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 A B S T R A C T

We consider a discrete-time system of 𝑛 coupled random vectors, a.k.a. interacting particles. The 
dynamics involve a vanishing step size, some random centered perturbations, and a mean vector 
field which induces the coupling between the particles. We study the doubly asymptotic regime 
where both the number of iterations and the number 𝑛 of particles tend to infinity, without any 
constraint on the relative rates of convergence of these two parameters. We establish that the 
empirical measure of the interpolated trajectories of the particles converges in probability, in 
an ergodic sense, to the set of recurrent McKean–Vlasov distributions. We also consider the 
pointwise convergence of the empirical measures of the particles. We consider the example of 
the granular media equation, where the particles are shown to converge to a critical point of 
the Helmholtz energy.

1. Introduction

Given two integers 𝑛, 𝑑 > 0, consider the iterative algorithm defined as follows. Starting with the 𝑛-uple (𝑋1,𝑛
0 ,… , 𝑋𝑛,𝑛

0 ) of random 
variables 𝑋𝑖,𝑛

0 ∈ R𝑑 , the algorithm generates at the iteration 𝑘+1 for 𝑘 ∈ N the 𝑛-uple of R𝑑 -valued random variables (𝑋1,𝑛
𝑘 ,… , 𝑋𝑛,𝑛

𝑘 ), 
referred to as the particles, according to the dynamics: 

𝑋𝑖,𝑛
𝑘+1 = 𝑋𝑖,𝑛

𝑘 + 𝛾𝑘+1𝑏(𝑋
𝑖,𝑛
𝑘 , 𝜇

𝑛
𝑘) +

√

2𝛾𝑘+1𝜉
𝑖,𝑛
𝑘+1 + 𝛾𝑘+1𝜁

𝑖,𝑛
𝑘+1 , (1)

for each 𝑖 ∈ [𝑛] where [𝑛] ∶= {1,… , 𝑛}, where 

𝜇𝑛𝑘 ∶=
1
𝑛

𝑛
∑

𝑖=1
𝛿𝑋𝑖,𝑛𝑘

. (2)

In this equation, 𝑏 ∶ R𝑑 × 𝑝(R𝑑 ) → R𝑑 is a continuous vector field, where, for some 𝑝 ∈ [1, 2], 𝑝(R𝑑 ) is the space of 
probability measures with a finite 𝑝th order, equipped with the Wasserstein distance. Moreover, (𝛾𝑘)𝑘 is a vanishing sequence of 
deterministic positive step sizes, ((𝜉𝑖,𝑛𝑘 )𝑖∈[𝑛])𝑘∈N∗  and ((𝜁 𝑖,𝑛𝑘 )𝑖∈[𝑛])𝑘∈N∗  are R𝑑×𝑛-valued random noise sequences in the time parameter 𝑘. 
We assume that for each 𝑛, the 𝑛-uple (𝑋1,𝑛

0 ,… , 𝑋𝑛,𝑛
0 ) is exchangeable. We also assume the exchangeability of the 𝑛-uple of sequences 

((𝜉1,𝑛𝑘 )𝑘∈N∗ ,… , (𝜉𝑛,𝑛𝑘 )𝑘∈N∗ ) and ((𝜁1,𝑛𝑘 )𝑘∈N∗ ,… , (𝜁𝑛,𝑛𝑘 )𝑘∈N∗ ). Defining, for each 𝑛 > 0, the filtration (𝑛
𝑘 )𝑘∈N as: 

𝑛
𝑘 ∶= 𝜎((𝑋𝑖,𝑛

0 )𝑖∈[𝑛], ((𝜉
𝑖,𝑛
𝓁 )𝑖∈[𝑛])𝓁≤𝑘, ((𝜁

𝑖,𝑛
𝓁 )𝑖∈[𝑛])𝓁≤𝑘), (3)
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we assume that for each 𝑛, the sequence ((𝜉𝑖,𝑛𝑘 )𝑖∈[𝑛])𝑘 is a (𝑛
𝑘 )𝑘-martingale increment sequence i.e., E(𝜉

𝑖,𝑛
𝑘+1|

𝑛
𝑘 ) = 0. Finally, we assume 

that

E(𝜉𝑖,𝑛𝑘+1(𝜉
𝑗,𝑛
𝑘+1)

𝑇
|𝑛
𝑘 ) = 𝜎(𝑋𝑖,𝑛

𝑘 , 𝜇
𝑛
𝑘)𝜎(𝑋

𝑗,𝑛
𝑘 , 𝜇𝑛𝑘)

𝑇1𝑖=𝑗

for some 𝜎 ∶ R𝑑 × 𝑝(R𝑑 ) → R𝑑×𝑑′ , with 𝑑′ > 0. 
The aim of the paper is to characterize the asymptotic behavior of the empirical measure of the particles 𝜇𝑛𝑘 in the regime where 

both the time index 𝑘 and the number of particles 𝑛 tend to infinity (denoted hereinafter as (𝑘, 𝑛) → (∞,∞)), without any constraint 
on the relative rates of convergence of these two parameters. To this end, we consider for each 𝑖 ∈ [𝑛] the random continuous 
process 𝑋̄𝑖,𝑛 ∶ [0,∞) → R𝑑 , 𝑡 ↦ 𝑋̄𝑖,𝑛

𝑡  defined as the piecewise linear interpolation of the particles (𝑋𝑖,𝑛
𝑘 )𝑘. Specifically, writing 

𝜏𝑘 ∶=
𝑘
∑

𝑗=1
𝛾𝑗 (4)

for each 𝑘 ∈ N, we define: 

∀𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1), 𝑋̄𝑖,𝑛
𝑡 ∶= 𝑋𝑖,𝑛

𝑘 +
𝑡 − 𝜏𝑘
𝛾𝑘+1

(

𝑋𝑖,𝑛
𝑘+1 −𝑋

𝑖,𝑛
𝑘

)

. (5)

The interpolated processes 𝑋̄𝑖,𝑛, for 𝑖 ∈ [𝑛], are elements of the set  of the [0,∞) → R𝑑 continuous functions, equipped with the 
topology of uniform convergence on compact intervals. This paper studies the empirical measure of these processes: 

𝑚𝑛 ∶= 1
𝑛

𝑛
∑

𝑖=1
𝛿𝑋̄𝑖,𝑛 . (6)

For each 𝑛 and each 𝑝 ∈ [1, 2], 𝑚𝑛 is a random variable on the space 𝑝() of probability measures on  with a finite 𝑝-moment, 
equipped with the 𝑝-Wasserstein metric 𝖶𝑝 (precise definitions of these notions provided below). Our aim is to analyze the 
convergence in probability, of the shifted random measures

𝛷𝑡(𝑚𝑛) =
1
𝑛

𝑛
∑

𝑖=1
𝛿𝑋̄𝑖,𝑛𝑡+ ⋅

,

when both 𝑛 and 𝑡 converge to infinity with arbitrary relative rates, where for every 𝑚 ∈ 𝑝(), 𝛷𝑡(𝑚) ∈ 𝑝() is defined by 
𝛷𝑡(𝑚)(𝑓 ) = ∫ 𝑓 (𝑥(𝑡 + ⋅ ))𝑑𝑚(𝑥) for every bounded continuous function 𝑓 on . Under mild assumptions on the vector field 𝑏, and 
some moment assumptions on the iterates and on the noise sequence ((𝜁 𝑖,𝑛𝑘 )𝑖∈[𝑛])𝑘, ensuring that the effect of the latter becomes 
negligible in our asymptotic regime, we establish the following result, which we explain hereafter.
Main theorem (informal). The sequence (𝛷𝑡(𝑚𝑛)) ergodically converges in probability as (𝑡, 𝑛) → (∞,∞) to the set of recurrent 
McKean–Vlasov distributions.

Let us explain what the terms McKean–Vlasov distribution, recurrent, and ergodic convergence mean in this paper. Here, a McKean–
Vlasov distribution 𝜌 is defined as the law of a R𝑑 -valued process (𝑋𝑡 ∶ 𝑡 ∈ R) satisfying the following condition: for every smooth 
enough compactly supported function 𝜙, the process

𝜙(𝑋𝑡) − ∫

𝑡

0
𝐿(𝜌𝑠)(𝜙)(𝑋𝑠)𝑑𝑠

is a martingale, where 𝜌𝑡 the marginal law of 𝑋𝑡, and where the linear operator 𝐿(𝜌𝑡) associates to 𝜙 the function 𝐿(𝜌𝑡)(𝜙) given by: 
𝑥 ↦ ⟨𝑏(𝑥, 𝜌𝑡),∇𝜙(𝑥)⟩ + tr(𝜎(𝑥, 𝜌𝑡)𝑇𝐻𝜙(𝑥)𝜎(𝑥, 𝜌𝑡)) ,

where 𝐻𝜙 is the Hessian matrix of 𝜙 and tr denotes the Trace operator. 
A McKean–Vlasov distribution 𝜌 is said recurrent if, for some sequence (𝑡𝑘) → ∞, 𝜌 = lim𝑘→∞𝛷𝑡𝑘 (𝜌). The 𝖶𝑝-closure of the set 

of recurrent McKean–Vlasov distributions will be referred to as the Birkhoff center, and denoted by BC𝑝, following the terminology 
used for general dynamical systems.

By ergodic convergence, we refer to the fact that the time averaged Wasserstein distance between the measures 𝛷𝑡(𝑚𝑛) and the 
Birkhoff center converges to zero. Our main theorem can thus be written more precisely:

1
𝑡 ∫

𝑡

0
𝖶𝑝(𝛷𝑠(𝑚𝑛),BC𝑝)𝑑𝑠 ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→(𝑡,𝑛)→(∞,∞)

0 ,  in probability.

The Birkhoff center can be characterized in a useful way, provided that one is able to show the existence of a Lyapunov function, 
namely a function 𝐹  on 𝑝() such that, for every McKean–Vlasov distribution 𝜌, 𝐹 (𝛷𝑡(𝜌)) is non-increasing in the variable 𝑡. Indeed, 
in such a situation, the Birkhoff center is included in the subset 𝛬 of McKean–Vlasov distributions which satisfy the property that 
𝑡↦ 𝐹 (𝛷𝑡(𝜌)) is constant whenever 𝜌 ∈ 𝛬.

Finally, in the case where the McKean–Vlasov dynamics can be cast in the form of a gradient flow in the space of measures 
𝑝(R𝑑 ), and in case this gradient flow has a global attractor 𝐴𝑝, we show that

𝑊𝑝
(

𝜇𝑛𝑘, 𝐴𝑝
)

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0 in probability.

To illustrate our results, we provide an important example of a McKean–Vlasov distribution where these results can be applied: 
the granular media equation. Additionally, our results can also be applied in several machine learning applications, such as two-layer 
neural networks or the Stein Variational Gradient Descent (SVGD) algorithm.
2 
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Granular media. Our example is in 2() and corresponds to the scenario where 𝜎(𝑥, 𝜇) = 𝜎𝐼𝑑 for some real constant 𝜎 ≥ 0, and 
with a slight abuse of notation the vector field 𝑏 takes the form 𝑏(𝑥, 𝜇) = ∫ 𝑏(𝑥, 𝑦)𝑑𝜇(𝑦), with:

𝑏(𝑥, 𝑦) = −∇𝑉 (𝑥) − ∇𝑈 (𝑥 − 𝑦) ,

where the confinement potential 𝑉  and the interaction potential 𝑈 denote two real differentiable functions on R𝑑 , whose gradients 
satisfy some linear growth condition. In this case, a Lyapunov function if provided by the Helmholtz energy. As a consequence of our 
main result, we establish that, when 𝜎 > 0, the empirical measures (𝜇𝑛𝑘) converge ergodically in probability as (𝑘, 𝑛) → (∞,∞) to the 
set  of critical points of the Helmholtz energy, namely:

∑𝑘
𝑙=1 𝛾𝑙𝑊2(𝜇𝑛𝑙 ,)

∑𝑘
𝑙=1 𝛾𝑙

←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑛,𝑘)→(∞,∞)

0 ,  in probability.

where, this time, 𝑊2 represents the classical Wasserstein distance, and where  is the set of probability measures 𝜇 on R𝑑 which 
admit a second order moment and a density 𝑑𝜇∕𝑑L 𝑑 w.r.t. the Lebesgue measure, and such that:

∇𝑉 (𝑥) + ∫ ∇𝑈 (𝑥 − 𝑦)𝑑𝜇(𝑦) + 𝜎2∇ log
𝑑𝜇
𝑑L 𝑑 (𝑥) = 0 ,

for 𝜇-almost every 𝑥. Our result holds under mild assumptions, and does not require the rather classical strong convexity or doubling 
conditions on 𝑈 and/or 𝑉 .

Contributions. Compared to existing works, our contributions are threefold. First, our results hold under mild assumptions 
on the vector field 𝑏 aside from continuity and linear growth, whereas most of the existing works (see below) rely on stronger 
conditions, such as Lipschitz, doubling or even global boundedness conditions. Second, we address the case of discrete-time systems 
with a step size vanishing arbitrarily slowly towards 0, whereas the continuous time model is more often considered in the literature. 
Discrete-time algorithms are important in applications, such as neural networks, transformers, Monte Carlo simulations or numerical 
solvers. In particular, stability results are more difficult to establish in this setting. Finally, our result focuses on a double limit 
(𝑘, 𝑛) → (∞,∞). At the exception of some papers listed below, the results of the same kind generally consider the case, where the 
time window is fixed, while the number of particles grows to infinity, ignoring long time convergence, or assume certain constraints 
on the relative rate of convergence of the two variables.

About the literature. The first results addressing the limiting behavior of a finite system of particles are provided in the context 
of the propagation of chaos. These findings are discussed in detail in [1]. Such results have broad applicability across a variety of 
particle systems, where the interacting term 𝑏 can manifest in various forms [2–5]. In our case, if we set aside the transition from 
continuous to discrete time, such results typically establish the convergence to zero of the expectation of the squared Wasserstein 
distance between the empirical measure of the particles, over some fixed time interval [0, 𝑇 ], and a McKean–Vlasov distribution with 
the same initial measure. Under classical assumptions, this convergence occurs at a rate of 1∕𝑛, where 𝑛 is the number of particles, 
but with a constant that grows exponentially with 𝑇 . This type of result performs poorly in the long run, making the achievement 
of the double limit in both time and the number of particles unattainable.

By imposing additional assumptions, one can derive a bound that is uniform in time, thereby explicitly addressing the double 
asymptotic regime. However, these uniform-in-time propagation of chaos results are typically established in continuous time. The 
paper [6] bridges the gap between continuous and discrete time in the specific context where uniform-in-time propagation of chaos 
holds for the continuous-time particle system, allowing for the recovery of our results. They demonstrate that the limiting distribution 
of the discrete-time particle system coincides with that of the continuous-time particle system. When uniform-in-time propagation 
of chaos holds, the limiting distributions of the continuous-time particle system converge to the unique stationary distribution of 
the associated McKean–Vlasov system as time grows. This, in turn, implies the convergence of the discrete-time particle system to 
the McKean–Vlasov stationary distribution in the doubly asymptotic regime. However, it should be noted that when applying the 
results of [6], we lose the convergence rate provided by uniform-in-time propagation of chaos, and the resulting result is no better 
than ours in the restrictive case where it is applicable.

Our contribution lies in the fact that our assumptions are weaker than those requiring uniform-in-time propagation of chaos, 
which are generally too strong for practical applications. Specifically, the first paper to address uniform-in-time propagation of 
chaos in the granular media setting is [7], which requires the strong convexity of the confinement potential and the convexity of 
the interaction potential. Later, [8] relaxed the strong convexity assumption on the confinement potential. [9] proposed a uniform-
in-time propagation of chaos result when the confinement potential is strongly convex outside a ball, and the interaction potential 
has a sufficiently small Lipschitz constant. More recently, [10–12] provide sharp uniform-in-time propagation of chaos results under 
a Log-Sobolev inequality on the vector field 𝑏 and a noise with variance large enough.

