
GEFL: Extended Filtration Learning for Graph Classification

Simon Zhang
Purdue University

zhan4125@purdue.edu

Soham Mukherjee
Purdue University

mukher26@purdue.edu

Tamal K. Dey
Purdue University

tamaldey@purdue.edu

Abstract
Extended persistence is a technique from topological data analysis to obtain global
multiscale topological information from a graph. This includes information about
connected components and cycles that are captured by the so-called persistence
barcodes. We introduce extended persistence into a supervised learning frame-
work for graph classification. Global topological information, in the form of a
barcode with four different types of bars and their explicit cycle representatives, is
combined into the model by the readout function which is computed by extended
persistence. The entire model is end-to-end differentiable. We use a link-cut tree
data structure and parallelism to lower the complexity of computing extended
persistence, obtaining a speedup of more than 60x over the state-of-the-art for
extended persistence computation. This makes extended persistence feasible for
machine learning. We show that, under certain conditions, extended persistence
surpasses both the WL[1] graph isomorphism test and 0-dimensional barcodes in
terms of expressivity because it adds more global (topological) information. In
particular, arbitrarily long cycles can be represented, which is difficult for finite
receptive field message passing graph neural networks. Furthermore, we show
the effectiveness of our method on real world datasets compared to many existing
recent graph representation learning methods.1

1 Introduction
Graph classification is an important task in machine learning. Applications range from classifying
social networks to chemical compounds. These applications require global as well as local topological
information of a graph to achieve high performance. Message passing graph neural networks (GNNs)
are an effective and popular method to achieve this task.

These existing methods crucially lack quantifiable information about the relative prominence of
cycles and connected component to make predictions. Extended persistence is an unsupervised
technique from topological data analysis that provides this information through a generalization of
hierarchical clustering on graphs. It obtains both 1- and 0-dimensional multiscale global homological
information.

Existing end-to-end filtration learning methods [1, 2] that use persistent homology do not compute
extended persistence because of its high computational cost at scale. A general matrix reduction
approach [3] has time complexity of O((n+m)ω) for graphs with n nodes and m edges where ω
is the exponent for matrix multiplication. We address this by improving upon the work of [4] and
introducing a link-cut tree data structure and a parallelism for computation. This allows for O(log n)
update and query operations on a spanning forest with n nodes.

We consider the expressiveness of our model in terms of extended persistence barcodes and the
cycle representatives. We characterize the barcodes in terms of size, what they measure, and their
expressivity in comparison to WL[1] [2]. We show that it is possible to find a filtration where one of
its cycle’s length can be measured as well as a filtration where the size of each connected component
can be measured. We also consider the case of barcodes when no learning of the filtration occurs.

1https://github.com/simonzhang00/GraphExtendedFiltrationLearning

Zhang et al., GEFL: Extended Filtration Learning for Graph Classification. Proceedings of the First Learning on
Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December 9–12, 2022.

https://github.com/simonzhang00/GraphExtendedFiltrationLearning

Extended Graph Filtration Learning

0
1
2
3
4
5
6

Figure 1: Lower and upper filtrations for extended persistence and the resulting barcode for a graph.
The green bar comes from a pairing of a green edge with a vertex in the lower filtration. Similarily
the blue bar in the upper filtration comes from a vertex-edge pairing in the upper filtration. The two
dark blue bars count connected components and come from pairs of two vertices. The two red bars
count cycles and come from pairs of edges. Both Bext0 and Bext1 bars cross from the lower filtration to
the upper filtration. The multiset of bars forms the barcode. Cycle reps. are shown in both filtrations.

We consider several simple examples where our model can perfectly distinguish two classes of
graphs that no GNN with expressivity at most that of WL[1] (henceforth called WL[1] bounded
GNN) can. Furthermore, we present a case where experimentally 0-dimensional standard persistence
[2, 5], the only kind of persistence considered in learning persistence so far, are insufficient for graph
classification.

Our contributions are as follows:

1. We introduce extended persistence and its cycle representatives into the supervised learning
framework in an end-to-end differentiable manner, for graph classification.

2. For a graph with m edges and n vertices, we introduce the link-cut tree data structure into the
computation of extended persistence, resulting in an O(m log n) depth and O(mn) work parallel
algorithm, achieving more than 60x speedup over the state-of-the-art for extended persistence
computation, making extended persistence amenable for machine learning tasks.

3. We analyze conditions and examples upon which extended persistence can surpass the WL[1]
graph isomorphism test [6] and 0-dimensional standard persistence and characterize what extended
persistence can measure from additional topological information.

4. We perform experiments to demonstrate the feasibility of our approach against standard baseline
models and datasets as well as an ablation study on the readout function for a learned filtration.

2 Background
2.1 Computational Topology for Graphs

Let G = (V,E) be a graph where V is the set of vertices and E ⊂ V × V is the set of edges. Let
n = |V | and m = |E| be the number of nodes and edges of G, respectively. Graphs in our case are
undirected and simple, containing at most a single edge between any two vertices. Define a filtration
function F : G→ R where F has a value in R on each vertex and edge, denoted by F (u) or F (e) for
u ∈ V or e ∈ E. Given such a graph G = (V,E), we define the λ-sublevel graph as Gλ = (Vλ, Eλ)
w.r.t. F and a λ ∈ R where Vλ = {v ∈ V : F (v) ≤ λ} and Eλ = {e ∈ E : F (e) ≤ λ}. Sublevel
graphs of G are subgraphs of G. If we change λ from -∞ to +∞ we obtain an increasing sequence
of sublevel graphs {Gλ}λ∈R which we call a sublevel set filtration. Such a filtration can always be
converted into a sequence of subgraphs of G: ∅ = G0 ⊂ G1 ⊂ ... ⊂ Gn+m = G (See [7, Page
102]) s.t. σi = Gi+1\Gi is a single edge or vertex and Fi := F (σi). The sequence of vertices
and edges σ0, σ1, . . . , σn+m−1 thus obtained is called the index filtration. Define a vertex-induced
lower filtration for a vertex function fG : V → R as an index filtration where a vertex v has a value
F (v) := fG(v) and any edge (u, v) has the value F (u, v) := max(F (u), F (v)) and Fi ≤ Fi+1.
Similarly define an upper filtration for fG as an index filtration where F (v) := fG(v) and the edge
(u, v) has value F (u, v) := min(fG(u), fG(v)) and Fi ≥ Fi+1.

Persistent homology(PH) tracks changes in homological features of a topological space as the
sublevel set for a given function grows; see books [7, 8]. For graphs, these features are given by
evolution of components and cycles over the intervals determined by pairs of vertices and edges.

2

Extended Graph Filtration Learning

A vertex vi = Gi+1 \Gi begins a connected component (CC) signalling a birth at filtration value
F (vi) in zeroth homology group H0. An edge ej = Gj+1 \Gj may join two components signalling
a death of a class in H0 at filtration value F (ej), or it may create a cycle signalling a birth in the 1st
homology group H1 at filtration value F (ej). When a death occurs in H0 by an edge ej , the youngest
of the two components being merged is said to die giving a birth-death pair (b, d) = (F (vi), F (ej))
if the dying component was created by vertex vi. For cycles, there is no death and thus they have
death at ∞. The multiset of birth death pairs B = {{(b, d)}} given by the persistent homology
is called the barcode. Each pair (b, d) provides a closed-open interval [b, d), which is called a bar.
The persistence of each bar [b, d) in a barcode is defined as |d − b|. Notice that, both in 0- and
1-dimensional persistence, some bars may have infinite persistence since some components (H0

features) and cycles (H1 features) never die, equivalently, have death at∞.

Extended persistence(PHext) takes an extended filtration FfG as input, which is obtained by
concatenating lower filtration of the graph G and an upper filtration of the coned space of G induced
by a vertex filtration function fG. Concatenation here simply means concatenating two index filtration
sequences. More specifically, let α be an additional vertex for the graph G. Define an extended
function fG∪{α} whose value is equal to fG on all vertices except α on which it has a value larger
than any other vertices. The cone of a vertex u is given by the edge (α, u) and the cone of an edge
(u, v) is given by the triangle (α, u, v). As a result, in extended persistence all 0- and 1-dimensional
features die (bars are finite; see [3] for details). Four different persistence pairings or bars result from
PHext. The barcode Blow0 results from the vertex-edge pairs within the lower filtration, the barcode
Bup0 results from the vertex-edge pairs within the upper filtration, the barcode Bext0 results from the
vertex-vertex pairs that represent the persistence of connected components born in the lower filtration
and die in the upper filtration, and the barcode Bext1 results from edge-edge pairs that represent the
persistence of cycles that are born in the lower filtration and die in the upper filtration. The barcodes
Blow0 , Bup0 , and Bext0 represent persistence in the 0th homology H0. The barcode Bext1 represents
persistence in the 1st homology H1. In the TDA literature, Blow0 , Bup0 , Bext0 , and Bext1 also go by the
names of Ord0, Rel1, Ext0, Ext1 respectively.

See Figure 1 for an illustration of the filtration and barcode one obtains for a simple graph with
vertices taking on values from 0...6 denoted by the variable t. In particular, at each t, we have the
filtration subgraph Gt of all vertices and edges of filtration function value less than or equal to t.
Each line indicates the values 0...6 from the bottom to top. Repetition in the bar endpoints across all
bars which appear on the right of Figure 1 is highly likely in general due to the fact that there are
only O(n) filtration values but O(m) possible bars.

2.2 Message Passing Graph Neural Networks (MPGNN)

A message passing GNN (MPGNN) convolutional layer takes a vertex embedding hu in a finite
dimensional Euclidean space and an adjacency matrix AG as input and outputs a vertex embedding
h′
u for some u ∈ V . The kth layer is defined generally as

hk+1
u ← AGG({MSG(hk

v)|v ∈ NAG
(u)},hk

u), u ∈ V

where NAG
(u) is the neighborhood of u. The functions MSG and AGG have different implementa-

tions and depend on the type of GNN.

