuning and mix some 493

general IFT datasets. 494

4.3 Ablation Analysis 495

RQ2: Where does FineCE perform the confi- 496

dence estimation? We conduct a comparative 497

analysis of three calibration position strategies in 498

FineCE using the Llama2-13B model. The results 499

are shown in Table 3. In this experiment, we set the 500

entropy threshold to 1e-10 for the Entropy-based 501

strategy and fixed the token length to 30 for the 502

Prediodic Calibration strategy. We find all three 503

strategies demonstrate comparable performance in 504

terms of ECE, with Paragraph-end Calibration strat- 505

egy showing slightly superior results. This can be 506

attributed to preserve the complete semantic infor- 507

mation truncated by paragraph. And the Entropy- 508

based strategy tends to trigger calibration earlier in 509

the generation process (indicated by smaller ratio 510

values). It represents that entropy-based strategy is 511

likely to frequently perform confidence estimation. 512

We provide some basic principles. For general 513

7



Figure 4: The Zero-shot performance on OpenBookQA dataset. From left to right, the figures show the confidence
estimation performance of FineCE for the question, partial answer, and complete answer. The x-axis represents the
confidence scores (%), and the y-axis represents the ratio of quantities. The top area contains the detailed values of
ECE and AUROC.

Figure 5: The impact of fusion depth (left) and width
(right) on confidence estimation.

tasks, it is sufficient to estimate at the end of514

paragraph, which alleviate token consumption. For515

more complex tasks, employing entropy-based516

strategies for dual verification may be better.517

RQ3: How effective is the BCI strategy? To518

evaluate the effectiveness of the BCI strategy, we519

conduct ablation experiments on the GSM8K520

and CSQA datasets using two base models. We521

evaluate the ECE of para(1), and the results are522

shown in Figure 5. When d = 0 and w = 0, it523

represents FineCE without using the BCI. We524

find that using the BCI method significantly525

enhances the confidence estimation performance.526

Moreover, we observe that the performance527

enhancement becomes more pronounced as the528

fusion width w and d increases.529

530

4.4 Generalization Analysis531

RQ4: How does FineCE perform with zero-532

shot prompt on new task? To evaluate the gen-533

eralizability of the FineCE method, we test the534

confidence estimation performance of FineCE on535

OpenBookQA dataset (Mihaylov et al., 2018) us-536

ing Llama2-13B, and the results are shown in Fig-537

ure 4. We find that FineCE exhibits outstanding538

performance across both the ECE and AUROC con-539

fidence metrics. Additionally, there is a robust pos-540

itive correlation between the model’s confidence541

estimates and the actual accuracy of the answers. 542

Specifically, we observe that higher confidence lev- 543

els correlated with higher accuracy. It indicates that 544

our method possesses noteworthy generalization 545

capabilities and is capable to offer reliable confi- 546

dence estimates when applied to new tasks. Be- 547

sides, we investigate how different training datasets 548

from different models affect model performance in 549

Appendix A.2. 550

4.5 Downstream Application 551

RQ5: How does FineCE perform on down- 552

stream application? We set a confidence threshold 553

δ to filter the answers. Only when the confidence 554

estimates exceeds the threshold, we accept the gen- 555

eration answer. The results are shown in Table 3. 556

We leverage the first confidence estimates. δ is 557

set to 80%, and ACCδ represents the accuracy rate 558

among responses that surpass the confidence thresh- 559

old. We find FineCE enables early performance 560

prediction and provides a reliable mechanism for 561

filtering model outputs. Compared with uncondi- 562

tionally accepting the output results of the LLM, 563

the accuracy of the model has been significantly 564

improved after introducing output confidence. 565

5 Conclusion 566

In this paper, we propose a fine-grained confidence 567

estimation method FineCE to provide accurate con- 568

fidence scores throughout the generation process. 569

We first introduce the difference between FineCE 570

and existing popular related works, and describe 571

the dataset construction process. We introduce the 572

BCI to generate a holistic confidence estimate for 573

the current text and three strategies for identifying 574

the optimal estimation position. Extensive experi- 575

ments demonstrate our proposed method’s superior 576

performance across various confidence estimation 577

task and downstream task. 578
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6 Limitations579