As highlighted in [13], achieving uniform propagation of chaos over time is only possible when a unique McKean–Vlasov 
stationary distribution exists. A condition that [14] has demonstrated is not always met. In this regard, our assumptions are 
weaker, allowing for the existence of multiple stationary distributions. It is noteworthy that the study of McKean–Vlasov stationary 
distributions in cases where the uniqueness of such distributions does not hold remains an open area of research. For instance, [15] 
explores the stability of stationary distributions. Additionally, [16] explores a general class of non-linear Markov processes in 
finite-dimensional space and proposes a method to obtain Lyapunov functions for these processes.

Among papers that address the long-run convergence of discrete-time particle systems, [17] employs an implicit Euler scheme 
for the granular media case, assuming a zero potential function and strongly convex interaction. The work in [18] studies a Jordan–
Kinderlehrer–Otto (JKO) scheme for granular media, assuming a strongly convex confinement potential. The contribution of [19] is 
3 
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the closest to the present work, considering an equation similar to Eq. (1), but assumes that 𝑏 is globally bounded and only addresses 
the convergence of the expectation of the empirical measure, not convergence in probability.  Lastly, [20] is closely related but 
not specific to McKean–Vlasov processes, as it does not consider particle systems or double limits. However, it establishes ergodic 
convergence of the empirical measure of a weak asymptotic pseudotrajectory to the Birkhoff center of a flow on a metric space, 
similar in spirit to our approach.

Finally, let us review some applications of our model. Particle systems have historically been motivated by statistical physics. 
However, in recent decades, they have found utility in various models including neural networks, Markov Chain Monte Carlo theory, 
mathematical biology, and mean fields game, among others. A well-known model in statistical physics is granular media [21]. This 
model has been extensively studied due to its property of being a gradient system, and the uniform propagation of chaos over time 
works well within this model. It can also be described by a gradient flow [22]. In Markov Chain Monte Carlo theory, the Stein 
Variational Gradient Descent estimates a target distribution using a particle system [23,24], and the convergence of this algorithm 
remains an open question. Wide Neural Networks can also be represented by particle systems. A convergence result to the minimizers 
of the risk is attainable when both time and the number of particles tend to infinity [25]. Here, the authors establish convergence 
to gradient descent in continuous time and in the double asymptotic regime. The paper [26] establishes the convergence of noisy 
stochastic gradient descent when the number of iterations depends on the number of particles. See also [27–31] for related works.

2. The setting

We begin by introducing some notations and by recalling some definitions.

2.1. Notations

2.1.1. General notations
We denote by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ the inner product and the corresponding norm in a Euclidean space. We use the same notation in 

an infinite dimensional space, to denote the standard dual pairing and the operator norm.
For 𝑘 ∈ N∪{∞}, we denote by 𝐶𝑘(R𝑑 ,R𝑞) the set of functions which are continuously differentiable up to the order 𝑘. We denote 

by 𝐶𝑐 (R𝑑 ,R) the set of R𝑑 → R continuous functions with compact support. Given 𝑝 ∈ N∗ ∪ {∞}, we denote as 𝐶𝑝𝑐 (R𝑑 ,R) the set of 
compactly supported R𝑑 → R functions which are continuously differentiable up to the order 𝑝.

We denote by  the set of the [0,∞) → R𝑑 continuous functions. It is well-known that the space  endowed with the topology 
of the uniform convergence on the compact intervals of [0,∞) is a Polish space.

We denote by conv(𝐴) the convex hull of a set 𝐴.

2.1.2. Random variables
The notation 𝑓#𝜇 stands for the pushforward of the measure 𝜇 by the map 𝑓 , that is, 𝑓#𝜇 = 𝜇◦𝑓−1.
For 𝑡 ≥ 0, we define the projections 𝜋𝑡 and 𝜋[0,𝑡] as 𝜋𝑡 ∶ (R𝑑 )[0,∞) → R𝑑 , 𝑥 ↦ 𝑥𝑡 and 𝜋[0,𝑡] ∶ (R𝑑 )[0,∞) → (R𝑑 )[0,𝑡], 𝑥 ↦ (𝑥𝑢 ∶ 𝑢 ∈ [0, 𝑡]).
Let 𝑝 ≥ 1. For 𝜌 ∈ 𝑝(), we denote

𝜌𝑡 ∶= (𝜋𝑡)#𝜌 .

Let (𝛺, ,P) be a probability space. We say that a collection 𝐴 of random variables on 𝛺 → 𝐸 is tight in 𝐸, if the family 
{𝑋#P ∶ 𝑋 ∈ 𝐴} is weak⋆-relatively compact in (𝐸) i.e., has a weak⋆ compact closure in (𝐸).

We say that a 𝑛-uple of random variables (𝑋1,… , 𝑋𝑛) is exchangeable, if its distribution is invariant by any permutation on [𝑛].
Let T represent either N or [0,+∞). Let (𝑈𝑛

𝑡 ∶ 𝑡 ∈ T, 𝑛 ∈ N) be a collection of random variables on a metric space (𝐸, 𝖽). We say 
that (𝑈𝑛

𝑡 ) converges in probability to 𝑈 as (𝑡, 𝑛) → (∞,∞) if, for every 𝜖 > 0, the net (P(𝖽(𝑈𝑛
𝑡 , 𝑈 ) > 𝜖) ∶ 𝑡 ∈ T, 𝑛 ∈ N) converges to 

zero as 𝑡 and 𝑛 both converge to ∞. We denote this by 𝑈𝑛
𝑡

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑡,𝑛)→(∞,∞)

𝑈 . When (𝑈𝑛
𝑡 ) is deterministic, we write 𝑈𝑛

𝑡 ←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑡,𝑛)→(∞,∞)

𝑈 . 
Moreover, assuming that the collection of random variables (𝑈𝑛

𝑡 ∶ 𝑡 ∈ T, 𝑛 ∈ N) are real valued, we say that the latter collection is
uniformly integrable if:

lim
𝑎→∞

sup
𝑡∈T,𝑛∈N∗

E
[

|

|

𝑈𝑛
𝑡
|

|

1
|

|

|

𝑈𝑛𝑡
|

|

|

>𝑎

]

= 0 .

We define lim sup
(𝑡,𝑛)→(∞,∞)

𝑈𝑛
𝑡 ∶= inf

𝑡∈T,𝑛∈N
sup

𝑠≥𝑡,𝑘≥𝑛
𝑈𝑘
𝑠 . Finally, for any 𝑑 ∈ N∗, L 𝑑 stands for the Lebesgue measure on R𝑑 .

2.2. Spaces of probability measures

Let (𝐸, 𝖽) denote a Polish space. If  ⊂ 𝐸 is a subset, we define 𝖽(𝑥,) ∶= inf{𝖽(𝑥, 𝑦) ∶ 𝑦 ∈ }, with inf ∅ = ∞. We say that a net 
(𝜇𝛼) converges to  if 𝖽(𝑥𝛼 ,) →𝛼 0.

We denote by (𝐸) the set of probability measures on the Borel 𝜎-algebra (𝐸). We equip (𝐸) with the weak⋆ topology. Note 
that (𝐸) is a Polish space. We denote by 𝑑𝐿 the Levy–Prokhorov distance on (𝐸), which is compatible with the weak⋆ topology. 
We define the intensity of a random variable 𝜌 ∶ 𝛺 → (𝐸), as the measure I(𝜌) ∈ (𝐸) that satisfies

∀𝐴 ∈  , I(𝜌)(𝐴) ∶= E (𝜌(𝐴)) .
4 
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Lemma 1 ([2]).  A sequence (𝜌𝑛) of random variables on (𝐸) is tight if and only if the sequence (I(𝜌𝑛)) is weak⋆-relatively compact.
Let 𝑝 ≥ 1. If 𝐸 is a Banach space, we define

𝑝(𝐸) ∶= {𝜇 ∈ (𝐸) ∶ ∫ ‖𝑥‖𝑝𝑑𝜇(𝑥) < ∞} .

We define the Wasserstein distance of order 𝑝 on 𝑝(𝐸) by 

𝑊𝑝(𝜇, 𝜈) ∶=
(

inf
𝜍∈𝛱(𝜇,𝜈)∫ ‖𝑥 − 𝑦‖𝑝𝑑𝜍(𝑥, 𝑦)

)1∕𝑝
, (7)

where 𝛱(𝜇, 𝜈) is the set of measures 𝜍 ∈ (𝐸 ×𝐸), such that 𝜍( ⋅ ×𝐸) = 𝜇 and 𝜍(𝐸 × ⋅ ) = 𝜈. We denote by 𝛱0
𝑝 (𝜇, 𝜈) the set of optimal 

transport plans i.e., the set of measures 𝜍 ∈ 𝛱(𝜇, 𝜈) achieving the infimum in Eq. (7). The set 𝑝(𝐸) is endowed with the distance 
𝑊𝑝. Define:

𝑝()∶ = {𝜌 ∈ () ∶ ∀𝑇 > 0, ∫ sup
𝑡∈[0,𝑇 ]

‖𝑥𝑡‖
𝑝𝑑𝜌(𝑥) < ∞} .

For every 𝜌, 𝜌′ ∈ 𝑝(), we define:

𝖶𝑝(𝜌, 𝜌′)∶ =
∞
∑

𝑛=1
2−𝑛(1 ∧𝑊𝑝((𝜋[0,𝑛])#𝜌, (𝜋[0,𝑛])#𝜌′)) .

We equip 𝑝() with the distance 𝖶𝑝. We say that a subset  ⊂ 𝑝() has uniformly integrable 𝑝-moments if the following condition 
holds: 

∀𝑇 > 0, lim
𝑎→∞

sup
𝜌∈∫ 1 sup

𝑡∈[0,𝑇 ]
‖𝑥𝑡‖>𝑎

(

sup
𝑡∈[0,𝑇 ]

‖𝑥𝑡‖
𝑝
)

𝑑𝜌(𝑥) = 0 . (𝑝-UI)

In the same way, a sequence (𝜌𝑛) has uniformly integrable 𝑝-moments if the condition (𝑝-UI) holds for the sequence (𝜌𝑛) in place 
of . Following the same lines as [32, Th. 6.18] and [22, Prop. 7.1.5], we obtain the following lemma. The proof is provided 
in Appendix  A.1. 

Proposition 1. 
(i) The space 𝑝() is Polish.
(ii) A subset  ⊂ 𝑝() is relatively compact if and only if, it is weak⋆-relatively compact in (), and if  has uniformly integrable 

𝑝-moments.

Finally, we will also consider 𝑝()-valued sequences of random variables. Therefore, the following extension of Lemma  1, will 
be useful. It is established in Appendix  A.2. 

Lemma 2.  Let (𝜌𝑛) be a sequence of random variables valued in 𝑝(). Assume that (I(𝜌𝑛)) is relatively compact in 𝑝(). Then, (𝜌𝑛) is 
tight in 𝑝().

2.3. Spaces of McKean–Vlasov measures

Let 𝑑′ ∈ N∗. Consider a matrix-valued function 𝜎 ∶ R𝑑 × 𝑝(R𝑑 ) → R𝑑×𝑑′  and a vector field 𝑏 ∶ R𝑑 × 𝑝(R𝑑 ) → R𝑑 satisfying the 
following assumptions: 

Assumption 1.  The vector field 𝑏 ∶ R𝑑 × 𝑝(R𝑑 ) → R𝑑 , and 𝜎 ∶ R𝑑 × 𝑝(R𝑑 ) → R𝑑×𝑑′  are continuous. Moreover, there exists 𝐶 > 0
such that for all (𝑥, 𝜇) ∈ R𝑑 × 𝑝(R𝑑 ),

‖𝑏(𝑥, 𝜇)‖ ≤ 𝐶(1 + ‖𝑥‖ + ∫ ‖𝑦‖𝑑𝜇(𝑦)),

and ‖𝜎(𝑥, 𝜇)‖ ≤ 𝐶.

We define 𝐿(𝜇) which, to every test function 𝜙 ∈ 𝐶2
𝑐 (R

𝑑 ,R), associates the function 𝐿(𝜇)(𝜙) given by 

𝐿(𝜇)(𝜙)(𝑥) = ⟨𝑏(𝑥, 𝜇),∇𝜙(𝑥)⟩ + tr
(

𝜎(𝑥, 𝜇)𝑇𝐻𝜙(𝑥)𝜎(𝑥, 𝜇)
)

, (8)

where 𝐻𝜙 is the hessian matrix of 𝜙.  Let (𝑋𝑡 ∶ 𝑡 ∈ [0,∞)) be the canonical process on . Denote by (𝑋
𝑡 )𝑡≥0 the natural filtration 

(i.e., the filtration generated by {𝑋𝑠 ∶ 0 ≤ 𝑠 ≤ 𝑡}).

Definition 1.  Let 𝑝 ≥ 1. We say that a measure 𝜌 ∈ 𝑝() belongs to the class 𝖵𝑝 if, for every 𝜙 ∈ 𝐶2
𝑐 (R

𝑑 ,R),

𝜙(𝑋𝑡) − ∫

𝑡

0
𝐿(𝜌𝑠)(𝜙)(𝑋𝑠)𝑑𝑠

is a (𝑋 ) -martingale on the probability space (,(), 𝜌).
𝑡 𝑡≥0

5 
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The elements of 𝖵𝑝 will be referred to as McKean–Vlasov distributions of order 𝑝.  In the sequel, it will be convenient to work 
with the following equivalent characterization. The martingale property implies that every measure 𝜌 ∈ 𝖵𝑝 satisfies 𝐺(𝜌) = 0, for 
every function 𝐺 ∶ 𝑝() → R of the form: 

𝐺(𝜌) ∶= ∫

(

𝜙(𝑥𝑡) − 𝜙(𝑥𝑠) − ∫

𝑡

𝑠
𝐿(𝜌𝑢)(𝜙)(𝑥𝑢)d𝑢

) 𝑟
∏

𝑗=1
ℎ𝑗 (𝑥𝑣𝑗 )𝑑𝜌(𝑥) , (9)

where 𝑟 ∈ N, 𝜙 ∈ 𝐶2
𝑐 (R

𝑑 ,R), ℎ1,… , ℎ𝑟 ∈ 𝐶𝑐 (R𝑑 ,R)𝑟, 0 ≤ 𝑣1 ≤ ⋯ ≤ 𝑣𝑟 ≤ 𝑠 ≤ 𝑡, are arbitrary. We denote by 𝑝 the set of such mappings 
𝐺. Assumption  1 ensures that these mappings are well defined. By Definition  1, every 𝜌 ∈ 𝖵𝑝 is a root of all 𝐺 ∈ 𝑝. As a matter of 
fact, a measure 𝜌 ∈ 𝑝() belongs to the set 𝖵𝑝, if and only if 𝐺(𝜌) = 0 for every 𝐺 of the form (9). In other words, Definition  1 is 
equivalent to the following identity: 

𝖵𝑝 =
⋂

𝐺∈𝑝

𝐺−1({0}) . (10)

The following lemma is proved in Appendix  A.3. 

Lemma 3.  Let Assumption  1 hold true. Every 𝐺 ∈ 𝑝 is a continuous function on 𝑝() → R.

The following result is a consequence of Lemma  3 and Proposition  1. 

Proposition 2.  Under Assumption  1, 𝖵𝑝 is a closed subset of 𝑝(). Moreover, equipped with the trace topology of 𝑝(), 𝖵𝑝 is a Polish 
space.

