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ARTICLE INFO ABSTRACT

MSC: We consider a discrete-time system of n coupled random vectors, a.k.a. interacting particles. The
primary 35B40 dynamics involve a vanishing step size, some random centered perturbations, and a mean vector
65C35

field which induces the coupling between the particles. We study the doubly asymptotic regime

S;;S[;gary 35K55 where both the number of iterations and the number » of particles tend to infinity, without any
P constraint on the relative rates of convergence of these two parameters. We establish that the

82C22 empirical measure of the interpolated trajectories of the particles converges in probability, in
an ergodic sense, to the set of recurrent McKean-Vlasov distributions. We also consider the

Particle systems pointwise convergence of the empirical measures of the particles. We consider the example of

Ergodic convergence the granular media equation, where the particles are shown to converge to a critical point of

McKean-Vlasov equation the Helmholtz energy.

Discrete-time

Granular media equation

Keywords:

1. Introduction

Given two integers n, d > 0, consider the iterative algorithm defined as follows. Starting with the n-uple (X!, ..., X (')”") of random
variables X (’)’" € R4, the algorithm generates at the iteration k+ 1 for k € N the n-uple of R?-valued random variables (X ,i’", X Z'"),
referred to as the particles, according to the dynamics:

X;i’:l = X;i{n + J’k+1b(X,i{nv M+ V27k+1§,i'il + 7k+1C,iL':1 , (€D)]
for each i € [n] where [n] := {1, ...,n}, where
n
n._ 1
== Syin . 2
e = ; X @

In this equation, b : R? x P,(R?) — R? is a continuous vector field, where, for some p € [1,2], P,(RY) is the space of
probability measures with a finite pth order, equipped with the Wasserstein distance. Moreover, (y,), is a vanishing sequence of
deterministic positive step sizes, ((§;");epu)ken and (§;")ig(n)ken+ are R9*"-valued random noise sequences in the time parameter k.

We assume that for each n, the n-uple (X", ..., X, o) is exchangeable. We also assume the exchangeability of the n-uple of sequences
((Si’")keN*, vy (€ ken+) and ((C,:‘")keN*, -5 (& kene)- Defining, for each n > 0, the filtration (F}!)ey as:
T’l:’ 1= o((X(i)’n)ie[,,], ((f;;")ie[n])fgk’ (((;n)ie[n])fgk), @)
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we assume that for each n, the sequence ((5;{”’),.6["]),( isa (T’;’)k-martingale increment sequence i.e., E(é,’:’rl
that

|7} =0. Finally, we assume

B G170 = o o X" 1) ey

for some ¢ : R? x P,(R?) > R, with d’ > 0.

The aim of the paper is to characterize the asymptotic behavior of the empirical measure of the particles y; in the regime where
both the time index k and the number of particles » tend to infinity (denoted hereinafter as (k,n) — (o0, 0)), without any constraint
on the relative rates of convergence of these two parameters. To this end, we consider for each i € [n] the random continuous
process X" : [0,00) = RY,t > X f"’ defined as the piecewise linear interpolation of the particles (X ,i’")k. Specifically, writing

k
%= @
j=1

for each k € N, we define:

_ . - Ty . .

Vi€ lne ), X=X (X,gi1 - x;") . (5)
k+1

The interpolated processes X*", for i € [n], are elements of the set C of the [0,0) — R? continuous functions, equipped with the

topology of uniform convergence on compact intervals. This paper studies the empirical measure of these processes:

n
1
m' = Y S - (6)
i=1

For each n and each p € [1,2], m" is a random variable on the space P,(C) of probability measures on C with a finite p-moment,
equipped with the p-Wasserstein metric W, (precise definitions of these notions provided below). Our aim is to analyze the
convergence in probability, of the shifted random measures

n
1
&b (m") =~ Sgin
(m") P ; X

when both » and ¢ converge to infinity with arbitrary relative rates, where for every m € P,(C), @,(m) € P,(C) is defined by
@,(m)(f) = [ f(x(t + -)dm(x) for every bounded continuous function f on C. Under mild assumptions on the vector field b, and
some moment assumptions on the iterates and on the noise sequence (({,‘;’"),-E[,,J)k, ensuring that the effect of the latter becomes
negligible in our asymptotic regime, we establish the following result, which we explain hereafter.
Main theorem (informal). The sequence (&,(m")) ergodically converges in probability as (1,n) — (o0, ) to the set of recurrent
McKean-Vlasov distributions.

Let us explain what the terms McKean—Vlasov distribution, recurrent, and ergodic convergence mean in this paper. Here, a McKean—
Vlasov distribution p is defined as the law of a R¥-valued process (X, : ¢ € R) satisfying the following condition: for every smooth
enough compactly supported function ¢, the process

t
¢(Xz)_/ Lp)(@)(X)ds
0
is a martingale, where p, the marginal law of X,, and where the linear operator L(p,) associates to ¢ the function L(p,)(¢) given by:

x = (b(x, p,), V(x)) + tr(o(x, p)! Hy(X)o(x, p,)),

where H, is the Hessian matrix of ¢ and tr denotes the Trace operator.

A McKean-Vlasov distribution p is said recurrent if, for some sequence (¢,) - o, p = lim;_,, @, (). The Wp-closure of the set
of recurrent McKean-Vlasov distributions will be referred to as the Birkhoff center, and denoted by BC,, following the terminology
used for general dynamical systems.

By ergodic convergence, we refer to the fact that the time averaged Wasserstein distance between the measures @,(m") and the
Birkhoff center converges to zero. Our main theorem can thus be written more precisely:

t
1 / W, (@, (m"),BC,)ds——— 0, in probability.
t Jo ; (t,n)—(00,00)
The Birkhoff center can be characterized in a useful way, provided that one is able to show the existence of a Lyapunov function,
namely a function F on P,(C) such that, for every McKean-Vlasov distribution p, F(®,(p)) is non-increasing in the variable . Indeed,
in such a situation, the Birkhoff center is included in the subset A of McKean-Vlasov distributions which satisfy the property that
t — F(®,(p)) is constant whenever p € A.
Finally, in the case where the McKean-Vlasov dynamics can be cast in the form of a gradient flow in the space of measures
PP(R“ ), and in case this gradient flow has a global attractor A,, we show that
W, (1. A,) ETE . 0 in probability.
To illustrate our results, we provide an important example of a McKean-Vlasov distribution where these results can be applied:
the granular media equation. Additionally, our results can also be applied in several machine learning applications, such as two-layer
neural networks or the Stein Variational Gradient Descent (SVGD) algorithm.
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Granular media. Our example is in P,(C) and corresponds to the scenario where o(x, u) = 61, for some real constant ¢ > 0, and
with a slight abuse of notation the vector field b takes the form b(x, ) = [ b(x, y)d u(y), with:

b(x,y) = =VV(x) = VU(x - y),

where the confinement potential V and the interaction potential U denote two real differentiable functions on R?, whose gradients
satisfy some linear growth condition. In this case, a Lyapunov function if provided by the Helmholtz energy. As a consequence of our
main result, we establish that, when ¢ > 0, the empirical measures (uy) converge ergodically in probability as (k,n) — (oo, ) to the
set S of critical points of the Helmholtz energy, namely:

k
21:1 }'IVVZ(ﬂ["’ 5)
Zf—l 7 (n,k)—(00,00)

0, in probability.

where, this time, W, represents the classical Wasserstein distance, and where S is the set of probability measures x on RY which
admit a second order moment and a density du/d.%? w.r.t. the Lebesgue measure, and such that:

du
dz

for p-almost every x. Our result holds under mild assumptions, and does not require the rather classical strong convexity or doubling
conditions on U and/or V.

Contributions. Compared to existing works, our contributions are threefold. First, our results hold under mild assumptions
on the vector field » aside from continuity and linear growth, whereas most of the existing works (see below) rely on stronger
conditions, such as Lipschitz, doubling or even global boundedness conditions. Second, we address the case of discrete-time systems
with a step size vanishing arbitrarily slowly towards 0, whereas the continuous time model is more often considered in the literature.
Discrete-time algorithms are important in applications, such as neural networks, transformers, Monte Carlo simulations or numerical
solvers. In particular, stability results are more difficult to establish in this setting. Finally, our result focuses on a double limit
(k,n) — (00, 0). At the exception of some papers listed below, the results of the same kind generally consider the case, where the
time window is fixed, while the number of particles grows to infinity, ignoring long time convergence, or assume certain constraints
on the relative rate of convergence of the two variables.

About the literature. The first results addressing the limiting behavior of a finite system of particles are provided in the context
of the propagation of chaos. These findings are discussed in detail in [1]. Such results have broad applicability across a variety of
particle systems, where the interacting term b can manifest in various forms [2-5]. In our case, if we set aside the transition from
continuous to discrete time, such results typically establish the convergence to zero of the expectation of the squared Wasserstein
distance between the empirical measure of the particles, over some fixed time interval [0, T], and a McKean-Vlasov distribution with
the same initial measure. Under classical assumptions, this convergence occurs at a rate of 1/n, where n is the number of particles,
but with a constant that grows exponentially with T. This type of result performs poorly in the long run, making the achievement
of the double limit in both time and the number of particles unattainable.

By imposing additional assumptions, one can derive a bound that is uniform in time, thereby explicitly addressing the double
asymptotic regime. However, these uniform-in-time propagation of chaos results are typically established in continuous time. The
paper [6] bridges the gap between continuous and discrete time in the specific context where uniform-in-time propagation of chaos
holds for the continuous-time particle system, allowing for the recovery of our results. They demonstrate that the limiting distribution
of the discrete-time particle system coincides with that of the continuous-time particle system. When uniform-in-time propagation
of chaos holds, the limiting distributions of the continuous-time particle system converge to the unique stationary distribution of
the associated McKean-Vlasov system as time grows. This, in turn, implies the convergence of the discrete-time particle system to
the McKean-Vlasov stationary distribution in the doubly asymptotic regime. However, it should be noted that when applying the
results of [6], we lose the convergence rate provided by uniform-in-time propagation of chaos, and the resulting result is no better
than ours in the restrictive case where it is applicable.

Our contribution lies in the fact that our assumptions are weaker than those requiring uniform-in-time propagation of chaos,
which are generally too strong for practical applications. Specifically, the first paper to address uniform-in-time propagation of
chaos in the granular media setting is [7], which requires the strong convexity of the confinement potential and the convexity of
the interaction potential. Later, [8] relaxed the strong convexity assumption on the confinement potential. [9] proposed a uniform-
in-time propagation of chaos result when the confinement potential is strongly convex outside a ball, and the interaction potential
has a sufficiently small Lipschitz constant. More recently, [10-12] provide sharp uniform-in-time propagation of chaos results under
a Log-Sobolev inequality on the vector field » and a noise with variance large enough.

As highlighted in [13], achieving uniform propagation of chaos over time is only possible when a unique McKean-Vlasov
stationary distribution exists. A condition that [14] has demonstrated is not always met. In this regard, our assumptions are
weaker, allowing for the existence of multiple stationary distributions. It is noteworthy that the study of McKean-Vlasov stationary
distributions in cases where the uniqueness of such distributions does not hold remains an open area of research. For instance, [15]
explores the stability of stationary distributions. Additionally, [16] explores a general class of non-linear Markov processes in
finite-dimensional space and proposes a method to obtain Lyapunov functions for these processes.

Among papers that address the long-run convergence of discrete-time particle systems, [17] employs an implicit Euler scheme
for the granular media case, assuming a zero potential function and strongly convex interaction. The work in [18] studies a Jordan-
Kinderlehrer-Otto (JKO) scheme for granular media, assuming a strongly convex confinement potential. The contribution of [19] is

VV(x)+ / VU(x - y)du(y) + o2V log (x)=0,
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the closest to the present work, considering an equation similar to Eq. (1), but assumes that b is globally bounded and only addresses
the convergence of the expectation of the empirical measure, not convergence in probability. Lastly, [20] is closely related but
not specific to McKean-Vlasov processes, as it does not consider particle systems or double limits. However, it establishes ergodic
convergence of the empirical measure of a weak asymptotic pseudotrajectory to the Birkhoff center of a flow on a metric space,
similar in spirit to our approach.

Finally, let us review some applications of our model. Particle systems have historically been motivated by statistical physics.
However, in recent decades, they have found utility in various models including neural networks, Markov Chain Monte Carlo theory,
mathematical biology, and mean fields game, among others. A well-known model in statistical physics is granular media [21]. This
model has been extensively studied due to its property of being a gradient system, and the uniform propagation of chaos over time
works well within this model. It can also be described by a gradient flow [22]. In Markov Chain Monte Carlo theory, the Stein
Variational Gradient Descent estimates a target distribution using a particle system [23,24], and the convergence of this algorithm
remains an open question. Wide Neural Networks can also be represented by particle systems. A convergence result to the minimizers
of the risk is attainable when both time and the number of particles tend to infinity [25]. Here, the authors establish convergence
to gradient descent in continuous time and in the double asymptotic regime. The paper [26] establishes the convergence of noisy
stochastic gradient descent when the number of iterations depends on the number of particles. See also [27-31] for related works.

2. The setting
We begin by introducing some notations and by recalling some definitions.
2.1. Notations

2.1.1. General notations

We denote by (-,-) and || - || the inner product and the corresponding norm in a Euclidean space. We use the same notation in
an infinite dimensional space, to denote the standard dual pairing and the operator norm.

For k € NU {0}, we denote by C¥(R?, RY) the set of functions which are continuously differentiable up to the order k. We denote
by C.(RY,R) the set of R — R continuous functions with compact support. Given p € N* U {0}, we denote as C’(R,R) the set of
compactly supported R? — R functions which are continuously differentiable up to the order p.

