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Abstract

Accurate confidence estimation of large lan-
guage models (LLMs) is crucial for improv-
ing their generation reliability. While existing
methods typically estimate confidence from
limited perspectives and specific token posi-
tions, they fail to provide continuous confi-
dence estimation throughout the generation
process. In this paper, we introduce FineCE,
a novel fine-grained confidence estimation
method that provides the accurate and real-
time confidence scores during the generation.
Specifically, we develop a pipeline for con-
struction training data to capture the inherent
responses of LLMs, and design data formats
for three different tasks to teach LLMs to ex-
press confidence. Additionally, we propose the
Backward Confidence Integration (BCI) strat-
egy, which integrates confidence scores from
subsequent text sequences to provide a holistic
confidence estimation for the current text se-
quence. Furthermore, we provide three strate-
gies to identify the optimal positions to perform
confidence estimation. Extensive experiments
demonstrate that FineCE consistently outper-
forms existing baselines in various confidence
estimation tasks. Our code and all baselines
used in the paper are available in the GitHub
https://anonymous.4open.science/r/FineCE/.

1 Introduction

Large language models (LLMs) have achieved re-
markable capabilities across various tasks through
extensive pre-training on text corpora followed
by instruction fine-tuning on supervised datasets
(Ouyang et al., 2022; Wei et al., 2021). Despite
their impressive performance, LLMs still face prob-
lems with reliable generation, such as hallucina-
tion (Han et al., 2024). Confidence estimation has
emerged as a crucial approach for estimating the
probability of correctness in LLM outputs.
However, existing confidence estimation meth-
ods are limited by their coarse-grained confidence
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Figure 1: The difference between our proposed FineCE
and existing confidence estimation method. (Top):
LLMs either respond to queries within their knowledge
scope or refuse queries beyond their capabilities. (Mid-
dle): The model provides a confidence score alongside
an answer. (Bottom): Our proposed method FineCE
provides the fine-grained confidence scores for any
given text sequence during the generation process.
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scores and a limited perspective, failing to pro-
vide a feasible confidence estimation. These works
generally fall into question-oriented and outcome-
oriented confidence estimation. The question-
oriented confidence estimation task instructs LLMs
to only respond to questions within their domain
of knowledge scope and refuse to answer unknown
questions (Zhang et al., 2023). When confronted
with uncertain questions, LLMs refuse to answer
the question (Kadavath et al., 2022) rather than
attempting to deduce a potential answer from avail-
able information. This overly cautious strategy
diminished the utility of LLMs. The outcome-
oriented confidence estimation task requires LLMs
to evaluate the quality of their entire generated an-
swers (Zhang et al., 2024a; Zhao et al., 2024; Kuhn
et al., 2023; Abbasi-Yadkori et al., 2024). Even
if the final answer has a high confidence score, it
does not represent that the generation process is
completely accurate and reliable (Jiao et al., 2024).
The difference between them is shown in Figure 1.

Therefore, it is necessary to develop fine-grained
confidence estimation method, which provides ac-
curate and real-time confidence scores for the in-
termediate generation steps. The direct benefit is
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to predict the likelihood of the LLM generating
the correct answer in advance, without waiting for
the entire answer generation to be completed. In
addition, the confidence scores serve as supervi-
sory signals for advanced LLMs, like O1', to guide
their next generation action, whether to proceed or
correct the previous errors. Furthermore, questions
with consistently low confidence scores reveal defi-
ciencies in LLM, which provides valuable insights
for model improvements.

However, implementing fine-grained confidence
estimation for LLMs presents three significant chal-
lenges. Firstly, (Task Learning:) How to teach
LLM:s to express their confidence? The inherent
capabilities of LLM, including internal state repre-
sentations (Su et al., 2024; Chen et al., 2024) and
prompt-based instruction Branwen (2020), prove
insufficient for reliable confidence estimation, ne-
cessitating dedicated training to enhance its confi-
dence estimation abilities. But in practical scenar-
ios, the LLM typically generates unstructured, free-
form text sequences, making it difficult to assign
the correct confidence scores to arbitrary text con-
tent. Secondly, (Effectiveness:) How to provide
an accurate and unbiased confidence estimate for
the current text? Even when provided with the
same input text, LLMs generate highly variable
subsequent outputs (Atil et al., 2024). Consider-
ing only local confidence estimate for the current
text, while ignoring the confidence estimate of the
subsequent texts, leads to biased confidence scores.
Thirdly, (Efficiency:) Where are the optimal po-
sitions to perform confidence estimation? it is
blind to output confidence score after each token,
which is computationally redundant and unneces-
sary. Moreover, following the error propagation
principle(Wang et al., 2024b; Liang et al., 2024),
early errors in the generation sequence tend to am-
plify through subsequent steps, leading to devia-
tions from the correct response. Therefore, it is
essential to identify appropriate positions for confi-
dence estimation during the generation process.