Although FineCE demonstrates effectiveness in580

providing accurate confidence scores across var-581

ious confidence estimation task, it still faces chal-582

lenges with highly open-ended problems as all ex-583

isting confidence estimation methods. For example,584

questions like “How to stay healthy?" lack explicit585

response constraints (e.g., perspective, scope or re-586

sponse length). The inherent ambiguity and vast587

solution space of such queries pose significant chal-588

lenges for this task. Our future work will explore589

more robust confidence estimation methods specif-590

ically for such highly open-ended questions.591
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A Appendix827

A.1 Additional Experiments Details828

Baselines. We introduce each method in the base-829

line, and the prompts used are shown in the Table830

6.831

• P(IK). It trains a logistic regression with the832

additional value “head" added to the model to833

output the confidence estimated.834

• First-Prob. It uses the logits of the first token835

of LLM’s generated answer as the confidence836

estimate.837

• SuC. It first clusters the sub-questions, and838

use the same confidence estimate for ques-839

tions in the same cluster.840

• Verb. It is a prompt-based method. It designs841

the prompts to guide the model to output its842

confidence score alongside with the generated843

answer.844

• Fidelity. For MCQA, it decomposes the LLM845

confidence into the Uncertainty about the846

question and the Fidelity to the answer gener-847

ated by LLMs.848

• LECO. It also proposes leveraging logits to849

estimate step confidence. Besides, it further850

designs three logit-based scores that compre-851

hensively evaluate confidence from both intra-852

and inter-step perspectives.853

• Multi-Step. It also uses prompts to guide the854

model to output the process confidence and855

takes the average as the final result.856

Figure 6: On GSM8K dataset, the performance confi-
dence estimation for the two different families models
using datasets from different sources.The horizontal axis
represents the base models.

Figure 7: On CSQA dataset, the performance confi-
dence estimation for the two different families models
using datasets from different sources.The horizontal axis
represents the base models.

Figure 8: The performance comparison using different
training technical. The left side of the vertical axis
indicates the value of ECE, and the right side indicates
the value of AUROC.

Important Parameters Settings. During fine- 857

tuning, we employ the AdamW optimizer with 858

β1 = 0.9 and β2 = 0.5. The initial learning rate 859

is set to 1e-4, with the warmup phase of 300 steps. 860

All experiments are conducted on the workstations 861

of NVIDIA A800 PCIe with 80GB memory and 862

the environment of Ubuntu 20.04.6 LTS and torch 863

2.0.1. 864

Training Data We provide three types of train- 865

ing data format in Table 5. All the prompts used in 866

this paper are shown in Table 6. 867

A.2 Discussions 868

RQ6: How does FineCE perform when trained 869

using datasets from different model? First, for 870

the LLaMA2-13B and LLaMA2-7B two base mod- 871

els, we employ two distinct models to construct the 872

training datasets: the model itself or an alternative 873

model. The results are shown in Figure 9. Training 874

with datasets generated from the alternative model 875

achieves confidence calibration performance very 876

close to the obtained using the dataset constructed 877

by the model itself, especially on the GSM8K and 878

12



Figure 9: The performance confidence estimation for two base models using training datasets from different sources.
The horizontal axis represents the base models

Dataset Base Models ACC-before ACC-after

GSM8K
LLaMA2-7B 30.3 58.8 (+28.5)
LLaMA2-13B 33.6 78.3 (+44.7)

CSQA
LLaMA2-7B 63.7 79.9 (+16.2)
LLaMA2-13B 65.6 81.8 (+16.2)

TrivalQA
LLaMA2-7B 53.9 70.3 (+16.4)
LLaMA2-13B 64.8 80.7 (+15.9)

Table 4: Comparison of the model’s accuracy perfor-
mance across three datasets with a set confidence thresh-
old of 80%.