Since there should not be a canonical ordering to the nodes of a GNN in graph classification, a GNN
for graph classification should be permutation invariant with respect to node indices. To achieve
permutation invariance [9], as well as achieve a global view of the graph, there must exist a readout
function or pooling layer in a GNN. The readout function is crucial to achieving power for graph
classification. With a sufficiently powerful readout function, a simple 1-layer MPGNN with O(∆)
number of attributes [10] can compute any Turing computable function, ∆ being the max degree of
the graph. Examples of simple readout functions include aggregating the node embeddings, or taking
the element-wise maximum of node embeddings [11]. See Section 3 for various message passing
GNNs and readout functions from the literature.

3 Related Work
Graph Neural Networks (GNN)s have achieved state of the art performance on graph classification
tasks in recent years. For a comprehensive introduction to GNNs, see the survey [12]. In terms of the

3

Extended Graph Filtration Learning

{ }

{ }

{ LSTM}

Figure 2: The extended persistence architecture (bars+cycles) for graph representation learning. The
negative log likelihood (NLL) loss is used for supervised classification. The yellow arrow denotes
extended persistence computation, which can compute both barcodes and cycle representatives.

Weisfeler Lehman (WL) hierarchy, there has been much success and efficiency in GNNs [11, 13, 14]
bounded by the WL[1] [15] graph isomorphism test. In recent years, the WL[1] bound has been
broken by heterogenous message passing [16], high order GNNs [17], and put into the framework of
cellular message passing networks [18]. Furthermore, a sampling based pooling layer is designed in
[19]. It has no theoretical guarantees and its code is not publicly available for comparison. Other
readout functions include [20], [21] [22]. For a full survey on global pooling, see [23].

Topological Data Analysis (TDA) based methods [2, 5, 24–28] that use learning with persistent
homology have achieved favorable performance with many conventional GNNs in recent years. All
existing methods have been based on 0-dimensional standard persistent homology on separated lower
and upper filtrations [5]. We sidestep these known limitations by introducing extended persistence
into supervised learning while keeping computation efficient.

A TDA inspired cycle representation learning method in [29] learns the task of knowledge graph
completion. It keeps track of cycle bases from shortest path trees and has a O(|V | · |E| · k), k a
constant, computational complexity per graph. This high computational cost is addressed in our
method by a more efficient algorithm for keeping track of a cycle basis. Furthermore, since the space
of cycle bases induced by spanning forests is a strict subset of the space of all possible cycle bases,
the extended persistence algorithm can find a cycle basis that the method in [29] cannot.

On the computational side, fast methods to compute higher dimensional PH using GPUs, a necessity
for modern deep learning, have been introduced in [30]. In [27, 31] neural networks have been
shown to successfully approximate the persistence diagrams with learning based approach. However,
differentiability and parallel extended persistence computation has not been implemented. Given
the expected future use of extended persistence in graph data, a parallel differentiable extended
persistence algorithm is an advance on its own.

4 Method
Our method as illustrated in Figure 2 introduces extended persistence as the readout function for
graph classification. In our method, an upper and lower filtration, represented by a filtration function,
coincides with a set of scalar vertex representations from standard message passing GNNs. This
filtration function is thus learnable by MPGNN convolutional layers. Learning filtrations was
originally introduced in [5] with standard persistence. As we show in Section 6 and Section 5
arbitrary cycle lengths are hard to distinguish by both standard GNN readout functions [32] as well as
standard persistence due to the lack of explicitly tracking paths or cycles. Extended persistence, on the
other hand, explicitly computes learned displacements on cycles of some cycle basis as determined
by the filtration function as well as explicit cycle representatives.

We represent the map from graphs to learnable filtrations by any message passing GNN layer such as
GIN, GCN or GraphSAGE followed by a multi layer perceptron (MLP) as a Jumping Knowledge
(JK) [33] layer. The JK layer with concatenation is used since we want to preserve the higher
frequencies from the earlier layers [34]. Our experiments demonstrate that fewer MPGNN layers

4

Extended Graph Filtration Learning

perform better than more MPGNN layers. This prevents oversmoothing [35, 36], which is exacerbated
by the necessity of scalar representations.

The readout function, the function that consolidates a filtration into a global graph representation,
is determined by computing four types of bars for the extended persistence on the concatenation of
the lower and upper filtrations followed by compositions with four rational hat functions r̂ as used
in [1, 2, 5]. To each of the four types of bars in barcode B, we apply the hat function r̂ to obtain a
k-dimensional vector. The function r̂ is defined as:

r̂(B) :=

∑
p∈B

1

1 + |p− ci|1
− 1

1 + ||ri| − |p− ci|1|

k

i=1

(1)

where ri ∈ R and ci ∈ R2 are learnable parameters. The intent of Equation 1 is to have controlled
gradients. It is derived from a monotonic function, see [1]. This representation is then passed through
MLP layers followed by a softmax to obtain prediction probability vector p̂G for each graph G. The
negative log likelihood loss from standard graph classification is then used on these vectors p̂G.

If the filtration values on the nodes and edges are distinct, the extended persistence barcode repre-
sentation is permutation invariant with respect to node indices. Isomorphic graphs with permuted
indices and an index filtration with distinct filtration values will have a unique sorted index filtration.
Node filtration values are usually distinct since computed floating points rarely coincide. However to
break ties and eliminate any dependence on node indices for edges, implement edge filtration values
for lower filtration as F (u, v) = max(F (u), F (v)) + ϵ ·min(F (u), F (v)) and for upper filtration as
F (u, v) = min(F (u), F (v)) + ϵ ·max(F (u), F (v)), ϵ being very small.

Cycle Representatives: A cycle basis of a graph is a set of cycles where every cycle can be obtained
from it by a symmetric difference, or sum, of cycles in the cycle basis. It can be shown that every
cycle is a sum of the cycles induced by a spanning forest and the complementary edges. Extended
persistence computes the same number of independent cycles as in the cycle basis induced from a
spanning forest. Thus computing extended persistence results in computing a cycle basis. We can
explicitly store the cycle representatives, or sequences of filtration scalars, along with the barcode
on graph data. This slightly improves the performance in practice and guarantees cycle length
classification for arbitrary lengths. After the cycle representatives are stored, we pass them through a
bidirectional LSTM then aggregate these LSTM representation per graph and then sum this graph
representation by cycles with the vectorization of the graph barcode by the rational hat function of
Equation 1, see Figure 2. The aggregation of the cycle representations is permutation invariant due to
the composition of aggregations [9]. In particular, the sum of the barcode vectorization and the mean
of cycle representatives, our method’s graph representation, must be permutation invariant. What
makes keeping track of cycle representatives unique to standard message passing GNNs is that a
finite receptive field message passing GNN would never be able to obtain such cycle representations
and certainly not from a well formed cycle basis.

4.1 Efficient Computation of Extended Persistence

The computation for extended persistence can be reduced to applying a matrix reduction algorithm
to a coned matrix as detailed in [8]. In [4], this computation was found to be equivalent to a graph
algorithm, which we improve upon.

4.1.1 Algorithm

Our algorithm is as follows and written in Algorithm 1. We perform the 0-dimensional persistence
algorithm, PH0, using the union find data structure in O(m log n) time and O(n) memory for the
upper and lower filtrations in lines 1 and 2. See the Appendix Section D.1 for a description of this
algorithm. These two lines generate the vertex-edge pairs for Blow0 and Bup0 . We then measure the
minimum lower filtration value and maximum upper filtration value of each vertex in the union-find
data structure found from the PH0 algorithm as in lines 3 and 4 using the roots of the union-find data
structure Uup formed by the algorithm. These produce the vertex-vertex pairs in Bext0 .

For computing edge-edge pairs in Bext1 with cycle representatives, we implement the algorithm in [4]
with a link-cut tree data structure that facilitates deleting and inserting edges in a spanning tree
and employ a parallel algorithm to enumerate the edges in a cycle. See the Appendix Section D.2

5

Extended Graph Filtration Learning

Algorithm 1 Efficient Computation of PHext

Input: G = (V,E), Flow: lower filtration function, Fup: upper filtration function
Output: Blow0 ,Bup0 ,Bext0 ,Bext1 , C: cycle reps.

1: Blow0 , Elow
pos , E

low
neg , Ulow ← PH0(G,Flow, lower)

2: Bup0 Eup
pos, E

up
neg, Uup ← PH0(G,Fup, upper)

3: roots← {GET_UNION-FIND_ROOTS(Uup, v), v ∈ V }
4: Bext0 ← {min(roots[v]),max(roots[v]), v ∈ V }
5: T← {} empty link-cut tree; Bext1 ← {{}}; C ← {} empty list of cycle representatives

/* Eup
neg is sorted by PH0 in decreasing order of Fup values (desc. filtr. values)*/

6: for e = (u, v) ∈ Eup
neg do

7: T← LINK(T, e, {w}) /* w /∈ T, w = u or v∗/
8: end for
9: /* Eup

pos is sorted by PH0 with respect to Fup (descending filtration values) */
10: for e = (u, v) ∈ Eup

pos do
11: lca← LCA(T, u, v) /*Get the least common ancestor of u and v to form a cycle*/
12: P1 ← LISTRANK(PATH(u, lca)); P2 ← LISTRANK(PATH(v, lca))
13: C ← C ⊔ {Fup(P1) ⊔ Fup(Reverse(P2))} /*Keep track of the scalar activations on cycle*/
14: (u′, v′)← ARGMAXREDUCECYCLE(T, u, v, lca) /* Find max edge on cycle using Flow*/
15: T1,T2 ← CUT(T,(u′, v′)); T← LINK(T1,(u, v),T2)
16: Bext1 ← Bext1 ∪ {(Flow(u

′, v′), Fup(u, v))}
17: end for
18: return (Blow0 ,Bup0 ,Bext0 ,Bext1 , C)

for a more thorough explanation of the link-cut tree implementation and the operations we use on
it. We collect the max spanning forest T of negative edges, edges that join components, from the
upper filtration by repeatedly applying the link operation n − 1 times in lines 6-8 in decreasing
order of Fup values and sort the list of the remaining positive edges, which create cycles in line
9. Then, for each positive edge e = (u, v), in order of the upper filtration (line 10), we find the
least common ancestor (lca) of u and v in the spanning forest T we are maintaining as in line
11. Next, we apply the parallel primitive [37] of list ranking twice, once on the path u to lca
and the other on the path v to lca in line 12. List ranking allows a list to populate an array in
parallel in logarithmic time. The tensor concatenation of the two arrays is appended to a list of cycle
representatives as in line 13. This is so that the cycle maintains order from u to v. We then apply
an ARGMAXREDUCECYCLE(T, u, v, lca) which finds the edge having a maximum filtration value
in the lower filtration on it over the cycle formed by u, v and lca. We then cut the spanning forest
at the edge (u′, v′), forming two forests as in line 15. These two forests are then linked together
at (u, v) as in line 15. The bar (Flow(u

′, v′), Fup(u, v)) is now found and added to the multiset
Bext1 . The final output of the algorithm is four types of bars and a list of cycle representatives:
((Blow0 ,Bup0 ,Bext0 ,Bext1), C).