To address these challenges, in this paper, we
introduce FinCE, a fine-grained confidence esti-
mation method for LLMs. Specifically, we de-
vise a complete pipeline for constructing training
data to empower LLMs to estimate the fine-grained
confidence score for any text during the genera-
tion process. Additionally, we introduce the Back-
ward Confidence Integration (BCI) strategy for in-
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ference time, which provides more holistic con-
fidence score by incorporating uncertainty infor-
mation from subsequent text. Furthermore, to bal-
ance the trade-off between confidence estimation
accuracy and computational efficiency, we propose
three strategies for identifying optimal positions
during the generation process.

Experiments demonstrate that FineCE signifi-
cantly outperforms existing confidence estimation
baselines across multiple metrics on two widely-
used open-source LLMs. We further validated its
performance in a downstream task where we imple-
ment a confidence score threshold filtering mech-
anism, accepting only responses above the setting
thresholds. FineCE leads to a substantial 39.5%
improvement in answer accuracy on the GSM8SK
dataset.

Our contributions are mainly four-fold: 7) We
introduce a fine-grained confidence estimation
method FineCE. 2)We provide a complete data
construction pipeline and utilize Instruction Fine-
tuning to enhance the capability of confidence esti-
mation. 3) We introduce BCI to generate a holistic
confidence estimate for the current text by integrat-
ing the confidence of the subsequent text. 4) We
devise three strategies to find the optimal position
to perform confidence estimation.

2 Related Work

Verifier and Calibration Model Formally, the
trained calibration model is very similar to the
trained verifier. The function of these two mod-
els are distinct. However, the verifier model is
employed to evaluate the generation quality, select-
ing the better answer with the highest evaluation
score from multiple generated samples(McAleese
et al., 2024; Ke et al., 2023; Huang et al., 2024).
The verifier model provides a unique and consis-
tent score for the same text, independent of the
generation model used. In contrast, confidence
estimation measures the probability of an LLM
generates the correct answer. Different LLMs may
generate different answers for the same input, with
different probabilities of getting the correct answer
(Atil et al., 2024; Song et al., 2024; Renze, 2024).
Therefore, the calibration model assigns different
confidence scores to the same text, which usually
depends on the generative model used.

The similar to our work is to evaluate the rea-
soning steps (Wang et al., 2024a; Lightman et al.,
2023) or the generation answers (Cobbe et al.,
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Figure 2: The process of constructing training data for confidence estimation. In the Sampling part, confidence
scores for Questions and Questions with Partial Answers are calculated by Formula 2. Each sampling answer
obtains a confidence score for the Question with Answer based on its correctness.

2021a) by training a reward model. These methods
aimed to rank the multiple generated answers and
select the best one or construct the step-wise data
(Lai et al., 2024). However, they were designed for
a particular task such as mathematical reasoning,
and provided the discrete evaluation score for the
reasoning steps to improve the final reasoning per-
formance. Besides, they overlooked discussing the
accuracy of evaluation. In contrast, we focus on
exploring a universal method that can provide the
fine-grained and accurate confidence estimates for
any given text.

Confidence Expression in LLMs. In terms of
confidence expression in LLMs, existing works
have focused on evaluating the certainty or un-
certainty of LLMs in generating correct answers
to specific questions. One approach was to use
carefully designed prompts to guide LLMs to ex-
press their confidence level in words along with
the generated answers (Zhou et al., 2023; Xiong
et al., 2023; Li and Nian, 2024; Zhang et al.,
2024c). Branwen (2020) displayed GPT-3’s ca-
pability to convey uncertainty on basic questions
through few-shot prompts. Lin et al. (2022) in-
troduced the concept of “verbalized confidence”,
which directly guided LLMs to output the confi-
dence. Tian et al. (2023a) employed external an-
notations to instruct LLMs to express uncertainty
in words during the answers generation processes.
However, it was shown that LLMs exhibit high
confidence when prompted to verbalize their confi-
dence (Xiong et al., 2023), and they often struggle
to follow complex instructions.