We denote by C the set of the [0, ) — R? continuous functions. It is well-known that the space C endowed with the topology
of the uniform convergence on the compact intervals of [0, o) is a Polish space.

We denote by conv(A) the convex hull of a set A.

2.1.2. Random variables
The notation f,u stands for the pushforward of the measure u by the map f, that is, fuu = pof~'.
For ¢ > 0, we define the projections z, and 7y as 7, : (R)I* - R4, x — x, and x4 : RO — RO x 5 (x, @ u € [0,1]).
Let p > 1. For p € P,(C), we denote

Py 1= ()yp.-

Let (2, F,P) be a probability space. We say that a collection A of random variables on Q — E is tight in E, if the family
{X4P : X € A} is weakx-relatively compact in P(E) i.e., has a weakx compact closure in P(E).

We say that a n-uple of random variables (X1, ..., X,) is exchangeable, if its distribution is invariant by any permutation on [n].

Let T represent either N or [0, +o0). Let (U : 1 € T,n € N) be a collection of random variables on a metric space (E,d). We say
that (U;") converges in probability to U as (t,n) — (co0, o) if, for every e > 0, the net (P(d(U',U) > ¢) : t € T,n € N) converges to

zero as t and n both converge to co. We denote this by U’ U. When (U;") is deterministic, we write U)! ——— U

(t,n)—(00,00) (t,n)—(00,00)
Moreover, assuming that the collection of random variables (U : t € T,n € N) are real valued, we say that the latter collection is

uniformly integrable if:
] —0.
>a

lim  sup IE[|U,"|IL

A= 4T neN* uf
We define limsup U/ := inf sup U¥. Finally, for any d € N*, £ stands for the Lebesgue measure on R9.
(t.)—(c0,00) 1€TnENs> 1 k>n -

2.2. Spaces of probability measures

Let (E,d) denote a Polish space. If A C E is a subset, we define d(x, A) := inf{d(x,y) : y € A}, with inf § = co. We say that a net
(u,) converges to A if d(x,,.A4) -, 0.

We denote by P(FE) the set of probability measures on the Borel c-algebra B(E). We equip P(E) with the weakx topology. Note
that P(E) is a Polish space. We denote by d; the Levy—Prokhorov distance on P(E), which is compatible with the weakx topology.
We define the intensity of a random variable p : 2 — P(E), as the measure I(p) € P(E) that satisfies

VAeF, I(p)(A) :=E(p(4).
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Lemma 1 ([2]). A sequence (p") of random variables on P(E) is tight if and only if the sequence (I(p")) is weakx-relatively compact.

Let p > 1. If E is a Banach space, we define
PAE)i= w € P(E) ¢ [ InlPduto < o).

We define the Wasserstein distance of order p on P,(E) by

1/p
. ; — P
Wyu,v) : <§€g1£m/ [lx = ¥l dg(x,y)> ) 7)

where IT(u,v) is the set of measures ¢ € P(E X E), such that ¢(- x E) = y and ¢(E X -) = v. We denote by 173(;4, v) the set of optimal
transport plans Le., the set of measures ¢ € I1(u,v) achieving the infimum in Eq. (7). The set P,(E) is endowed with the distance
W,. Define:

»

P,C): = (pEP(C) : VT > 0,/ sup |Ix,IPdp(x) < o} .
t€[0,T]

For every p,p’ € P,(C), we define:

Wp(p, p,)l = Z 27" A VV[,((ﬂ'[oynJ)#ﬂa (”[O,n])#/’,)) .

n=1
We equip 7,(C) with the distance W,. We say that a subset A C P,(C) has uniformly integrable p-moments if the following condition
holds:

VT >0, lim sup / 1 sup ||x||>a < sup ”xt“p> dp(x)=0. (p-UD
1€[0.T]

A= peq 1€[0,T]

In the same way, a sequence (p") has uniformly integrable p-moments if the condition (p-UI) holds for the sequence (p") in place
of A. Following the same lines as [32, Th. 6.18] and [22, Prop. 7.1.5], we obtain the following lemma. The proof is provided
in Appendix A.1.

Proposition 1.

(i) The space P,(C) is Polish.
(i) A subset A C P,(C) is relatively compact if and only if, it is weak-relatively compact in P(C), and if A has uniformly integrable
p-moments.

Finally, we will also consider P,(C)-valued sequences of random variables. Therefore, the following extension of Lemma 1, will
be useful. It is established in Appendix A.2.

Lemma 2. Let (p") be a sequence of random variables valued in P,(C). Assume that (I(p")) is relatively compact in P,(C). Then, (p") is
tight in P,(C).

2.3. Spaces of McKean—Vlasov measures

Let d’ € N*. Consider a matrix-valued function ¢ : RY x P,(RY) — R¥*4" and a vector field b : RY x P,(RY) — RY satisfying the
following assumptions:

Assumption 1. The vector field b : RY x P,(R?) - R, and o : R? x P,(RY) — R* " are continuous. Moreover, there exists C > 0
such that for all (x, u) € R X P,(RY),

b, ll < CC1+ 1xl + / Iyllduty)),

and [lo(x, |l < C.

We define L(u) which, to every test function ¢ € CCZ(Rd,IR{), associates the function L(u)(¢) given by

L(u)(@)(x) = (b(x. w), V() + tr (oCx, )| Hy(x)o(x, ) ®)

where H, is the hessian matrix of ¢. Let (X, : r € [0,0)) be the canonical process on C. Denote by (P[X),ZO the natural filtration
(i.e., the filtration generated by {X, : 0 < s <1}).

Definition 1. Let p > 1. We say that a measure p € P,(C) belongs to the class V, if, for every ¢ € Cf(Rd,]R),

dX,) = /0 L(p)()(X;)ds

isa (F,X )»p-martingale on the probability space (C, B(C), p).
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The elements of V, will be referred to as McKean-Vlasov distributions of order p. In the sequel, it will be convenient to work
with the following equivalent characterization. The martingale property implies that every measure p € V,, satisfies G(p) = 0, for
every function G : P,(C) - R of the form:

t r
G(p) := / (d’(x,) = plxy) — / L(Pu)((i))(xu)dll) H hj(xu/)dp(x)’ @
s j=1

where r €N, ¢ € C2R?,R), hy,....h, € C,R?,RY, 0 < vy < - <v, <5 <1, are arbitrary. We denote by G, the set of such mappings
G. Assumption 1 ensures that these mappings are well defined. By Definition 1, every p € V, is a root of all G € G,. As a matter of
fact, a measure p € P,(C) belongs to the set V,, if and only if G(p) = 0 for every G of the form (9). In other words, Definition 1 is
equivalent to the following identity:

v,= ) ¢ 'doy. (10)

Geg,

The following lemma is proved in Appendix A.3.

Lemma 3. Let Assumption 1 hold true. Every G € G, is a continuous function on P,(C) — R.

The following result is a consequence of Lemma 3 and Proposition 1.

Proposition 2. Under Assumption 1, V,, is a closed subset of P,(C). Moreover, equipped with the trace topology of P,(C), V,, is a Polish
space.

Proof. For all p" € V, = p in P,(0), it holds by Lemma 3 that G(p*) = 0 for all G € G,, which shows that p® € A by (10). Hence,
V, is closed. A closed subset of a Polish space is also Polish. By Proposition 1, V,, is Polish. []

2.4. Dynamical systems

Recall the definition of the shift ©,(x) = x,,. defined on C. Let us equip the space V, assumed nonempty with the trace topology
of P,(C), making it a Polish space (see Proposition 2). With this at hand, one can readily check that the function @ : [0, )XV, =V,
defined as (1, p) = @,(p) = (6,)4p is a semi-flow on the space (V,,W,), in the sense that @ is continuous, @(-) coincides with the
identity, and @, ,; = @,0®, for all 1,5 > 0, see [33] for an exposition of the concepts related to semi-flows. The omega limit set of
p €V, for this semi-flow is the set w(p) defined by:

w(p) := (@) : s>1].

>0

Equivalently, o(p) is the set of W ,-limits of sequences of the form (@,,(p) where 7, — co. A point p € V, is called recurrent if
p € o(p). The Birkhoff center BC,, is defined as the closure of the set of recurrent points:

BC, ={peV, : pEw(p)}.

By extension, given a measure y € Pp(Rd ), we say that u is a recurrent marginal McKean—Vlasov measure if there exists a recurrent
measure p € V,, such that p, = u. We denote by BCS the closure of recurrent marginal McKean-Vlasov measures, that is,

BC,=1{p : PEV, pE(p)]}, an

or in short, BC) = (m)4(BC,).

Definition 2. Consider the semi-flow @ and a non-empty set A C V,. A lower semi-continuous function F : V, — R is called a
Lyapunov function for the set A if, for every p € V, and every ¢ > 0, F(®,(p)) < F(p), and F(®,(p)) < F(p) whenever p ¢ A.

The following result is standard.
Proposition 3. Let p > 0. If F is a Lyapunov function for the set A, then BC, C A.

Proof. The limit # := lim,_,, F(®,(p)) is well-defined because F(®,(p)) is non increasing. Consider a recurrent point p € V,, say
p = lim, @, (p). Clearly F(p) > F(@, (p)) > ¢. Moreover, by lower semicontinuity of F, ¢ = lim, F(®, (p)) > F(p). Therefore, £
is finite, and F(p) = ¢. This implies that ¢ —» F(®,(p)) is constant. By definition, this in turn implies p € A, which concludes the
proof. []
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3. Main results
3.1. Interpolated process and weakx limits

Let (£2,F,P) be a probability space. Let d > 0 be an integer. For each n € N*, consider the random sequence (1) starting with
the n-uple (X!, ... ,Xg’") of random variables Xé’" e R4, with ((ék")ie[n])keN* and ((C,i’")ie[n])keN* being R¥*"-valued random noise
sequences. For each of integer n > 0, define the filtration (F}');en as in Eq. (3) or, more generally, as any filtration such that the
following random variables

Xg et (€ iem)e <k (€ ieime<k

belong to 7}'. Consider the following assumptions:

Assumption 2. The sequence (y,) is a non-negative deterministic sequence satisfying

klggo 7e =0, and Zk: Yk = +c0.
. el . 1xn )
Recall the definition p := - Y6 Xin-

Assumption 3. The following holds true.

(i) For each n, ((X(i,’", (C,i'")keN’ (f,ig")keN))iE[,,] is exchangeable as a n-uple of R? x (RY)N x (R?)N-valued random variables.
(ii) It holds that sup; , ]Ellé,i’"“4 < c0. Moreover, for each n > 0, and each i, j,

1, _
5 [skcl rz] ~o

. . T . .
e (efn) 17| = oui o e

(iii) For each k, and each n, E||§,i’"|| < o0, and

A

(k. n)~(oo ) ‘
Remark 1. Assumption 3-(i) hglds under the stronger assumption that the n-uple (X(i)‘"),vem is exchangeable, (5;;‘”),.5[,,],,@“ is an
i.i.d. sequence independent of (X "), and ¢ " =0 for every .

Define k(1) = [ [Ix[1*d u(x).

Assumption 4. The following conditions hold:

(i) sup, EllX,"|> < oo and sup, EI¢"|1? < oo,
(ii) There exist ¢,C > 0, such that for all 4 € P,(R?),

/(x, b(x, u)yd u(x) < —cxy(u) + C. (12)

Assumption 4°. In addition to Assumption 4, the following hold:

(i) sup, E[[X,"|I* < oo and sup; , E[I¢,"[I* < oo,
(ii) There exists constants ¢,C > 0 such that for all u € P,(R%),

/(X’ b(x, i)Y lIxII*du(x) < —exy(u) + C (14 k(1)) (1 + \/K4(M)) , (13)
Section 4 includes an example for which Assumptions 4 and 4’ are satisfied.

Remark 2. Assumption 4 can be replaced by the milder condition that sup, , E||X ,1’" IZ+El¢ li’" I> < co. Similarly, Assumption 4’ can
be replaced by the condition that (||X f "*)e.» and ek f "2 )i.n are uniformly integrable. The results of this paper hold under these
milder, but less easily verifiable assumptions.

Recalling the definitions of the interpolated processes X*" in (5), and the definition of the occupation measure m" in (6), we
shall consider the shifted occupation measure

n
1
O (m") =~ > o,z »
i=1
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for each n € N* and each € (0, +0). Note that @,(m") is a r.v. on P,(C). We refer to the set

acc  ({(®,(m")4P}) 14)

B (t,n)—(co,00)

as the set of weakx accumulation points of the probability distributions of @,(m") as (¢, n) — (o0, o). In other words, M is the set of
measures M € P(P,(C)) for which there is a sequence (7,, ¢,), on (0, c0) x N*, such that ¢, —», 0, ¢, -, 0, and (@, (m?n)) converges
in distribution to M.

We now state the main results of this paragraph. Proposition 4 shows that the set M is non-empty. Proposition 5 shows that any
M € M is supported by the set of McKean-Vlasov distributions.

Proposition 4. Let 1 < p < 2. Let Assumptions 1-4 hold. Then,

supE[|X,"||* < oo
k.,n

Moreover, for any j € N*, the family of measures {(@,(m"))yP : t > 0,n € N*} is relatively compact in P(P,(C)).
If Assumption 4’ holds, the conclusion is still valid for p = 2, and, moreover, sup, , E|| X i’"ll“ < o0.