4.1.2 Complexity

We improve upon the complexity of [4] by obtaining a O(mn) work O(m log n) depth algorithm
on O(n) processors using O(n) memory. Here m and n are the number of edges and vertices in
the input graph. We introduce two ingredients for lowering the complexity, the first is the link-cut
dynamic connectivity data structure and the second is the parallel primitives of list ranking. The
link-cut tree data structure is a dynamic connectivity data structure that can keep track of the spanning
forest with O(log n) amortized time for LINK, CUT, PATH, LCA, ARGMAXREDUCE. Furthermore,
list ranking [38] is an O(log n) depth and O(n) work parallel algorithm on O(n

logn) processors that
determines the distance of each vertex from the start of the path or linked list it is on. In other words,
list ranking turns a linked list into an array in parallel. Sorting can be performed in parallel using
O(n log n) work and O(log n) depth.

Notice that if we do not keep track of cycle representatives (remove lines 12 and 13 from Algorithm
1), then we have an O(m log n) time sequential algorithm. The repeated calling of the supporting
operation EXPOSE() dominates the complexity, see Appendix Section D.2.

6

Extended Graph Filtration Learning

5 Expressivity of Extended Persistence
We prove some properties of extended persistence barcodes. We also find a case where extended
persistence with supervised learning can give high performance for graph classification. WL[1]
bounded GNNs, on the other hand, are guaranteed to not perform well. Certainly all such results also
apply for the explicit cycle representatives since the min and max on the scalar activations on the
cycle form the corresponding bar.

5.1 Some Properties

The following Theorem 5.1 states some properties of extended persistence. This should be compared
with the 0- and 1-dimensional persistence barcodes in the standard persistence. Every vertex and
edge is associated with some bar in the standard persistence though they can be both finite or infinite.
However, in extended persistence all bars are finite and we form barcodes from an extended filtration
of 2m+ 2n edges and vertices instead of the standard (m+ n)-lengthed filtration.
Theorem 5.1. (Extended Barcode Properties)

PHext(G) produces four multisets of bars: Bext1 ,Bext0 ,Blow0 ,Bup0 , s.t.

|Bext1 | = dimH1 = m− n+ C,

|Bext0 | = dimH0 = C,

|Blow0 | = |B
upper
0 | = n− C,

where there are C connected components and dimHk is the dimension of the kth homology group
s.t.:

1. the H1 bars comes from a cycle basis of G which also constitutes a basis of its fundamental group,

2. dimH1 counts the number of chordless cycles when G is outer-planar, and

3. there exists an injective filtration function where the union of the resulting barcodes is strictly more
expressive than the histogram produced by the WL[1] graph isomorphism test.

The barcodes found by extended persistence thus have more degrees of freedom than those obtained
from standard persistence. For example, a cycle is now represented by two filtration values rather than
just one. Furthermore, the persistence |d− b| of a pair (b, d) ∈ Bext1 or Bext0 can measure topological
significance of a cycle or a connected component respectively through persistence. Thus, extended
persistence encodes more information than standard persistence. In Theorem 5.1, property 1 says that
extended persistence actually computes pairs of edges of cycles in a cycle basis. A modification of
the extended persistence algorithm could generate all or count certain kinds of important cycles, see
[39]. Property 2 characterizes what extended persistence can count.

We makes some observations on the expressivity of PHext.
Observation 5.2. (Cycle Lengths) For any graph G and chordless cycle C ⊂ G, there exists injective
filtration functions f low

G , fup
G on G where PHext of the induced filtration for extended persistence

can measure the number of edges along C.

Such a result cannot hold for learning of the filtration by local message passing from constant node
attributes. Thus, for the challenging 2CYCLE graphs dataset in Section B.2, it is a necessity to use
the cycle representatives C for each graph to distinguish pairs of cycles of arbitrary length. This
should be compared with Top-K methods, K being a constant hyper parameter such as in [19, 40].
The constant hyper parameter K prevents learning an arbitrarily long cycle length when the node
attributes are all the same. Furthermore, a readout function like SUM is agnostic to graph topology
and also struggles with learning when presented with an arbitrarily long cycle. This struggle for
distinguishing cycles in standard MPGNNs is also reported in [41]. An observation similar to the
previous Observation 5.2 can also be made for paths measured by Bext0 .
Observation 5.3. (Connected Component Sizes) For any graph G and all connected components
CC ⊂ G, there exists injective filtration functions f low

G , fup
G defined on G where PHext of the

induced filtration for extended persistence can measure the number of vertices in CC.

We investigate the case where no learning takes place, namely when the filtration values come from
a random noise. We observe that even in such a situation some information is still encoded in the
extended persistence barcodes with a probability that depends on the graph.

7

Extended Graph Filtration Learning

Observation 5.4. For any graph G where every edge belongs to some cycle and an extended
filtration on it induced by randomly sampled vertex values xi ∼ U([0, 1]), PHext has a H1 bar
[maxi(xi),mini(xi)] with probability

∑
v∈V

1
n

deg(v)
n−1 = 2m

n(n−1) .

Notice that for a clique, the probability of finding the bar with maximum possible persistence is 1. It
becomes lower for sparser graphs.
Corollary 5.5. In Observation 5.4, assuming the bar [maxi(xi),mini(xi)] exists, the expected
persistence of that bar E[|maxi(xi)−mini(xi)|] goes to 1 as n→∞.

What Corollary 5.5 implies is that, for certain graphs, even when nothing is learned by the GNN
filtration learning layers, the longest Bext1 bar indicates that n is large. This happens for graphs that
are randomly initialized with vertex labels from the unit interval and occurs with high probability
for dense graphs by Observation 5.4. For large n, the empirical mean of the longest bar will have
persistence near 1. Notice that Bext1 can measure this even though the number of H1 bars, m−n+C,
could tell us nothing about n.

6 Experiments
We perform experiments of our method on standard GNN datasets. We also perform timing experi-
ments for our extended persistence algorithm, showing impressive scaling. Finally, we investigate
cases where experimentally our method distinguishes graphs that other methods cannot, demonstrating
how our method learns to surpass the WL[1] bound.

6.1 Experimental Setup

We perform experiments on a 48 core Intel Xeon Gold CPU machine with 1 TB DRAM equipped
with a Quadro RTX 6000 NVIDIA GPU with 24 GB of GPU DRAM.

Hyper parameter information can be found in Table 3. For all baseline comparisons, the hyperpa-
rameters were set to their repository’s standard values. In particular, all training were stopped at 100
epochs using a learning rate of 0.01 with the Adam optimizer. Vertex attributes were used along
with vertex degree information as initial vertex labels if offered by the dataset. We perform a fair
performance evaluation by performing standard 10-fold cross validation on our datasets. The lowest
validation loss is used to determined a test score on a test partition. An average±standard deviation
test score over all partitions determines the final evaluation score.

The specific layers of our architecture for the neural network for our filtration function fG is given by
one or two GIN convolutional layers, with the number of layers as determined by an ablation study.

6.2 Performance on Real World and Synthetic Datasets

We perform experiments with the TUDatasets [42], a standard GNN benchmark. We compare with
WL[1] bounded GNNs (GIN, GIN0, GraphSAGE, GCN) from the PyTorch Geometric [43, 44]
benchmark baseline commonly used in practice as well as GFL[5], ADGCL [45], and InfoGraph [46],
self-supervised methods. Self supervised methods are promising but should not surpass the perfor-
mance of supervised methods since they do not use the label during representation learning. We also
compare with existing topology based methods TOGL [2] and GFL [5]. We also perform an ablation
study on the readout function, comparing extended persistence as the readout function with the SUM,
AVERAGE, MAX, SORT, and SET2SET [47] readout functions. The hyper parameter k is set to the
10th percentile of all datasets when sorting for the top-k nodes activations. We do not compare with
[19] since its code is not available online. The performance numbers are listed in Table 1. We are able
to improve upon other approaches for almost all cases. The real world datasets include DD, MUTAG,
PROTEINS and IMDB-MULTI. DD, PROTEINS, and MUTAG are molecular biology datasets,
which emphasize cycles, while IMDB-MULTI is a social network, which emphasize cliques and
their connections. We use accuracy as our performance score since it is the standard for the TU
datasets.