Another line of works focused on leveraging
the logit values of specific tokens (e.g. A, B, C,
etc) in the generated answer to measure the un-

certainty of the entire answer sequence (Robinson
et al., 2023). Kadavath et al. (2022) proposed prob-
ing the self-awareness of LLMs by incorporating
a dedicated “Value Head". However, this method
faced challenges when applied to general tasks due
to its reliance on structured datasets, like multiple-
choice questions. Moreover, there has been signifi-
cant progress in developing metrics to measure the
certainty of LLLM responses. Kuhn et al. (2013)
proposed utilizing semantic entropy among multi-
ple sampled answers under the same questions to
estimate model’s uncertainty. The semantic similar-
ity is quantified using a separated natural language
inference classification system (NLI). Zhang et al.
(2024b) decomposed LLMs’ confidence into two
dimensions, including the uncertainty about the
question and the fidelity to the answer generated
by the LLM.

Overall, current methods usually utilize the in-
herent capabilities or signals of LLMs to instruct
their expression of confidence. These methods pri-
marily rely on the capabilities of the model itself,
targeting tasks with standardized answers. In this
paper, we consider the ability to express confidence
as a meta-capability that requires explicit training
within LLMs.

3 Method

3.1 Task Formalization

Existing LLMs generally generate responses in
an auto-regressive manner, sequentially predicting
the next token based on the preceding sequence.
Specifically, for a sequence of generated tokens
{t1,t2,--- ,t,}, each token t; (i € 1,2,---,n)
is sampled from the probability distribution P; =
P(:|z,t<;), where n represents the total number of



tokens generated, x represents the input text, and
te; = {ti,ta, -+ ,ti—1} refers to the preceding
tokens prior to ;.

Considering that the outputs generated by LLMs
are often unstructured, free-form, it becomes chal-
lenging to evaluate the confidence score about these
texts. Our goal is to provide confidence scores at
any given position during the model’s text genera-
tion process. In this paper, we define confidence as
the probability of the model generating the correct
answer. The confidence estimation task aims to en-
hance the model’s calibration capabilities, ensuring
better alignment between predicted probabilities
and actual performance. Furthermore, different
LLMs exhibit varying probabilities of generating
correct responses even when presented with the
same input text. We argue that the confidence es-
timation task is model-dependent, and formally
define the confidence estimation task as follows:

Confs =ply =Y|s, M) (D

Here, M represents the generation model, C'on f;
is the confidence score of sequence s, which takes
the value [0, 1]. The larger the value, the higher
the probability that M generates the correct an-
swer based on s. Besides, y = {t1,t2, - ,tn}
represents the complete generated sequence, Y cor-
responds to the golden answer, and p denotes the
probability.

Notably, when the input text s comprises solely
a question, the task transforms into the question-
oriented confidence estimation task; When the in-
put contains a question and a partial answer, it
offers confidence scores throughout the generation
process; When s represents a complete answer, the
task shifts to the outcome-oriented confidence esti-
mation task. Here, we definePartial Answer as any
intermediate output in the overall response genera-
tion process.

Above task formalization not only unifies exist-
ing confidence estimation tasks, also extends the
scope of confidence estimation to cover the en-
tire model generation process. Consequently, our
method provides a comprehensive confidence es-
timation, capable of producing appropriate confi-
dence estimation for any given text input at any
stage of the generation process.

3.2 FineCE
3.2.1 Data Preparation

Preliminary. Traditional deep learning approaches
for classification fail to capture the model uncer-
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Figure 3: This is an example illustration of Backward
Confidence Integration strategy.

tainty. The predictive probabilities provided by
the softmax output are frequently misinterpreted
as a measure of the model’s confidence. How-
ever, the model may still be uncertain in its pre-
dictions despite producing a high softmax output
(Gal and Ghahramani, 2016). Therefore, to obtain
the LLM’s inherent real responses based on the text
s, we adopt the idea of Monte Carlo Sampling(Li
et al., 2024) and employ the generative LLM M
to repeatedly sample k answers { A}, A2 ...  AF}
at hight temperature. In our work, the input text
sequence s includes three distinct types: Question,
Question with Partial Answer and Question with
Answer. The confidence score C'on f4 is computed
by evaluating the accuracy ration of these k gener-
ated answers with respect to a reference or golden
answer Y. Specifically, the confidence score is
calculated as follows:
S l(4) =7

Confs = 3 ) (2)

where A’ represents the ith sampling answer gen-
erated based on sequence s. For closed-ended ques-
tions, ¢/ represents the predefined ground-truth an-
swer. The indicator function I evaluates the degree
of match between generated answer and standard
answers, returning 1 for matches and O otherwise.
For open-ended questions, the evaluation results
can be derived either through human or advanced
LLMSs such as GPT-4.

Construction Data. The complete pipeline % of
constructing the training data is shown in Figure

*Note: Diagram notation may differ from main text nota-
tion for clarity and better visualization of the data preparation
process.