Proof. See Section 5.1. []

Proposition 5. Let | < p < 2. Under Assumptions 1-4, V , is a non-empty closed set. Moreover, M(V,) = 1 for every M € M. If
Assumption 4’ holds, the conclusion is still valid for p = 2.

Proof. See Section 5.2. []
3.2. Ergodic convergence

We provide the proof of the following theorem in Section 5.3.
Theorem 1. Let 1 < p < 2. Under Assumptions 1-4, BC, is non-empty.

1/ P
- /O Wp(cbs(m"),BCp)ds(—> 0,

t,n)—(c0,00)

If Assumption 4’ holds, the statement is still valid for p = 2.

Corollary 1. Let 1 < p < 2. Under Assumptions 1-4,

k
Z[=1 7’1%(/4["» BCS) P
Zf—[ 7 (k,n)—(00,00)

The same statement holds if W,(-, -) is replaced by W,(-, -)?. Finally, if Assumption 4" holds, the conclusion is still valid for p = 2.

Proof. The proof is provided in Section 5.4. []

Remark 3. The fact that the Birkhoff center BC, is non empty follows from the combination of Lemmas 7 and 9. Specifically,
Lemma 7 establishes the existence of measures, which, by Lemma 9, can only be supported by BC,.

Remark 4. In simple cases, BC, is reduced to a singleton, which corresponds to the unique stationary McKean-Vlasov distribution.
For instance, this happens under sufficient but strong assumptions on b and o, which ensure a uniform-in-time propagation of
chaos [1,7,9]. We refer to Section 4 for a discussion.

Besides this case, the McKean-Vlasov process potentially admits multiple stationary measures. In such a case, BC, contains
multiple points. This scenario is common, and interesting regarding practical applications. A first example can be found in [13,14],
in the context of the Granular media equation, see also Remark 6. A second example is encountered in the case of consensus based
optimization methods [34,35], where, under the assumption of a constant noise intensity o, the limiting McKean-Vlasov process
potentially admits several stationary measures. A third example, in the case ¢ = 0, is given by Stein Variational Gradient Descent
(SVGD) algorithm [36].

Finally, let us review some consequences regarding linear functionals. Denote by Lip; the set of Lipschitz continuous functions
on RY — R, whose Lipschitz constant is no larger than L > 0. Define:

Bcg(f) = {/fdy : MGBCL?} )
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Corollary 2. Let 1< p <2, and let Assumptions 1-4 hold true. Then, for every L >0
ietmer 1S X
n Zle[k] i

The conclusion remains valid for p = 2 under Assumption 4’.

sup d
SeLipy,

,conv<B02(f)))

(k,n)—(co,00)

Proof. See Section 5.5. []
3.3. The case of a unique recurrent point
In this subsection, we will present additional results in the special case where the following assumption holds.

Assumption 5. There exists p* € P,(C) such that BC, C {p*}.

We observe that, under Assumptions 1-4, BC, is non-empty (see Theorem 1). Consequently, under Assumptions 1-5, we have
BC, = (5"}. ,
Let n € N* and j < n. One may consider the law of the family of random variables (X [1"’, ¢ zj ™
jon . 1, i, 1, s
= (X" X)) P =P, X e ).

For instance, I ll"’ is the law of the particle X Il‘", which is equal to the law of X 1"’" for any i, due to the exchangeability.

Corollary 3. Under Assumptions 1-5, we obtain for every j € N

Yreik) Vpr(I;’nv (/’8)@)

i 1e (km)=>(c0,00)

(15)
where W, denotes the Wasserstein distance of order p on P,(R?)), and (p3)®/ is the j-fold tensor product of p}.

Proof. See Section 5.6. []

Eq. (15) can be interpreted as a propagation of chaos result in the long run. This should be compared to standard propagation
of chaos results, which are usually stated over a finite time interval [1].

Following [37,38], let us introduce the notion of essential accumulation set. We say that a measure y € Pp(Rd ) is an essential
accumulation point of (I ;’")kﬁn, if for every neighborhood U of u,

1,n
Yre Yelvd,™)
lim sup i L e N
(km—~(o000)  eri Ve

This can be interpreted as follows. An essential accumulation point x is an accumulation point, with the property that the particle
distribution I ,1’" =P(X ,1"" € -) spends substantial time in the neighborhood of u.

Corollary 4. Under Assumptions 1-5, p7 is the unique essential accumulation point of (I ,i’")k’,,.

Proof. See Section 5.7. [

In other terms, as (k,n) tend to infinity, the law P(X ,i‘" € -) spends most of its time in the neighborhood of p;.
3.4. Pointwise convergence to a global attractor

Depending on the vector field b, it is often the case that each measure p € V, is uniquely determined by its value p, = (7y)yp €
P,(RY) in the sense that there exists a semi-flow ¥ : [0,00) X P,(RY) — P,(RY), (¢,v) ~ ¥,(v), defined on [0, c0) x P,(R?), and such
that

pPE Vp SVt 20,p, =¥(py) (16)

We shall say that in this situation, the class V, has a semi-flow structure on PP(R" ).

The granular media model detailed in Section 4 below is a typical example where such a situation occurs.

In this section, we are interested in the behavior of the measures uy, as (k,n) - (oo, 00), termed the “pointwise” convergence of
these measures, when the semi-flow ¥ has a global attractor. We recall here that a set A, C Pp(Rd ) is said invariant for the semi-flow
Y if (A, = A, for all > 0; A nonempty compact invariant set A, C Pp(Rd ) is a global attractor for the semi-flow ¥ if

Yv € P,(RY), lim W,(#,(v). 4,) =0,
and furthermore, if there exists a neighborhood A of 4, in Pp(Rd ) such that this convergence is uniform on N'. Such a neighborhood

is called a fundamental neighborhood of 4,.
The following result is proven in Section 5.8.
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Theorem 2. Let p € [1,2], and let Assumption 1, 2, and 3 hold true. Let Assumption 4 or the stronger Assumption 4’ hold true according
to whether p < 2 or p = 2 respectively. Assume in addition that the V, has a semi-flow structure on P,(R?) as specified in (16), and that
this semi-flow ¥ admits a global attractor A,. Then,
P
W, (1 Ap)

_—

(k,n)—(c0,00)

Remark 5. A typical scenario where the set A, exists and contains a single element is provided in Remark 6.
4. Granular media

The proofs of the results relative to this section are provided in Section 6.
In this paragraph, we review some properties of the set V, of McKean-Vlasov processes, in the case where o(x,u) = 61, for
some real constant ¢ > 0 and with a slight abuse of notation b(x, u) = / b(x, y)d u(y), with:

b(x,y) :==-VV(x)—VU(x -Yy), 17)

where V,U : R?Y - R are two functions satisfying the following assumption.

Assumption 6 (Granular Media). The functions V,U belong to C!(R?, R). Moreover, there exists 4,C,§ > 0, such that for every
x,y € R%, the following holds:

@ (x, VV(0) = Allx|I* - C,
(i) U(x) = U(~x), and (x, VU(x)) > —C,
@il [VV Ol + VU < A + lIxID,
(V) IVV ) = VYOIl + VU ) = VU < C(llx = ylIP v [lx = ylD.

Under Assumption 6, the vector field b ans ¢ satisfies Assumption 1. We will see later, as a byproduct of Theorem 3, that the set V,
of McKean-Vlasov distributions associated to the field 5 in Eq. (17), is non empty. We say u < £ if u € P,(R) admits continuously
differentiable density w.r.t. the Lebesgue measure .#¢, which we denote by du/d.#?. Define the functional 52 : P,(RY) — (—c0, 0]
as (u) = F(u) + V(u) + % () with

F(y) = { /6210g(d2§1,(x)) dux) if py< 24
&)

otherwise,

“//(M)=/V(x)d/4(X), and %)= %//U(x—y)d/d(x)du(y).

The following central result provides a central properties of the elements of V,.

Proposition 6. Let Assumption 6 hold true, and let b be defined by (17). Assume o > 0. Consider p € V,. Then, for every t > 0, p, admits
a density x ~ o(t,x) in C'(R?,R) w.r.t. the Lebesgue measure. For every t > 0, the functional t — J#(p,) is finite, and satisfies for every
th, >t >0,
5]
Ao =0 == [ [ oot xaxar. as)
31

where v, is the vector field defined for every x € R? by:

v,(x) :==-VV(x)— / VU (x - y)dp,(y) — 62V logo(t,x). 19

Define 7} (R?) as the set of measures u € P,(R?) such that y < .#?. Define:

S:i={pueP®RY) : V¥ +/VU(- — »du(y) + 62V log di’;d =0pu-ae.}. (20)
Finally, for every ¢ > 0, define:
A, i={p€V, : IueS, Vt>e, p =pu}. (21)

Proposition 7. We posit the assumptions of Proposition 6. For every ¢ > 0, the function p — 5 (p,) is real valued on V,, lower
semicontinuous, and is a Lyapunov function for the set A,. Moreover,

BC, C 4.
We also need to consider a setting where V, has a semi-flow structure on PZ(]Rd ) as in (16) in order to set the stage for the
pointwise convergence of the measures y; issued from our discrete algorithm. To that end, we shall appeal to the theory of the

gradient flows in the space of probability measures as detailed in the treatise [22] of Ambrosio, Gigli and Savaré. The following
additional assumption will be needed:

10
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Assumption 7. The functions U and V satisfy the doubling condition. Namely, there exists constants Cy;, C,, > 0 such that

Ux+y)<Cy(1+Ux)+U®l) and Vx+y)<Cy1+Vx+V(y).

Proposition 8. Let Assumption 6 hold true with g = 1, and let Assumption 7 hold true. Then, for each p € V,, the curve t — p, belongs to
the set of absolutely continuous functions AClzo ((0, 00), P,(R%)) as defined in [22, Sec. 8.3], and is completely determined by p, € P,(R?)
as being the gradient flow of the functional /¢ in P,(RY). Thus, V, has a semi-flow structure, and we write p, = ¥,(p,).

For completeness, we recall along [22, Chap. 8 and 11] that ¢ ~ p, being the solution of the gradient flow of ./ in P,(R9) stands
to the existence of a Borel vector field w, : R? - R? such that w, belongs to the tangent bundle Tan, P,(R?) for .#’!-almost all

1> 0, llwll 2, € LfOC(O, ), the continuity equation 9,p, + V - (p,w,) =0 holds in general in the sense of distributions, and finally,

w, € -0 (p,) for £!-almost each t > 0, where 3.7 is the Fréchet sub-differential as defined in [22, Chap. 10], which always exists
under our assumptions. Actually, w, = v, as given by Eq. (19) for almost all 7.
We now turn to our discrete algorithm. Consider the iterations:

X=X - —’:’1 Y VUK = X2 = pea VV X + V21018 (22)

JEIn]
for each i € [n]. This is a special case of Eq. (1) with b(x, y) given by Eq. (17) and ¢ ,’:" = 0 for all k. For simplicity, Assumption 3
will be replaced by the following stronger assumption:
Assumption 8. We assume that the n-tuple (X S"’, . ¢ 6"”) is exchangeable and sup, E(|| X é"’ll“) < oo. Moreover, (f;{”’)ie[,,]’keN are
i.i.d. centered random variables, with variance 621, and such that E( ||§11’1 I < 0.

The next proposition implies that Assumption 4’ holds.

Proposition 9. Let Assumption 2, 6 and 8 be satisfied. Then, Eq. (12) and (13) hold.

Putting Assumption 2, 6 and 8 together, the hypotheses of Theorem 1 are satisfied for p = 2.

Theorem 3. Let Assumption 2, 6 and 8 be satisfied. Assume ¢ > 0. Then, the set S given by Eq. (20) is non empty, and furthermore,

k
21=1 }’I%(M;lvs) P
Zf—] 7 (k,n)—(00,00)

Proof. Use Corollary 1 with p =2, together with Proposition 7. []

We now turn to the pointwise convergence of the measures u;.

Theorem 4. Let Assumption 6 hold true with f = 1, and let Assumption 7 hold true. Assume that the semi-flow ¥ which existence is stated
by Proposition 8 has a global attractor A,. In the case where A, is a singleton, it holds that S = A,. In any case,

P
W, (MZsAz)

(k,n)—(00,00)

Remark 6. Many authors have been interested in the long-time convergence of granular media equations under hypotheses ensuring
the uniqueness of the stationary distribution [8,39-42]. The most obvious case where such a situation arises, is the case where the
functions U and V are both strongly convex.; Then, there exists A > 0 such that W,(¥,(v), ¥,(V")) < e *W,(v,V') [22, Th. 11.2.1].
Here, Theorem 4 applies, with A, being reduced to the unique stationary measure.

On the other hand, the coexistence of multiple stationary measures typically corresponds to the case of metastable behaviors,
where the Helmholtz energy admits several critical points. For instance, this situation arises in the case of a multi-well potential with
low noise intensity [14,43]. Although it can be challenging to characterize such phase transition phenomena, our work supports the
assertion that a numerical system with » particles provides an estimate, in the sense that the n-system inherits the same asymptotic
behavior as its mean-field approximation.

5. Proofs of Section 3
5.1. Proof of Proposition 4

In this paragraph, consider 1 < p < 2. We recall that, when p < 2, Assumption 4 holds and Assumption 4’ holds when p = 2.
First, we need the following lemma.

Lemma 4.
Let Assumption 4 with Assumption 1, 2, and 3 hold true, it holds that sup, , E|| X ,i’"llz < oo. Furthermore, when Assumption 4’ holds,

we have SUPk,nE||X,1’"||4 < oo.