Proof.  For all 𝜌𝑛 ∈ 𝖵𝑝 → 𝜌∞ in 𝑝(), it holds by Lemma  3 that 𝐺(𝜌∞) = 0 for all 𝐺 ∈ 𝑝, which shows that 𝜌∞ ∈ 𝖵𝑝 by (10). Hence, 
𝖵𝑝 is closed. A closed subset of a Polish space is also Polish. By Proposition  1, 𝖵𝑝 is Polish. □

2.4. Dynamical systems

Recall the definition of the shift 𝛩𝑡(𝑥) = 𝑥𝑡+⋅ defined on . Let us equip the space 𝖵𝑝 assumed nonempty with the trace topology 
of 𝑝(), making it a Polish space (see Proposition  2). With this at hand, one can readily check that the function 𝛷 ∶ [0,∞)×𝖵𝑝 → 𝖵𝑝
defined as (𝑡, 𝜌) ↦ 𝛷𝑡(𝜌) = (𝛩𝑡)#𝜌 is a semi-flow on the space (𝖵𝑝,𝖶𝑝), in the sense that 𝛷 is continuous, 𝛷0(⋅) coincides with the 
identity, and 𝛷𝑡+𝑠 = 𝛷𝑡◦𝛷𝑠 for all 𝑡, 𝑠 ≥ 0, see [33] for an exposition of the concepts related to semi-flows. The omega limit set of 
𝜌 ∈ 𝖵𝑝 for this semi-flow is the set 𝜔(𝜌) defined by:

𝜔(𝜌) ∶=
⋂

𝑡>0
{𝛷𝑠(𝜌) ∶ 𝑠 > 𝑡} .

Equivalently, 𝜔(𝜌) is the set of 𝖶𝑝-limits of sequences of the form (𝛷𝑡𝑛 (𝜌)) where 𝑡𝑛 → ∞. A point 𝜌 ∈ 𝖵𝑝 is called recurrent if 
𝜌 ∈ 𝜔(𝜌). The Birkhoff center BC𝑝 is defined as the closure of the set of recurrent points:

BC𝑝 ∶= {𝜌 ∈ 𝖵𝑝 ∶ 𝜌 ∈ 𝜔(𝜌)} .

By extension, given a measure 𝜇 ∈ 𝑝(R𝑑 ), we say that 𝜇 is a recurrent marginal McKean–Vlasov measure if there exists a recurrent 
measure 𝜌 ∈ 𝖵𝑝 such that 𝜌0 = 𝜇. We denote by BC0

𝑝 the closure of recurrent marginal McKean–Vlasov measures, that is, 

BC0
𝑝 = {𝜌0 ∶ 𝜌 ∈ 𝖵𝑝, 𝜌 ∈ 𝜔(𝜌)} , (11)

or in short, BC0
𝑝 = (𝜋0)#(BC𝑝). 

Definition 2.  Consider the semi-flow 𝛷 and a non-empty set 𝛬 ⊂ 𝖵𝑝. A lower semi-continuous function 𝐹 ∶ 𝖵𝑝 → R is called a 
Lyapunov function for the set 𝛬 if, for every 𝜌 ∈ 𝖵𝑝 and every 𝑡 > 0, 𝐹 (𝛷𝑡(𝜌)) ≤ 𝐹 (𝜌), and 𝐹 (𝛷𝑡(𝜌)) < 𝐹 (𝜌) whenever 𝜌 ∉ 𝛬.

The following result is standard. 

Proposition 3.  Let 𝑝 > 0. If 𝐹  is a Lyapunov function for the set 𝛬, then BC𝑝 ⊂ 𝛬 .

Proof.  The limit 𝓁 ∶= lim𝑡→∞ 𝐹 (𝛷𝑡(𝜌)) is well-defined because 𝐹 (𝛷𝑡(𝜌)) is non increasing. Consider a recurrent point 𝜌 ∈ 𝖵𝑝, say 
𝜌 = lim𝑛𝛷𝑡𝑛 (𝜌). Clearly 𝐹 (𝜌) ≥ 𝐹 (𝛷𝑡𝑛 (𝜌)) ≥ 𝓁. Moreover, by lower semicontinuity of 𝐹 , 𝓁 = lim𝑛 𝐹 (𝛷𝑡𝑛 (𝜌)) ≥ 𝐹 (𝜌). Therefore, 𝓁
is finite, and 𝐹 (𝜌) = 𝓁. This implies that 𝑡 ↦ 𝐹 (𝛷𝑡(𝜌)) is constant. By definition, this in turn implies 𝜌 ∈ 𝛬, which concludes the 
proof. □
6 
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3. Main results

3.1. Interpolated process and weak⋆ limits

Let (𝛺, ,P) be a probability space. Let 𝑑 > 0 be an integer. For each 𝑛 ∈ N∗, consider the random sequence (1) starting with 
the 𝑛-uple (𝑋1,𝑛

0 ,… , 𝑋𝑛,𝑛
0 ) of random variables 𝑋𝑖,𝑛

0 ∈ R𝑑 , with ((𝜉𝑖,𝑛𝑘 )𝑖∈[𝑛])𝑘∈N∗  and ((𝜁 𝑖,𝑛𝑘 )𝑖∈[𝑛])𝑘∈N∗  being R𝑑×𝑛-valued random noise 
sequences. For each of integer 𝑛 > 0, define the filtration (𝑛

𝑘 )𝑘∈N as in Eq. (3) or, more generally, as any filtration such that the 
following random variables

(𝑋𝑖,𝑛
0 )𝑖∈[𝑛], ((𝜉

𝑖,𝑛
𝓁 )𝑖∈[𝑛])𝓁≤𝑘, ((𝜁

𝑖,𝑛
𝓁 )𝑖∈[𝑛])𝓁≤𝑘

belong to 𝑛
𝑘 . Consider the following assumptions: 

Assumption 2.  The sequence (𝛾𝑘) is a non-negative deterministic sequence satisfying
lim
𝑘→∞

𝛾𝑘 = 0, and 
∑

𝑘
𝛾𝑘 = +∞.

Recall the definition 𝜇𝑛𝑘 ∶=
1
𝑛
∑𝑛
𝑖=1 𝛿𝑋𝑖,𝑛𝑘

. 

Assumption 3.  The following holds  true.
(i) For each 𝑛, ((𝑋𝑖,𝑛

0 , (𝜁
𝑖,𝑛
𝑘 )𝑘∈N, (𝜉

𝑖,𝑛
𝑘 )𝑘∈N))𝑖∈[𝑛] is exchangeable as a n-uple of R𝑑 × (R𝑑 )N × (R𝑑 )N-valued random variables.

(ii) It holds that sup𝑘,𝑛 E‖𝜉1,𝑛𝑘 ‖

4 <∞. Moreover, for each 𝑛 > 0, and each 𝑖, 𝑗, 

E

[

𝜉1,𝑛𝑘+1
|

|

|

|

|

𝑛
𝑘

]

= 0

E
[

𝜉𝑖,𝑛𝑘+1
(

𝜉𝑗,𝑛𝑘+1
)𝑇

|𝑛
𝑘

]

= 𝜎(𝑋𝑖,𝑛
𝑘 , 𝜇

𝑛
𝑘)𝜎(𝑋

𝑗,𝑛
𝑘 , 𝜇𝑛𝑘)

𝑇1𝑖=𝑗 ,

(iii) For each 𝑘, and each 𝑛, E‖𝜁1,𝑛𝑘 ‖ <∞, and

lim
(𝑘,𝑛)→(∞,∞)

E
‖

‖

‖

‖

E
[

𝜁1,𝑛𝑘+1 |
𝑛
𝑘

]

‖

‖

‖

‖

= 0 .

Remark 1. Assumption  3–(i) holds under the stronger assumption that the 𝑛-uple (𝑋𝑖,𝑛
0 )𝑖∈[𝑛] is exchangeable, (𝜉𝑖,𝑛𝑘 )𝑖∈[𝑛],𝑘∈N is an 

i.i.d. sequence independent of (𝑋𝑖,𝑛
0 )𝑖∈[𝑛], and 𝜁1,𝑛𝑘 = 0 for every 𝑘.

Define 𝜅𝑘(𝜇) = ∫ ‖𝑥‖𝑘𝑑𝜇(𝑥). 

Assumption 4.  The following conditions hold:
(i) sup𝑛 E‖𝑋

1,𝑛
0 ‖

2 <∞ and sup𝑘,𝑛 E‖𝜁1,𝑛𝑘 ‖

2 <∞,
(ii) There exist 𝑐, 𝐶 > 0, such that for all 𝜇 ∈ 2(R𝑑 ), 

∫ ⟨𝑥, 𝑏(𝑥, 𝜇)⟩𝑑𝜇(𝑥) ≤ −𝑐𝜅2(𝜇) + 𝐶 . (12)

Assumption 4’.  In addition to Assumption  4, the following hold:
(i) sup𝑛 E‖𝑋

1,𝑛
0 ‖

4 <∞ and sup𝑘,𝑛 E‖𝜁1,𝑛𝑘 ‖

4 <∞,
(ii) There exists constants 𝑐, 𝐶 > 0 such that for all 𝜇 ∈ 4(R𝑑 ), 

∫ ⟨𝑥, 𝑏(𝑥, 𝜇)⟩‖𝑥‖2𝑑𝜇(𝑥) ≤ −𝑐𝜅4(𝜇) + 𝐶
(

1 + 𝜅2(𝜇)
)

(

1 +
√

𝜅4(𝜇)
)

, (13)

Section 4 includes an example for which Assumptions  4 and 4′ are satisfied. 

Remark 2. Assumption  4 can be replaced by the milder condition that sup𝑘,𝑛 E‖𝑋1,𝑛
𝑘 ‖

2+E‖𝜁1,𝑛𝑘 ‖

2 <∞. Similarly, Assumption  4′ can 
be replaced by the condition that (‖𝑋1,𝑛

𝑘 ‖

2)𝑘,𝑛 and (‖𝜁1,𝑛𝑘 ‖

2)𝑘,𝑛 are uniformly integrable. The results of this paper hold under these 
milder, but less easily verifiable assumptions.

Recalling the definitions of the interpolated processes 𝑋̄𝑖,𝑛 in (5), and the definition of the occupation measure 𝑚𝑛 in (6), we 
shall consider the shifted occupation measure

𝛷𝑡(𝑚𝑛) =
1

𝑛
∑

𝛿𝛩𝑡(𝑋̄𝑖,𝑛) ,
𝑛 𝑖=1

7 
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for each 𝑛 ∈ N∗ and each 𝑡 ∈ (0,+∞). Note that 𝛷𝑡(𝑚𝑛) is a r.v. on 𝑝(). We refer to the set 

 ∶= acc
(𝑡,𝑛)→(∞,∞)

({

(𝛷𝑡(𝑚𝑛))#P
})

(14)

as the set of weak⋆ accumulation points of the probability distributions of 𝛷𝑡(𝑚𝑛) as (𝑡, 𝑛) → (∞,∞). In other words,  is the set of 
measures 𝑀 ∈ (𝑝()) for which there is a sequence (𝑡𝑛, 𝜑𝑛)𝑛 on (0,∞)×N∗, such that 𝑡𝑛 →𝑛 ∞, 𝜑𝑛 →𝑛 ∞, and (𝛷𝑡𝑛 (𝑚𝜑𝑛 )) converges 
in distribution to 𝑀 .

We now state the main results of this paragraph. Proposition  4 shows that the set  is non-empty. Proposition  5 shows that any 
𝑀 ∈  is supported by the set of McKean–Vlasov distributions. 

Proposition 4.  Let 1 ≤ 𝑝 < 2. Let Assumptions  1–4 hold. Then,

sup
𝑘,𝑛

E‖𝑋1,𝑛
𝑘 ‖

2 <∞ .

Moreover, for any 𝑗 ∈ N∗, the family of measures {(𝛷𝑡(𝑚𝑛))#P ∶ 𝑡 ≥ 0, 𝑛 ∈ N∗} is relatively compact in (𝑝()).
If Assumption  4 ′ holds, the conclusion is still valid for 𝑝 = 2, and, moreover, sup𝑘,𝑛 E‖𝑋1,𝑛

𝑘 ‖

4 <∞.

Proof.  See Section 5.1. □

Proposition 5.  Let 1 ≤ 𝑝 < 2. Under Assumptions  1–4, 𝖵𝑝 is a non-empty closed set. Moreover, 𝑀(𝖵𝑝) = 1 for every 𝑀 ∈ . If 
Assumption  4 ′ holds, the conclusion is still valid for 𝑝 = 2.

Proof.  See Section 5.2. □

3.2. Ergodic convergence

We provide the proof of the following theorem in Section 5.3. 

Theorem 1.  Let 1 ≤ 𝑝 < 2. Under Assumptions  1–4, BC𝑝 is non-empty.

1
𝑡 ∫

𝑡

0
𝖶𝑝(𝛷𝑠(𝑚𝑛),BC𝑝) 𝑑𝑠

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑡,𝑛)→(∞,∞)

0 ,

If Assumption  4 ′ holds, the statement is still valid for 𝑝 = 2.

Corollary 1.  Let 1 ≤ 𝑝 < 2. Under Assumptions  1–4,
∑𝑘
𝑙=1 𝛾𝑙𝑊𝑝(𝜇𝑛𝑙 ,BC

0
𝑝)

∑𝑘
𝑙=1 𝛾𝑙

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0 .

The same statement holds if 𝑊𝑝( ⋅ , ⋅) is replaced by 𝑊𝑝( ⋅ , ⋅)𝑝. Finally, if Assumption  4 ′ holds, the conclusion is still valid for 𝑝 = 2.

Proof.  The proof is provided in Section 5.4. □

Remark 3.  The fact that the Birkhoff center BC𝑝 is non empty follows from the combination of Lemmas  7 and 9. Specifically, 
Lemma  7 establishes the existence of measures, which, by Lemma  9, can only be supported by BC𝑝.

Remark 4.  In simple cases, BC𝑝 is reduced to a singleton, which corresponds to the unique stationary McKean–Vlasov distribution. 
For instance, this happens under sufficient but strong assumptions on 𝑏 and 𝜎, which ensure a uniform-in-time propagation of 
chaos [1,7,9]. We refer to Section 4 for a discussion.

Besides this case, the McKean–Vlasov process potentially admits multiple stationary measures. In such a case, BC𝑝 contains 
multiple points. This scenario is common, and interesting regarding practical applications. A first example can be found in [13,14], 
in the context of the Granular media equation, see also Remark  6. A second example is encountered in the case of consensus based 
optimization methods [34,35], where, under the assumption of a constant noise intensity 𝜎, the limiting McKean–Vlasov process 
potentially admits several stationary measures. A third example, in the case 𝜎 = 0, is given by Stein Variational Gradient Descent 
(SVGD) algorithm [36].

Finally, let us review some consequences regarding linear functionals. Denote by Lip𝐿 the set of Lipschitz continuous functions 
on R𝑑 → R, whose Lipschitz constant is no larger than 𝐿 ≥ 0. Define:

BC0
𝑝(𝑓 ) ∶=

{

∫ 𝑓𝑑𝜇 ∶ 𝜇 ∈ BC0
𝑝

}

.

8 
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Corollary 2.  Let 1 ≤ 𝑝 < 2, and let Assumptions  1–4 hold true. Then, for every 𝐿 ≥ 0

sup
𝑓∈Lip𝐿

𝖽

(
∑

𝑖∈[𝑛],𝑙∈[𝑘] 𝛾𝑙𝑓 (𝑋
𝑖,𝑛
𝑙 )

𝑛
∑

𝑙∈[𝑘] 𝛾𝑙
, conv(BC0

𝑝(𝑓 ))

)

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0 .

The conclusion remains valid for 𝑝 = 2 under Assumption  4’.

Proof.  See Section 5.5. □

3.3. The case of a unique recurrent point

In this subsection, we will present additional results in the special case where the following assumption holds.

Assumption 5.  There exists 𝜌∗ ∈ 𝑝() such that BC𝑝 ⊂ {𝜌∗}.