. Llama2-13B Llama2-7B
Datasets Process Metrics

Multi-Step  LECO  FineCE Multi-Step LECO  FineCE

ECE 235 192 93 245 237 129

para(l)  ,uROC 55.6 605  73.8 54.4 596  75.3

ECE 2.8 213 84 292 256 138

GSMSK  para(z—1)  \jroc 573 595 717 54.6 584 1768
ave ECE 21.1 196 6.7 23.1 18.3 7.2

AUROC  57.1 61.1 781 59.5 634 786

ECE 24.8 238 183 30.6 262 159

para(l)  ,uROC 54.6 571 662 51.4 602  69.5

ECE 26.9 257 162 234 247 167

CSQA  para(z—1)  yyroc 532 560 693 547 589 698
ave ECE 23.1 204 117 24.4 197 128

AUROC 586 506 713 56 617 725

ECE 22 268 145 279 324 201

para() J\yRroC 56.1 534 708 60.3 557 73.6

TriviaQA para(s 1) ECE 25.6 273 150 274 299 210
AUROC 564 583 742 59.0 561 733

ECE 2.8 255 113 26.7 283 161

ave AUROC 572 581 761 60.1 574 712

Table 1: Confidence estimation results throughout the generation process: the first paragraph, preceding z — 1

paragraphs and overall average confidence scores.

2. First, starting from a question x, the model M
generates k diverse answers AL, A2 ... A using
high temperature sampling. Here, A’ represents
the ¢th response conditioned on input x. The con-
fidence score for z is calculated according to For-
mula 2. Subsequently, to generate partial answer
AL" A2" ... AF" we randomly truncate each of
k responses at selected positions (The red vertical
line indicates the truncation position for the cur-
rent text). These partial answers are then grouped
into m(1 < m < k) clusters based on their se-
mantic similarity. We randomly sample cluster
centroids as representatives and concatenate the
original question with the selected partial answers
as the model input for continue sampling, and thus
obtain the confidence scores of the generation tra-
jectory.

It is worth to note that the truncation of answer
A’ to obtain partial answers can be implemented
through various human-defined rules such as steps-,
paragraphs-, or fixed lengths based partitioning. To
enhance the robustness and diversity of the training
dataset, we also apply multiple truncation strategies
simultaneously and perform truncations multiple
times.

Upon completion of the aforementioned process,
we obtain a diverse set of candidate responses for
a question, responses that align with the ground
truth are assigned a confidence score of 1, while

those that deviate from the expected output receive
a confidence score of 0.

Therefore, we construct a training dataset com-
prising tuples in the form of (s, Con fs). The train-
ing data format is shown in the Appendix.

Training Technique To optimize the confidence
estimation capability, we investigate two distinct
training technique, including the Additional Value
Head and Instruction Fine-Tuning (IFT) (Ouyang
et al., 2022). The additional value head, reformu-
lates confidence estimation as a multi-classification
task, enabling token-level confidence predictions
throughout the generation sequence. In contrast,
the IFT leverages natural language generation capa-
bilities to produce confidence estimates in a more
interpretable format. In the Appendix (Figure 8)
provides a comprehensive comparison of these
two technique in our proposed task. In this paper,
FineCE adopts the IFT training paradigm.

3.2.2 Identify the Calibration Position

While existing confidence estimation methods typ-
ically perform at a coarse-grained level, FineCE
introduces fine-grained confidence estimation for
LLMs. However, it is unnecessary to perform
confidence calibration after each token generation.
Therefore, we propose three strategies to identify
optimal positions for confidence estimation during
the generation process.

Paragraph-End Calibration. This strategy per-



. GSMSK CSQA TriviaQA
Base Models Baselines

ACCT ECE] AUROCT ACCT ECE] AUROCT ACCT ECE] AUROCT

P(IK) 304 145 64.8 699 299 59.5 662 187 65.0

FineCE 336 89 67.3 656 162 69.3 648 155 68.4

First-Prob 304  23.3 59.7 62.5 223 60.1 63.1 276 57.1

Llama2-13B SuC 310 288 57.3 60.1 272 56.7 62.8 235 58.2

Verb 31.0 293 56.2 643 217 58.3 651 27.1 53.7

Fidelity - - - 545 183 67.1 - - -

FineCE 336 5.1 77.8 656 115 70.5 648 12,0 76.9

P(IK) 307 163 62.8 64.8 247 57.4 574 209 68.3

FineCE 303  13.1 72.9 63.7 159 69.5 53.9  19.1 68.9

First-Prob  29.7  25.4 58.1 62.1 253 57.7 528 257 55.1

Llama2-7B SuC 29.1 287 57.3 634 227 55.8 521 293 57.4

Verb 303 2810 562 62.5 264 55.4 542 286 55.8

Fidelity - - - 40.6 141 68.9 - - .