11
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Proof. First, we will show the first point of the lemma. We recall the iteration
X = X by DX ) + 1+ e €

In this proof, we denote by C > 0 a generic constant that is sufficiently large, and by ¢ > 0 a generic constant that is sufficiently

small. We take k large enough such that y, + ylf < Cy; and —cy, + y]f < —cyy. For simplicity, we remove the superscript ” from X Ii"’,
Hy» &, and &". Moreover, we remove the subscript ;,; from y.,;.

By Assumption 1, for i € [n], we obtain

1, 17 = X1

= 7(Xp X 1)) + V20X 6L D) +r(XLL L)

+ llyb(X G ) + V2 + 18I (23)
SY(X DXL 1)) + V2 (XL &L D)+ (XL 6L )+

672 IXL 17 + 67 / xPd e ) + 6711EL, 1P+ 3771, 1

Summing the latter with respect to i, with Eq. (12), we obtain

é( / el d s () / ||x||2duk<x>>

Y o o
< y/(x, b(x, uy))d iy (x) + % Yxie )+ % XL
i€[n] i€[n]

1 i i
#7 [P+ L3 (e, 1P+ 20 0) o4

i€[n]

\/77 i i Y i g
<-or [P0+ 5P o)+ Y el

i€[n] i€[n]

1 . .
+7 / P dpg 0+~ 3 (71 12+ 7216, 1) + Cr

i€[n]

Taking the expectation, by the exchangeability given by Assumption 3, the assumption on (¢ }i)i’k, and Assumption 3, we obtain

ElIX;, 7 —EIX.1* < —cyEIX} >+ Cy.

As a consequence, we obtain the first point of the lemma.

Now, we proceed to demonstrate the second point of the lemma. But first we claim that

2
supE(/ ||x||2d;4k(x)> < . (25)
keN

Indeed, by raising to the square Eq. (24) and taking the expectation, we obtain

2 2
IE( / ||x||2duk+1<x>> —E( / ||x||2duk<x)>
2
< —cyE </ ||x||2d;4k(x)> +CyE </ ||x||2d;4k(x)> +Cy.

Now, we will obtain the second point of the lemma. By raising to the square Eq. (23), we obtain
1 . .
U I = 1XGH

i i i2 i g i2 i i in2
< P (XL WXL + VP (XL DXL + 7 (XL C DIXL P+

2 in4d 2 2 in2 i 2 in2 2 i 2 in2

PIXL +7 /nxn duONXEIP + 71l IPIXEIR + 20, IPIXE
2

PIXIE + 74 ( / ||x||2duk(x>) +72ME I+ e, 1

12
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Summing over i € [n], we obtain

é( / Il d gy () — / ||x||4duk(x>>

Y . )
<7 [ (bt )lixiPd o + ‘/7_ 3 (xi &, DIXLIP+

i€[n]

2
LS (XLG, X + 72 / Il () + 72 ( / ||x||2duk(x>> 4

i€[n]

2
= 2 NG PIXGIE + = 3 NG IPIXGIP + 7 / llx1*d g (x)+
i€[n]

i€[n]

2 2 4
4 2 4 P4, Y P4
y </ Il dm(x)) + - Z]n»:'kﬂu + = Y NG

i€[n i€[n]

Taking the expectation, by Eq. (13), and by the assumption on (¢ Dk,i’ we obtain

1
i (BIX g I* = 1X0%)

1/2
< —cyE|I X[ +/E ( / ll112d gy (x) ( / ||x||4duk<x>> )

2
+7°EI X, |I* +7°E (/ ”x”zdﬂk(x)) +7ElIX,|I°

12
E ( / ||x||4duk<x>> Ty,

Cauchy-Schwarz inequality yields

1
< (BIXG I =X

o\ 172
1/2
i D (E </ ||x||2d;4k(x)> > (EIX,1) !

2
1/2
+ PEIX 1 +7°E </ IIXIlszk(X)> +7 (EIX, 1) Py
Finally, by Eq. (25), we obtain
1
Fol (]EllX,lH 14— 1x0%)
1/2
< —erBIXLIE +PEIXE + 7 (BIXI) 2 4y,
which concludes the proof. []

Note that (&,(m")) belongs to P,(C).

In the light of Lemma 2 and Proposition 1, we should establish two points: first, the weakx-relatively compactness of the family
of intensities {I(®,(m"))}, ,; second, a uniform integrability condition of the pth order moments of the measures I(®,(m")(x)). These
results are respectively stated in Lemmas 5 and 6 below.

Lemma 5. We posit the assumptions of Proposition 4. The family of intensities {I(®,(m"))}, , is weakx-relatively compact in P(C).

Proof. Let us establish the first point. For every bounded continuous function ¢ : C —» R, we have

(@, (m")(@$) :=E [ / $(x)d (a>,<m")(x>)] = % 3 E[p(XE)]

i€[n]
=E[ox)] .
where we used the exchangeability stated in Assumption 3—(i). Let us define the measure ]T;’ € P(R?) as
# . v L.
@ = E [px"],

for each measurable function y : RY — R,. According to Th. 7.3 in [44], the weakx-relative compactness of the sequence (I"),, in
P(C) is guaranteed if and only if the weakx-relative compactness of (I"),, in P(R?) is ensured, and if the following equicontinuity
condition

limlimsup]I"(wT,,n(rS) 2&) =0 (26)
8 t.n X, H‘..

-0

13
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is met for every &,T > 0, where wf(é) is the modulus of continuity of a function x on the interval [0,7]. The weakx-relative
compactness of (]AI;’),‘,, in P(RY), follows directly from Lemma 4. Using the notation k, := inf{k : Z:.;l y; > t}, and using the
definition in Eq. (1), we obtain the decomposition:

XM - X = P!+ N +U", 27)
k=2
. 1,
Pl o= ) v DX )
k=k

s

1,n n 1,n n
+ (Tkx - S) b(Xk:—l’”kS—l) + (Tkr - ’) b(xk,—l’”k,—l)

N* = ’922 \/—fl,n + Tk: - él,n + ! 51,n
st '—k - Vit 15141 e VkSk, V 7k Sk,
=, s

Tk, bl

Yk,
k=2
Ul =Y Gl + (rks —s)c,l;" + (rk, —t) &
k=k,
Let the sequence (7,) be defined by: 7, =17, —s, ¥, =7, —tand 7, 1=y, for all k #k, .k, . Note that:

Z Vigr =1—s. @8

Moreover, we have:

T, — S —t

5 ~ Tk I
- Ve, Sk, and - Ve S A Yk, - (29)
Vi Yk,

The term N 4 s expressed as a sum of martingale increments, with respect to the filtration 7). Let | - ||, denote the a-norm in RA.
We apply Burkholder’s inequality stated in [45, Th. 1.1] to the components of the vector N s"J in R4, As Eq. (28) and (29) hold:

k-1

E(uNg,nj)sca—s)JE[ > mln:;flnj] :
1

k=k—

where C is a constant independent s, and n. As Assumption 3—(ii) holds, there exists a constant C > 0 independent of s, ¢, and n,
such that

supE (||Nl§",||4> <C@-s7. (30)
neN

Furthermore, using Jensen’s inequality along with Eq. (28), we obtain

k=1
~ 1,
IPLIP <G =5) D) ZenallbX," I
k=ks—1

Using Assumption 1 and Lemma 4, there exists a constant C, independent of s, 7, n, such that
supE (I1P2 1) < e =57 (31)
neN ’

Also, by Jensen’s inequality, we have
k-1
NP <@=s) Y Fealle 17
k=k,—1
Since, by Assumption 3, we have sup, , E[||{ ,:‘"llz] < oo, there exists a constant C independent of n, s, and 7, such that:
supE <||Ug,||2) <Cl-s2. (32)
neN ’
Combining Egs. (31), (30) and (32), we have shown:
sup e [I1PLIP + NI+ 107 ] < =577, (33)
ne

where 0 < s <t < o0, and C is a positive constant, independent of s,,n. Using [46, Th. 2.8] and Markov’s inequality, Eq. (26)
hold. O

Lemma 6. We posit the assumptions of Proposition 4. For every T > 0,

lim sup E [/ S[l(l)PT] ”Xs”p]lsup;e[o,ﬂ ||X.;||Zad(pt(mn)(x) =0.

4= eR, , neN* s€(0,

14
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Proof. By the exchangeability stated in Assumption 3—(i), we obtain:

E |:/ sup ”xu“ 1 sup ||xu||>ad¢z(mn)(x):| =

uel0,T] uel0,T]

su X 1 s
[ue[opr] I H“” I ”XWHN]

for every k,t,n. Recalling the decomposition introduced in Eq. (27), for every u € [0,T]:

1 1
X074 (IR 17 4 N7 17+ PP+ 007, 17) -

Hence,

P 1xtm e
||Xt+u” 1 sup ||X JlI>a <4 (”Xt I ]l||X,l'n||>§
uel0,T

tt+u” 1 sup. ||N
€[0,T

u

+l a
xr+u“>Z

HIF I LA a + U170 sup 101> ﬁ—i)'
uel0,T u€|

Consequently, for each T > 0, it suffices to obtam the uniform integrability of the four collections of random variables: (|| X, ,1 |
teR,,n€NY), (sup,egor |l ”+u||l’ tt€Ry,neNY), (sup,goq |l ”+u||l’ :teR,,neN*)and (Sup,efo,1 ||U,'j,+u||1’ rteR,,neN).
(||X,l "II” : k € R,,n € N*) is uniformly integrable by the first point of Lemma 4 when p < 2, and by the second point of Lemma

4 when p = 2. As obtained in Eq. (30), Burkholder inequality stated in [45, Th 1.1] yields:
E[ sup ||N,,+u||4] <cr?,
uel0.

where C is a constant independent of ,n, and T. Hence, since p < 4, we obtain the uniform integrability of {sup,cory IV}, II”
t € R,,n € N*}. As obtained in Egs. (31) and (32), we derive:

k=1
sup [P, P <CTP N 7 b I
u€l0.T] k=ky—1
and

kpyr—1
< 2 = Ln2
sup IUf 2 <CT Y 7allE 112,
u€l0.7] k=k;—1

where C remains a constant independent of » and ¢. Using the first point of Lemma 4 when p < 2, and the second point of Lemma
4 when p =2, by de la Vallée Poussin theorem, there exists a non-decreasing, convex, and non-negative function F : R* — R such
that

tim 2% _ o and  sup E[F (1x " )] < o0

h—co keN,neN*

Hence, by Jensen’s inequality,

ki =1
1
E[ ( sup | ,,+u||">] <7 X nak[F(CT00 ).

u€el0,T] k=k,—1

Consequently,

sup E[ ( sup 1 ”+u|| )] <
teR, ,neN* ue

Therefore, de la Vallée Poussin theorem yields the uniform integrability of the collection (sup,eio.r) 1P, II7 © t € R, n € N¥).
The uniform integrability of the collection (sup,eor IUf,,|I” © t € R,,n € N*) is obtained, by the same arguments. This completes
the proof. []

To conclude the proof of Proposition 4, it is sufficient to remark that the tightness conditions provided in Lemma 2 are satisfied,
thanks to Lemmas 5 and 6, with Proposition 1.

5.2. Proof of Proposition 5

The core of the proof is provided by the following proposition.
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Proposition 10. Let Assumption 1, 2, 3 and 4 hold,

lim )E|G(cb,(m"))| =0,

(t,n)—(co,00

for each function G € G,,.

Proof. We need to show that for each R, x N-valued sequence (¢,,¢,) — (o0, ) as n — oo, the convergence E )G((D,n(m%))‘ -0
holds true, where G = G, 4, 4 1500, Das the form of Eq. (9), with 0 < v; < -+ < v, < 5 < 1. We take ¢, = n for notational
simplicity, and we write m, := @, (m") € P,(C). We have

Gm) =+ ¥ <¢()?,";"+,>—¢(>?;;"H)— /
]

i€[n t,+s

ttt

w(X, m;j)du> o, (39
where we set w(x, 4) 1= (V(x), b(x, ) + tr (o(x, )™ Hy(x)o(x, 1)), and
o' =m0k,
j=1

We note right away that |Q""| < C where C depends on the functions /; only, and furthermore, the random variables {Q""},c, are
PL’W -measurable, where we recall that the integer k, is defined by k, :=inf{k : 2,{(:1 v >t}

In the remainder, we suppress the superscript * from most of our notations for clarity. To deal with the right hand side of (34),
we begin by expressing ¢(X; , ) — ¢(X] | ) as a telescoping sum in the discrete random variables X :

1+t ty+s
kr,,+r_2

¢ -dX D= X (X)) - d(X))
k=k,n+&

+OXL )= BXL D+ HXE =K L),

The summands at the r.h.s. of this expression can be decomposed as follows. Remember the form (1) of our algorithm. Denoting as
H, the Hessian matrix of ¢, by the Taylor-Lagrange formula, there exists 6, € [7,7,4,] such that

H(X, ) — d(X))

= (VXD Xb, = XD+ 3 (Xh, = XD Hy(Xy ) (XL, - XD)

= 71 (VOX"), bX L, 1))

+ Vigp tr (O'(Xi , ﬂZ)TH¢(X,i)o(Xi R yZ))

VI (VO EL ) + 5 (XL, = XD Hy(Ry, ) (X0, = X)

= Vi1 tr (0(X, )T Hy(X Do (X, 1)) + 711 (VXD 1L )

= new X + 3 (XL, = X0 Hy(R ) (X0, = X))

7t (VEX), o) = Vi 1 (60X, )T Hy(X Do (X, 1)

+ V21 (VX)) &)

= new X + 3 (XL, = X0 Hy(Xy ) (X0, = XL)