We also verify that our method surpasses the WL[1] bound, a theoretical property which can be
proven, as well as can count cycle lengths when the graph is sparse enough, e.g. when the set of
cycles is equal to the cycle basis. This is achieved by the two datasets PINWHEELS and 2CYCLES.
See the Appendix Sections B for the related experimental and dataset details. Both datasets are

8

Extended Graph Filtration Learning

Experimental Evaluation
avg. acc. ± std. DD PROTEINS IMDB-

MULTI
MUTAG PINWHEELS 2CYCLES

GFL 75.2 ± 3.5 73.0 ± 3.0 46.7 ± 5.0 87.2 ± 4.6 100 ±0.0 50.0 ±0.0

Ours+Bars 75.5 ± 2.9 74.9 ± 4.1 50.3 ± 4.7 88.3 ± 7.1 100 ±0.0 50 ± 0.0

Ours+bars+cycles 75.9 ± 2.0 75.2 ± 4.1 51.0 ± 4.6 86.8 ± 7.1 100 ±0.0 100 ± 0.0
GIN 72.6± 4.2 66.5 ± 3.8 49.8 ± 3.0 84.6 ± 7.9 50.0 ±0.0 50.0 ±0.0

GIN0 72.3 ± 3.6 67.5 ± 4.7 48.7 ± 3.7 83.5 ± 7.4 50.0 ±0.0 50.0 ±0.0

GraphSAGE 72.6 ± 3.7 59.6 ± 0.2 50.0 ± 3.0 72.4 ± 8.1 50.0 ±0.0 50.0 ±0.0

GCN 72.7 ± 1.6 59.6 ± 0.2 50.0 ± 2.0 73.9 ± 9.3 50.0 ±0.0 50.0 ±0.0

GraphCL 65.4 ±12 62.5 ± 1.5 49.6± 0.4 76.6 ± 26 49.0 ±8.0 50.5± 10

InfoGraph 61.5 ± 10 65.5 ± 12 40.0 ± 8.9 89.1 ± 1.0 50.0 ± 0.0 50.0 ± 0.0

ADGCL 74.8± 0.7 73.2± 0.3 47.4 ± 0.8 63.3± 31 42.5 ± 19 52.5 ± 21

TOGL 74.7 ± 2.4 66.5 ± 2.5 44.7 ± 6.5 - 47.0 ± 3 54.4 ± 5.8
Filt.+SUM 75.0 ± 3.2 73.5± 2.8 48.0 ± 2.9 86.7± 8.0 51.0 ± 11 50.0 ± 0.0

Filt.+MAX 67.6± 3.9 68.6± 4.3 45.5 ± 3.1 70.3± 5.4 48.0 ± 4.2 50.0 ± 0.0

Filt.+AVG 69.5± 2.9 67.2± 4.2 46.7 ± 3.8 81.4± 7.9 50.0 ± 13 50.0 ± 0.0

Filt.+SORT 76.9± 2.6 72.6 ± 4.6 49.0± 3.6 85.6± 9.2 51.0 ± 16 50.0 ± 0.0

Filt.+S2S 69.0 ± 3.3 67.8 ± 4.6 48.7 ± 4.2 86.8 ± 7.1 51.0 ± 13 50.0 ± 0.0

Table 1: Average accuracy ± std. dev. of our approach (GEFL) with and without explicit cycle repre-
sentations, Graph Filtration Learning (GFL), GIN0, GIN, GraphSAGE, GCN, ADGCL, GraphCL
and TOGL and a readout ablation study on the four TUDatasets: DD, PROTEINS, IMDB-MULTI,
MUTAG as well as the two Synthetic WL[1] bound and Cycle length distinguishing datasets. Num-
bers in bold are highest in performance; bold-gray numbers show the second highest. The symbol −
denotes that the dataset was not compatible with software at the time.

10-fold cross validation ablation study on OGBG-MOL datasets by ROC-AUC
avg. score
± std.

Ours+Bars Ours+Bars
+Cycles

Filt.+SUM Filt.+MAX Filt.+AVG Filt.+SORT Filt.+Set2Set

molbace 80.0 ± 3.6 81.6 ± 3.9 79.7 ± 4.6 71.9 ± 4.8 78.0 ± 3.0 78.4 ± 3.3 78.2 ± 3.6

molbbbp 78.0 ± 4.3 81.9 ± 3.3 76.7 ± 4.9 69.8 ± 8.7 78.5 ± 4.6 76.3 ± 4.3 78.0 ± 5.0

Table 2: Ablation study on readout functions. The average ROC-AUC ± std. dev. on the ogbg-mol
datasets is shown for each readout function. Number coloring is as in Table 1

particularly hard to classify since they contain spurious constant node attributes, with the labels
depending completely on the graph connectivity. This removal of node attributes is in simulation of
the WL[1] graph isomorphism test, see [6]. Furthermore, doing so is a case considered in [48]. It is
known that WL[1], in particular WL[2], cannot determine the existence of cycles of length greater
than seven [49, 50].

Table 2 shows the ablation study of extended filtration learning on the ogbg datasets [51] OGBG
MOLBACE and MOLBBBP. We perform a 10 fold cross validation with the test ROC-AUC score of the
lowest validation loss used as the test score. This is performed instead of using the train/val/test split
offered by the OGBG dataset in order to keep our evaluation methods consistent with the evaluation
of the TUDATASETS and synthetic datasets.

From Section B, we know that there are special cases where extended persistence can distinguish
graphs where WL[1] bounded GNNs cannot. We perform experiments to show that our method can
surpass random guessing whereas other methods achieve only ∼ 50% accuracy on average, which
is no better than random guessing. Our high accuracy is guaranteed on PINWHEELS since such
graphs are distinguished by counting bars through 0-dim standard persistence. Similarly, 2CYCLES
is guaranteed high accuracy when keeping track of cycles and comparing the variance of cycle
representations since cycle lengths can be distinguished by a LSTM on different lengthed cycle inputs.
Of course, a barcode representation alone will not distinguish cycle lengths.

9

Extended Graph Filtration Learning

7 Conclusion
We introduce extended persistence into the supervised learning framework, bringing in crucial global
connected component and cycle measurement information into the graph representations. We address
a fundamental limitation of MPGNNs, which is their inability to measure cycles lengths. Our method
hinges on an efficient algorithm for computing extended persistence. This is a parallel differentiable
algorithm with an O(m log n) depth O(mn) work complexity and scales impressively over the
state-of-the-art. The speed with which we can compute extended persistence makes it feasible for
machine learning. Our end-to-end model obtains favorable performance on real world datasets. We
also construct cases where our method can distinguish graphs that existing methods struggle with.

References
[1] Christoph D Hofer, Roland Kwitt, and Marc Niethammer. Learning representations of persis-

tence barcodes. J. Mach. Learn. Res., 20(126):1–45, 2019. 1, 5, 23

[2] Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Rieck, and Karsten
Borgwardt. Topological graph neural networks. arXiv preprint arXiv:2102.07835, 2021. 1, 2, 4,
5, 8, 14, 18

[3] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using
poincaré and lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103, 2009.
1, 3

[4] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with
persistent homology: An interactive view. In International Conference on Machine Learning,
pages 11659–11669. PMLR, 2021. 1, 5, 6

[5] Christoph Hofer, Florian Graf, Bastian Rieck, Marc Niethammer, and Roland Kwitt. Graph
filtration learning. In International Conference on Machine Learning, pages 4314–4323. PMLR,
2020. 2, 4, 5, 8, 17

[6] Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968. 2, 9

[7] Tamal K. Dey and Yusu Wang. Computational Topology for Data Analysis. Cambridge Uni-
versity Press, 2022. https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/
CTDAbook.pdf. 2

[8] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American
Mathematical Soc., 2010. 2, 5

[9] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems, 30,
2017. 3, 5

[10] Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019. 3

[11] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018. 3, 4

[12] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020. 3

[13] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pages 1025–1035, 2017. 4

[14] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 4

[15] Sandra Kiefer, Neil Immerman, Pascal Schweitzer, and Martin Grohe. Power and limits of the
weisfeiler-leman algorithm. Technical report, Fachgruppe Informatik, 2020. 4

[16] Jiaxuan You, Jonathan Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. arXiv preprint arXiv:2101.10320, 2021. 4

10

https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.pdf
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.pdf

Extended Graph Filtration Learning

[17] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
4602–4609, 2019. 4

[18] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido F Montufar,
and Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 34, 2021. 4

[19] Hongyang Gao, Yi Liu, and Shuiwang Ji. Topology-aware graph pooling networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 43(12):4512–4518, 2021. 4, 7, 8

[20] Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International
conference on machine learning, pages 3734–3743. PMLR, 2019. 4

[21] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015. 4

[22] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. Advances in neural
information processing systems, 31, 2018. 4

[23] Chuang Liu, Yibing Zhan, Chang Li, Bo Du, Jia Wu, Wenbin Hu, Tongliang Liu, and Dacheng
Tao. Graph pooling for graph neural networks: Progress, challenges, and opportunities. arXiv
preprint arXiv:2204.07321, 2022. 4

[24] Alexandros D Keros, Vidit Nanda, and Kartic Subr. Dist2cycle: A simplicial neural network
for homology localization. Proceedings of the AAAI Conference on Artificial Intelligence, 36
(7):7133–7142, Jun. 2022. doi: 10.1609/aaai.v36i7.20673. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20673. 4

[25] Joshua Levy, Christian Haudenschild, Clark Barwick, Brock Christensen, and Louis Vaickus.
Topological feature extraction and visualization of whole slide images using graph neural
networks. In BIOCOMPUTING 2021: Proceedings of the Pacific Symposium, pages 285–296.
World Scientific, 2020.

[26] Guido Montúfar, Nina Otter, and Yuguang Wang. Can neural networks learn persistent homology
features? arXiv preprint arXiv:2011.14688, 2020.