FineCE 303 65 78.9 63.7 117 72.3 53.9 154 76.8

Table 2: The confidence estimation results across baselines for question-oriented and outcome-oriented tasks.

forms confidence estimation at natural sentence
boundaries, leveraging linguistic breaks in the gen-
eration process. By calibrating at paragraph end-
points, it minimizes the disruption to the generation
flow while preserving semantic coherence and con-
textual integrity.

Periodic Calibration. It implements confidence
estimation at fixed tokens intervals throughout the
generation process, such as each 50 tokens This
regular, interval-based strategy offers a determinis-
tic mechanism for confidence monitoring, ensuring
consistent quality assessment across the entire gen-
erated sequence.

Entropy-based Calibration. We can set a en-
tropy threshold to decide whether to start the confi-
dence estimation. Though entropy is also a signal
to measure model uncertainty during generation, it
alone is insufficient to accurately predict the proba-
bility of generating the correct answer. The calibra-
tion is more meaningful and reliable when entropy
values are higher.

We aim to identify an effective strategy and es-
tablish basic guidelines for selecting appropriate
confidence estimation positions in different genera-
tion scenarios.

3.2.3 Backward Confidence Integration (BCI)

For the same LLM, it may generate diverse
answers even if the input is the same. To revise
either excessively high or low confidence level
and mitigate output confidence bias, we introduce
the Backward Confidence Integration strategy.
This strategy not only considers the confidence
score of the current text, also incorporates the

confidence of its subsequent text, thereby deriving
a more holistic confidence score for the current
text sequence. Specifically, for a text sequence,
Confs; denotes confidence estimation at the jth
calibration position, and w represents the number
of sampled answers. The adjusted confidence
score C'on f;j is calculated as follows:
Conf, = {aConfsh ta-wf B consly heGita
Confs, h=j+d

where « controls the revision ratio, which deter-
mines the degree to which the subsequent context
is integrated into the current confidence calculation.
A smaller o A smaller places greater emphasis on
the confidence scores of subsequent text genera-
tions. Parameters w and d represents the depth and
width of fusion respectively. This back-to-forward
inference strategy enables a global and accurate
confidence estimation for s;. Con fsz represents
the confidence score of the text at the hth cali-
bration position in the bth sampled answer. An
illustrative example is provided in Figure 3.

4 Experiments

4.1 Experiment Setting

Dataset. We evaluate the performance of confi-
dence estimation across three datasets including
GSMS8K (Cobbe et al., 2021b), TriviaQA(Joshi
et al., 2017) and CommonsenseQA(CSQA; Talmor
et al., 2018).

Models and Baselines. We employ two widely-
used open-source models, including Llama2-7B
and Llama2-13B (Touvron et al., 2023). And the
baselines we compared include the following three



Strategy Dataset ACC ACCj ECE, ECE4, Ratio
GSM8K  33.6 73.1(+39.5) 9.8 7.7 30.4

Paragraph CSQA 65.6 735H79) 26.8 13.0 22.0
TriviaQA 64.8 80.0 (+15.2) 17.2 14.5 28.5

GSM8K  33.6 725(+38.9) 132 7.7 10.0

Entropy CSQA 65.6 81.1(+15.5) 27.1 18.8 7.0
TriviaQA 64.8 802 (+154) 185 154 13.4

GSM8K  33.6 71.6(+38.0) 13.1 10.8 23.5

Fixed-token = CSQA 65.6 789 (+13.3) 24.2 20.7 34.7
TriviaQA 64.8 78.8 (+14.0) 20.0 18.0 34.1

Table 3: Performance comparison of three strategies for identifying optimal calibration positions in Llama2-13B.
Ration(%) denotes the proportion of tokens preceding the calibration position relative to token count.

types: 1) Question-oriented: P(/K)(Kadavath
et al., 2022); 2) Outcome-oriented: First-Prob
(Santurkar et al., 2023), SuC(Lin et al., 2022), Ver-
balized Porb (Verb Tian et al., 2023b), Fidelity
(Zhang et al., 2024a) ; 3) Step-wise estimation:
Multi-Step (MP; Xiong et al., 2023), LECO(Yao
et al., 2024)

Evaluation Metrics. We adopt several widely
used metrics including Expected Calibration Error
(ECE), Receiver Operating Characteristic Curve
(AUROC) and Accuracy (ACC).

Further details about datasets, baselines, imple-
mentations (including all prompts used in this pa-
per, important parameters, and platforms) can be
found in Appendix A.1.