1t (VOX ), o) = Vi tr (0(X G, )T Hy(X Do (X, 1)) +

V2 (VOO £ + it G Hop (X8 = Vit G Hy (X8
In this last expression, the terms w(X!, ) will be played against the integral term at the right hand side of (34), and the other
terms will be proven to have negligible effects. Since tr(£ € +1)TH¢(X’ )= (§;{+1)TH¢(X]';)§]"( 41> the term

’7;(+1 = v27’k+1(V¢(X,';),§f;+1> + Yk+1(§,i+,)TH¢(X,i)§L+1
e tr (0(X}, DT Hy(X Do (X} 1))
in the expression above is a martingale increment term with respect to the filtration Fdr thanks to Assumption 3-(ii).
To proceed, considering the integral at the right hand side of (34), we can write

Intt _. Tkt +1-1 _.
/ w(X,, m)du =/ w (X, m)du
T T

nts Kty +s

Tty +s _ . Intt _.
+/ W(X;,ms)du+/ w(X,,m))du,
It

s Th, -
n Kty +1=1

16
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and with these decompositions, we obtain G(m,) = Zi VA where:

-2
iyt
1y~ _ .
al == Z{ Z yk+1w(Xk,uk>—/ w(X;,mz)du}Q’,
k=ky, 4 Tty ts
T L CNER RN E e (R R e Y ved
tE[nJ " fnt
n 1 kl” i n It 1 m"
A=t Z{ WX m"ydu + X! m )du}
n i€[n] Ints Tkr,,-H*l
kr,,+r 2
z == Z > nen (Ve (X)) ¢, )0
" e K=k
kl 417
7= Z]k kZ T ()" (Ho(Rh )= HyX)) (6L,,) @'
tyts
kit —2
32 ;
X6 =~ Z Z ( kJ/rlb(X"”k)THd)(XakH)g;m)Ql
" e k=t s
Kiy1=2 r
t Z 2 ( Vertb (Xio ) Hy(Xp,, b (XL’”Z))QI’
n] k= kr )+
k1n+t 2 T
32 ket
x o= Z 2 kJ/rl < Vet <b(Xk’”k)+ _+> +\/_5k+1>
n] k= kr +s
i i
H¢(X9k+])ck+l) Q' and
Kty
Xg = Z Z Mt @
LE[n]k k, +s

To prove our proposition, we show that E|y;'| — 0 for all / € [8]. The notation E} will be generically used to refer to error terms.
Let us start with E| x7|- For i, j, ¢ € [n], writing

kr,,+r_2 T

n . i n kr”+’71 Vi n

E! = Z YW (X, ) — w(X,,m)du
k=kq, 4 Tk +s

and using the boundedness of Q' and the exchangeability as stated by Assumption 3—(i), we obtain that
E|x]| < CE|ET].

We begin by providing a bound on the second moments of E!. Recalling the definition of , and using the compactness of the
support of ¢ along with Assumption 1, we obtain that

E(E)? <2(t—s)*  max  ElyX,m)|?

u€(t,+s.t,+1]
<C(t—s)? <1 + supEnb(X;,m;)uZ)
u>0
<C(t-s)?

thanks to Lemma 4. To obtain that E| 11— 0, we thus need to show that E|E]| - O.
By Proposition 4 above, the sequence (m,) of P(C)-valued random variables is tight. By Lemma 1, this is equivalent to the
weakx-relative compactness of the sequence of intensities (I(m,)). For each Borel set A € B(C), we furthermore have that

I(m,)(4) = L e [X"’ = A] =P [X‘-", = A]

t,+: 1+
i€[n]

by the exchangeability, thus, the sequence of random variables (X 17 ) is tight. Let us work on the r. v. U, := = g, X ] s defined

on the set C([0,7 — s]) of continuous functions on the interval [0, ¢ — s]. Since (X p +A),, and ((0,)ym"),, are tlght (by prop. 4), given an
arbitrary ¢ > 0, there exists two compact sets K, C C([0,7 — s]) and K, C P, (C) such that

VneN', P[U,¢&K,]+P®, , (m") &K, ]<e.

17
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Writing 7, = sup;, 74, we now have
K42

_ v 1 n
Z e 00X WKLo, )= w(Xg )

n
1] <

k= t,,+s

<@-s) max - |wU@.m ) = vU,.m)
I“ L|<ykr,,+x

1, +A+U)

We thus can write

E|E]

j— n n
=E |E1 ’ Ly, o, ek xe, + E |E1 ) Lw, @, . ek, xx,

S@=9) s maxc (@)~ w00,
ok,
ATkt +s

+ \/IE(E;’)Z \/IP’ U, & K]+ P[®, ,,(m") & K,]. (35)

By the Arzela-Ascoli theorem, the functions in K, are uniformly equicontinuous and bounded. Moreover, the set {u € [0, — 5] —
pu» P € K.} is also uniformly equicontinuous and {p, : u € [0,7—s],p € K.} is include in a compact subspace of PP(R" ).

Since y is a continuous function, by Heine theorem, y is equicontinuous, when we restrict y to a compact space. Therefore, one
can easily check that the set of functions S on [0, — s] defined as

Si={ury(fWw.p,) : (f.p) €K XK.}

is a set of uniformly equicontinuous functions. As a consequence, the first term at the right hand side of the inequality in (35)
converges to zero as n — oo, since 7, — 0. The second term is bounded by C \/E thanks to the bound we obtained on ]E(E”)2
Since ¢ is arbltrary, we obtain that IEI|E"| - 0, thus, E| 11— 0.

The terms y2, y2, and y> are dealt w1th similarly to 4. Considering 42, we have by the exchangeability that E| x| < CE|E"|,
with

=X, ) —dX, )+ ‘i’(Xirn REXCHN

=X} ) Wik, ks Wik, RN

Keeping the notations U, := zjy,_q#X] bt

and 7, introduced above, we have
|ET| <2 mmax |p(U, ) — $(U, )] .

<
l“ " Vkr,,ﬂ

Taking € > 0, selecting the compact K, c C([0, — s]) as we did for X and recalling that the function ¢ is bounded, we have

E|E;| <2 Sup o max 907 = $@I + CP [U, ¢ K.].
\u ISPk,
and we obtain the E| 2| — 0 by the same argument as for y!.
The treatment of 4 is very similar to y2 and is omitted. Let us provide some details for y>. Here we have by exchangeability
that

kr,,+1’2
ElZ21< Y, naBIE,
k=k1n+s
where
Ln ._ (g1 \T o1 1 1 1
E" = (&) (H¢(X9k+1) - H¢(Xk)) (&ar) Q"
satisfies

1n 12 _
IE < Clg P max || Hy(U, @) = HyWy o)
Iu—vlsik,n_'_x

Therefore,

1.,n
E ‘Ek

1, L,
=E|E"| Ly,ex, +E|E}"| Ly,ex,

<CElGnl? sop  max || Hy(f@) = Hy( )|
fEK,

u,v€[0,t—s]
€ lumvl<y
[u=01<Tky, g

+BE 2\ BU, € K,].

Since E||&,, > and ]E(E,i"’)2 are bounded, we obtain that E|¢Z| — 0.

18
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Considering the term y*, we have by exchangeability

kr,, +=2

Elffl SCE| Y 7 (Ve (X)) .60
k=K, 15

kr,,+r—2
<CE Z Vs (VO (X)) ELEL 1 FED)

k=kr,, +s

kr,, +=2

+ CE Z }’k+1<v¢(Xli)’5li+l>

k=k1n+s

=Elyy [ +Elx,l

where ¢ ,: =¢ ll —E[¢ ll | F¢_,1is a martingale increment with respect to the filtration (F});. We have

Elg,| <Ct=s) swp E |Ete,, 1771
Zhtp+s

which converges to zero by Assumption 3—(iii). By the martingale property, we furthermore have

kl,, +1-2

B, SC X Vi <Cly, (=),
k=k1,,+s

which also converges to zero. Thus, E| 2= 0.
We now turn to ;(" Here we write

1+I

ZZ 1o B

" it k= ki s
where
1= V26X )T Hy(X), L, O
+5 T bOX L )T Hy (X B 40
satisfies

[E} | < ClUBX s DIy I+ C\riat 16X DI

We readily obtain from Assumption 1, 3 and Lemma 4 that ]E|E,i| < C, which leads to E| Zze1 = 0.
The treatment of the term y7 is similar and is omitted.
We finally deal with y¢ that involves the martingale increments "L' We decompose this term by writing

ki +=2

s Z X V2 (Ve(X)). &, 0"+

k=ky, 45 tG[n

kr,,+r’2
> Y (€T HyXDEL, — (oK ) Hy(XDo(XE 1)) €

k=k,nﬂ i€[n]
_.n n
=Xg1 1 A3

are decorrelated conditionally to T’l:' by Assumption 3-(ii), we obtain that

7k+1
PR

n
Since the random vectors :fk IRTEEER

[( > Ve (V(XD).EL, )0 )

i€[n]

and by the martingale property,

k1n+z -2 y C(I S)
k41 -
B )< Y A <——=

k=ky, g n
Using the martingale property again along with the inequality (3}] a)* <n Y} a , we also have
1,,+1
n 2 i iNgl
E(xg,) < Z Ve < 2 (G HyXg

k=k tpts i€[n]

—tr (o(X}. u)" Hy(XDo (XL 1)) Q')
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ktn+!_2

<C X 7

k=ki, +s
< ka"HC(t —5).

It results that [E( ;(g)z — 0. The proof of Proposition 10 is completed. []

Proof of Proposition 5. Let (t,, ¢,), be a R, xN*-valued sequence such that the distribution of (&, (m#")), converges to a measure
M € M, which exists thanks to the tightness of (@, (m?)), as established by Proposition 4. Let G € G,. By the continuity of G
as established by Lemma 3, G(®, (m?n)) converges in distribution to G4M € P(R). On the other hand, we know by the previous
proposition that G(@, (m?n)) converges in probability to zero. Therefore, GyM = §.

Let supp(M) C P,(C) be the support of M, and let p € supp(M). By definition of the support, M(N') > 0 for each neighborhood
N of p. Therefore, since GygM = §,, there exists a sequence (p;),ey Such that p;, € supp(M), G(p;) = 0, and p; —; p in P, (O).
By the continuity of G, we obtain that G(p) = 0, which shows that supp(M) c G~!({0}). Since G is arbitrary, we obtain that
supp(M)C V, = ﬂGEgp G~1({0}), and the theorem is proven. []

5.3. Proof of Theorem 1

Throughout this paragraph, we assume that 1 < p < 2.
We define the following collection (M;" : t > 0,n € N*) of r.v. on P(P,(0)):

1 t
My o=t /0 5, (36)

Lemma 7. The collection of r.v. (M", t>0,n € N¥) is tight in P(P,(C)).

Proof. Based on Lemma 1, we just need to establish that the family of measures (I(M")) is relatively compact in the space P(P,(C)).
Recall that I(M") is the probability measure which, to every Borel subset A C P,(C), associates:
t
(M) (A) = % / P(®,(m") € A)ds
0

Consider ¢ > 0. By Proposition 4, there exists a compact set K € P,(C) such that P(@,(m") € K) > 1 ¢, for all s5,n. As a consequence,
I(M[")(KC) > 1 — &. The proof is completed. []

Let us denote by ./ the set of weak* accumulation points of the net (M])4P : t > 0,n € N*), as (t,n) — (c0, c0). By Lemma 7,
./ is a non empty subset of P(P(P,(C))). Define:

V,={MePP,C) : M(V,)=1}.

Lemma 8. ForeveryY € ./4,Y(V,) = 1.

Proof. Consider Y € .#. Without restriction, we write Y as the weakx limit of some sequence of the form (M]' ),P. The distance
W,(.,V,) to the set V,, (which is non empty by Proposition 5) is a continuous function on 7,(C). Denoting by (., .n> the natural dual
pairing on C,(P,(C))XP(P,(C)), the function (W,(.,V,), - ) is a continuous on P(P,(C)). Thus, the sequence of real r.v. (W (., V,), M,’;)
converges in distribution to (W,(.,V,), - )4Y. These variables being bounded, we obtain by taking the limits in expectation:

// W, (m, V,)d M (m)dY (M) = lim E(W,(.,V,), M]"))

1,

lim L [ EW(@,0n"),V,)ds
0

n—oo t"

limsup E(W,(@,(m"),V,)) =0,

(t,n)—(00,00)

IN

where the last equality is due to Proposition 5. As V, is closed by Proposition 2, this concludes the proof. []
Recall the definition of the shift ©, : x — x,,. defined in C. For every ¢ > 0, define (0,)y = ((0,)y)4. Define:
1:={MePP,C) : Vi>0,M = ()M} .

In other words, for every M € T and for every ¢ > 0, (0,); preserves M.
Lemma 9. ForeveryY € ./, Y(I)=1.
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Proof. Similarly to the proof of Lemma 8, we assume without restriction that ¥ = lim,_,.,(M; ), in the weakx sense. Set t > 0.
The map M ~ d;(M,(0,)4M) is continuous on P(P,(C)), where we recall that d; stands for the Lévy-Prokhorov distance. Thus,
by Fatou’s lemma,

/ d(M,(O,)yM)dY (M) < lim sup E(d (M]!,(8)4M]")). (37)

n—oo

Note that:

1 1+,
(@M, = — [ 8(6,)ymnds .
n

In particular, for every Borel set A C P,(C), [(0,)y M| (A) — M (A)| < 2t/t,. The Lévy-Prokhorov distance being bounded by the
total variation distance, d; (M, ,(0,)yM]') < 2t/t, which tends to zero. The Lh.s. of Eq. (37) is zero, which proves the statement
for a fixed value of 7. The proof of the statement for all 7, is easily concluded by a using dense denumerable subset argument. []

Define: B,={M € P(P,(C)) : M(BC,)=1}.
Proposition 11. Forevery Y € ., Y(B,) = 1.