CAQA datasets. We guess that it may be related879

to the used models being from the same family880

and exhibit significant similarities in their knowl-881

edge capabilities. It suggests that larger models882

could effectively instruct smaller models to learn883

to express the confidence. In addition, leveraging884

smaller models to construct training datasets may885

be a cost-efficient alternative.886

We also use two models from different fami-887

lies to explore this phenomenon further, including888

Qwen2-7B and LLaMA2-7B, which are from dif-889

ferent model families. The results are show in890

Figure 6 and Figur 7. We find that there are two891

different phenomena on different datasets. On the892

GSM8K dataset, compared with using the model893

itself to construct training data, the confidence train-894

ing data constructed with the help of other mod-895

els performed poorly, especially in the ECE value,896

where the difference was particularly significant.897

On the CSQA dataset, the performance difference898

between the two methods is small. This may be899

because there is a large difference in the accuracy900

of Qwen2-7B and LLaMA2-7B on the GSM8K901

dataset, which makes it impossible to effectively902

migrate the confidence training data constructed by903

these two models to each other.904

We can conclude that if the performance of two905

models on a task is close, the confidence training906

data constructed using one of the models can be907

effectively used in the training stage of the other908

model. 909

RQ7: Which training skill is more suitable? On 910

the GSM8K training dataset, we employ two dis- 911

tinct training techniques using the LLaMA2-13B 912

model. One is to add a multi-classification head 913

at the end of the model to output the confidence 914

estimates through classification. The other is the 915

instruction fine-tuning method as we used in the 916

experiment. The outcome confidence estimates re- 917

sults are shown in Figure 8, it suggests that under 918

the same data scale, the multi-classification tech- 919

niques exhibited poor performance in confidence 920

estimation task. 921

RQ8: How does our method perform on 922

highly open questions? We randomly select 300 923

single-round English open question-answering data 924

on Sharegpt 3, and use LLaMA2-7B to provide con- 925

fidence estimates, and compared the output confi- 926

dence with the evaluation score of the generated 927

answers using GPT4 to calculate ECE. We find that 928

for highly open questions, our proposed method 929

achieved a higher ECE value of 65.66. This is also 930

in line with our expectations. This is because we 931

did not use GPT4’s evaluation to assist in construct- 932

ing training data, resulting in a large difference 933

between the confidence provided by the model and 934

the GPT4 scoring results. 935

3https://huggingface.co/datasets/OpenGVLab/
ShareGPT-4o
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< Question, Conf >
Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day?
Output: Conf:0.7

< Question + Partial Answer, Conf >
Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day? The total number of miles driven is
Output: Conf:0.9

< Question + Answer, Conf >
Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day? The total number of miles driven is 12 + 18 + 21 =
«12+18+21=51»51 miles.The average distance traveled per day is 51 miles / 3 days = «51/3=17»17
miles.
Output: Conf:1.0

Table 5: Three training data formats of FineCE.

Method Prompt
Verb Read the question, analyze step by step, provide your answer and your confidence in

this answer. Use the following format to answer: "Explanation: [insert step-by-step
analysis here] Answer: [ONLY the option letter; not a complete sentence], Confidence
(0-100):[Your confidence level, please only include the numerical number in the range
of 0-100]%”
Please refer to the example I have given:
<example>
{few-shot}
</example>
Question:
{question}
Now, please answer this question and provide your confidence level. Let’s think it step
by step.

Multi-step Read the question, break down the problem into K steps, think step by step, give your
confidence in each step, and then derive your final answer and your confidence in
this answer. Note: The confidence indicates how likely you think your answer is true.
Use the following format to answer: Step 1: [Your reasoning], Confidence: [ONLY
the confidence value that this step is correct]% Step K: [Your reasoning], Confidence:
[ONLY the confidence value that this step is correct]% Final Answer: [ONLY the
answertype; not a complete sentence] Overall Confidence(0-100): [Your confidence
value]%
Please refer to the example I have given:
<example>
{few-shot}
</example>
Question:
{question}
Now, please answer this question and provide your confidence level. Let’s think it step
by step.

FineCE(ours) Below is a question and some steps:
Question:
{question}
{steps}
Please give your confidence.

Table 6: The prompts used in the baselines.
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Strategy Dataset ACC ACCδ ECE1 ECEavg Ratio

Paragraph
GSM8K 30.3 62.6 12.5 8.8 28.6
CSQA 63.7 79.6 19.8 13.2 53.2

TriviaQA 53.9 66.2 24.5 20.7 42.0

Entropy
GSM8K 30.3 57.5 11.4 9.5 9.3
CSQA 63.7 84.1 21.2 16.4 8.9

TriviaQA 53.9 71.1 24.1 20.2 13.2

Fixed-token
GSM8K 30.3 62.3 12.3 8.3 22.1
CSQA 63.7 82.9 20.2 19.0 32.0

TriviaQA 53.9 72.0 23.8 19.5 33.4

Table 7: Performance comparison of three strategies for optimal calibration position detection in Llama-7B.
Ration(%) denotes the proportion of ttokens preceding the calibration position relative to token count.
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