4.2 Main Results and Analysis

RQ1: How does FineCE perform compared
with baselines? We demonstrate that base models
provide the accurate confidence estimates for any
given text sequence on three datasets after using
FineCE. The overall results are shown in Table 1
and Table 2. The results in the two tables are the
average values.

From Table 1, we observe that FineCE delivers
the accurate confidence estimates during the gen-
eration process. Notably, the AUROC values ob-
tained by our method are greater than 70% in most
cases, showing a strong performance for accurate
identification. In contrast, the AUROC for the other
two baselines are always around 60% across these
datasets, which is almost close to random guessing.
Besides, the outstanding performance on process-
oriented confidence estimation task shows that our
proposed method FineCE can provide the accurate
estimates for any given text sequence, which is
significantly different from other methods. In the
table, para(1) and para(z — 1) respectively repre-

sent the first paragraph and the z — 1 paragraphs
of the generated answer. avg represents the aver-
age confidence estimates for the entire generation
process.

From Table 2, our method consistently outper-
Jorms all baselines in terms of ECE and AUROC,
and shows excellent calibration capability. Taking
the GSM8K dataset as an example, on the answer-
oriented confidence estimation task, Llama2-13B
achieves a lower ECE 5.1%, and the AUROC is
as high as 78.9%. At the same time, we observe
that although FineCE improves the confidence cali-
bration ability through fine-tuning, it does not lead
to a decrease in accuracy, showing close accuracy
of the outcomes achieved through the prompt en-
gineering method. This is because we conduct the
replaying strategy during fine-tuning and mix some
general IFT datasets.

4.3 Ablation Analysis

RQ2: Where does FineCE perform the confi-
dence estimation? We conduct a comparative
analysis of three calibration position strategies in
FineCE using the Llama2-13B model. The results
are shown in Table 3. In this experiment, we set the
entropy threshold to /e-10 for the Entropy-based
strategy and fixed the token length to 30 for the
Prediodic Calibration strategy. We find all three
strategies demonstrate comparable performance in
terms of ECE, with Paragraph-end Calibration strat-
egy showing slightly superior results. This can be
attributed to preserve the complete semantic infor-
mation truncated by paragraph. And the Entropy-
based strategy tends to trigger calibration earlier in
the generation process (indicated by smaller ratio
values). It represents that entropy-based strategy is
likely to frequently perform confidence estimation.

We provide some basic principles. For general
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Figure 4: The Zero-shot performance on OpenBookQA dataset. From left to right, the figures show the confidence
estimation performance of FineCE for the question, partial answer, and complete answer. The x-axis represents the
confidence scores (%), and the y-axis represents the ratio of quantities. The top area contains the detailed values of
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Figure 5: The impact of fusion depth (left) and width
(right) on confidence estimation.

tasks, it is sufficient to estimate at the end of
paragraph, which alleviate token consumption. For
more complex tasks, employing entropy-based
strategies for dual verification may be better.
RQ3: How effective is the BCI strategy? To
evaluate the effectiveness of the BCI strategy, we
conduct ablation experiments on the GSM8K
and CSQA datasets using two base models. We
evaluate the ECE of para(1), and the results are
shown in Figure 5. When d = 0 and w = 0, it
represents FineCE without using the BCI. We
find that using the BCI method significantly
enhances the confidence estimation performance.
Moreover, we observe that the performance
enhancement becomes more pronounced as the
fusion width w and d increases.

4.4 Generalization Analysis

RQ4: How does FineCE perform with zero-
shot prompt on new task? To evaluate the gen-
eralizability of the FineCE method, we test the
confidence estimation performance of FineCE on
OpenBookQA dataset (Mihaylov et al., 2018) us-
ing Llama2-13B, and the results are shown in Fig-
ure 4. We find that FineCE exhibits outstanding
performance across both the ECE and AUROC con-
fidence metrics. Additionally, there is a robust pos-
itive correlation between the model’s confidence

estimates and the actual accuracy of the answers.
Specifically, we observe that higher confidence lev-
els correlated with higher accuracy. It indicates that
our method possesses noteworthy generalization
capabilities and is capable to offer reliable confi-
dence estimates when applied to new tasks. Be-
sides, we investigate how different training datasets
from different models affect model performance in
Appendix A.2.

4.5 Downstream Application

RQ5: How does FineCE perform on down-
stream application? We set a confidence threshold
¢ to filter the answers. Only when the confidence
estimates exceeds the threshold, we accept the gen-
eration answer. The results are shown in Table 3.
We leverage the first confidence estimates. ¢ is
set to 80%, and AC'Cjs represents the accuracy rate
among responses that surpass the confidence thresh-
old. We find FineCE enables early performance
prediction and provides a reliable mechanism for
filtering model outputs. Compared with uncondi-
tionally accepting the output results of the LLM,
the accuracy of the model has been significantly
improved after introducing output confidence.