Proof. Consider an arbitrary sequence of the form ((M])yP) where ¢, — oo, converging in distribution to some measure ¥’ € .#
as n — oo. By Lemma 9, the map (6,); : P,(C) - Pp(CS preserves the measure M, for all M Y-a.e., and for all ¢+. By Lemma 8,
MV, =1 Thus, the restriction of the map (0,) to Vs still denoted by (6,) : V, = V, preserves the measure M as well, for all
M Y-a.e.. By the Poincaré recurrence theorem, stated in Th. 2.3 of [47], it follows that M(BC,) = 1 for all M Y-a.e. [

Proof of Theorem 1. By Lemma 7, the set .# is non-empty. Consequently, by Proposition 11, B, is non-empty, which implies that
BC, is also non-empty. To conclude, assume by contradiction that the conclusion of Theorem 1 does not hold. Then, there exists
£ > 0 and a sequence, which, without restriction, we may assume to have the form ((M]' ),P), such that for all » large enough,

E(W,(..BC,). M')) > e, (38)

where (., .) is the natural dual pairing on C,(P,(C)) X P(P,(C)). Using Lemma 7, one can extract an other subsequence, which we
still denote by ((M] ),P), converging to Y € .#. As a consequence,

lim E(W,(.,BC,), M]")) = / W, (m, BC,)d M(m)dY (M) = 0,

n—o0 n
where we used the fact that, due to Proposition 11, / W, (m,BC,)d M(m) = 0 for Y-almost all M. This contradicts Eq. (38). [
5.4. Proof of Corollary 1

Throughout this paragraph, we assume that 1 < p < 2. We define the functions, for 4 € Pp(Rd ),
81 () = W,(u.BC)),
and
&(u) 1= W,(u.BC)Y .

Consider the r.v.

l n
Y, e(s) =g (; 2 5Xg~~> 7
i=1
for 7 € [2].

Lemma 10. Ther.v. (Y, .(s) : s > 0,n € N) are uniformly integrable for ¢ € [2].

Proof. Let # € [2]. Note that Y, ,(s) < C(1 + %Z, ||X§f"||”). Hence for a convex, and increasing function F : R% — R, by the
exchangeability stated in Assumption 3, we obtain E(F(Y, ,(s))) < E(F(C(1 + ﬁ > ||X;'*"||P))) < F(C(1+ ]E(||X’S1’"||P))). By de la Vallée
Poussin theorem, the random variables (Y, ,(s) : s > 0,n € N) are uniformly integrable if the random variables (|| X S""||1‘ :s5>0,neN)
are uniformly integrable. We conclude using Lemma 4. []

Let # € [2], recall the definition of M} in Eq. (36), and recall that ./ is the set of cluster points of (M;)4P : t > 0,n € N¥) as
(t,n) — (o0, c0). Consider an arbitrary sequence #, — co, such that (M;'),P converges to some measure ¥ € .#. Consider £ > 0. By

Lemma 10, there exists a > 0 such that sup, ; E(Y,, (s)1y, ,(y>a) < €. Using the inequality y <aAy+yl we obtain:

I I
E (l / YM(s)ds> <E <i / an Ynf(s)ds> te
tn 0 : tn 0 ’

y>a»
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=E < / a A go((mp)ym)d M} (m)) +e (39

The restriction of z; to P,(C), which we still denote by z, is a continuous function on (P,(C),W,) — (Pp(]R"), W,), where W,
represents the pth order Wasserstein distance on P(R?). As a consequence, the pushforward map (z)s : P(P,(C) - P(Pp(Rd )
is continuous. Therefore, as (7y); BC, is non empty by Proposition 11, the function M / a A gg((my)ym)d M (m) is bounded and
continuous on P(P,(C)). Recall that M ,’L converges in distribution to Y, and noting that, by Proposition 11,

// 8,((mp)gm)d M (m)dY (M) =0.

Hence, by letting n — oo in Eq. (39), we obtain limsup, IE(TL fo’” Y, (s)ds) < e. As ¢ is arbitrary,

In
lim B <tl/ Y,,(s)ds) =0. (40)
n—oo 0

n

In order to establish the statement of Corollary 1, we now should consider replacing the integral in Eq. (40) by a sum. This last part
is only technical. Recall the definition of k, := inf{k : Zi; 7i 21}, and 7, in Eq. (4). Let («,) be a sequence of integers tending to
infinity. By the triangular inequality,

T g 1 [T
E % =K _/ g (U ds
Z[=1 M T"n 0 :

1 [Fan a1
5E<a/0 Wi~ Zaxi,,,)nmds)

i€[n]

Tay,
+E L/ AT Y Sgun)lads
Ta, JO = B

+ E<L/ - Y"(s)ds> .
T, 0

n

The third term in the righthand side of the above inequality tends to zero by Eq. (40) with #, = 7, . We should therefore establish
that the first and the second term vanish. For an arbitrary integer / and s € [}, 7],

1/p
1 1 i, — .
E [Wp <ﬂ7’; ) 5xf;~">] <E <; ) ||X}"—X;‘”Il”>
i€[n] i€[n]

1 vl
< EB(IX," = X |entr .
where the last inequality uses Jensen’s inequality and the exchangeability assumption. Continuing the estimation,

1n vl 1,n 1.n
(X} - X7 < E(IXL - X1
<E 310, 16X, I

— 2 —
+E [l e] + E [ e

p/2 . p
SCly + 140

where we used Assumption 1, and 3. Consequently,
1/p
G P2 p
1 [T 1 Xl (C(ym + 71+1))
E( — Wi = Y bginds | < -
T"n 0 son i€[n] ! Z]:] Y
and, by the same computation,

1 [Fen 1
1E<—/0 Wyl . — X, Sxin)ds

Ta =1

@ p/2 . p
> < XA <C(”1+1 + }'1+1))
- 2721 i

As Assumption 2 holds, C (yf ﬁ+ylp 1) im0 0, and Y., v, = co. Therefore, by Stolz-Cesaro theorem, the r.h.s. of the above inequality

converges to 0 when n — oco. Hence,

Q,
2 vige(uy))
limlE<—Z"1 e ):0,

a
n—oo 21:1 v

for an arbitrary sequence («,) diverging to co. By Markov’s inequality, Corollary 1 is proven.
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5.5. Proof of Corollary 2

Let A C P,(R), we define

conv(A) := { D ittt (e €A™ A >0, Y A=1ne N*} .

i€[n] i€[n]

Let (4;,V;)ie2) be measures in Pp(Rd ), and let A € [0, 1]. We claim that
W, (Apy + (1 = Dpp, Avy + (1 = Dvp)? < AW, (uy, vi)P + (1 = DWW, (s, vp)
Indeed let (ﬂ‘;’,ﬂ;) € I (uy,vy) X I (uy, vy) satisfying for i € [2]:

| / llx = yIPd (e, y) — W vy )| <ce.

Since Az¢ + (1 — A)z5 € I1(A; + (1 = Dy, Avy + (1 = A)v,), e obtain
WAy + (1= Dy, dvy + (1= Dvp)?
<i / llx = yllPdz e, ) + (1 = 2) / lx = yliPdat (x, )
< AW, (kv Y+(1 - AR V)P + 2e.
Since it is true for every ¢ > 0, this proves our claim.
Now, let A C P,(RY), there exists v¢, v € A satisfying
AW, (uys AP + (1 = W, (pp, AP 2 AW, (1, Vi + (1 = DWW, (pp, v5)P = 2e .
Since this is true for every € > 0, by Eq. (41):
AWy (1, AP + (1 = DWW, (pn, AP 2 Wy (Apy + (1 = App, conv(A))P .
Applying Eq. (42) to the second claim of Corollary 1, we obtain

s
W, M conv((xo)(BC,))
n Zle[kj i

(k,n)—(00,00)
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(41)

(42)

Since W,(-,-) > W,(:,-), we can apply the Kantorovich duality theorem and interchange the inf and sup to obtain our result.

5.6. Proof of Corollary 3
Let i < n. We define the I as
fti"’ = (X:’”,...,X;’")#IP.
Define the measure
) 1 t
I = —/ 8jinds.
t 0 B
We define the measure J" € P,(RY))
JMA) = / u(AdJ " (),
for every A € B((RY)"). Recalling the definition of M) in Eq. (36), we remark that
1 t
()M = = / 8,nds.
tfo ™
We define the measure M," € P,(R9)) as
M{’"(A) =E </ M®i(A)d(”o)##Mf(/4)> ,
for every A € B(R?)).
Lemma 11. There exits a constant C, independent of ¢ and n, such that

sup Wty - i) < €
AEB(RY)) n

for every t,n.
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Proof. First we assume that A = (A, ..., 4;) € (B(R?))". Remark that

zin 1 /! o1, -

Ty =g [ R K € A Ads,
and

. 1 t n i i
M["(A) = W/o Y PX], X € (A, .. A)ds.
jlw».ji=1

By exchangeability,
My - 7| < €
n
for our specific choice of A and a constant C independent of A. We conclude by a density argument. []

Since the total variation distance is greater than the Lévy-Prokhorov distance denoted by d;, by the triangular inequality and
Lemma 11
=i @i . . C
dp (7" (pp)®') < dp (M7, (pp)®') +

By Assumption 5 and Proposition 11, we obtain .# = {55/7* }. Consequently, for every (t,, @,) — (o0, 00), d; (M, ;:"", (p$)®i) — 0, which
means that J”” converges to (pp)®" in P(R4)). By [1, Lem. 3.14], Jtl:"” converges to 6(03)@ in P(P((R4))).

By an application of Proposition 4 with Lemma 2, {Jt':"” : t > 0,n € N} is a compact subspace of P(Pp((Rd)" )). Consequently,
for every (t,, ¢,) = (0, ), J:’:‘p" converges to S(ﬂg)g, in P(Pp((Rd ))). The conclusion follows from the same proof as in Corollary 1.

5.7. Proof of Corollary 4
In the proof of Corollary 3, we showed that for every subsequence (¢, ,) = (o0, ), Jtlxﬂn N 55/7*.
" (]
Let U C Pp(Rd ) be an open neighborhood of p;. Then, by the Portmanteau theorem,
. Lo, . Lo, _
ll;Ilil:p Jr” ) > llpr’r_1>1°r°1f J,n ) > ]IPSEU =1,
for every (1, ¢,) — (o0, ). By similar arguments as in Corollary 1, p(’; is an essential accumulation point of (1 ,i"')k,n.

Let /i be a essential accumulation point of (1 ,i’”),,,k. Then, by similar arguments as in Corollary 1, for every open neighborhood
U c P,(R?) of ji
p

limsup J""(U) > 0,

n—oo

for some (t,,®,) — (00, ). Assume that ji # pS. Define the closed set F, := {y € P,,(]R") Wy, i) < %(po,ﬁ)/Z}. The open set
Uy={ue PP(R" ) T Wyp, i) < Wp(p(*), f)/2} is a neighborhood of j satisfying U, C F,. Then by Portmanteau theorem

0=1,cp > limsupJ"? (Fy) > limsup J " (Uy) > 0,
Po=to nooo M n—oo
for every (z,, ¢,) — (o0, ). This contradicts our claim: ji # - Consequently, py is the unique accumulation point of (I k"")k‘,,.
5.8. Proof of Theorem 2
We let the assumptions of the theorem hold.

Lemma 12. For a nonempty compact set K C PP(JR{" ), it holds that

Jim i W, ). 4,) = 0.

Proof. Assume for the sake of contradiction that
Je > 0,3(v,) C K, 3(t,) > o such that %(T,n(vn), A,) > €.

Choose 6 > 0 small enough so that the §-neighborhood Aﬁ of A, for the distance W, is included in the fundamental neighborhood
of A,. Up to taking a subsequence, we can assume by the compactness of K that there exists v, € K such that v, —, v,,. Since 4, is
a global attractor, there exists 7' > 0 such that W,(¥7(v.,), 4,) < 6/2. Furthermore, by the continuity of ¥, there exists n, such that

Vn>ny, W, Pr(v,), Pr(ve)) < 6/2.

This implies that ¥ (v,) € Ai for all n > ny. Since Ai is included in the fundamental neighborhood of A, there exists T > 0 such
that

Vn2ng Vi 2T, W,(#r, (v,).4,) <€,

and we obtain our contradiction. []
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We now prove Theorem 2. Recall that the collection {@,(m")} is tight in P,(C) by Proposition 4. Let (t,, ¢,) be a sequence such
that (7, ¢,) =, (o0, ) and such that (@, (m®n)), converges in distribution to M € M as given by (14). To prove Theorem 2, it will
be enough to show that

Vo> 0,37 >0, limsupP (W, (m,.4,) 25) <e.
n n
This shows indeed that

P
W, (mf, Ap) === 0.
and by taking 7 = 7, and by recalling that m! = ), we obtain our theorem.

Fix 6 and e. By the tightness of the family {®,(m")}, there exists a compact set D C P,(C) such that P(®,(m") € D) > 1 —¢/2
for each couple (#,n). This implies that M(D) > 1 — ¢/2 by the Portmanteau theorem. Since V,, is closed by Proposition 5, the set
K =DnV, is compact in P,(C), and by consequence, it is compact in V,, for the trace topology. By the same proposition, M(V,) = 1,
therefore, M(K) > 1—¢/2.