[27] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, and Chao Chen. Neural
approximation of extended persistent homology on graphs. CoRR, abs/2201.12032, 2022. URL
https://arxiv.org/abs/2201.12032. 4

[28] Qi Zhao, Ze Ye, Chao Chen, and Yusu Wang. Persistence enhanced graph neural network. In
Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 2896–2906. PMLR, 26–28 Aug 2020. URL https://proceedings.
mlr.press/v108/zhao20d.html. 4

[29] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Cycle representation learning
for inductive relation prediction. In ICLR 2022 Workshop on Geometrical and Topological
Representation Learning, 2022. 4

[30] Simon Zhang, Mengbai Xiao, and Hao Wang. Gpu-accelerated computation of vietoris-rips
persistence barcodes. In 36th International Symposium on Computational Geometry (SoCG
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. 4

[31] Thibault de Surrel, Felix Hensel, Mathieu Carrière, Théo Lacombe, Yuichi Ike, Hiroaki Kurihara,
Marc Glisse, and Frédéric Chazal. Ripsnet: a general architecture for fast and robust estimation
of the persistent homology of point clouds, 2022. URL https://arxiv.org/abs/2202.
01725. 4

[32] Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant graph
neural networks with structural message-passing. Advances in Neural Information Processing
Systems, 33:14143–14155, 2020. 4

[33] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International conference on machine learning, pages 5453–5462. PMLR, 2018. 4

11

https://ojs.aaai.org/index.php/AAAI/article/view/20673
https://ojs.aaai.org/index.php/AAAI/article/view/20673
https://arxiv.org/abs/2201.12032
https://proceedings.mlr.press/v108/zhao20d.html
https://proceedings.mlr.press/v108/zhao20d.html
https://arxiv.org/abs/2202.01725
https://arxiv.org/abs/2202.01725

Extended Graph Filtration Learning

[34] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in Neural Information Processing Systems, 33:7793–7804, 2020. 4

[35] Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tackling over-
smoothing for general graph convolutional networks. arXiv preprint arXiv:2008.09864, 2020.
5

[36] Kenta Oono and Taiji Suzuki. Optimization and generalization analysis of transduction through
gradient boosting and application to multi-scale graph neural networks. Advances in Neural
Information Processing Systems, 33:18917–18930, 2020. 5

[37] Guy E Blelloch and Bruce M Maggs. Parallel algorithms. In Algorithms and theory of
computation handbook: special topics and techniques, pages 25–25. 2010. 6

[38] Richard J Anderson and Gary L Miller. Deterministic parallel list ranking. Algorithmica, 6(1):
859–868, 1991. 6

[39] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? arXiv preprint arXiv:2002.04025, 2020. 7

[40] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018. 7

[41] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits
of graph neural networks. In International Conference on Machine Learning, pages 3419–3430.
PMLR, 2020. 7

[42] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv
preprint arXiv:2007.08663, 2020. 8

[43] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019. 8

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019. 8

[45] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. Advances in Neural Information Processing Systems, 34,
2021. 8

[46] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019. 8

[47] Haoji Hu and Xiangnan He. Sets2sets: Learning from sequential sets with neural networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1491–1499, 2019. 8

[48] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning. Advances in Neural
Information Processing Systems, 33:4465–4478, 2020. 9

[49] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and System
Sciences, 113:42–59, 2020. 9

[50] Martin Fürer. On the combinatorial power of the weisfeiler-lehman algorithm. In International
Conference on Algorithms and Complexity, pages 260–271. Springer, 2017. 9

[51] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv preprint arXiv:2005.00687, 2020. 9

[52] S MERKULOV. Hatcher, a. algebraic topology (cambridge university press, 2002), 556 pp., 0
521 79540 0 (softback),£ 20.95, 0 521 79160 x (hardback),£ 60. Proceedings of the Edinburgh
Mathematical Society, 46(2):511–512, 2003. 14

12

Extended Graph Filtration Learning

[53] Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster method. The
computer journal, 16(1):30–34, 1973. 19

[54] Bernard A Galler and Michael J Fisher. An improved equivalence algorithm. Communications
of the ACM, 7(5):301–303, 1964. 19

[55] Daniel D Sleator and Robert Endre Tarjan. A data structure for dynamic trees. In Proceedings
of the thirteenth annual ACM symposium on Theory of computing, pages 114–122, 1981. 20

[56] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal of
the ACM (JACM), 32(3):652–686, 1985. 20, 21

[57] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 3438–3445, 2020. 25

13

Extended Graph Filtration Learning

A Proofs
Theorem A.1. (Theorem 5.1)

PHext(G) produces four types of bars: Bext1 ,Bext0 ,Blow0 ,Bup0 , s.t.

|Bext1 | = dimH1 = m− n+ C,

|Bext0 | = dimH0 = C,

|Blow0 | = |B
upper
0 | = n− C,

where there are C connected components and dimHk is the dimension of the kth homology group
s.t.:

1. the H1 barcode comes from a cycle basis of G which also constitutes a basis of its fundamental
group,

2. dimH1 counts the number of chordless cycles when G is outer-planar, and

3. there exists an injective filtration function where the union of the resulting barcodes is strictly more
expressive than the histogram produced by the WL[1] graph isomorphism test.

Proof. There are n bars with vertex births since every vertex creates exactly one connected component.
The number of these bars which are in Bext0 is C, which counts the number of global connected
components. In other words, Bext0 = dim(H0) = C. Thus, we have n− C = |Blow0 | = |B

upper
0 |.

Considering all 2m edges on the extended filtration, every edge gets paired. Furthermore, n− C of
the edges in the lower filtration are negative edges paired with vertices that give birth to connected
components. Similarly there are n−C edges paired with vertices in the upper filtration. We thus have
2m−2(n−C)

2 edge-edge pairings in Bext1 because every edge gets paired. Thus, |Bext1 | = m− n+ C.
Since each bar in Bext1 counts a birth of a 1-dimensional homological class which together span the
1-dimensional homological classes in H1, we have that dimH1 = |Bext1 |.
1. All cycle representatives found by the algorithm are a symmetric difference of cycles from a
fundamental cycle basis, or cycle basis induced from a spanning forest. This follows since the link
and cut operations in our algorithm correspond to cycle additions in extended persistence computation.
Furthermore, each cycle in the returned cycle representatives is independent because it has a unique
cycle from the fundamental cycle basis as a summand. Also, there are m − n + 1 returned cycle
representatives, same as the fundamental cycle basis. Thus the cycle representatives form a cycle
basis.

Any cycle basis generates the fundamental group and H1(G,Z2) homology group of graph G [52]

2. By Euler’s formula, we have n−m+ F = C + 1 for planar graphs where F is the number of
faces of the planar graph as embedded in S2. For outer planar graphs, since F − 1 interior faces lie
on one hemisphere of S2 and one exterior face covers the opposite hemisphere, each interior face
must be a chordless cycle.

3. This follows directly by the result in [2] stating that 0-dimensional barcodes are more expressive
than the WL[1] graph isomorphism test. In extended persistence, Blow0 and Bext0 are computed. Since
all bars in Bext0 correspond to infinite bars denoted B∞0 in the 0-dimensional standard persistence, we
have that Blow0 and Bext0 carry at least the same amount of information as a 0-dimensional barcode as
determined by Blow0 and B∞0 .

Observation A.2. (Observation 5.2) For any graph G and chordless cycle C ⊂ G, there exists
injective filtration functions f low

G , fup
G on G where PHext of the induced filtration for extended

persistence can measure the number of edges along C.

Proof. Number the vertices of the cycle C of length k in descending order and counter clockwise
as n − 1...n − k. For each vertex u ∈ C, set f low

G (u) = fup
G (u) to be the index of u in the vertex

numbering, the lower and upper filtration value on the nodes. For the other vertices, assign arbitrary
different values less than n−k. The edge values are then assigned fup

G (u, v) = min(fup
G (u), fup

G (v))
and f low

G (u, v) = max(f low
G (u), f low

G (v)). Apply ε-perturbation to make the filtration functions

14

Extended Graph Filtration Learning

f low
G , fup

G injective and to force exactly one edge on the cycle to be positive. Every edge is either
positive or negative and all negative edges are on a spanning forest.

In particular, for vertex u and all its incident edges of same upper filtration value, one can subtract
different ε ∈ R+ from each edge to impose an order amongst edges with the same value from fup

G .
Similarly, for f low

G subtract different ε ∈ R+ to each edge to break ties. For the edges on C, do not
subtract an ε in order to force each node i on C to pair with the largest edge: (i− 1, i) of filtration
value i. Since there is a tie for the edges in C incident to node n− k in the upper filtration, set the
edge fup

G (n− k, n− k+1) := n− k+ ε. This ensures that edge (n− k, n− k+1) is negative and
(n− 1, n− k) is positive in the upper filtration since the edges with larger filtration values are paired,
or made negative, first. Similarly, there is a tie for the edges in C incident to node n− 1 in the lower
filtration. Set f low

G (n − 1, n − k) := n − 1 + ε. This ensures that edge (n − 1, n − 2) is positive
in the lower filtration and (n− 1, n− k) is negative in the lower filtration. The resulting filtration
functions f low

G and fup
G are injective. Furthermore, we then get that every edge on the cycle C except

one: (n − 1, n − k), a positive edge, becomes negative in the upper filtration and thus belongs to
the negative spanning forest of the upper filtration. The positive edge of smallest value in the upper
filtration is edge (n− 1, n− k). The extended persistence algorithm, after computing Blow0 and Bup0 ,
pairs the edge e = (n − 1, n − k) with the edge having maximum value in the lower filtration in
the cycle C that e forms with the spanning forest. This paired edge is (n− 1, n− 2) and has lower
filtration value n− 1. We thus have the bar [n− 1, n− k] which encodes the length k of the cycle C.

Observation A.3. (Observation 5.3) For any graph G and all connected components CC ⊂ G, there
exists injective filtration functions f low

G , fup
G defined on G where PHext of the induced filtration for

extended persistence can measure the number of vertices in CC.

Proof. For each connected component CC in G, index the vertices in CC in consecutive order where
indices in each connected component remain distinct. Then define f low

G (u) = fup
G (u) equal to the

index of u in G. By some ε-perturbation, where we break ties amongst edges, we can make these two
functions injective on the graph G. Since Bext0 has each bar [minu∈CC f low

G (u),maxu∈CC fup
G (u)]

and since all indices are consecutive, each bar’s persistence in Bext0 measures how many vertices are
in the connected component they constitute.

Observation A.4. (Observation 5.4) For any graph G where every edge belongs to some cycle and
an extended filtration on it is induced by randomly sampling vertex values xi ∼ U([0, 1]), PHext

has the H1 bar [maxi(xi),mini(xi)] with probability
∑

v∈V
1
n

deg(v)
n−1 = 2m

n(n−1) .

Proof. Since the probability of finding a given permutation on n vertices sampled uniformly at
random without replacement is equivalent to the probability of a given order on the vertices sampled
uniformly at randomly n times, it suffices to find the probability of sampling uniformly at random
without replacement two vertices that are connected with an edge in G.

For a fixed σ ∈ Sn, a permutation from the group Sn of permutations on n vertices, we have:

1

n!
= P (xn < xn−1 < ... < x1, xi ∼ U([0, 1]))

=

∫ 1

0

∫ x1

0

...