We observe that, under Assumptions  1–4, BC𝑝 is non-empty (see Theorem  1). Consequently, under Assumptions  1–5, we have 
BC𝑝 = {𝜌∗}.

Let 𝑛 ∈ N∗ and 𝑗 ≤ 𝑛. One may consider the law of the family of random variables (𝑋1,𝑛
𝑙 ,… , 𝑋𝑗,𝑛

𝑙 ):

𝐼 𝑗,𝑛𝑙 ∶=
(

𝑋1,𝑛
𝑙 ,… , 𝑋𝑗,𝑛

𝑙
)

#P = P
(

(𝑋1,𝑛
𝑙 ,… , 𝑋𝑗,𝑛

𝑙 ) ∈ ⋅
)

.

For instance, 𝐼1,𝑛𝑙  is the law of the particle 𝑋1,𝑛
𝑙 , which is equal to the law of 𝑋𝑖,𝑛

𝑙  for any 𝑖, due to the exchangeability. 

Corollary 3.  Under Assumptions  1–5, we obtain for every 𝑗 ∈ N
∑

𝓁∈[𝑘] 𝛾𝓁𝑊𝑝
(

𝐼 𝑗,𝑛𝓁 , (𝜌∗0)
⊗𝑗)

∑

𝑙∈[𝑘] 𝛾𝓁
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0 , (15)

where 𝑊𝑝 denotes the Wasserstein distance of order 𝑝 on 𝑝((R𝑑 )𝑗 ), and (𝜌∗0)⊗𝑗 is the 𝑗-fold tensor product of 𝜌∗0.

Proof.  See Section 5.6. □

Eq. (15) can be interpreted as a propagation of chaos result in the long run. This should be compared to standard propagation 
of chaos results, which are usually stated over a finite time interval [1].

Following [37,38], let us introduce the notion of essential accumulation set. We say that a measure 𝜇 ∈ 𝑝(R𝑑 ) is an essential 
accumulation point of (𝐼1,𝑛𝑘 )𝑘,𝑛, if for every neighborhood 𝑈 of 𝜇,

lim sup
(𝑘,𝑛)→(∞,∞)

∑

𝓁∈[𝑘] 𝛾𝓁1𝑈 (𝐼
1,𝑛
𝓁 )

∑

𝓁∈[𝑘] 𝛾𝓁
> 0 .

This can be interpreted as follows. An essential accumulation point 𝜇 is an accumulation point, with the property that the particle 
distribution 𝐼1,𝑛𝑘 = P(𝑋1,𝑛

𝑘 ∈ ⋅) spends substantial time in the neighborhood of 𝜇. 

Corollary 4.  Under Assumptions  1–5, 𝜌∗0 is the unique essential accumulation point of (𝐼
1,𝑛
𝑘 )𝑘,𝑛.

Proof.  See Section 5.7. □

In other terms, as (𝑘, 𝑛) tend to infinity, the law P(𝑋1,𝑛
𝑘 ∈ ⋅) spends most of its time in the neighborhood of 𝜌∗0.

3.4. Pointwise convergence to a global attractor

Depending on the vector field 𝑏, it is often the case that each measure 𝜌 ∈ 𝖵𝑝 is uniquely determined by its value 𝜌0 = (𝜋0)#𝜌 ∈
𝑝(R𝑑 ) in the sense that there exists a semi-flow 𝛹 ∶ [0,∞) × 𝑝(R𝑑 ) → 𝑝(R𝑑 ), (𝑡, 𝜈) ↦ 𝛹𝑡(𝜈), defined on [0,∞) × 𝑝(R𝑑 ), and such 
that 

𝜌 ∈ 𝖵𝑝 ⇔ ∀𝑡 ≥ 0, 𝜌𝑡 = 𝛹𝑡(𝜌0). (16)

We shall say that in this situation, the class 𝖵𝑝 has a semi-flow structure on 𝑝(R𝑑 ).
The granular media model detailed in Section 4 below is a typical example where such a situation occurs.
In this section, we are interested in the behavior of the measures 𝜇𝑛𝑘 as (𝑘, 𝑛) → (∞,∞), termed the ‘‘pointwise’’ convergence of 

these measures, when the semi-flow 𝛹 has a global attractor. We recall here that a set 𝐴𝑝 ⊂ 𝑝(R𝑑 ) is said invariant for the semi-flow 
𝛹 if 𝛹𝑡(𝐴𝑝) = 𝐴𝑝 for all 𝑡 ≥ 0; A nonempty compact invariant set 𝐴𝑝 ⊂ 𝑝(R𝑑 ) is a global attractor for the semi-flow 𝛹 if

∀𝜈 ∈ 𝑝(R𝑑 ), lim
𝑡→∞

𝑊𝑝(𝛹𝑡(𝜈), 𝐴𝑝) = 0 ,

and furthermore, if there exists a neighborhood   of 𝐴𝑝 in 𝑝(R𝑑 ) such that this convergence is uniform on  . Such a neighborhood 
is called a fundamental neighborhood of 𝐴𝑝.

The following result is proven in Section 5.8. 
9 
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Theorem 2.  Let 𝑝 ∈ [1, 2], and let Assumption  1, 2, and 3 hold true. Let Assumption  4 or the stronger Assumption  4 ’ hold true according 
to whether 𝑝 < 2 or 𝑝 = 2 respectively. Assume in addition that the 𝖵𝑝 has a semi-flow structure on 𝑝(R𝑑 ) as specified in (16), and that 
this semi-flow 𝛹 admits a global attractor 𝐴𝑝. Then,

𝑊𝑝
(

𝜇𝑛𝑘, 𝐴𝑝
) P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0 .

Remark 5.  A typical scenario where the set 𝐴𝑝 exists and contains a single element is provided in Remark  6.

4. Granular media

The proofs of the results relative to this section are provided in Section 6.
In this paragraph, we review some properties of the set 𝖵2 of McKean–Vlasov processes, in the case where 𝜎(𝑥, 𝜇) = 𝜎𝐼𝑑 for 

some real constant 𝜎 ≥ 0  and with a slight abuse of notation 𝑏(𝑥, 𝜇) = ∫ 𝑏(𝑥, 𝑦)𝑑𝜇(𝑦), with: 
𝑏(𝑥, 𝑦) ∶= −∇𝑉 (𝑥) − ∇𝑈 (𝑥 − 𝑦) , (17)

where 𝑉 ,𝑈 ∶ R𝑑 → R are two functions satisfying the following assumption. 

Assumption 6 (Granular Media).  The functions 𝑉 ,𝑈 belong to 𝐶1(R𝑑 ,R). Moreover, there exists 𝜆, 𝐶, 𝛽 > 0, such that for every 
𝑥, 𝑦 ∈ R𝑑 , the following holds:

(i) ⟨𝑥,∇𝑉 (𝑥)⟩ ≥ 𝜆‖𝑥‖2 − 𝐶,
(ii) 𝑈 (𝑥) = 𝑈 (−𝑥), and ⟨𝑥,∇𝑈 (𝑥)⟩ ≥ −𝐶,
(iii) ‖∇𝑉 (𝑥)‖ + ‖∇𝑈 (𝑥)‖ ≤ 𝐶(1 + ‖𝑥‖),
(iv) ‖∇𝑉 (𝑥) − ∇𝑉 (𝑦)‖ + ‖∇𝑈 (𝑥) − ∇𝑈 (𝑦)‖ ≤ 𝐶(‖𝑥 − 𝑦‖𝛽 ∨ ‖𝑥 − 𝑦‖).

Under Assumption  6, the vector field 𝑏 ans 𝜎 satisfies Assumption  1. We will see later, as a byproduct of Theorem  3, that the set 𝖵2
of McKean–Vlasov distributions associated to the field 𝑏 in Eq. (17), is non empty. We say 𝜇 ≪ L 𝑑 if 𝜇 ∈ 2(R𝑑 ) admits continuously 
differentiable density w.r.t. the Lebesgue measure L 𝑑 , which we denote by 𝑑𝜇∕𝑑L 𝑑 . Define the functional H ∶ 2(R𝑑 ) → (−∞,∞]
as H (𝜇) = F (𝜇) + V (𝜇) + U (𝜇) with

F (𝜇) =

{

∫ 𝜎2 log
(

𝑑𝜇
𝑑L 𝑑 (𝑥)

)

𝑑𝜇(𝑥) if 𝜇 ≪ L 𝑑

∞ otherwise,

V (𝜇) = ∫ 𝑉 (𝑥) 𝑑𝜇(𝑥), and U (𝜇) = 1
2 ∫ ∫ 𝑈 (𝑥 − 𝑦) 𝑑𝜇(𝑥)𝑑𝜇(𝑦).

The following central result provides a central properties of the elements of 𝖵2. 

Proposition 6.  Let Assumption  6 hold true, and let 𝑏 be defined by (17). Assume 𝜎 > 0. Consider 𝜌 ∈ 𝖵2. Then, for every 𝑡 > 0, 𝜌𝑡 admits 
a density 𝑥 ↦ 𝜚(𝑡, 𝑥) in 𝐶1(R𝑑 ,R) w.r.t. the Lebesgue measure. For every 𝑡 > 0, the functional 𝑡 ↦ H (𝜌𝑡) is finite, and satisfies for every 
𝑡2 > 𝑡1 > 0, 

H (𝜌𝑡2 ) − H (𝜌𝑡1 ) = −∫

𝑡2

𝑡1
∫ ‖𝑣𝑡(𝑥)‖2𝜚(𝑡, 𝑥)𝑑𝑥𝑑𝑡 , (18)

where 𝑣𝑡 is the vector field defined for every 𝑥 ∈ R𝑑 by: 

𝑣𝑡(𝑥) ∶= −∇𝑉 (𝑥) − ∫ ∇𝑈 (𝑥 − 𝑦)𝑑𝜌𝑡(𝑦) − 𝜎2∇ log 𝜚(𝑡, 𝑥) . (19)

Define 𝑟
2(R

𝑑 ) as the set of measures 𝜇 ∈ 2(R𝑑 ) such that 𝜇 ≪ L 𝑑 . Define: 

 ∶= {𝜇 ∈ 𝑟
2(R

𝑑 ) ∶ ∇𝑉 + ∫ ∇𝑈 ( ⋅ − 𝑦)𝑑𝜇(𝑦) + 𝜎2∇ log
𝑑𝜇
𝑑L 𝑑 = 0𝜇-a.e.} . (20)

Finally, for every 𝜖 ≥ 0, define: 
𝛬𝜖 ∶= {𝜌 ∈ 𝖵2 ∶ ∃𝜇 ∈  , ∀𝑡 ≥ 𝜖, 𝜌𝑡 = 𝜇} . (21)

Proposition 7.  We posit the assumptions of Proposition  6. For every 𝜖 > 0, the function 𝜌 ↦ H (𝜌𝜖) is real valued on 𝖵2, lower 
semicontinuous, and is a Lyapunov function for the set 𝛬𝜖 . Moreover,

BC2 ⊂ 𝛬0 .

We also need to consider a setting where 𝖵2 has a semi-flow structure on 2(R𝑑 ) as in (16) in order to set the stage for the 
pointwise convergence of the measures 𝜇𝑛𝑘 issued from our discrete algorithm. To that end, we shall appeal to the theory of the 
gradient flows in the space of probability measures as detailed in the treatise [22] of Ambrosio, Gigli and Savaré. The following 
additional assumption will be needed: 
10 
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Assumption 7.  The functions 𝑈 and 𝑉  satisfy the doubling condition. Namely, there exists constants 𝐶𝑈 , 𝐶𝑉 > 0 such that
𝑈 (𝑥 + 𝑦) ≤ 𝐶𝑈 (1 + 𝑈 (𝑥) + 𝑈 (𝑦)) and 𝑉 (𝑥 + 𝑦) ≤ 𝐶𝑉 (1 + 𝑉 (𝑥) + 𝑉 (𝑦)) .

Proposition 8.  Let Assumption  6 hold true with 𝛽 = 1, and let Assumption  7 hold true. Then, for each 𝜌 ∈ 𝖵2, the curve 𝑡 ↦ 𝜌𝑡 belongs to 
the set of absolutely continuous functions AC2

loc((0,∞),2(R𝑑 )) as defined in [22, Sec. 8.3], and is completely determined by 𝜌0 ∈ 2(R𝑑 )
as being the gradient flow of the functional H  in 2(R𝑑 ). Thus, 𝖵2 has a semi-flow structure, and we write 𝜌𝑡 = 𝛹𝑡(𝜌0).

For completeness, we recall along [22, Chap. 8 and 11] that 𝑡↦ 𝜌𝑡 being the solution of the gradient flow of H  in 2(R𝑑 ) stands 
to the existence of a Borel vector field 𝑤𝑡 ∶ R𝑑 → R𝑑 such that 𝑤𝑡 belongs to the tangent bundle Tan𝜌𝑡 2(R𝑑 ) for L 1-almost all 
𝑡 > 0, ‖𝑤𝑡‖𝐿2(𝜌𝑡) ∈ 𝐿𝑝loc(0,∞), the continuity equation 𝜕𝑡𝜌𝑡 + ∇ ⋅

(

𝜌𝑡𝑤𝑡
)

= 0 holds in general in the sense of distributions, and finally, 
𝑤𝑡 ∈ −𝜕H (𝜌𝑡) for L 1-almost each 𝑡 > 0, where 𝜕H  is the Fréchet sub-differential as defined in [22, Chap. 10], which always exists 
under our assumptions. Actually, 𝑤𝑡 = 𝑣𝑡 as given by Eq.  (19) for almost all 𝑡.

We now turn to our discrete algorithm. Consider the iterations: 

𝑋𝑖,𝑛
𝑘+1 = 𝑋𝑖,𝑛

𝑘 −
𝛾𝑘+1
𝑛

∑

𝑗∈[𝑛]
∇𝑈 (𝑋𝑖,𝑛

𝑘 −𝑋𝑗,𝑛
𝑘 ) − 𝛾𝑘+1∇𝑉 (𝑋𝑖,𝑛

𝑘 ) +
√

2𝛾𝑘+1𝜉
𝑖,𝑛
𝑘 , (22)

for each 𝑖 ∈ [𝑛]. This is a special case of Eq. (1) with 𝑏(𝑥, 𝑦) given by Eq. (17) and 𝜁 𝑖,𝑛𝑘 = 0 for all 𝑘. For simplicity, Assumption  3 
will be replaced by the following stronger assumption: 

Assumption 8.  We assume that the n-tuple (𝑋1,𝑛
0 ,… , 𝑋𝑛,𝑛

0 ) is exchangeable and sup𝑛 E(‖𝑋1,𝑛
0 ‖

4) < ∞. Moreover, (𝜉𝑖,𝑛𝑘 )𝑖∈[𝑛],𝑘∈N are 
i.i.d. centered random variables, with variance 𝜎2𝐼𝑑 , and such that E(‖𝜉1,11 ‖

4) <∞.

The next proposition implies that Assumption  4’ holds. 

Proposition 9.  Let Assumption  2, 6 and 8 be satisfied. Then, Eq. (12) and (13) hold.
Putting Assumption  2, 6 and 8 together, the hypotheses of Theorem  1 are satisfied for 𝑝 = 2. 

Theorem 3.  Let Assumption  2, 6 and 8 be satisfied. Assume 𝜎 > 0. Then, the set  given by Eq. (20) is non empty, and furthermore,
∑𝑘
𝑙=1 𝛾𝑙𝑊2(𝜇𝑛𝑙 ,)

∑𝑘
𝑙=1 𝛾𝑙

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0 .

Proof.  Use Corollary  1 with 𝑝 = 2, together with Proposition  7. □

We now turn to the pointwise convergence of the measures 𝜇𝑛𝑘. 