Since P,(C) is Polish, we can apply Skorokhod’s representation theorem [44, Th. 6.7] to the sequence (@, (m#n)), yielding the
existence of a probability space (@, 7. @), a sequence of PP(C)-Valued random variables (") on 2 and a Pp(C)-valued random variable
% on Q such that (ﬁz")#IF’ = (2, (m%n))4P, (ﬁz”)#@ = M, and m" — m® pointwise on Q. Noting that m::”” and . have the same
probability distribution as P,(R?)-valued random variables, we show that

ar > o, hmnsupﬁ (W, (. A,) > 8) <e. (44)
to establish our theorem. Observing that the function p — (r)yp is a continuous P(C) — Pp(Rd ) function, the set K = (7():K is a
nonempty compact set of Pp(Rd ). Applying Lemma 12 to the semi-flow ¥ and to the compact K, we set T > 0 in such a way that

max W,(P7(v). 4,) < 5/2.
By the triangular inequality, we have

W, (i, A,) S W, (g, ) + W, (2. 4,)

The first term at the right hand side converges to zero for each @ € Q by the continuity of the function p +— (7y)4p, thus, this
convergence takes place in probability. We also know that for P-almost all @ € £, it holds that =% € V. Thus, regarding the second
term, we have My = Pr(m) for these @, and we can write

B (W, (7. 4,) 2 0)
<P@™ & K)+ P (W, (Pr(m). A,) > 6) n (Y € K)).

When @y € K, it holds that W, (Y’T(ﬁzg"), A,) < 8/2, thus, the second term at the right hand side of the last inequality is zero.
The first term satisfies @(m"" & K)=1—- M(K) < ¢/2, and the statement (44) follows. Theorem 2 is proven.

6. Proofs of Section 4
The Assumption 6 and ¢ > 0 are standing in this section.
6.1. Proof of Proposition 6

Lemma 13. Let p € V,. For every t > 0, p, admits a density x ~ o(t, x) € C'(R?,R). For every R > 0,1, > t; > 0, there exists a constant
CRiys, > 0 such that:

nf o(tx) 2 Cpy s (45)

i
t€[ty, 1 lIx[I<R

and there exist a constant C,, ,, > 0, such that

sup IVo(t, )l + 0(t,x) < G 4, - (46)
x€RY telt) 1]
Finally,
sup / (A + IxXIPIVo(t, x)lldx < co. (47)
t€[ty,1r]

Proof. The result is an application of Th.1.2 in [48] with the non homogeneous vector field b(t,x) := f b(x, y)dp,(y). The proof
consists in verifying the conditions of the latter theorem. By Assumption 6, for every (x,y,T) € RY)? xR,

sup |6t x) = b(t, I < IVV (x) = VV )|
1€10,T]
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+ sup / IVU(x —2) = VU(y - 2)lldp,(2)
tel0,T]

<Cllx=ylIP v lix =yl

Moreover,
sup B(t,X)SC(1+|IXI|+/ sup [y lldp(y) < C(1 + [|Ix]]). (48)
t€[0,T] 1€[0,T]

As ¢ > 0, [48, Th. 1.2] applies: p admits a density x — o(z,x) € C'(R?), for 0 < 7 < T, and there exists four constants (C; 7. 4; 1)icj2)>
such that:

1 llx = 6,WII*
—_— -——)d <o(t,
Cy 714/ /eXp< Art P < 0t )

Gy, A,
ot.x) < —5 [ exp <—TT||x - 9,<y>||2> dpo()

Cor AT
[[Vo(, )|l < @i /CXP <—T||x - 9;(,V)||2> dpy(y),

where the map ¢ — 6,(y) is a solution to the ordinary differential equation: = b(t,6,(y)) with initial condition 6,(y) = y. By
Gronwall’s lemma and Eq. (48), there exists a constant C; such that ||6,(y)|| < Crllyll, for every n,y, and t <T. For every t; <t <t,,
and every x, we obtain using a change of variables:

do,(y)
dt

(€, "7 > o, x)
2C,
—-d/2 2 2 1) 2
Ci,.t - - d
10 exp( Tt [Ix]| >/exp< ot [l > Po(¥)

/ (1 + [xIP)IVolt, x)lldx

\%

—(d+1)/2 _
< Gy / 1+ 20jx]? +2C2 / 1Py exp (~syyt5 11 ) dix,

—(d+1)/2
and ||Vo(t, 0|l < Gy, 17"/

. Consequently, p satisfies Eq. (45), Eq. (46) and (47). [

For every p € V, and every ¢ > 0, recall the definition of the velocity field v, in Eq. (19): v,(x) := =VV(x) — [ VU(x, »)dp,(y) —
62V log o(t, x), where o(t, x) is the density of p, defined in Lemma 13.

Lemma 14. For every p € V,, and every t, > t; >0,
/ " [ 1eeondo o <. (49)
1
Moreover, for every v € Cr (R, X R4, R),
/w(tz,X)dp,2 ()= / w(ry, x)dpy, (x)

t
=/2/(a,u/(t,x)+(wa(t,x), v (x))p (dx)dt . (50)
1

Proof. The first point is a direct consequence of Lemma 13. Consider ¢ € C“?"(Rd ,R)yand n € C*(R,,R). Using Eq. (9) and (10)
with h; = -« = h, = 1, we obtain that for each y € C*(R, x R?,R) of the form w(t, x) = g(t)d(x),

/ w(ty, x)dp, (x) — / w(ty, x)dp, (x) =
5]
/ /(6,w(t, x) + (Vw(s, x), b(x, p,)) + O'zAl[/(I, x))p,(dx)dt. (51)
3|

As the functions of the form (1, x) ~ g(1)¢(x) are dense in C*(R, xR?,R), Eq. (51) holds in fact for any smooth compactly supported
y. Using Lemma 13 and an integration by parts of the Laplacian term, Eq. (50) follows. []

The goal now is to establish that the functional .7 is a Lyapunov function. This claim will follow from the application of Eq. (50)
to the functional (z, x) - o2 log(o(t, x)) + V (x) + / U(x — y)o(t, y)dy. However, this function is not necessarily smooth nor compactly
supported. In order to be able to apply Lemma 14, mollification should be used. In the sequel, consider two fixed positive numbers
ty > 1.

Define a smooth, compactly supported, even function # : R — R, such that [ n(x)dx = 1, and define 5,(x) := e %5(x/e) for
every ¢ > 0. For every ¢ > 0, we introduce the density o.(t,-) := #, * p.(t,-), and we denote by p(dx) = ¢.(t, x)dx the corresponding
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probability measure. Finally, we define:
o . N x (000, )
Ut = —
o.(,-)
With these definitions at hand, it is straightforward to check that the statements of Lemma 14 hold when p,, v, are replaced by
p§, vs. More specifically, we shall apply Eq. (50) using a specific smooth function y = y, 5 g, which we will define hereafter for fixed
values of 6, R > 0, yielding our main equation:

/ V’g,a,R(fzs X)o,(ty, x)dx — / Wfﬁ‘R(tl,x)pg(tl,x)dx =
5]
/ /(B,U/E’&YR(I, x) + (V5 p(t, %), U5 (X))o (t, x)dxdt . (52)
1

We now provide the definition of the function y, 5 r € CX(R +XR4 R) used in the above equality. Let § € C (R, R) be a nonnegative
function supported by the interval [—f,,#,] and satisfying f 0(t)dt = 1. For every 6 € (0,1), define 65(t) = 6(t/5)/5. We define
0%9(-,x) 1= 05 * 0°(-,x). The map t — ¢°(t,) is well defined on [z,,1,], non negative, and smooth in both variables ¢, x. In addition,
we define V, :=y, * V, U, := 5, * U. Finally, we introduce a smooth function y on R? equal to one on the unit ball and to zero
outside the ball of radius 2, and we define yp(x) := y(x/R). For every (¢,x) € [t,,1,] X R, we define:

Wes.r(t,X) i= (62 log 0% (t, x) + V,(x) + / U (x = ) xrMo™° (1, )dy) y(x). (53)

We extend y, 5  to a smooth compactly supported function on R, x R¢, and we apply Eq. (52) to the latter. We now investigate
the limit of both sides of the equality (52) as 6, ¢, R successively tend to 0,0, co. First consider the lefthand side. Note that for all
tE€[t,0],

l‘f}, ;13(1) Ve 5.r(E, X)0 (1, X)

= <62 log o(t, x) + V(x) + / U(x = y)xro(t, y)dy> o(t, x) yr(x).

The domination argument that allows to interchange limits and integrals is provided by Lemma 13. Indeed, for a fixed R > 0, there
exists a constant Cy such that ¢%(t,x) < Cr and v, 5.r(t,x) < Cp for all ||x|| < R and all 7 € [1],1,]. As a consequence,

lim lim'/y/&&R(z‘, x)o,(t, x) =62/)(R(x)o(l, x)log o(t, x)dx +

-0 6—0
/ V(X)) xr(x)dp,(x) + / U(x = ) xrWxr(x)o(t, x)o(t, y)dxdy .

Since p, € P,(RY), [ o(t, x)| log o(t, x)|dx < oo, and the first term in the r.h.s. of the above equation converges to 62 [ o(t, x) log o(t, x)d x
as R — oo. Similarly, / V (x) yr(x)dp,(x) tends to f Vdp, as R — oo, by use of the linear growth condition on V¥V in Assumption 6,
along with the fact that p, admits a second order moment. The same holds for the last term. Finally, we have shown that, for every
t e[t 1],

lim lim lim/q/s’&yR(t, X)o(t, x)dx = 7 (p,) + %//U(x —»dp,(ydp,(x),

R—00 e—06—0

recalling J#(p,) := 62 [ logo(t, Ydp,+ [ Vdp, + % [ [ UGx—=»dp;(3)dp,(x). As 5,€, R successively tend to 0,0, co, we have shown that
the Lh.s. of Eq. (52) converges to:

Hpy,) = Hpy,)
+% / / U(x—y)dp,z(y)dp,z(x)—% / / Ux = ydp, (ndp; (x). (54

We should now identify the above term with the limit of the r.h.s. of Eq. (52) in the same regime. The latter is composed of two
terms. First consider the second term:

5]
/ /<V‘l’s,5,R(ﬁ x), U5 (x))pf (dx)dt
3l

L4}
= / /(VV/E,‘;,R(I, x),n, * (v,(x)o(t, x)))dxdt .

We can let § — 0 in this equation and interchange the limit and the integral. This is justified by Lemma 13, which implies that for
every R > 0, there exists a constant C such that for every £ > 0, 5 € (0, 1), t € [t;,1,], x € RY,

Ve 52X < Cg- (55)

Using Eq. (55) along with Eq. (49), the dominated convergence applies. Letting ¢ — 0 in a second step, the exact same argument
applies, and we obtain:

£-06-0

1y]
lim lim/ /(VWE@R(L x), U5 (x))0, (t, x)d xdt
I
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5]
= / / lim lim(Vy, 5 p(t, %), 7, * (U,(x)o(t, x)))d xdt
1 £—06—0 e
5]
=/ /(V(lim lim y, 5 p(t, X)), v,(x))o(t, x)dxdt ,
" £e—>05-0 &

where the interchange between V and the limits is again a consequence of Lemma 13. We now write the gradient in the above inner
product. Note that:

£

lir% (1313(1) W, 5.8 %) = (6% log o(t, x) + V (x) + / U(x = ) xro(t, y)dy) xr(x) .

We obtain:

5]
lim lim/ /(VWE,S,R(I’ X), U5 (X))o, (t, x)dxdt =
L3

£=06-0

5]
- / / o, N xr (e, x)dxdt
5]
5]
- / / (0,(x), / (1 = xrOVU(x = »)dp,(M) xr(x)d p,(x)
I

5]
—/ /(Ur(X), V}(R(x)(V(X)+/U(x—y)}(R(y)dﬂ,(y))>dpt(X)~ (56)
1

By the dominated convergence theorem, Assumption 6 and Eq. (47), the last two terms in the r.h.s. of Eq. (56) tend to zero as
R — oo, while the first term is handled by the monotone convergence theorem. We thus obtain:

R—00e-06-0
5]

=- / / llo, ()1 o(t, x)d xdt . (57)
4]

As a last step, we should evaluate the limit of the first term in the r.h.s. of Eq. (52), which writes: f,:z [ 0w, 5.8t X)0, (1, x)dxd] .
Here the domination argument allowing to interchange limits and integrals requires more attention, and is justified by the following
lemma, whose proof is provided at the end of the section.

5]
lim lim lim/ /<VW6,6,R(’v x), U5 ()0, (t, x)d xdt
n

Lemma 15. Lett, > t; > 0 be fixed. For every R,e > 0, there exists a constant Cr, such that for every 6 € (0,1), t € [1},1,], x € R4,
|011I/g,5,R(7s x)| < CR,E s (58)
forevery t <T, 6 > 0, and every x € R.