5 Conclusion

In this paper, we propose a fine-grained confidence
estimation method FineCE to provide accurate con-
fidence scores throughout the generation process.
We first introduce the difference between FineCE
and existing popular related works, and describe
the dataset construction process. We introduce the
BCI to generate a holistic confidence estimate for
the current text and three strategies for identifying
the optimal estimation position. Extensive experi-
ments demonstrate our proposed method’s superior
performance across various confidence estimation
task and downstream task.



6 Limitations

Although FineCE demonstrates effectiveness in
providing accurate confidence scores across var-
ious confidence estimation task, it still faces chal-
lenges with highly open-ended problems as all ex-
isting confidence estimation methods. For example,
questions like “How to stay healthy?" lack explicit
response constraints (e.g., perspective, scope or re-
sponse length). The inherent ambiguity and vast
solution space of such queries pose significant chal-
lenges for this task. Our future work will explore
more robust confidence estimation methods specif-
ically for such highly open-ended questions.
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A Appendix
A.1 Additional Experiments Details

Baselines. We introduce each method in the base-
line, and the prompts used are shown in the Table
6.

* P(IK). It trains a logistic regression with the
additional value “head" added to the model to
output the confidence estimated.

First-Prob. It uses the logits of the first token
of LLM’s generated answer as the confidence
estimate.

SuC. It first clusters the sub-questions, and
use the same confidence estimate for ques-
tions in the same cluster.

Verb. It is a prompt-based method. It designs
the prompts to guide the model to output its
confidence score alongside with the generated
answer.

Fidelity. For MCQA, it decomposes the LLM
confidence into the Uncertainty about the
question and the Fidelity to the answer gener-
ated by LLMs.

LECO. It also proposes leveraging logits to
estimate step confidence. Besides, it further
designs three logit-based scores that compre-
hensively evaluate confidence from both intra-
and inter-step perspectives.

Multi-Step. It also uses prompts to guide the
model to output the process confidence and
takes the average as the final result.
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Figure 6: On GSMS8K dataset, the performance confi-
dence estimation for the two different families models
using datasets from different sources.The horizontal axis
represents the base models.
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Figure 7: On CSQA dataset, the performance confi-
dence estimation for the two different families models
using datasets from different sources.The horizontal axis
represents the base models.
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Figure 8: The performance comparison using different
training technical. The left side of the vertical axis
indicates the value of ECE, and the right side indicates
the value of AUROC.

Important Parameters Settings. During fine-
tuning, we employ the AdamW optimizer with
B1 = 0.9 and By = 0.5. The initial learning rate
is set to le-4, with the warmup phase of 300 steps.
All experiments are conducted on the workstations
of NVIDIA A800 PCle with 80GB memory and
the environment of Ubuntu 20.04.6 LTS and torch
2.0.1.

Training Data We provide three types of train-
ing data format in Table 5. All the prompts used in
this paper are shown in Table 6.

A.2 Discussions

RQ6: How does FineCE perform when trained
using datasets from different model? First, for
the LLaMA2-13B and LLaMA2-7B two base mod-
els, we employ two distinct models to construct the
training datasets: the model itself or an alternative
model. The results are shown in Figure 9. Training
with datasets generated from the alternative model
achieves confidence calibration performance very
close to the obtained using the dataset constructed
by the model itself, especially on the GSM8K and
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Figure 9: The performance confidence estimation for two base models using training datasets from different sources.

The horizontal axis represents the base models

Dataset Base Models ACC-before  ACC-after
LLaMA2-7B 303 58.8 (428.5)

GSMBK | \MA2-13B 336 78.3 (+44.7)
cson  LLaMA27B 63.7 79.9 (+16.2)
LLaMA2-13B 65.6 81.8 (+16.2)

‘ LLaMA2-7B 53.9 70.3 (+16.4)
TrivalQA 11 'MA2-13B 64.8 80.7 (+15.9)

Table 4: Comparison of the model’s accuracy perfor-
mance across three datasets with a set confidence thresh-
old of 80%.

CAQA datasets. We guess that it may be related
to the used models being from the same family
and exhibit significant similarities in their knowl-
edge capabilities. It suggests that larger models
could effectively instruct smaller models to learn
to express the confidence. In addition, leveraging
smaller models to construct training datasets may
be a cost-efficient alternative.