∫ xn−1

0

dxndxn−1...dx1 = P (σ ∼ U(Sn)) (2)

Let G = (V,E) be the graph with vertex values sampled from a uniform distribution. Let G′ =
(V ′, E′) be the same graph with vertex values in {0, 1, . . . , n − 1} sampled uniformly without
replacement. We know that the probability for a given order on these vertices is the same for both
graphs. In fact, the two node labelings are in bijection with each other. By the law of total probability
and with Equation 2:

15

Extended Graph Filtration Learning

P ((min
i

xi,max
i

xi) ∈ E, xi ∼ U([0, 1]))

=
∑
v∈V

(P (v = max
i

xi, xi ∼ U([0, 1])) · P (min
i

xi ∈ Nbr(v)|v = max
i

xi, xi ∼ U([0, 1])))

=
∑
v∈V

(n− 1)!

∫ 1

0

∫ x1

0

...

∫ xn−1

0

dxndxn−1...dx1 · deg(v)(n− 2)!

∫ 1

0

∫ x2

0

...

∫ xn−1

0

dxndxn−1...dx2

=
∑
v∈V ′

(P (v = n− 1) · P (0 ∈ Nbr(v)|v = n− 1)) = P ((n− 1, 0) ∈ E′)

=
∑
v∈V ′

1

n

deg(v)

n− 1

We now show that if (mini xi,maxi xi) occurs as an edge in G = (V,E), where every edge belongs
to some cycle, then the bar [maxi xi,mini xi] is guaranteed to occur.

The spanning tree comprised of negative edges that begins the computation for Bext1 as in line 6
of Algorithm 1 for the H1 barcode computation is a maximum spanning tree. This is because
the negative edges are just those found by the Kruskal’s algorithm for the 0-dimensional standard
persistence applied to an upper filtration. Since e = (mini xi,maxi xi) has value mini xi in the
upper filtration and since every edge belongs to at least one cycle, it cannot be in the maximum
spanning tree. Thus e is a positive edge.

Since e is positive in the upper filtration, it will be considered at some iteration of the for loop in line
10 of Algorithm 1. When we consider it, it will form a cycle C with the dynamically maintained
spanning forest. To form a persistence H1 bar for e, we pair it with the maximum edge in the cycle
C in the lower filtration. This forms a bar [maxi xi,mini xi].

Corollary A.5. In Observation 5.4, assuming the bar [maxi(xi),mini(xi)] exists, the expected
persistence of that bar, E[|maxi(xi)−mini(xi)|], goes to 1 as n→∞.

Proof. Define the random variable Xn = |maxi xi −mini xi| for n random points drawn uniformly
from [0, 1]. We find limn→∞ E[Xn]. The following sequence of equations follow by repeated
substitution.

E[Xn] = n!

∫ 1

0

∫ x1

0

...

∫ xn−1

0

(x1 − xn)dxn...dx1

= n!

∫ 1

0

(
xn
1

(n− 1)!
− xn

1

n!
)dx1 =

n− 1

n+ 1

where the n! comes from symmetry.

Therefore: limn→∞ E[Xn] = 1.

16

Extended Graph Filtration Learning

B Demonstrating the Expressivity of Learned Extended Persistence
We present some cases where the classification performance of our method excels. We look for
graphs that cannot be distinguished by WL[1] bounded GNNs. We find that pinwheeled cycle graphs
and varied length cycle graphs can be perfectly distinguished by learned extended persistence and, in
practice, with much better performance than random guessing using our model. See the experiments
Section 6 to see the empirical results for our method against other methods on this synthetic data.

B.1 Pinwheeled Cycle Graphs (The PINWHEELS Dataset)

Figure 3: Class 0: 2 triangles with pinwheel
at each vertex.

Figure 4: Class 1: A hexagon with pinwheel
at each vertex.

We consider pinwheeled cycle graphs. To form the base skeleton of these graphs, we take the standard
counter example to the WL[1] test of 2 triangles and 1 hexagon. We then append pinwheels of a
constant number of vertices to the vertices of these base skeletons. The node attributes are set to a
spurious constant noise vector. They have no effect on the labels.

It is easy to check that both Class 0 and Class 1 graphs are indistinguishable by WL[1]; see Figures 3
and 4. Notice that if there are 6 core vertices and edges in the base skeleton and if there are pinwheels
of size k, then with edge deletions and vertex deletions composed, we have a 1− (6

6k+6)
2 probability

of only deleting a pinwheel edge or vertex and thus not affecting H1. This probability converges to 1
as k →∞. According to Theorem 5.1, dimH1 measures the number of cycles and dimH0 measures
the number of connected components. If neither of these counts are affected by training during
supervised learning, our method is guaranteed to distinguish the two classes simply by counting
according to Theorem 5.1.

Certainly the pinwheeled cycle graphs, are distinguishable by counts of bars. We check this experi-
mentally by constructing a dataset of 1000 graphs of two classes of graph evenly split. Class 0 is as
in Figure 3 and involves two triangles with pinwheels of random sizes. Class 1 is as in Figure 4 with
a hexagon and pinwheels of random sizes attached. We obtain on average 100% accuracy. This is
confirmed experimentally in Table 1. This matches the performance of GFL [5], since counting bars,
or Betti numbers, can also be done through 0-dim. standard persistence. Interestingly TOGL does
not achieve a score of 100 accuracy on this dataset. We conjecture this is because their layers are not
able to ignore the spurious and in fact misleading constant node attributes.

B.2 Regular Varied Length Cycle Graphs (The 2CYCLES dataset)

Figure 5: Class 0: A 15 node cycle and an 85 node
cycle.

Figure 6: Class 1: A 50 node cycle with a 50 node
cycle.

We further consider varied length cycle graphs. These are graphs that involve two cycles. Class 0 has
one short and one long cycle while Class 1 has two near even lengthed cycles. The node attributes are
all the same and spurious in this dataset. Extended persistence should do well to distinguish these

17

Extended Graph Filtration Learning

two classes. We conjecture this based on Observation 5.2, which states that there is some filtration
that can measure the length of certain cycles.

It is the path length, coming from Observation 5.3, which is being measured. The 0-dimensional
standard persistence is insufficient for this purpose. The infinite bars of 0-dimensional standard
persistence are determined only by a birth time. Furthermore, extended persistence without cycle
representatives is also insufficient since a message passing GNN learns a constant filtration function
over the nodes. However, with cycle representatives, or a list of scalar node activations per cycle for
each graph, we can easily distinguish the average sequence representation since the pair of sequence
lengths are different. In class 0, a short cycle and a long cycle are paired while in class 1, two cycles
of medium lengths are paired.

A similar but more challenging dataset to the PINWHEELS dataset, the 2CYCLES dataset, is similar
to the necklaces dataset from [2] and is illustrated in Section B.2 but with more misleading node
attributes and simplified to two cycles. It involves 400 graphs consisting of two cycles. There are two
classes as shown in Figures 5 and 6.

The experimental performance on 2CYCLES surpasses random guessing while all other methods
just randomly guess as stated in Section B.2. Certainly WL[1] bounded GNNs cannot distinguish
the two classes in 2CYCLES since they are all regular. As discussed, because GFL and TOGL use
learned 0-dimensional standard persistence, these approaches do no better than random guessing on
this dataset.

18

Extended Graph Filtration Learning

C Timing of Extended Persistence Algorithm (without storing cycle
representations)

Since the persistence computation, especially extended persistence computation, is the bottleneck to
any machine learning algorithm that uses it, it is imperative to have a fast algorithm to compute it.
We perform timing experiments with a C++ torch implementation of our fast extended persistence
algorithm. In our implementation each graph in the batch has a single thread assigned to it.

Our experiment involves two parameters, the sparsity, or probability, p for the edges of an Erdos-
Renyi graph and the number of vertices of such a graph n. We plot our speedup over GUDHI, the
state of the art software for computing extended persistence, as a function of p with n held fixed. We
run GUDHI and our algorithm 5 times and take the average and standard deviation of each run’s
speedup. Since our algorithm has lower complexity, our speedup is theoretically unbounded. We
obtain up to 62x speedup before surpassing 12 hours of computation time for experimentation. The
plot is shown in Figure 7. The speedup is up to 2.8x, 9x, 24x, and 62x for n = 200, 500, 1000, 2000
respectively.

0.2 0.4 0.6 0.8 1.0
Sparsity

0

10

20

30

40

50

60

Sp
ee

du
p

ov
er

 G
UD

HI

200 vertices
500 vertices
1000 vertices
2000 vertices

Figure 7: Average speedup with std. dev. as a function of sparsity p and number of vertices n on
Erdos Renyi graphs.

D Algorithm and Data Structure Details

Here we detail the algorithmic details of computing extended persistence.

D.1 The PH0 Algorithm

Algorithm 2 is the union-find algorithm that computes 0 dimensional persistent homology. The
algorithm is a single-linkage clustering algorithm [53]. It starts with n nodes, 0 edges, and a union-
find data structure [54] on n nodes. The edges are sorted in ascending order if a lower filtration
function is given. Otherwise, the edges are sorted in descending order. It then proceeds to connect
nearest neighbor clusters, or connected components, in a sequential fashion by introducing edges in
order one at a time. Two connected components are nearest to each other if they have two nodes closer
to each other than any other pair of connected components. This is achieved by iterating through the
edges in sorted order and merging the connected components that they connect. When given a lower
filtration function, when a connected component merges with another connected component, the
connected component with the larger connected component root value has its root filtration function
value a birth time. This birth time is paired with the current edge’s filtration value and form a birth
death pair. The smaller of the two connected component root values is used as birth time when an
upper filtration function is given. The two connected components are subsequently merged in a
union-find data structure by the LINK operation.