Theorem 4.  Let Assumption  6 hold true with 𝛽 = 1, and let Assumption  7 hold true. Assume that the semi-flow 𝛹 which existence is stated 
by Proposition  8 has a global attractor 𝐴2. In the case where 𝐴2 is a singleton, it holds that  = 𝐴2. In any case,

𝑊2
(

𝜇𝑛𝑘, 𝐴2
) P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0.

Remark 6.  Many authors have been interested in the long-time convergence of granular media equations under hypotheses ensuring 
the uniqueness of the stationary distribution [8,39–42]. The most obvious case where such a situation arises, is the case where the 
functions 𝑈 and 𝑉  are both strongly convex.; Then, there exists 𝜆 > 0 such that 𝑊2(𝛹𝑡(𝜈), 𝛹𝑡(𝜈′)) ≤ 𝑒−𝜆𝑡𝑊2(𝜈, 𝜈′) [22, Th. 11.2.1]. 
Here, Theorem  4 applies, with 𝐴2 being reduced to the unique stationary measure.

On the other hand, the coexistence of multiple stationary measures typically corresponds to the case of metastable behaviors, 
where the Helmholtz energy admits several critical points. For instance, this situation arises in the case of a multi-well potential with 
low noise intensity [14,43]. Although it can be challenging to characterize such phase transition phenomena, our work supports the 
assertion that a numerical system with 𝑛 particles provides an estimate, in the sense that the 𝑛-system inherits the same asymptotic 
behavior as its mean-field approximation.

5. Proofs of Section 3

5.1. Proof of Proposition  4

In this paragraph, consider 1 ≤ 𝑝 ≤ 2. We recall that, when 𝑝 < 2, Assumption  4 holds and Assumption  4’ holds when 𝑝 = 2. 
First, we need the following lemma. 

Lemma 4. 
Let Assumption  4 with Assumption  1, 2, and 3 hold true, it holds that sup𝑘,𝑛 E‖𝑋1,𝑛

𝑘 ‖

2 < ∞. Furthermore, when Assumption  4’ holds, 
we have sup E‖𝑋1,𝑛

‖

4 <∞.
𝑘,𝑛 𝑘

11 
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Proof.  First, we will show the first point of the lemma. We recall the iteration

𝑋𝑖,𝑛
𝑘+1 = 𝑋𝑖,𝑛

𝑘 + 𝛾𝑘+1𝑏(𝑋
𝑖,𝑛
𝑘 , 𝜇

𝑛
𝑘) + 𝛾𝑘𝜁

𝑖,𝑛
𝑘 +

√

2𝛾𝑘+1𝜉
𝑖,𝑛
𝑘+1.

In this proof, we denote by 𝐶 > 0 a generic constant that is sufficiently large, and by 𝑐 > 0 a generic constant that is sufficiently 
small. We take 𝑘 large enough such that 𝛾𝑘 + 𝛾2𝑘 ≤ 𝐶𝛾𝑘 and −𝑐𝛾𝑘 + 𝛾2𝑘 ≤ −𝑐𝛾𝑘. For simplicity, we remove the superscript 𝑛 from 𝑋𝑖,𝑛

𝑘 , 
𝜇𝑛𝑘, 𝜁

𝑖,𝑛
𝑘 , and 𝜉

𝑖,𝑛
𝑘 . Moreover, we remove the subscript 𝑘+1 from 𝛾𝑘+1.

By Assumption  1, for 𝑖 ∈ [𝑛], we obtain 

‖𝑋𝑖
𝑘+1‖

2 − ‖𝑋𝑖
𝑘‖

2

= 𝛾⟨𝑋𝑖
𝑘, 𝑏(𝑋

𝑖
𝑘, 𝜇𝑘)⟩ +

√

2𝛾⟨𝑋𝑖
𝑘, 𝜉

𝑖
𝑘+1⟩ + 𝛾⟨𝑋

𝑖
𝑘, 𝜁

𝑖
𝑘+1⟩

+ ‖𝛾𝑏(𝑋𝑖
𝑘, 𝜇𝑘) +

√

2𝛾𝜉𝑖𝑘+1 + 𝛾𝜁
𝑖
𝑘+1‖

2

≤ 𝛾⟨𝑋𝑖
𝑘, 𝑏(𝑋

𝑖
𝑘, 𝜇𝑘)⟩ +

√

2𝛾⟨𝑋𝑖
𝑘, 𝜉

𝑖
𝑘+1⟩ + 𝛾⟨𝑋

𝑖
𝑘, 𝜁

𝑖
𝑘+1⟩+

6𝛾2‖𝑋𝑖
𝑘‖

2 + 6𝛾2 ∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥) + 6𝛾‖𝜉𝑖𝑘+1‖
2 + 3𝛾2‖𝜁 𝑖𝑘+1‖

2.

(23)

Summing the latter with respect to 𝑖, with Eq. (12), we obtain 

1
𝐶

(

∫ ‖𝑥‖2𝑑𝜇𝑘+1(𝑥) − ∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)

≤ 𝛾 ∫ ⟨𝑥, 𝑏(𝑥, 𝜇𝑘)⟩𝑑𝜇𝑘(𝑥) +

√

𝛾
𝑛

∑

𝑖∈[𝑛]
⟨𝑋𝑖

𝑘, 𝜉
𝑖
𝑘+1⟩ +

𝛾
𝑛
∑

𝑖∈[𝑛]
⟨𝑋𝑖

𝑘, 𝜁
𝑖
𝑘+1⟩

+ 𝛾2 ∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥) +
1
𝑛
∑

𝑖∈[𝑛]

(

𝛾‖𝜉𝑖𝑘+1‖
2 + 𝛾2‖𝜁 𝑖𝑘+1‖

)

≤ −𝑐𝛾 ∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥) +

√

𝛾
𝑛

∑

𝑖∈[𝑛]
⟨𝑋𝑖

𝑘, 𝜉
𝑖
𝑘+1⟩ +

𝛾
𝑛
∑

𝑖∈[𝑛]
⟨𝑋𝑖

𝑘, 𝜁
𝑖
𝑘+1⟩

+ 𝛾2 ∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥) +
1
𝑛
∑

𝑖∈[𝑛]

(

𝛾‖𝜉𝑖𝑘+1‖
2 + 𝛾2‖𝜁 𝑖𝑘+1‖

2) + 𝐶𝛾 .

(24)

Taking the expectation, by the exchangeability given by Assumption  3, the assumption on (𝜁 𝑖𝑘)𝑖,𝑘, and Assumption  3, we obtain

E‖𝑋1
𝑘+1‖

2 − E‖𝑋1
𝑘‖

2 ≤ −𝑐𝛾E‖𝑋1
𝑘‖

2 + 𝐶𝛾 .

As a consequence, we obtain the first point of the lemma.
Now, we proceed to demonstrate the second point of the lemma. But first we claim that 

sup
𝑘∈N

E
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

< ∞. (25)

Indeed, by raising to the square Eq. (24) and taking the expectation, we obtain

E
(

∫ ‖𝑥‖2𝑑𝜇𝑘+1(𝑥)
)2

− E
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

≤ −𝑐𝛾E
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

+ 𝐶𝛾E
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)

+ 𝐶𝛾 .

Now, we will obtain the second point of the lemma. By raising to the square Eq. (23), we obtain

1
𝐶
(‖𝑋𝑖

𝑘+1‖
4 − ‖𝑋𝑖

𝑘‖
4)

≤ 𝛾⟨𝑋𝑖
𝑘, 𝑏(𝑋

𝑖
𝑘, 𝜇𝑘)⟩‖𝑋

𝑖
𝑘‖

2 +
√

𝛾⟨𝑋𝑖
𝑘, 𝜉

𝑖
𝑘+1⟩‖𝑋

𝑖
𝑘‖

2 + 𝛾⟨𝑋𝑖
𝑘, 𝜁

𝑖
𝑘+1⟩‖𝑋

𝑖
𝑘‖

2+

𝛾2‖𝑋𝑖
𝑘‖

4 + 𝛾2 ∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)‖𝑋𝑖
𝑘‖

2 + 𝛾‖𝜉𝑖𝑘+1‖
2
‖𝑋𝑖

𝑘‖
2 + 𝛾2‖𝜁 𝑖𝑘+1‖

2
‖𝑋𝑖

𝑘‖
2

𝛾4‖𝑋𝑖
‖

4 + 𝛾4
(

‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

+ 𝛾2‖𝜉𝑖 ‖

4 + 𝛾4‖𝜁 𝑖 ‖

4 .
𝑘 ∫ 𝑘+1 𝑘+1

12 



P. Bianchi et al. Stochastic Processes and their Applications 186 (2025) 104647 
Summing over 𝑖 ∈ [𝑛], we obtain
1
𝐶

(

∫ ‖𝑥‖4𝑑𝜇𝑘+1(𝑥) − ∫ ‖𝑥‖4𝑑𝜇𝑘(𝑥)
)

≤ 𝛾 ∫ ⟨𝑥, 𝑏(𝑥, 𝜇𝑘)⟩‖𝑥‖2𝑑𝜇𝑘(𝑥) +

√

𝛾
𝑛

∑

𝑖∈[𝑛]
⟨𝑋𝑖

𝑘, 𝜉
𝑖
𝑘+1⟩‖𝑋

𝑖
𝑘‖

2+

𝛾
𝑛
∑

𝑖∈[𝑛]
⟨𝑋𝑖

𝑘, 𝜁
𝑖
𝑘+1⟩‖𝑋

𝑖
𝑘‖

2 + 𝛾2 ∫ ‖𝑥‖4𝑑𝜇𝑘(𝑥) + 𝛾2
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

+

𝛾
𝑛
∑

𝑖∈[𝑛]
‖𝜉𝑖𝑘+1‖

2
‖𝑋𝑖

𝑛‖
2 +

𝛾2

𝑛
∑

𝑖∈[𝑛]
‖𝜁 𝑖𝑘+1‖

2
‖𝑋𝑖

𝑘‖
2 + 𝛾4 ∫ ‖𝑥‖4𝑑𝜇𝑘(𝑥)+

𝛾4
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

+
𝛾2

𝑛
∑

𝑖∈[𝑛]
‖𝜉𝑖𝑘+1‖

4 +
𝛾4

𝑛
∑

𝑖∈[𝑛]
‖𝜁 𝑖𝑘+1‖

4 .

Taking the expectation, by Eq. (13), and by the assumption on (𝜁 𝑖𝑘)𝑘,𝑖, we obtain
1
𝐶

(

E‖𝑋1
𝑘+1‖

4 − ‖𝑋1
𝑘‖

4)

≤ −𝑐𝛾E‖𝑋1
𝑘‖

4 + 𝛾E

(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
(

∫ ‖𝑥‖4𝑑𝜇𝑘(𝑥)
)1∕2

)

+ 𝛾2E‖𝑋1
𝑘‖

4 + 𝛾2E
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

+ 𝛾E‖𝑋1
𝑛‖

2

+ 𝛾E
(

∫ ‖𝑥‖4𝑑𝜇𝑘(𝑥)
)1∕2

+ 𝛾 .

Cauchy–Schwarz inequality yields
1
𝐶

(

E‖𝑋1
𝑘+1‖

4 − ‖𝑋1
𝑘‖

4)

≤ −𝑐𝛾E‖𝑋1
𝑘‖

4 + 𝛾

(

E
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

)1∕2
(

E‖𝑋1
𝑘‖

4)1∕2

+ 𝛾2E‖𝑋1
𝑘‖

4 + 𝛾2E
(

∫ ‖𝑥‖2𝑑𝜇𝑘(𝑥)
)2

+ 𝛾
(

E‖𝑋1
𝑛‖

4)1∕2 + 𝛾 .

Finally, by Eq. (25), we obtain
1
𝐶

(

E‖𝑋1
𝑘+1‖

4 − ‖𝑋1
𝑘‖

4)

≤ −𝑐𝛾E‖𝑋1
𝑘‖

4 + 𝛾2E‖𝑋1
𝑘‖

4 + 𝛾
(

E‖𝑋1
𝑛‖

4)1∕2 + 𝛾 ,

which concludes the proof. □

Note that (𝛷𝑡(𝑚𝑛)) belongs to 𝑝().
In the light of Lemma  2 and Proposition  1, we should establish two points: first, the weak⋆-relatively compactness of the family 

of intensities {I(𝛷𝑡(𝑚𝑛))}𝑡,𝑛; second, a uniform integrability condition of the 𝑝th order moments of the measures I(𝛷𝑡(𝑚𝑛)(𝑥)). These 
results are respectively stated in Lemmas  5 and 6 below. 

Lemma 5.  We posit the assumptions of Proposition  4. The family of intensities {I(𝛷𝑡(𝑚𝑛))}𝑡,𝑛 is weak⋆-relatively compact in ().

Proof.  Let us establish the first point. For every bounded continuous function 𝜙 ∶  → R, we have

I(𝛷𝑡(𝑚𝑛))(𝜙) ∶= E
[

∫ 𝜙(𝑥)𝑑
(

𝛷𝑡(𝑚𝑛)(𝑥)
)

]

= 1
𝑛
∑

𝑖∈[𝑛]
E
[

𝜙(𝑋̄𝑖,𝑛
𝑡+⋅)

]

= E
[

𝜙(𝑋̄1,𝑛
𝑡+⋅)

]

,

where we used the exchangeability stated in Assumption  3–(i). Let us define the measure Î𝑛𝑡 ∈ (R𝑑 ) as

Î𝑛𝑡 (𝜙) ∶= E
[

𝜓(𝑋̄1,𝑛
𝑡 )

]

,

for each measurable function 𝜓 ∶ R𝑑 → R+. According to Th. 7.3 in [44], the weak⋆-relative compactness of the sequence (I𝑛𝑡 )𝑡,𝑛 in 
() is guaranteed if and only if the weak⋆-relative compactness of (Î𝑛𝑡 )𝑡,𝑛 in (R𝑑 ) is ensured, and if the following equicontinuity 
condition 

lim lim supP
(

𝑤𝑇 1,𝑛 (𝛿) ≥ 𝜀
)

= 0 (26)

𝛿→0 𝑡,𝑛 𝑋̄𝑡+⋅

13 
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is met for every 𝜀, 𝑇 > 0, where 𝑤𝑇𝑥 (𝛿) is the modulus of continuity of a function 𝑥 on the interval [0, 𝑇 ]. The weak⋆-relative 
compactness of (Î𝑛𝑡 )𝑡,𝑛 in (R𝑑 ), follows directly from Lemma  4. Using the notation 𝑘𝑡 ∶= inf{𝑘 ∶

∑𝑘
𝑖=1 𝛾𝑖 ≥ 𝑡}, and using the 

definition in Eq. (1), we obtain the decomposition:

𝑋̄1,𝑛
𝑡 − 𝑋̄1,𝑛

𝑠 = 𝑃 𝑛𝑠,𝑡 +𝑁
𝑛
𝑠,𝑡 + 𝑈

𝑛
𝑠,𝑡 , (27)

𝑃 𝑛𝑠,𝑡 ∶=
𝑘𝑡−2
∑

𝑘=𝑘𝑠

𝛾𝑘+1𝑏(𝑋
1,𝑛
𝑘 , 𝜇𝑛𝑘)

+
(

𝜏𝑘𝑠 − 𝑠
)

𝑏(𝑋1,𝑛
𝑘𝑠−1

, 𝜇𝑛𝑘𝑠−1) +
(

𝜏𝑘𝑡 − 𝑡
)

𝑏(𝑋1,𝑛
𝑘𝑡−1

, 𝜇𝑛𝑘𝑡−1)

𝑁𝑛
𝑠,𝑡 ∶=

𝑘𝑡−2
∑

𝑘=𝑘𝑠

√

𝛾𝑘+1𝜉
1,𝑛
𝑘+1 +

𝜏𝑘𝑠 − 𝑠
𝛾𝑘𝑠

√

𝛾𝑘𝑠𝜉
1,𝑛
𝑘𝑠

+
𝜏𝑘𝑡 − 𝑡
𝛾𝑘𝑡

√

𝛾𝑘𝑡𝜉
1,𝑛
𝑘𝑡

𝑈𝑛
𝑠,𝑡 ∶=

𝑘𝑡−2
∑

𝑘=𝑘𝑠

𝛾𝑘+1𝜁
1,𝑛
𝑘+1 +

(

𝜏𝑘𝑠 − 𝑠
)

𝜁1,𝑛𝑘𝑠 +
(

𝜏𝑘𝑡 − 𝑡
)

𝜁1,𝑛𝑘𝑡 .