We also use two models from different fami-
lies to explore this phenomenon further, including
Qwen2-7B and LLaMAZ2-7B, which are from dif-
ferent model families. The results are show in
Figure 6 and Figur 7. We find that there are two
different phenomena on different datasets. On the
GSMSK dataset, compared with using the model
itself to construct training data, the confidence train-
ing data constructed with the help of other mod-
els performed poorly, especially in the ECE value,
where the difference was particularly significant.
On the CSQA dataset, the performance difference
between the two methods is small. This may be
because there is a large difference in the accuracy
of Qwen2-7B and LLaMAZ2-7B on the GSM8K
dataset, which makes it impossible to effectively
migrate the confidence training data constructed by
these two models to each other.

We can conclude that if the performance of two
models on a task is close, the confidence training
data constructed using one of the models can be
effectively used in the training stage of the other

13

model.

RQ7: Which training skill is more suitable? On
the GSMB8K training dataset, we employ two dis-
tinct training techniques using the LLaMA?2-13B
model. One is to add a multi-classification head
at the end of the model to output the confidence
estimates through classification. The other is the
instruction fine-tuning method as we used in the
experiment. The outcome confidence estimates re-
sults are shown in Figure 8, it suggests that under
the same data scale, the multi-classification tech-
niques exhibited poor performance in confidence
estimation task.

RQS8: How does our method perform on
highly open questions? We randomly select 300
single-round English open question-answering data
on Sharegpt *, and use LLaMA2-7B to provide con-
fidence estimates, and compared the output confi-
dence with the evaluation score of the generated
answers using GPT4 to calculate ECE. We find that
for highly open questions, our proposed method
achieved a higher ECE value of 65.66. This is also
in line with our expectations. This is because we
did not use GPT4’s evaluation to assist in construct-
ing training data, resulting in a large difference
between the confidence provided by the model and
the GPT4 scoring results.

3https://huggingface.co/datasets/OpenGVLab/
ShareGPT-40


https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o
https://huggingface.co/datasets/OpenGVLab/ShareGPT-4o

< Question, Conf >

Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day?

Output: Conf:0.7

< Question + Partial Answer, Conf >

Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day? The total number of miles driven is

Output: Conf:0.9

< Question + Answer, Conf >

Input: If a vehicle is driven 12 miles on Monday, 18 miles on Tuesday, and 21 miles on Wednesday.
What is the average distance traveled per day? The total number of miles driven is 12 + 18 + 21 =
«12+18+21=51»51 miles.The average distance traveled per day is 51 miles / 3 days = «51/3=17»17

miles.

Output: Conf:1.0

Table 5: Three training data formats of FineCE.

Method Prompt

Verb Read the question, analyze step by step, provide your answer and your confidence in
this answer. Use the following format to answer: "Explanation: [insert step-by-step
analysis here] Answer: [ONLY the option letter; not a complete sentence], Confidence
(0-100):[ Your confidence level, please only include the numerical number in the range
of 0-100]%”

Please refer to the example I have given:

<example>

{few-shot}

</example>

Question:

{question}

Now, please answer this question and provide your confidence level. Let’s think it step
by step.

Multi-step Read the question, break down the problem into K steps, think step by step, give your
confidence in each step, and then derive your final answer and your confidence in
this answer. Note: The confidence indicates how likely you think your answer is true.
Use the following format to answer: Step 1: [Your reasoning], Confidence: [ONLY
the confidence value that this step is correct]% Step K: [Your reasoning], Confidence:
[ONLY the confidence value that this step is correct]% Final Answer: [ONLY the
answertype; not a complete sentence] Overall Confidence(0-100): [Your confidence
value]%

Please refer to the example I have given:

<example>

{few-shot}

</example>

Question:

{question}

Now, please answer this question and provide your confidence level. Let’s think it step
by step.

FineCE(ours) Below is a question and some steps:

Question:
{question}
{steps}

Please give your confidence.

Table 6: The prompts used in the baselines.
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Strategy Dataset ACC ACCs; FECE, ECE,,, Ratio
GSM8K 303 626 12.5 8.8 28.6

Paragraph CSQA 63.7 79.6 19.8 13.2 53.2
TriviaQA 539  66.2 24.5 20.7 42.0

GSM8K 303 575 11.4 9.5 9.3

Entropy CSQA 637 84. 21.2 16.4 8.9
TriviaQA 539  71.1 24.1 20.2 13.2

GSM8K 303 623 12.3 8.3 22.1

Fixed-token = CSQA  63.7 829 20.2 19.0 32.0
TriviaQA 539  72.0 23.8 19.5 334

Table 7: Performance comparison of three strategies for optimal calibration position detection in Llama-7B.
Ration(%) denotes the proportion of ttokens preceding the calibration position relative to token count.
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