19

Extended Graph Filtration Learning

Algorithm 2 PH0 Algorithm

Input: G = (V,E), F : filtration function, order: flag to denote an upper or lower filtration
Output: B0, Epos, Eneg, U : H0 bars, pos. edges, neg. edges, and union-find data structure

1: U ← V /* a union-find data structure populated by n unlinked nodes*/
2: B0 ← {} /*A multiset */
3: if order = lower then
4: SORTincr(E) /*increasing w.r.t. F;*/
5: else
6: SORTdecr(E) /*decreasing w.r.t F;*/
7: end if
8: for e = (u, v) ∈ E do
9: rootu ← U.FIND(u)

10: rootv ← U.FIND(v)
11: if rootu = rootv then
12: Epos ← Epos ∪ {e}
13: else
14: Eneg ← Eneg ∪ {e}
15: end if
16: if order = lower then
17: b← max(F (rootu), F (rootv)
18: else
19: b← min(F (rootu), F (rootv))
20: end if
21: d← F (e)
22: B0 ← B0 ∪ {{(b, d)}}
23: U.LINK(rootu, rootv)
24: end for
25: return (B0, Epos, Eneg, U)

D.2 A Brief Overview of the Link-Cut Tree Data Structure

The link-cut tree data structure [55] is a well known dynamic connectivity data structure. For
modifying the tree of n nodes, it takes O(log n) amortized time for deleting an edge (cut) and joining
two trees (link). Furthermore, it takes O(log n) amortized time for the composition of associative
reductions, such as max, min, sum, on some path from any node to its root. We may view the
link-cut tree data structure as a collection of trees and thus as a forest as well. Details of this forest
implementation are omitted.

The link-cut tree decomposes the nodes of a tree T into disjoint preferred paths. A preferred path is a
sequence of nodes that strictly decreasing in depth (distance from the root of T) on T . A path has
each consecutive node connected by a single edge. In particular, each node in T has a single preferred
child, forming a preferred edge. The maximally connected sequence of preferred edges forms a
preferred path. The preferred path decomposition will change as the link-cut tree gets operated on.
Each preferred path is in one to one correspondence with a splay tree [56] called an auxiliary tree
on the set of nodes in the preferred path. For any node v in a preferred path’s auxiliary tree, its left
subtree is made up of nodes higher up (closer to the root in T) than v and its right subtree is made up
of nodes lower (farther from the root in T) than v. Each auxiliary tree contains a pointer, termed the
auxiliary tree’s parent-pointer, from its root to the parent of the highest (closest to the root) node in
the preferred path associated with the auxiliary tree.

The most important supporting operation to a link-cut tree T is the EXPOSE() operation. The result
of EXPOSE(v) for v ∈ T is the formation of a unique preferred path from the root of T to v with this
preferred path’s set of nodes forming an auxiliary tree. Furthermore, it results in v to be the root
of the auxiliary tree it belongs to. The complexity of EXPOSE(v) is O(log n). For implementation
details, see [55].

Let T1, T2 be two link-cut trees and u ∈ T1, v ∈ T2 with u a root of T1. Define the operation
LINK(T1, (u, v), T2) as the operation that attaches T1 to T2 by connecting u with v by an edge and
outputs the resulting tree. This is achieved by simply calling EXPOSE(u) then EXPOSE(v), which

20

Extended Graph Filtration Learning

makes u and v the roots of their respective auxiliary trees. In the auxiliary tree of u, then set the left
child of u to v.

Let T be a link-cut tree and u, v ∈ T connected by an edge with v higher up in T , closer to the root
of T . Define the operation CUT(T, (u, v)) as the operation that disconnects T by deleting the edge
between u and v. This is achieved by simply calling EXPOSE(u) and then making u a root by making
the left child of v point to null.

Let T be a link-cut tree and u, v ∈ T . Define the operation LCA(T, (u, v)) as the operation that finds
the least common ancestor of u and v in T . This is achieved by calling EXPOSE(u) then EXPOSE(v)
and then taking the node pointed to by the parent-pointer of the auxiliary tree of which u is root.

Let T be a link-cut tree and u, v ∈ T with v higher up in the tree T , meaning that it is closer to the
root than u, and there being a unique path of monotonically changing depth in the tree from u to v.
Define the operation PATH(u, v) as the operation that returns a linked list of the path from u to v in
T . If v is the root, call EXPOSE(u) and return the linked list formed by the splay tree with u at root.
Otherwise, first find the parent v′ of v. The parent of v can be obtained by calling EXPOSE(v) then
traversing the splay tree it is a root of for its parent in T . Call EXPOSE(u) to form a preferred path
from u to the root of T then EXPOSE(v′) to detach v′ from this preferred path. Let SPLAY(u) be
the operation that rotates the unique splay tree, or preferred path, containing u so that u becomes
the root of its splay tree. After calling SPLAY(u), u becomes the root of a linked-list splay tree. It
is a linked-list since u is the lowest (farthest from the root) node in its splay tree and the rest of the
preferred path is made up of a path of strictly decreasing distance to the root. Return this linked-list
splay tree as the resulting path from u to v.

Let T be a link-cut tree, u, v ∈ T with v higher up in the tree than u (it is closer to the root of
T than u) and there being a unique path of monotonically changing depth in the tree from u to v.
Define REDUCE(T, u, v, op) to be an associative reduction on the path from u to v. To do this, apply
EXPOSE(u) then EXPOSE(v), then apply the associative operation on the whole auxiliary tree rooted
at u, as implemented on a splay tree in [56]. The associative reduction takes O(log n) time. This
splay tree corresponds to the preferred path from u to v formed from the two EXPOSE operations.
Notice that EXPOSE(u) results in a preferred path from u to the root while the second call EXPOSE(v)
detaches the path from v to the root of T from the preferred path of u to the root.

Let T be a link-cut tree, u, v ∈ T and lca the least common ancestor of u, v ∈ T . Assume the nodes
are labeled by a pair of their value and index. Two nodes are compared by their respective values.
Define ARGMAXREDUCECYCLE(T, u, v, lca) as the operation that finds the edge with one of its
nodes containing the maximum value on the cycle formed by u, v and lca. There are many ways
to implement this. We describe a method that maintains the O(log n) complexity of link-cut tree
operations. We first compute (value(w1), w1) := REDUCE(T, u, lca,max) to find the maximum
value node along the path from u to lca, then compute (value(w2), w2) := REDUCE(T, v, lca,max)
to find the maximum value node along the path from v to lca. Let w to be the maximum valued vertex
between w1 and w2. If w ̸= lca(u, v), then find the parent z of w; otherwise, apply EXPOSE(u) then
EXPOSE(v) and keep track of the child z of w that gets detached during EXPOSE(v). Parent of w
can be found by EXPOSE(w) then traversing its splay tree to find the parent of w ∈ T . The edge
(z, w) is returned by ARGMAXREDUCECYCLE(T, u, v, lca)

21

Extended Graph Filtration Learning

(a) 2000 nodes, 0.01 sparsity (b) 2000 nodes, 0.1 sparsity (c) 2000 nodes, 0.3 sparsity

(d) 2000 nodes, 0.5 sparsity (e) 2000 nodes, 0.7 sparsity (f) 2000 nodes, 0.9 sparsity

Figure 8: Cycle length histograms of the cycle representatives output by the extended persistence
algorithm on sampled Erdos-Renyi graphs

E Cycle Length Distribution of the Cycle Basis found by Extended
Persistence Algorithm for Erdos-Renyi Graphs

We perform an experiment to determine the cycle length distribution of cycle representatives output
by our algorithm on random Erdos-Renyi graphs. We observe that, as the graph becomes more dense,
the distribution of cycles shifts towards very short cycles. We also find that the cycle lengths for most
Erdos-Renyi sparsity hyperparameters rarely become very long. We hypothesize that the cycle basis
found by the extended persistence algorithm is close to the minimal (in cycle lengths) cycle basis.

For a given node count n, edge count m, and sparsity hyperparameter, 0 ≤ s ≤ 1 which we define
as the Erdos-Renyi probability for keeping an edge from a clique on n nodes, we sample three
Erdos-Renyi graphs. We collect the multiset of m− n+ 1 cycle lengths in the cycle basis found by
the algorithm. This multiset can be visualized as a histogram. Each histogram is a relative frequency
mixture of the three cycle length histograms for each graph. See Figure 8 for the histograms we
obtained from sampled Erdos-Renyi graphs. Notice that, even for 0.01 sparsity, Erdos-Renyi samples
of graphs on 2000 nodes have the average cycle length of 15, which is 0.75% of n = 2000.

To put this in perspective, assume that we can relate the Erdos-Renyi sparsity s by ŝ := m
n2 . For

the datasets of our experiments, we have ŝ ≈ 0.009, 0.0048, 0.39, 0.062, 0.084, 0.0018, 0.032,and
0.045 for DD, PROTEINS, IMDB-MULTI, MUTAG, PINWHEELS, 2CYCLES, MOLBACE,
and MOLBBBP, respectively. The sparsity estimator is in the range of 0.0018 ≤ ŝ ≤ 0.39, which
tells us that most of the cycle lengths found by our algorithm are short.

22

Extended Graph Filtration Learning

F Rational Hat Function Visualization
Figure 9 and Figure 10 visualize the rational hat function for fixed r value and varying x and y values.
Notice the boundedness of the plot as (x, y)→∞. For the theory behind the rational hat function,
see [1].

Figure 9: The function r̂, output sliced at
one dimension, as a function of |(x, y)|1 with
r = 0.5 from Equation 1. The point (x, y) is
given by (x, y) = p− c.

Figure 10: The function r̂, output sliced at
one dimension, as a function of |(x, y)|1 with
r = 1.0 from Equation 1. The point (x, y) is
given by (x, y) = p− c.

G Datasets and Hyperparameter Information
Here are the datasets, both synthetic and real world, used in all of our experiments along with training
hyperparameter information.

The barcode vectorization layer, or concatenation of four-rational hat functions, is set to a dimension
of 256. The LSTM used on the explicit cycle representatives was set to a 2-layer bidirectional LSTM
with single channel inputs and 256 dimensional vector representations. Due to the fact that our
algorithm on random Erdos-Renyi graphs rarely encounters long cycles, we set the LSTM layers to a
small number like 2 to avoid overfitting.