Let the sequence (𝛾̃𝑘) be defined by: 𝛾̃𝑘𝑠 ∶= 𝜏𝑘𝑠 − 𝑠, 𝛾̃𝑘𝑡 ∶= 𝜏𝑘𝑡 − 𝑡 and 𝛾̃𝑘 ∶= 𝛾𝑘 for all 𝑘 ≠ 𝑘𝑡𝑠 , 𝑘𝑡𝑡 . Note that: 
𝑘𝑡−1
∑

𝑘=𝑘𝑠−1
𝛾̃𝑘+1 = 𝑡 − 𝑠 . (28)

Moreover, we have: 
𝜏𝑘𝑠 − 𝑠
𝛾𝑘𝑠

√

𝛾𝑘𝑠 ≤
√

𝛾̃𝑘𝑠 , and
𝜏𝑘𝑡 − 𝑡
𝛾𝑘𝑡

√

𝛾𝑘𝑡 ≤
√

𝛾̃𝑘𝑡 . (29)

The term 𝑁𝑛
𝑠,𝑡 is expressed as a sum of martingale increments, with respect to the filtration 𝑛

𝑘 . Let ‖ ⋅ ‖𝛼 denote the 𝛼-norm in R𝑑 . 
We apply Burkholder’s inequality stated in [45, Th. 1.1] to the components of the vector 𝑁𝑛

𝑠,𝑡 in R𝑑 . As Eq. (28) and (29) hold:

E
(

‖𝑁𝑛
𝑠,𝑡‖

4
4

)

≤ 𝐶(𝑡 − 𝑠)E

[ 𝑘𝑡−1
∑

𝑘=𝑘𝑠−1
𝛾̃𝑘+1‖𝜉

1,𝑛
𝑘+1‖

4
4

]

,

where 𝐶 is a constant independent 𝑠, 𝑡 and 𝑛. As Assumption  3–(ii) holds, there exists a constant 𝐶 > 0 independent of 𝑠, 𝑡, and 𝑛, 
such that 

sup
𝑛∈N

E
(

‖𝑁𝑛
𝑠,𝑡‖

4
)

≤ 𝐶(𝑡 − 𝑠)2 . (30)

Furthermore, using Jensen’s inequality along with Eq. (28), we obtain

‖𝑃 𝑛𝑠,𝑡‖
2 ≤ (𝑡 − 𝑠)

𝑘𝑡−1
∑

𝑘=𝑘𝑠−1
𝛾̃𝑘+1‖𝑏(𝑋

1,𝑛
𝑘 , 𝜇𝑛𝑘)‖

2 .

Using Assumption  1 and Lemma  4, there exists a constant 𝐶, independent of 𝑠, 𝑡, 𝑛, such that 

sup
𝑛∈N

E
(

‖𝑃 𝑛𝑠,𝑡‖
2
)

≤ 𝐶(𝑡 − 𝑠)2 . (31)

Also, by Jensen’s inequality, we have

‖𝑈𝑛
𝑠,𝑡‖

2 ≤ (𝑡 − 𝑠)
𝑘𝑡−1
∑

𝑘=𝑘𝑠−1
𝛾̃𝑘+1‖𝜁

1,𝑛
𝑘+1‖

2 .

Since, by Assumption  3, we have sup𝑘,𝑛 E[‖𝜁1,𝑛𝑘 ‖

2] < ∞, there exists a constant 𝐶 independent of 𝑛, 𝑠, and 𝑡, such that: 

sup
𝑛∈N

E
(

‖𝑈𝑛
𝑠,𝑡‖

2
)

≤ 𝐶(𝑡 − 𝑠)2 . (32)

Combining Eqs. (31), (30) and (32), we have shown: 

sup
𝑛∈N

E
[

‖𝑃 𝑛𝑠,𝑡‖
2 + ‖𝑁𝑛

𝑠,𝑡‖
4 + ‖𝑈𝑛

𝑠,𝑡‖
2
]

≤ 𝐶(𝑡 − 𝑠)2 , (33)

where 0 ≤ 𝑠 < 𝑡 < ∞, and 𝐶 is a positive constant, independent of 𝑠, 𝑡, 𝑛. Using [46, Th. 2.8] and Markov’s inequality, Eq. (26) 
hold. □

Lemma 6.  We posit the assumptions of Proposition  4. For every 𝑇 > 0,

lim
𝑎→∞

sup
∗
E
[

∫ sup ‖𝑥𝑠‖
𝑝1sup𝑠∈[0,𝑇 ] ‖𝑥𝑠‖≥𝑎𝑑𝛷𝑡(𝑚

𝑛)(𝑥)
]

= 0.

𝑡∈R+ , 𝑛∈N 𝑠∈[0,𝑇 ]

14 
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Proof.  By the exchangeability stated in Assumption  3–(i), we obtain:

E

[

∫ sup
𝑢∈[0,𝑇 ]

‖𝑥𝑢‖
𝑝1 sup

𝑢∈[0,𝑇 ]
‖𝑥𝑢‖>𝑎𝑑𝛷𝑡(𝑚

𝑛)(𝑥)

]

=

E

[

sup
𝑢∈[0,𝑇 ]

‖𝑋̄1,𝑛
𝑡+𝑢‖

𝑝
1 sup
𝑢∈[0,𝑇 ]

‖𝑋̄1,𝑛
𝑡+𝑢‖>𝑎

]

,

for every 𝑘, 𝑡, 𝑛. Recalling the decomposition introduced in Eq. (27), for every 𝑢 ∈ [0, 𝑇 ]:

‖𝑋̄1,𝑛
𝑡+𝑢‖

𝑝 ≤ 4𝑝−1
(

‖𝑋̄1,𝑛
𝑡 ‖

𝑝 + ‖𝑁𝑛
𝑡,𝑡+𝑢‖

𝑝 + ‖𝑃 𝑛𝑡,𝑡+𝑢‖
𝑝 + ‖𝑈𝑛

𝑡,𝑡+𝑢‖
𝑝
)

.

Hence,

‖𝑋̄1,𝑛
𝑡+𝑢‖

𝑝1 sup
𝑢∈[0,𝑇 ]

‖𝑋̄1,𝑛
𝑡+𝑢‖>𝑎

≤4𝑝
(

‖𝑋̄1,𝑛
𝑡 ‖

𝑝1
‖𝑋̄1,𝑛

𝑡 ‖> 𝑎4

+‖𝑁𝑛
𝑡,𝑡+𝑢‖

𝑝1 sup
𝑢∈[0,𝑇 ]

‖𝑁𝑛
𝑡,𝑡+𝑢‖>

𝑎
4

+‖𝑃 𝑛𝑡,𝑡+𝑢‖
𝑝1 sup

𝑢∈[0,𝑇 ]
‖𝑃 𝑛𝑡,𝑡+𝑢‖>

𝑎
4
+ ‖𝑈𝑛

𝑡,𝑡+𝑢‖
𝑝1 sup

𝑢∈[0,𝑇 ]
‖𝑈𝑛𝑡,𝑡+𝑢‖>

𝑎
4

)

.

Consequently, for each 𝑇 > 0, it suffices to obtain the uniform integrability of the four collections of random variables: (‖𝑋̄1,𝑛
𝑡 ‖

𝑝 ∶
𝑡 ∈ R+, 𝑛 ∈ N∗), (sup𝑢∈[0,𝑇 ] ‖𝑁𝑛

𝑡,𝑡+𝑢‖
𝑝 ∶ 𝑡 ∈ R+, 𝑛 ∈ N∗), (sup𝑢∈[0,𝑇 ] ‖𝑃 𝑛𝑡,𝑡+𝑢‖𝑝 ∶ 𝑡 ∈ R+, 𝑛 ∈ N∗) and (sup𝑢∈[0,𝑇 ] ‖𝑈𝑛

𝑡,𝑡+𝑢‖
𝑝 ∶ 𝑡 ∈ R+, 𝑛 ∈ N∗).

(‖𝑋̄1,𝑛
𝑡 ‖

𝑝 ∶ 𝑘 ∈ R+, 𝑛 ∈ N∗) is uniformly integrable by the first point of Lemma  4 when 𝑝 < 2, and by the second point of Lemma 
4 when 𝑝 = 2. As obtained in Eq. (30), Burkholder inequality stated in [45, Th 1.1] yields:

E
[

sup
𝑢∈[0,𝑇 ]

‖𝑁𝑛
𝑡,𝑡+𝑢‖

4
]

≤ 𝐶𝑇 2 ,

where 𝐶 is a constant independent of 𝑡, 𝑛, and 𝑇 . Hence, since 𝑝 < 4, we obtain the uniform integrability of {sup𝑢∈[0,𝑇 ] ‖𝑁𝑛
𝑡,𝑡+𝑢‖

𝑝 ∶
𝑡 ∈ R+, 𝑛 ∈ N∗}. As obtained in Eqs.  (31) and (32), we derive:

sup
𝑢∈[0,𝑇 ]

‖𝑃 𝑛𝑡,𝑡+𝑢‖
𝑝 ≤ 𝐶𝑇 𝑝−1

𝑘𝑡+𝑇 −1
∑

𝑘=𝑘𝑡−1
𝛾̃𝑘+1‖𝑏(𝑋

1,𝑛
𝑘 , 𝜇𝑛𝑘)‖

𝑝 ,

and

sup
𝑢∈[0,𝑇 ]

‖𝑈𝑛
𝑡,𝑡+𝑢‖

2 ≤ 𝐶𝑇
𝑘𝑡+𝑇 −1
∑

𝑘=𝑘𝑡−1
𝛾̃𝑘+1‖𝜁

1,𝑛
𝑘 ‖

2 ,

where 𝐶 remains a constant independent of 𝑛 and 𝑡. Using the first point of Lemma  4 when 𝑝 < 2, and the second point of Lemma 
4 when 𝑝 = 2, by de la Vallée Poussin theorem, there exists a non-decreasing, convex, and non-negative function 𝐹 ∶ R∗

+ → R such 
that

lim
ℎ→∞

𝐹 (ℎ)
ℎ

= ∞, and sup
𝑘∈N,𝑛∈N∗

E
[

𝐹
(

‖𝑏(𝑋1,𝑛
𝑘 , 𝜇𝑛𝑘)‖

𝑝
)]

<∞.

Hence, by Jensen’s inequality,

E
[

𝐹
(

sup
𝑢∈[0,𝑇 ]

‖𝑃 𝑛𝑡,𝑡+𝑢‖
𝑝
)]

≤ 1
𝑇

𝑘𝑡+𝑇 −1
∑

𝑘=𝑘𝑡−1
𝛾̃𝑘+1E

[

𝐹
(

𝐶𝑇 𝑝‖𝑏(𝑋1,𝑛
𝑘 , 𝜇𝑛𝑘)‖

𝑝
)]

.

Consequently,

sup
𝑡∈R+ ,𝑛∈N∗

E
[

𝐹
(

sup
𝑢∈[0,𝑇 ]

‖𝑃 𝑛𝑡,𝑡+𝑢‖
𝑝
)]

< ∞ .

Therefore, de la Vallée Poussin theorem yields the uniform integrability of the collection (sup𝑢∈[0,𝑇 ] ‖𝑃 𝑛𝑡,𝑡+𝑢‖𝑝 ∶ 𝑡 ∈ R+, 𝑛 ∈ N∗) . 
The uniform integrability of the collection (sup𝑢∈[0,𝑇 ] ‖𝑈𝑛

𝑡,𝑡+𝑢‖
𝑝 ∶ 𝑡 ∈ R+, 𝑛 ∈ N∗) is obtained, by the same arguments. This completes 

the proof. □

To conclude the proof of Proposition  4, it is sufficient to remark that the tightness conditions provided in Lemma  2 are satisfied, 
thanks to Lemmas  5 and 6, with Proposition  1.

5.2. Proof of Proposition  5

The core of the proof is provided by the following proposition. 
15 
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Proposition 10.  Let Assumption  1, 2, 3 and 4 hold,

lim
(𝑡,𝑛)→(∞,∞)

E |

|

𝐺(𝛷𝑡(𝑚𝑛))|| = 0 ,

for each function 𝐺 ∈ 𝑝.

Proof.  We need to show that for each R+ × N-valued sequence (𝑡𝑛, 𝜑𝑛) → (∞,∞) as 𝑛 → ∞, the convergence E |

|

|

𝐺(𝛷𝑡𝑛 (𝑚
𝜑𝑛 ))||

|

→ 0
holds true, where 𝐺 = 𝐺𝑟,𝜙,ℎ1 ,…,ℎ𝑟 ,𝑡,𝑠,𝑣1 ,…,𝑣𝑟  has the form of Eq. (9), with 0 ≤ 𝑣1 ≤ ⋯ ≤ 𝑣𝑟 ≤ 𝑠 ≤ 𝑡. We take 𝜑𝑛 = 𝑛 for notational 
simplicity, and we write 𝗆𝑛 ∶= 𝛷𝑡𝑛 (𝑚

𝑛) ∈ 𝑝(). We have 

𝐺(𝗆𝑛) =
1
𝑛
∑

𝑖∈[𝑛]

(

𝜙(𝑋̄𝑖,𝑛
𝑡𝑛+𝑡

) − 𝜙(𝑋̄𝑖,𝑛
𝑡𝑛+𝑠

) − ∫

𝑡𝑛+𝑡

𝑡𝑛+𝑠
𝜓(𝑋̄𝑖,𝑛

𝑢 , 𝑚
𝑛
𝑢)𝑑𝑢

)

𝑄𝑖,𝑛, (34)

where we set 𝜓(𝑥, 𝜇) ∶= ⟨∇𝜙(𝑥), 𝑏(𝑥, 𝜇)⟩ + tr
(

𝜎(𝑥, 𝜇)𝑇𝐻𝜙(𝑥)𝜎(𝑥, 𝜇)
)

, and

𝑄𝑖,𝑛 ∶=
𝑟

∏

𝑗=1
ℎ𝑗 (𝑋̄

𝑖,𝑛
𝑡𝑛+𝑣𝑗

).

We note right away that |𝑄𝑖,𝑛| ≤ 𝐶 where 𝐶 depends on the functions ℎ𝑗 only, and furthermore, the random variables {𝑄𝑖,𝑛}𝑖∈[𝑛] are 
𝑛
𝑘𝑡𝑛+𝑠

-measurable, where we recall that the integer 𝑘𝑡 is defined by 𝑘𝑡 ∶= inf{𝑘 ∶
∑𝑘
𝑖=1 𝛾𝑖 ≥ 𝑡}.

In the remainder, we suppress the superscript (𝑛) from most of our notations for clarity. To deal with the right hand side of (34), 
we begin by expressing 𝜙(𝑋̄𝑖

𝑡𝑛+𝑡
) − 𝜙(𝑋̄𝑖

𝑡𝑛+𝑠
) as a telescoping sum in the discrete random variables 𝑋𝑖

𝑘:

𝜙(𝑋̄𝑖
𝑡𝑛+𝑡

) − 𝜙(𝑋̄𝑖
𝑡𝑛+𝑠

) =
𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

(

𝜙(𝑋𝑖
𝑘+1) − 𝜙(𝑋

𝑖
𝑘)
)

+ 𝜙(𝑋̄𝑖
𝑡𝑛+𝑡

) − 𝜙(𝑋𝑖
𝑘𝑡𝑛+𝑡−1

) + 𝜙(𝑋𝑖
𝑘𝑡𝑛+𝑠

) − 𝜙(𝑋̄𝑖
𝑡𝑛+𝑠

).