By Eq. (58) and by the continuity of the map ¢ — 9,0° (see the proof of Lemma 15), we can expand the first term in the r.h.s. of
Eq. (52) as:

5] 5]
/ / 0 5.1t X)dpt (x)dit = / / 0y, 5. r(t: X)0"°(t, x)dxdt + o, g(5), (59)
n 1
where o, z(6) represents a term which tends to zero as 6 — 0, for fixed values of ¢, R. Note that:

2 0108’5(7s X)
059 (t,x)
Plugging this equality into (59) and noting that U, is even (because U and 7, are), we obtain:

L5}
/ /aTWE,E,R(Is X0 (t, x)dxdt
1

5]
=¢? / / 9,0 (t, x) y g (x)d xdt
L5

t
+% / / / U, (x = y)3,(6°° (¢, »)0"° (t, X)) g (X) y g (W)d xd ydt
1

oy, 5 r(1,X) =0 JR(X) + / U, (x = ) xr() xr(x)9,0°° (1, »)dy . (60)

= o2 / 0% (ty, x) yg(x)dx — &* / ot ) g
+ % // U, (x— y)IR(X)){R(y)OE,E(IZ’x)osﬁ(lz,y)dxdy

_ % // U (x— .V)IR(X)){R(X)OEJS(II’x)os,é(tl’y)dxdy.

By the dominated convergence theorem, we finally obtain:
153
fir i | awesat-0droa =
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: // Utx = yolty, Nolty, dxdy - 1 // U(x - p)olt,, x)o(t,. ydxdy. 61)

Putting together Eq. (54), (57) and (61), and passing to the limit in the continuity equation (52), the statement of Proposition 6
follows.

Proof of Lemma 15. Using Eq. (52) and integration by parts,
0°(ty, x) — 0° (11, X)

t) ¥}
= / /(Vns(x = 9,6, p)Ydp(y)ds + o> / / An(x — y)ydp,(y)ds.
1 1

since p & P5(C), sup,epiry 15(r. p)ll < CCL+ 131 + € f sup,eu 7y l1x;lldp(x). As a consequence, sup,(y 7 16y, p)Il < C(1+ [1yll) . Along
with the observation that, for any fixed ¢, Vi, and 45, are bounded, it follows that # — ¢ (¢, x) is Lipschitz continuous on [#,,7,], and
that its derivative almost everywhere is given by: 9,0°(z, x) = / {(Vn(x = y), b(y, p;)) + An.(x — y))dp,(y). Thus, there exists a constant
C, > 0, such that:

sup 0,0°(t,x) < C, .
t€[t) 1], xeRY

Considering the second term in the r.h.s. of Eq. (60), the presence of the product of the compactly supported functions yz(x)yg(»)
implies that the former is bounded in absolute value:

/ U, (x = Y xr(0) xr(x)0,0°(t, »)dy| < Cp, .

On the otherhand, using the lower bound (45), the first term in the r.h.s. of Eq. (60), is also bounded, and finally, Eq. (58) follows.
6.2. Proof of Proposition 7

The map o pe J€(p,) is real valued and lower semicontinuous by Proposition 6 and Fatou’s lemma. Moreover, for every
p E Vo, H(D,(p) — H(p) = H(py) — H(p,) = —f€t+€f llvg|12d p,ds. Therefore, #(®,(p)) is decreasing w.r.t. ¢, and, as such, # is
a Lyapunov function. In addition, the identity %@t(p)) = %(p) for all 7, is equivalent to: v, = 0 p,-a.e., for every ¢ > ¢. By Lemma
14, this implies that p, = p, for all 7 > €. Thus, %(dj,(ﬂ)) = %(p) for all 7, if and only if v, = 0 and p, = p, for all . This means that
# is a Lyapunov function for the set A,. The first point is proven.

Consider a recurrent point p € V,, say p = lim @, (p). By Proposition 3, p € A,, for any e > 0. This means that there exists 4 € S
such that p, = y for all > 0. By continuity of the map ()4, py = lim Py, Thus, py = p. This means that p, = u for all r > 0, which
writes p € Aj. The proof is complete.

6.3. Proof of Proposition 8

Since f = 1, we obtain by Assumption 6 that VU and VV are Lipschitz continuous, therefore, the functions U and V are weakly
convex. Thus, we obtain from our assumptions that the functions U and V with U being even are differentiable, weakly convex,
and they satisfy the doubling assumption. In these conditions, the following facts hold true by [22, Th. 11.2.8] (see also, e.g., [49]):
for each measure v, € P,(R?), there exists an unique function ¢ ~ v, € P,(R?) that satisfies the following properties:

@ v, —-vyasrlo.
(i) sup,cpo.ry S IIxlI?v;(dx) < oo for each T > 0.

(iii) The measure v, has a density n, = dv,/d.%“ for each ¢ > 0. This density satisfies 5, € Llloc((O, ©); W]:)’cl (R9Y).

(iv) The continuity equation
oV, + V- (v,w,) =0
is satisfied in the distributional sense, where

62Vn,(x)

wy(x) = _—ﬂ[(x)

- VV(x)— / VU (x = y)n,(y)dy.

™) [lwill 2,y € Lip(0: ).

Furthermore, the function ¢ ~ v, is the solution of the gradient flow in P,(R¢) of the functional 7 provided in the statement, and
w, € —0.5¢(v,), where 0. is the Fréchet sub-differential of .7#. From the general properties of the gradient flows detailed in [22,
Chap. 111, one can then check that we can write v, = ¥,(v,) where ¥ is a semi-flow on P,(R9).

With this at hand, all we have to do is to check that for each p € V,, the function ¢ ~ p, satisfies the five properties stated
above. The first two hold true for each { € P,(C): to check the first one, let X ~ {. Observe that X, —,_, X, by continuity and
that || X, — X,|I> < 28Upyeo 1 [IX,||> for ¢ small, and use the Dominated Convergence. The second property follows from the very
definition of P,(C). Property 3 follows from Lemma 13. By Lemma 14, the continuity equation is satisfied by the function 7  p,
with v, = w,, hence Property 4. Finally, Property 5 follows from Proposition 6, Eq. (18). This completes the proof of Proposition 8.
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6.4. Proof of Proposition 9
First, we will show Eq. (12). Let u € P,(RY),

/ (. box, 1)) () = — / (. YV (0)du(x) — / / (2. VU (x = ) u(x)du(y).

Since U is even, VU(—x) = —VU(x). Therefore,
/ / (x, VU = DMU) = / / (x = 3, VU (x = ) dp(0)d ().
Recalling that (VU (x),x) > —C and (x, VV(x)) > A||x||?, Eq. (12) holds:
/ (o, b, ) () < =2 / IxIPduce) +C .
Eq. (13) is obtained by the same computation as above, where in addition, we used ||VU(x)|| < C(1 + ||x|]). Let u € Py(R%),
/ (x, b(x, )1 x[1*d u(x)
= - [ vvenistau - [ [ vue - mixiPdueodo
== [ venistiaue - [ [ =906 - mixiPaucduo)
- / / (3, VU (x = p)lIxl1*d u(x)d u(y)
<=i [ 1itanco+ ¢ [ixanco+c [ [ ixPisiduean)
sc [ [uPitanann+c [ [ ixPimraucoduo.

By Cauchy-Schwarz’s inequality,

12

/ / I Iyl duCoduty) < / xR ucx) ( / IIxI|4d/4(x)> :
1/4

/ / IxI2 Iyl duCoduty) < / x2duco) ( / IIXI|4d/4(x)> .

Therefore, we obtain Eq. (13)

/ (x, bCx, ) Ix]1d u(x)

12
< / Il du) + € (1 N / IIXIIZdﬂ(X)) (1 N ( / IIXI|4d/4(X)> >

6.5. Proof of Theorem 4

The convergence provided in the statement follows at once from Proposition 8 and Theorem 2. We need to prove that S = A,
when A, = {p®}. For an absolutely continuous probability measure dv(x) = n(x)dx € P,(RY) with n € C'(R,R), write

u,(x) = =VV(x) - / VU(x = pn(y)dy = 6V logn(x).

With this at hand, using Eq. (18) in conjunction with the identity p* = ¥,(p™) for each ¢ > 0 shows that u,~(x) = 0 for p*-almost
all x. This shows that p® € S. On the other hand, for v # p*® in P,(R?), we obtain from Eq. (18) that the function ¢ —~ J#(¥,(v)) is
strictly decreasing. Thus, [ llu,l|>dv > 0 which shows that v & S.
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Appendix. Technical proofs

A.1. Proof of Proposition 1

Let I c R, we denote by C(I,R?) the set of continuous function from I to R?. One can show, that (") is a Cauchy sequence in
the complete space (P,(C([0, k1, R9)Y), W,). Thus, there exists a sequence of compact sets (Kj) in C([0, k], R9) such that:

€
(ﬂlo,kj)#Pn(Kk) >1- 2_“ s

for all k € N*. Let K := ﬂkzl ﬂ[_olkJ(Kk) C C. The union bound yields p"(K) > 1 —¢. Referring to [50, Th. 2, Sec. X, Chapter 5], K has

a compact closure in C. Hence, there exists a converging subsequence (Py,) converging to p € P(C). Following the proof of [32, Th.
6.18], one can readily check that lim,,_, ., W,((z x))40> (7(0.k1)4p) = O, for every k. Consequently, lim,_,, W,(o", p) = 0, which means
the completeness of 7,(C). It remains to obtain its separability.

As C is Polish, there exists a dense sequence (x,) in C. Following the proof of [32, Th. 6.18], one can construct a sequence (p")
in P,(C) from (x,), such that ((z 4))4p") is dense in C([0, k],R?) for every k. With this result, it can be verified that (p") is dense in
P,(0).

A.2. Proof of Lemma 2

Since Proposition 1 holds, (I(p")) is a weakx-relatively compact sequence in P(C), and there exists a sequence of compact sets
(Kp) in C, such that

1K) > 1= .
for every k € N* and every n € N*. Let £ > 0. We define the relatively compact set in P(C):
K, = {p eP(C) : p(Ky)>1-— k_le , for every k € N*, such that ke > 1} .
The union bound and Markov’s inequality yields:
P(p"ek,)>1-¢ (A1)

for every n € N*.
To be relatively compact in P,(C), the set K, must satisfy Eq. (p-UD). Since the sequence (I(p")) has uniformly integrable
p-moments, there exists a sequence (ay ;) en+2> Such that for every / € N*, lim_,, a,; = oo, and

1
Yk, 1) € (N*)?, sup E / sup ||x,]|P1 dp"(x)| £ ——.
s el0] 1 ’ES;JOI?I]IIX,||>HI<J ki2k+

For £ > 0, we define a set that satisfies Eq. (p-UI):

N
1€[0,7] 1€[0,1]

U, = {p €P,0) : / sup [1x1P1 gy 1y, 10, 4P(X) < i k1€ N*} .
Using Markov’s inequality and the union bound, we obtain

P(p"el,)>1-¢. (A2)
Putting together Egs. (A.1) and (A.2),

P(p"ek,nV,)>1-2¢.
K, NV, is a relatively compact set in P,(C). Thus, (p") is tight in P,(C).

A.3. Proof of Lemma 3

Given G = G4, h. 1500, € Gp» We first want to show that G(p") — G(p™) as p" — p* in P,(C). This last convergence is
characterized by the fact that p” — p*® in P(C), and that the sequence (p") has uniformly integrable p-moments defined by (p-UI).
We write G(p") = f g(x, p")d p"(x), where for x in C and p € P, (C):

g(x.p) i= (P(x,) — P(x,)—
t
/ ((V(x,). ey ) + 0 (s p)" Hy(x,)0(x,2,)) du) h(x).
and A(x) := ]_[;=1 hj(x;).
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We claim that g is a continuous bounded function on C X {p" : n € N}. The continuity is given by the assumptions on b. Using
Cauchy-Schwarz inequality, we state a useful inequality:

1
lgx. )| < C (1 + / ||V¢<xl,>||||b<xu,pl,>||du> :

where C = ||A|l, max (2[|¢llo, + lol|2,( = $)|Hgll - 1). Since ¢ is compactly supported, by Assumption 1:

b(x,p") < C (1 +tsup/ sup IIyuIIdp"(y)>-

neN u€el0,7]
The sequence (p") has uniformly integrable p-moments in 7,(C), consequently we obtain the bound:

sup b(x,p") < 00.
x€C,neNU{oo}

Let £ > 0. Since, p" — p™ in P,(C), the set {p" : n € N} is a compact subspace of P,(C). Hence, there exists a compact subspace
K C C satisfying
sup  p"(K°) <e,
neNU{eo}

where K¢ denotes set of function x € C that doesn’t belong to K. By Stone-Weierstrass’s theorem, there exits k, € N* and continuous
bounded functions (f;, hiepk,) € (C(C, R)x C({p" : n € N},R)e satisfying

V(x,n) € LXNU {o0}, <e.

> LR (" - gx, o)

i€lk, 1

Note that for n € N,

1G(") = G(p™)| < |GG~ Y, / [ix)dp" Oy (p")

i€lk, ]

+ Y / F10dp® ()R, (p%) = G(p™)
i€lk,]

+ 2 / [idp" ("N = Y / [i)dp™ ) (p™)|. (A3)
i€lk,] i€lkg]

For n € NU {0}, we decompose G(p") as follows

G(p") = /lee;c (g(x,p")— D f,v(X)h,-(p")) dp"(x)

i€l
+/le€lCL‘ (g(x,p")— Z fi(x)gi(pn)> dp"(x) + Z /fi(x)dﬂn(x)hi(ﬂn)~
i€k, i€k, ]

For every ¢ > 0, since g is bounded, we obtain

sup <2e¢.

neNU{oo}

GG - Y / £16dp" ()hy(p")
i€lk,]

Consequently, using the latter result in Eq. (A.3), we obtain

1G(p") = G(p™)]
> / [idp" ()hy(p") —
i€lk,]

Since, f; and h; are continuous bounded functions, we obtain for every £ > 0

<4de+ .

/ Fi(x)dp™ (0)h;(p%)
i€lke]

limsup |G(p") — G(p™)| < 4e,
n—o0
which concludes the proof.
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