Dataset and Hyperparameter Information
Dataset Graphs Classes Avg. Vertices Avg. Edges lr Node At-

trs.(Y/N)
num.
layers

Class ratio

DD 1178 2 284.32 715.66 0.01 Yes 2 691/487

PROTEINS 1113 2 39.06 72.82 0.01 Yes 2 663/422

IMDB-MULTI 1500 3 13.00 65.94 0.01 No 2 500/500/500

MUTAG 188 2 17.93 19.79 0.01 Yes 1 63/125

PINWHEELS 100 2 71.934 437.604 0.01 No 2 50/50

2CYCLES 400 2 551.26 551.26 0.01 No 2 200/200

MOLBACE 1513 2 34.09 36.9 0.001 Yes 2 822/691

MOLBBBP 2039 2 24.06 25.95 0.001 Yes 2 479/1560

Table 3: Dataset statistics and training hyperparameters used for all datasets in scoring experiments
of Table 1 and Table 2

H Implementation Dependencies
Our experiments have the following dependencies: python 3.9.1, torch 1.10.1, torch_geometric 2.0.5,
torch_scatter 2.0.9, torch_sparse 0.6.13, scipy 1.6.3, numpy 1.21.2, CUDA 11.2, GCC 7.5.0.

23

Extended Graph Filtration Learning

I Visualization of Graph Filtrations

We visualize the filtration functions fG learned on graphs G for the datasets: IMDB-MULTI, MUTAG,
and REDDIT-BINARY. The value of fG(v) for each v ∈ V is shown in each figure.

0.6359

0.1932

0.427

0.9722

0.8495

0.2736

1.3532

1.0245

0.8675

1.1774

0.4098 0.3644

0.2735

0.5874

1.1924

1.0418

0.882

1.2957

1.0569

0.3419

1.3385

1.0957

1.3067

0.4539

0.4669

0.1627

Figure 11: IMDB-MULTI learned filtration function

0.0884
0.1424

0.4732

0.1790.1226

0.3139

0.0973

0.1416

0.1585

0.587
0.0663

0.1787

0.2679

0.1566

0.53080.4585 1.2602

1.2919

1.0393

1.0051

1.0986

1.449

Figure 12: MUTAG learned filtration function

24

Extended Graph Filtration Learning

1 2 3 4 5 6 7 8
Number of Conv. Layers

68

70

72

74

76

78

80

82

Ac
cu

ra
cy

Proteins w/ ext. pers.

(a) PROTEINS

1 2 3 4 5 6 7 8
Number of Conv. Layers

70

75

80

85

90

95

Ac
cu

ra
cy

Mutag w/ ext. pers.

(b) MUTAG

Figure 13: An exhibit of oversmoothing in the filtration convolutional layers. Plot of the average
accuracy with std. dev. as a function of the number of convolutional layers before the Jumping
Knowledge MLP and the extended persistence readout. The PROTEINS and MUTAG datasets were
used in (a) and (b) respectively.

J Additional Experiments
J.1 Number of Convolutional Layers Experiment

We also perform an experiment to determine the number of layers in the MPGNN of the filtration
function that has the highest performance. Due to oversmoothing [57], which is exacerbated by
the required scalar-dimensional vertex embeddings, as we increase the number of layers for the
filtration function the performance drops. See Figure 13 for an illustration of this phenomenon on the
PROTEINS and MUTAG dataset. For these two datasets, two layers perform the best.

Model F1 Macro

GEFL-bars 84.0±14.2

GEFL-bars+cycles 85.4±10.3
GCN 69.8 ±15.2

GraphSAGE 69.5±11.0

GIN0 79.9±9.0

GIN 84.9±6.0

Table 4: MUTAG Macro F1 Scores

J.2 Macro F1 Experiments

We perform further experiments with the MUTAG dataset and evaluate performance with the F1
Macro score due to the class imbalance in the MUTAG dataset, see Table 3. See Table 4 for details of
the F1 Macro evaluation.

J.3 Experiments on Transferability

We perform an experiment on the transferability of our approach from real world datasets to their
edge corrupted versions and compare with the standard GNN baselines. We form a corrupted version
of the data by applying a Bernoulli random variable with p = 0.2 on each edge of the MUTAG and
IMDB-MULTI datasets. We perform zero-shot, one-shot and 10-shot transfer learning. We include
an ablation study to compare with models without fine-tuning and with 0, 1, 10 and 100 epochs of
training.

We notice that our model does not directly transfer in either zero or one shot transfer learning.
However after 10 epochs of fine-tuning, there appears to be an advantage to transfer learning over raw
training. For the MUTAG dataset, there is a 77.7− 64.2 average Macro F1 score difference for a bars
only representation model and a 74.8− 69.8 average Macro F1 score difference for bars with cycle
representatives. Furthermore, on MUTAG the baseline GNNs do not show any improvement with
10-shot transfer learning. For IMDB-MULTI there is a 48.3− 46.1 average accuracy difference for

25

Extended Graph Filtration Learning

bars only representation model and a 49.7− 48.0 average accuracy difference for the bars with cycle
representatives model. As for MUTAG, for IMDB-MULTI there is no transfer learning improvement
for the baselines.

We hypothesize that both versions of our model transfer well since our model captures global
topological information with low variance. This is more conducive to transfer learning than an
aggregation of each node’s local neighborhood information as in the baselines. The baselines result
in training a higher variance classifier. Low variance classifiers transfer easier since their decision
boundary is easier to adapt to new data. We also hypothesize that the bars only model transfers better
than the bars with cycle representatives model due to its even lower variance, no LSTM parameters.

Our model downsamples the graph representation into scalars (a set of sequences of scalars and a
set of pairs of scalars) upon computing bars and cycle representatives. Due to our architecture, to
accommodate these scalars, this results in a higher bias classifier with few parameters. Due to the
bias variance trade off, the variance should be low.

Transfer learning results
Dataset Pretraining (Epochs) Finetuning (Epochs) Ours+bars Ours+bars+cycles GCN GraphSage GIN0 GIN

MUTAG-0.2 (F1 Macro) 100 – 83.2±9.6 78.3±17.3 73.4±10.4 74.5±09.1 85.6±05.7 83.5±11.2
MUTAG-0.2 (F1 Macro) 100 0 31.4±11.2 29.4±11.4 32.4±7.9 39.9±0.9 35.4±7.3 35.4±7.3
MUTAG-0.2 (F1 Macro) 0 – 37.1 ± 12.2 32.7 ± 7.9 34.6 ± 8.7 36.1 ± 7.8 35.8 ± 10.1 34.3 ± 7.1
MUTAG-0.2 (F1 Macro) 100 1 39.9±0.9 39.9±0.9 39.9±0.9 39.9±0.9 39.9±0.9 39.9±0.9
MUTAG-0.2 (F1 Macro) 1 – 39.9 ± 0.9 39.9 ± 0.9 39.9 ± 0.9 39.9 ± 0.9 39.9 ± 0.9 39.9 ± 0.9
MUTAG-0.2 (F1 Macro) 100 10 76.7±9.7 74.8±10.2 39.9±0.9 39.7±14.3 39.9±0.9 39.9±0.9
MUTAG-0.2 (F1 Macro) 10 – 64.2 ± 17.9 69.8 ± 17.7 43.9 ± 9.5 44.2 ± 9.7 41.8 ± 6.2 44.1 ± 13.3
IMDB-MULTI-0.2 (Acc.) 100 – 49.2±3.9 50.3±2.9 49.4±2.5 50.5±2.6 49.6±3.1 51.5±3.1
IMDB-MULTI-0.2 (Acc.) 100 0 33.1±1.1 32.5±3.1 16.8±0.5 20.2±4.9 24.0±6.1 21.0±7.9
IMDB-MULTI-0.2 (Acc.) 0 – 34.5 ± 4.7 34.3 ± 2.4 20.2 ± 4.3 19.6 ± 4.3 20.4 ± 4.3 20.6 ± 5.0
IMDB-MULTI-0.2 (Acc.) 100 1 39.7±5.3 40.7±5.9 44.8±4.4 50.5±3.5 34.3±4.2 40.9±3.4
IMDB-MULTI-0.2 (Acc.) 1 – 34.3 ± 1.6 38.8 ± 4.9 47.2 ± 3.5 47.8 ± 3.3 43.2 ± 3.3 45.8 ± 5.5
IMDB-MULTI-0.2 (Acc.) 100 10 48.3±2.2 49.7±3.0 48.9±3.3 50.5±3.5 46.7±2.9 47.9±4.5
IMDB-MULTI-0.2 (Acc.) 10 – 46.1 ± 2.1 48.0 ± 3.1 50.1 ± 3.1 49.9 ± 1.9 51.5 ± 2.5 50.1 ± 2.5

Table 5: We list here the scores for our transfer learning experiments on MUTAG and IMDB-MULTI.
We pretrain on the original MUTAG and IMDB-MULTI by 10-fold cross validation. Then, we fine-tune
the pretrained models on corrupted versions of these datasets also by 10-fold cross validation. These
two corrupted datasets are obtained by filtering by a Bernoulli random variable of p = 0.2 on each
edge. This is very likely to introduce different cycle patterns in the data. Fine-tuning is performed for
0, 1 and 10 epochs, while ‘–’ denotes no finetuning.

26

	1 Introduction
	2 Background
	2.1 Computational Topology for Graphs
	2.2 Message Passing Graph Neural Networks (MPGNN)

	3 Related Work
	4 Method
	4.1 Efficient Computation of Extended Persistence
	4.1.1 Algorithm
	4.1.2 Complexity

	5 Expressivity of Extended Persistence
	5.1 Some Properties

	6 Experiments
	6.1 Experimental Setup
	6.2 Performance on Real World and Synthetic Datasets

	7 Conclusion
	A Proofs
	B Demonstrating the Expressivity of Learned Extended Persistence
	B.1 Pinwheeled Cycle Graphs (The PINWHEELS Dataset)
	B.2 Regular Varied Length Cycle Graphs (The 2CYCLES dataset)

	C Timing of Extended Persistence Algorithm (without storing cycle representations)
	D Algorithm and Data Structure Details
	D.1 The PH0 Algorithm
	D.2 A Brief Overview of the Link-Cut Tree Data Structure

	E Cycle Length Distribution of the Cycle Basis found by Extended Persistence Algorithm for Erdos-Renyi Graphs
	F Rational Hat Function Visualization
	G Datasets and Hyperparameter Information
	H Implementation Dependencies
	I Visualization of Graph Filtrations
	J Additional Experiments
	J.1 Number of Convolutional Layers Experiment
	J.2 Macro F1 Experiments
	J.3 Experiments on Transferability