The summands at the r.h.s. of this expression can be decomposed as follows. Remember the form (1) of our algorithm. Denoting as 
𝐻𝜙 the Hessian matrix of 𝜙, by the Taylor–Lagrange formula, there exists 𝜃𝑘+1 ∈ [𝜏𝑘, 𝜏𝑘+1] such that 

𝜙(𝑋𝑖
𝑘+1) − 𝜙(𝑋

𝑖
𝑘)

= ⟨∇𝜙(𝑋𝑖
𝑘), 𝑋

𝑖
𝑘+1 −𝑋

𝑖
𝑘⟩ +

1
2
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)𝑇 𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)

= 𝛾𝑘+1⟨∇𝜙(𝑋
𝑖,𝑛
𝑘 ), 𝑏(𝑋𝑖

𝑘, 𝜇
𝑛
𝑘)⟩

+ 𝛾𝑘+1 tr
(

𝜎(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜎(𝑋
𝑖
𝑘, 𝜇

𝑛
𝑘)
)

+
√

2𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜉

𝑖
𝑘+1⟩ +

1
2
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)𝑇 𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)

− 𝛾𝑘+1 tr
(

𝜎(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜎(𝑋
𝑖
𝑘, 𝜇

𝑛
𝑘)
)

+ 𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜁

𝑖
𝑘+1⟩

= 𝛾𝑘+1𝜓(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘) +

1
2
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)𝑇 𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)

+ 𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜁

𝑖
𝑘+1⟩ − 𝛾𝑘+1 tr

(

𝜎(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜎(𝑋
𝑖
𝑘, 𝜇

𝑛
𝑘)
)

+
√

2𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜉

𝑖
𝑘+1⟩

= 𝛾𝑘+1𝜓(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘) +

1
2
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)𝑇 𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)
(

𝑋𝑖
𝑘+1 −𝑋

𝑖
𝑘
)

+ 𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜁

𝑖
𝑘+1⟩ − 𝛾𝑘+1 tr

(

𝜎(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜎(𝑋
𝑖
𝑘, 𝜇

𝑛
𝑘)
)

+
√

2𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜉

𝑖
𝑘+1⟩ + 𝛾𝑘+1(𝜉

𝑖
𝑘+1)

𝑇𝐻𝜙(𝑋𝑖
𝑘)𝜉

𝑖
𝑘+1 − 𝛾𝑘+1(𝜉

𝑖
𝑘+1)

𝑇𝐻𝜙(𝑋𝑖
𝑘)𝜉

𝑖
𝑘+1

In this last expression, the terms 𝜓(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘) will be played against the integral term at the right hand side of (34), and the other 

terms will be proven to have negligible effects. Since tr(𝜉𝑖𝑘+1(𝜉𝑖𝑘+1)𝑇𝐻𝜙(𝑋̄𝑖
𝑘)) = (𝜉𝑖𝑘+1)

𝑇𝐻𝜙(𝑋𝑖
𝑘)𝜉

𝑖
𝑘+1, the term

𝜂𝑖𝑘+1 ∶=
√

2𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜉

𝑖
𝑘+1⟩ + 𝛾𝑘+1(𝜉

𝑖
𝑘+1)

𝑇𝐻𝜙(𝑋𝑖
𝑘)𝜉

𝑖
𝑘+1

−𝛾𝑘+1 tr
(

𝜎(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜎(𝑋
𝑖
𝑘, 𝜇

𝑛
𝑘)
)

in the expression above is a martingale increment term with respect to the filtration (𝑛
𝑘 )𝑘, thanks to Assumption  3–(ii). 

To proceed, considering the integral at the right hand side of (34), we can write

∫

𝑡𝑛+𝑡

𝑡𝑛+𝑠
𝜓(𝑋̄𝑖

𝑢, 𝑚̄
𝑛
𝑢)𝑑𝑢 =∫

𝜏𝑘𝑡𝑛+𝑡−1

𝜏𝑘𝑡𝑛+𝑠

𝜓(𝑋̄𝑖
𝑢, 𝑚

𝑛
𝑢)𝑑𝑢

+ ∫

𝜏𝑘𝑡𝑛+𝑠

𝑡𝑛+𝑠
𝜓(𝑋̄𝑖

𝑢, 𝑚
𝑛
𝑢)𝑑𝑢 + ∫

𝑡𝑛+𝑡

𝜏𝑘𝑡𝑛+𝑡−1
𝜓(𝑋̄𝑖

𝑢, 𝑚
𝑛
𝑢)𝑑𝑢,
16 
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and with these decompositions, we obtain 𝐺(𝗆𝑛) =
∑8
𝑙=1 𝜒

𝑛
𝑙 , where:

𝜒𝑛1 ∶= 1
𝑛
∑

𝑖∈[𝑛]

{

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1𝜓(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘) − ∫

𝜏𝑘𝑡𝑛+𝑡−1

𝜏𝑘𝑡𝑛+𝑠

𝜓(𝑋̄𝑖
𝑢, 𝑚

𝑛
𝑢)𝑑𝑢

}

𝑄𝑖,

𝜒𝑛2 ∶= 1
𝑛
∑

𝑖∈[𝑛]

{

𝜙(𝑋̄𝑖
𝑡𝑛+𝑡

) − 𝜙(𝑋𝑖
𝑘𝑡𝑛+𝑡−1

) + 𝜙(𝑋𝑖
𝑘𝑡𝑛+𝑠

) − 𝜙(𝑋̄𝑖
𝑡𝑛+𝑠

)
}

𝑄𝑖,

𝜒𝑛3 ∶= −1
𝑛
∑

𝑖∈[𝑛]

{

∫

𝜏𝑘𝑡𝑛+𝑠

𝑡𝑛+𝑠
𝜓(𝑋̄𝑖

𝑢, 𝑚
𝑛
𝑢)𝑑𝑢 + ∫

𝑡𝑛+𝑡

𝜏𝑘𝑡𝑛+𝑡−1
𝜓(𝑋̄𝑖

𝑢, 𝑚
𝑛
𝑢)𝑑𝑢

}

𝑄𝑖

𝜒𝑛4 ∶= 1
𝑛
∑

𝑖∈[𝑛]

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1⟨∇𝜙
(

𝑋𝑖
𝑘
)

, 𝜁 𝑖𝑘+1⟩𝑄
𝑖,

𝜒𝑛5 ∶= 1
𝑛
∑

𝑖∈[𝑛]

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1
(

𝜉𝑖𝑘+1
)𝑇

(

𝐻𝜙(𝑋̄𝑖
𝜃𝑘+1

) −𝐻𝜙(𝑋𝑖
𝑘)
)

(

𝜉𝑖𝑘+1
)

𝑄𝑖,

𝜒𝑛6 ∶= 1
𝑛
∑

𝑖∈[𝑛]

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

(
√

2𝛾3∕2𝑘+1𝑏(𝑋
𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)𝜉𝑖𝑘+1

)

𝑄𝑖

+ 1
𝑛
∑

𝑖∈[𝑛]

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

( 1
2
𝛾2𝑘+1𝑏

(

𝑋𝑖
𝑘, 𝜇

𝑛
𝑘
)𝑇 𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)𝑏
(

𝑋𝑖
𝑘, 𝜇

𝑛
𝑘
)

)

𝑄𝑖,

𝜒𝑛7 ∶= 1
𝑛
∑

𝑖∈[𝑛]

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾3∕2𝑘+1

⎛

⎜

⎜

⎝

(

√

𝛾𝑘+1

(

𝑏(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘) +

𝜁 𝑖𝑘+1
2

)

+
√

2𝜉𝑖𝑘+1

)𝑇

𝐻𝜙(𝑋̄𝑖
𝜃𝑘+1

)𝜁 𝑖𝑘+1
)

𝑄𝑖, and

𝜒𝑛8 ∶= 1
𝑛
∑

𝑖∈[𝑛]

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝜂𝑖𝑘+1𝑄
𝑖.

To prove our proposition, we show that E|𝜒𝑛𝑙 | → 0 for all 𝑙 ∈ [8]. The notation 𝐸×
× will be generically used to refer to error terms.

Let us start with E|𝜒𝑛1 |. For 𝑖, 𝑗,𝓁 ∈ [𝑛], writing

𝐸𝑛𝑖 ∶=
𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1𝜓(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘) − ∫

𝜏𝑘𝑡𝑛+𝑡−1

𝜏𝑘𝑡𝑛+𝑠

𝜓(𝑋̄𝑖
𝑢, 𝑚

𝑛
𝑢)𝑑𝑢

and using the boundedness of 𝑄𝑖 and the exchangeability as stated by Assumption  3–(i), we obtain that

E|𝜒𝑛1 | ≤ 𝐶E|𝐸𝑛1 |.

We begin by providing a bound on the second moments of 𝐸𝑛𝑖 . Recalling the definition of 𝜓 , and using the compactness of the 
support of 𝜙 along with Assumption  1, we obtain that

E(𝐸𝑛𝑖 )
2 ≤ 2(𝑡 − 𝑠)2 max

𝑢∈[𝑡𝑛+𝑠,𝑡𝑛+𝑡]
E‖𝜓(𝑋̄𝑖

𝑢, 𝑚
𝑛
𝑢)‖

2

≤ 𝐶(𝑡 − 𝑠)2
(

1 + sup
𝑢≥0

E‖𝑏(𝑋̄1
𝑢 , 𝑚

𝑛
𝑢)‖

2
)

≤ 𝐶(𝑡 − 𝑠)2

thanks to Lemma  4. To obtain that E|𝜒𝑛1 | → 0, we thus need to show that E|𝐸𝑛1 | → 0. 
By Proposition  4 above, the sequence (𝗆𝑛) of ()-valued random variables is tight. By Lemma  1, this is equivalent to the 

weak⋆-relative compactness of the sequence of intensities (I(𝗆𝑛)). For each Borel set 𝐴 ∈ (), we furthermore have that

I(𝗆𝑛)(𝐴) =
1
𝑛
∑

𝑖∈[𝑛]
P
[

𝑋̄𝑖,𝑛
𝑡𝑛+⋅

∈ 𝐴
]

= P
[

𝑋̄1,𝑛
𝑡𝑛+⋅

∈ 𝐴
]

by the exchangeability, thus, the sequence of random variables (𝑋̄1,𝑛
𝑡𝑛+⋅

)𝑛 is tight. Let us work on the r. v. 𝑈𝑛 ∶= 𝜋[0,𝑡−𝑠]#𝑋̄1
𝑡𝑛+𝑠+⋅

 defined 
on the set ([0, 𝑡− 𝑠]) of continuous functions on the interval [0, 𝑡− 𝑠]. Since (𝑋̄1,𝑛

𝑡𝑛+⋅
)𝑛 and ((𝛩𝑡)#𝑚𝑛)𝑡,𝑛 are tight (by prop. 4), given an 

arbitrary 𝜀 > 0, there exists two compact sets 𝐾𝜀 ⊂ ([0, 𝑡 − 𝑠]) and 𝜀 ⊂ 𝑝() such that

∀𝑛 ∈ N∗, P
[

𝑈 ∉ 𝐾
]

+ P[𝛷 (𝑚𝑛) ∉  ] ≤ 𝜀.
𝑛 𝜀 𝑡𝑛+𝑠 𝜀
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 Writing 𝛾̄𝑙 = sup𝑘≥𝑙 𝛾𝑘, we now have

|

|

|

𝐸𝑛1
|

|

|

≤
𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1 max
𝛿∈[0,𝛾𝑘+1]

|

|

|

𝜓(𝑋̄1
𝜏𝑘+𝛿

, 𝑚𝑛𝜏𝑘+𝛿 ) − 𝜓(𝑋̄
1
𝜏𝑘
, 𝑚𝑛𝜏𝑘 )

|

|

|

≤ (𝑡 − 𝑠) max
𝑢,𝑣∈[0,𝑡−𝑠]

|𝑢−𝑣|≤𝛾̄𝑘𝑡𝑛+𝑠

|

|

|

𝜓(𝑈𝑛(𝑢), 𝑚𝑛𝑡𝑛+𝑠+𝑢) − 𝜓(𝑈𝑛(𝑣), 𝑚
𝑛
𝑡𝑛+𝑠+𝑣

)||
|

.

We thus can write
E |

|

|

𝐸𝑛1
|

|

|

= E |

|

|

𝐸𝑛1
|

|

|

1(𝑈𝑛 ,𝛷𝑡𝑛+𝑠(𝑚
𝑛))∈𝐾𝜀×𝜀 + E |

|

|

𝐸𝑛1
|

|

|

1(𝑈𝑛 ,𝛷𝑡𝑛+𝑠(𝑚
𝑛))∉𝐾𝜀×𝜀

≤ (𝑡 − 𝑠) sup
𝑓,𝜌∈𝐾𝜀×𝜀

max
𝑢,𝑣∈[0,𝑡−𝑠]

|𝑢−𝑣|≤𝛾̄𝑘𝑡𝑛+𝑠

|

|

𝜓(𝑓 (𝑢), 𝜌𝑢) − 𝜓(𝑓 (𝑣), 𝜌𝑣)||

+
√

E(𝐸𝑛1 )
2
√

P
[

𝑈𝑛 ∉ 𝐾𝜀
]

+ P[𝛷𝑡𝑛+𝑠(𝑚
𝑛) ∉ 𝜀]. (35)

By the Arzelà–Ascoli theorem, the functions in 𝐾𝜀 are uniformly equicontinuous and bounded. Moreover, the set {𝑢 ∈ [0, 𝑡 − 𝑠] ↦
𝜌𝑢, 𝜌 ∈ 𝜀} is also uniformly equicontinuous and {𝜌𝑢 ∶ 𝑢 ∈ [0, 𝑡 − 𝑠], 𝜌 ∈ 𝜀} is include in a compact subspace of 𝑝(R𝑑 ).

Since 𝜓 is a continuous function, by Heine theorem, 𝜓 is equicontinuous, when we restrict 𝜓 to a compact space. Therefore, one 
can easily check that the set of functions  on [0, 𝑡 − 𝑠] defined as

 ∶=
{

𝑢↦ 𝜓(𝑓 (𝑢), 𝜌𝑢) ∶ (𝑓, 𝜌) ∈ 𝐾𝜀 ×𝜀
}

is a set of uniformly equicontinuous functions. As a consequence, the first term at the right hand side of the inequality in (35) 
converges to zero as 𝑛 → ∞, since 𝛾̄𝑘𝑡𝑛+𝑠 → 0. The second term is bounded by 𝐶√𝜀 thanks to the bound we obtained on E(𝐸𝑛1 )2. 
Since 𝜀 is arbitrary, we obtain that E|𝐸𝑛1 | → 0, thus, E|𝜒𝑛1 | → 0. 

The terms 𝜒2
𝑛 , 𝜒3

𝑛 , and 𝜒5
𝑛  are dealt with similarly to 𝜒1

𝑛 . Considering 𝜒2
𝑛 , we have by the exchangeability that E|𝜒2

𝑛 | ≤ 𝐶E|𝐸𝑛1 |, 
with

𝐸𝑛1 = 𝜙(𝑋̄1
𝑡𝑛+𝑡

) − 𝜙(𝑋1
𝑘𝑡𝑛+𝑡−1

) + 𝜙(𝑋1
𝑘𝑡𝑛+𝑠

) − 𝜙(𝑋̄1
𝑡𝑛+𝑠

)

= 𝜙(𝑋̄1
𝑡𝑛+𝑡

) − 𝜙(𝑋̄1
𝜏𝑘𝑡𝑛+𝑡−1

) + 𝜙(𝑋̄1
𝜏𝑘𝑡𝑛+𝑠

) − 𝜙(𝑋̄1
𝑡𝑛+𝑠

).

Keeping the notations 𝑈𝑛 ∶= 𝜋[0,𝑡−𝑠]#𝑋̄1
𝑡𝑛+𝑠+⋅

 and 𝛾̄𝑙 introduced above, we have
|𝐸𝑛1 | ≤ 2 max

𝑢,𝑣∈[0,𝑡−𝑠]
|𝑢−𝑣|≤𝛾̄𝑘𝑡𝑛+𝑠

|

|

𝜙(𝑈𝑛(𝑢)) − 𝜙(𝑈𝑛(𝑣))|| .

Taking 𝜀 > 0, selecting the compact 𝐾𝜀 ⊂ ([0, 𝑡 − 𝑠]) as we did for 𝜒𝑛1 , and recalling that the function 𝜙 is bounded, we have

E |

|

|

𝐸𝑛1
|

|

|

≤ 2 sup
𝑓∈𝐾𝜀

max
𝑢,𝑣∈[0,𝑡−𝑠]

|𝑢−𝑣|≤𝛾̄𝑘𝑡𝑛+𝑠

‖𝜙(𝑓 (𝑢)) − 𝜙(𝑓 (𝑣))‖ + 𝐶P
[

𝑈𝑛 ∉ 𝐾𝜀
]

,

and we obtain the E|𝜒2
𝑛 | → 0 by the same argument as for 𝜒1

𝑛 .
The treatment of 𝜒3

𝑛  is very similar to 𝜒2
𝑛  and is omitted. Let us provide some details for 𝜒5

𝑛 . Here we have by exchangeability 
that

E|𝜒𝑛5 | ≤
𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1E|𝐸
1,𝑛
𝑘 |,

where

𝐸1,𝑛
𝑘 ∶=

(

𝜉1𝑘+1
)𝑇 (

𝐻𝜙(𝑋̄1
𝜃𝑘+1

) −𝐻𝜙(𝑋1
𝑘)
)

(

𝜉1𝑘+1
)

𝑄1.

satisfies

|𝐸1,𝑛
𝑘 | ≤ 𝐶‖𝜉1𝑘+1‖

2 max
𝑢,𝑣∈[0,𝑡−𝑠]

|𝑢−𝑣|≤𝛾̄𝑘𝑡𝑛+𝑠

‖

‖

‖

𝐻𝜙(𝑈𝑛(𝑢)) −𝐻𝜙(𝑈𝑛(𝑣))
‖

‖

‖

.

Therefore,

E |

|

|

𝐸1,𝑛
𝑘

|

|

|

= E |

|

|

𝐸1,𝑛
𝑘

|

|

|

1𝑈𝑛∈𝐾𝜀 + E |

|

|

𝐸1,𝑛
𝑘

|

|

|

1𝑈𝑛∉𝐾𝜀

≤ 𝐶E‖𝜉𝑘+1‖2 sup
𝑓∈𝐾𝜀

max
𝑢,𝑣∈[0,𝑡−𝑠]

|𝑢−𝑣|≤𝛾̄𝑘𝑡𝑛+𝑠

‖

‖

‖

𝐻𝜙(𝑓 (𝑢)) −𝐻𝜙(𝑓 (𝑣))
‖

‖

‖

+
√

E(𝐸1,𝑛
𝑘 )2

√

P
[

𝑈𝑛 ∉ 𝐾𝜀
]

.

Since E‖𝜉 ‖

2 and E(𝐸1,𝑛)2 are bounded, we obtain that E|𝜒𝑛| → 0.
𝑘+1 𝑘 5
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Considering the term 𝜒4
𝑛 , we have by exchangeability

E|𝜒𝑛4 | ≤ 𝐶E
|

|

|

|

|

|

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1⟨∇𝜙
(

𝑋1
𝑘
)

, 𝜁1𝑘+1⟩
|

|

|

|

|

|

≤ 𝐶E
|

|

|

|

|

|

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1⟨∇𝜙
(

𝑋1
𝑘
)

,E[𝜁1𝑘+1 |
𝑛
𝑘 ]⟩

|

|

|

|

|

|

+ 𝐶E
|

|

|

|

|

|

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1⟨∇𝜙
(

𝑋1
𝑘
)

, 𝜁̊1𝑘+1⟩
|

|

|

|

|

|

∶= E|𝜒𝑛4,1| + E|𝜒𝑛4,2|,

where 𝜁̊1𝑘 = 𝜁1𝑘 − E[𝜁1𝑘 |
𝑛
𝑘−1] is a martingale increment with respect to the filtration (𝑛

𝑘 )𝑘. We have

E|𝜒𝑛4,1| ≤ 𝐶(𝑡 − 𝑠) sup
𝑙≥𝑘𝑡𝑛+𝑠

E ‖

‖

‖

E[𝜁1𝑙+1 |
𝑛
𝑙 ]
‖

‖

‖

,

which converges to zero by Assumption  3–(iii). By the martingale property, we furthermore have

E(𝜒𝑛4,2)
2 ≤ 𝐶

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾2𝑘+1 ≤ 𝐶𝛾̄𝑘𝑡𝑛+𝑠 (𝑡 − 𝑠),

which also converges to zero. Thus, E|𝜒𝑛4 | → 0.
We now turn to 𝜒𝑛6 . Here we write

𝜒𝑛6 = 1
𝑛
∑

𝑖∈[𝑛]

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾3∕2𝑘+1𝐸
𝑖
𝑘,

where

𝐸𝑖𝑘 ∶=
√

2𝑏(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)𝜉𝑖𝑘+1𝑄

𝑖

+ 1
2
√

𝛾𝑘+1𝑏(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋̄𝑖

𝜃𝑘+1
)𝑏(𝑋𝑖

𝑘, 𝜇
𝑛
𝑘)𝑄

𝑖

satisfies

|𝐸𝑖𝑘| ≤ 𝐶‖𝑏(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)‖‖𝜉

𝑖
𝑘+1‖ + 𝐶

√

𝛾𝑘+1‖𝑏(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)‖

2.

We readily obtain from Assumption  1, 3 and Lemma  4 that E|𝐸𝑖𝑘| ≤ 𝐶, which leads to E|𝜒𝑛6 | → 0.
The treatment of the term 𝜒𝑛7  is similar and is omitted.
We finally deal with 𝜒𝑛8  that involves the martingale increments 𝜂𝑖𝑘. We decompose this term by writing 

𝜒𝑛8 =
𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

1
𝑛
∑

𝑖∈[𝑛]

√

2𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜉

𝑖
𝑘+1⟩𝑄

𝑖+

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾𝑘+1
𝑛

∑

𝑖∈[𝑛]

(

(𝜉𝑖𝑘+1)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜉
𝑖
𝑘+1 − tr

(

𝜎(𝑋𝑖
𝑘, 𝜇

𝑛
𝑘)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜎(𝑋
𝑖
𝑘, 𝜇

𝑛
𝑘)
))

𝑄𝑖

∶= 𝜒𝑛8,1 + 𝜒
𝑛
8,2.

 Since the random vectors 𝜉1𝑘+1,… , 𝜉𝑛𝑘+1 are decorrelated conditionally to 𝑛
𝑘  by Assumption  3–(ii), we obtain that

E

[

( 1
𝑛
∑

𝑖∈[𝑛]

√

2𝛾𝑘+1⟨∇𝜙(𝑋𝑖
𝑘), 𝜉

𝑖
𝑘+1⟩𝑄

𝑖
)2|

|

|

|

|

𝑛
𝑘

]

≤ 𝐶
𝛾𝑘+1
𝑛
,

and by the martingale property,

E(𝜒𝑛8,1)
2 ≤

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝐶
𝛾𝑘+1
𝑛

≤ 𝐶(𝑡 − 𝑠)
𝑛

.

Using the martingale property again along with the inequality (∑𝑛
1 𝑎𝑖)

2 ≤ 𝑛
∑𝑛

1 𝑎
2
𝑖 , we also have 

E(𝜒𝑛8,2)
2 ≤

𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾2𝑘+1E

(

1
𝑛
∑

𝑖∈[𝑛]

(

(𝜉𝑖𝑘+1)
𝑇𝐻𝜙(𝑋𝑖

𝑘)𝜉
𝑖
𝑘+1

− tr
(

𝜎(𝑋𝑖 , 𝜇𝑛)𝑇𝐻 (𝑋𝑖 )𝜎(𝑋𝑖 , 𝜇𝑛)
))

𝑄𝑖
)2
𝑘 𝑘 𝜙 𝑘 𝑘 𝑘
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≤ 𝐶
𝑘𝑡𝑛+𝑡−2
∑

𝑘=𝑘𝑡𝑛+𝑠

𝛾2𝑘+1

≤ 𝛾̄𝑘𝑡𝑛+𝑠𝐶(𝑡 − 𝑠).

 It results that E(𝜒𝑛8 )2 → 0. The proof of Proposition  10 is completed. □

Proof of Proposition  5.  Let (𝑡𝑛, 𝜑𝑛)𝑛 be a R+ ×N∗-valued sequence such that the distribution of (𝛷𝑡𝑛 (𝑚𝜑𝑛 ))𝑛 converges to a measure 
𝑀 ∈ , which exists thanks to the tightness of (𝛷𝑡𝑛 (𝑚𝜑𝑛 ))𝑛 as established by Proposition  4. Let 𝐺 ∈ 𝑝. By the continuity of 𝐺
as established by Lemma  3, 𝐺(𝛷𝑡𝑛 (𝑚𝜑𝑛 )) converges in distribution to 𝐺#𝑀 ∈ (R). On the other hand, we know by the previous 
proposition that 𝐺(𝛷𝑡𝑛 (𝑚𝜑𝑛 )) converges in probability to zero. Therefore, 𝐺#𝑀 = 𝛿0.

Let supp(𝑀) ⊂ 𝑝() be the support of 𝑀 , and let 𝜌 ∈ supp(𝑀). By definition of the support, 𝑀( ) > 0 for each neighborhood 
  of 𝜌. Therefore, since 𝐺#𝑀 = 𝛿0, there exists a sequence (𝜌𝑙)𝑙∈N such that 𝜌𝑙 ∈ supp(𝑀), 𝐺(𝜌𝑙) = 0, and 𝜌𝑙 →𝑙 𝜌 in 𝑝(). 
By the continuity of 𝐺, we obtain that 𝐺(𝜌) = 0, which shows that supp(𝑀) ⊂ 𝐺−1({0}). Since 𝐺 is arbitrary, we obtain that 
supp(𝑀) ⊂ 𝖵𝑝 =

⋂

𝐺∈𝑝 𝐺
−1({0}), and the theorem is proven. □

5.3. Proof of Theorem  1

Throughout this paragraph, we assume that 1 ≤ 𝑝 ≤ 2.
We define the following collection (𝑀𝑛

𝑡 ∶ 𝑡 ≥ 0, 𝑛 ∈ N∗) of r.v. on (𝑝()): 

𝑀𝑛
𝑡 ∶= 1

𝑡 ∫

𝑡

0
𝛿𝛷𝑠(𝑚𝑛)𝑑𝑠 . (36)

Lemma 7.  The collection of r.v. (𝑀𝑛
𝑡 , 𝑡 ≥ 0, 𝑛 ∈ N∗) is tight in (𝑝()).

Proof.  Based on Lemma  1, we just need to establish that the family of measures (I(𝑀𝑛
𝑡 )) is relatively compact in the space (𝑝()). 

Recall that I(𝑀𝑛
𝑡 ) is the probability measure which, to every Borel subset 𝐴 ⊂ 𝑝(), associates:

I(𝑀𝑛
𝑡 )(𝐴) =

1
𝑡 ∫

𝑡

0
P(𝛷𝑠(𝑚𝑛) ∈ 𝐴)𝑑𝑠

Consider 𝜀 > 0. By Proposition  4, there exists a compact set  ∈ 𝑝() such that P(𝛷𝑠(𝑚𝑛) ∈ ) > 1−𝜀, for all 𝑠, 𝑛. As a consequence, 
I(𝑀𝑛

𝑡 )() > 1 − 𝜀. The proof is completed. □

Let us denote by M  the set of weak⋆ accumulation points of the net ((𝑀𝑛
𝑡 )#P ∶ 𝑡 ≥ 0, 𝑛 ∈ N∗), as (𝑡, 𝑛) → (∞,∞). By Lemma  7, 

M  is a non empty subset of ((𝑝())). Define:
𝑝 = {𝑀 ∈ (𝑝()) ∶ 𝑀(𝖵𝑝) = 1} .

Lemma 8.  For every 𝛶 ∈ M , 𝛶 (𝑝) = 1.

Proof.  Consider 𝛶 ∈ M . Without restriction, we write 𝛶  as the weak⋆ limit of some sequence of the form (𝑀𝑛
𝑡𝑛
)#P. The distance 

𝖶𝑝( . ,𝖵𝑝) to the set 𝖵𝑝 (which is non empty by Proposition  5) is a continuous function on 𝑝(). Denoting by ⟨ . , . ⟩ the natural dual 
pairing on 𝐶𝑏(𝑝())×(𝑝()), the function ⟨𝖶𝑝( . ,𝖵𝑝), ⋅ ⟩ is a continuous on (𝑝()). Thus, the sequence of real r.v. ⟨𝖶𝑝( . ,𝖵𝑝),𝑀𝑛

𝑡𝑛
⟩

converges in distribution to ⟨𝖶𝑝( . ,𝖵𝑝), ⋅ ⟩#𝛶 . These variables being bounded, we obtain by taking the limits in expectation:

∬ 𝖶𝑝(𝑚,𝖵𝑝)𝑑𝑀(𝑚)𝑑𝛶 (𝑀) = lim
𝑛→∞

E(⟨𝖶𝑝( . ,𝖵𝑝),𝑀𝑛
𝑡𝑛
⟩)

= lim
𝑛→∞

1
𝑡𝑛 ∫

𝑡𝑛

0
E(𝖶𝑝(𝛷𝑠(𝑚𝑛),𝖵𝑝))𝑑𝑠

≤ lim sup
(𝑡,𝑛)→(∞,∞)

E(𝖶𝑝(𝛷𝑡(𝑚𝑛),𝖵𝑝)) = 0 ,

where the last equality is due to Proposition  5. As 𝖵𝑝 is closed by Proposition  2, this concludes the proof. □

Recall the definition of the shift 𝛩𝑡 ∶ 𝑥↦ 𝑥𝑡+⋅ defined in . For every 𝑡 ≥ 0, define (𝛩𝑡)## = ((𝛩𝑡)#)#. Define:
 ∶= {𝑀 ∈ (𝑝()) ∶ ∀𝑡 > 0,𝑀 = (𝛩𝑡)##𝑀} .

In other words, for every 𝑀 ∈  and for every 𝑡 > 0, (𝛩𝑡)# preserves 𝑀 . 

Lemma 9.  For every 𝛶 ∈ M , 𝛶 () = 1.
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Proof.  Similarly to the proof of Lemma  8, we assume without restriction that 𝛶 = lim𝑛→∞(𝑀𝑛
𝑡𝑛
)#P in the weak⋆ sense. Set 𝑡 > 0. 

The map 𝑀 ↦ 𝑑𝐿(𝑀, (𝛩𝑡)##𝑀) is continuous on (𝑝()), where we recall that 𝑑𝐿 stands for the Lévy–Prokhorov distance. Thus, 
by Fatou’s lemma, 

∫ 𝑑𝐿(𝑀, (𝛩𝑡)##𝑀)𝑑𝛶 (𝑀) ≤ lim sup
𝑛→∞

E(𝑑𝐿(𝑀𝑛
𝑡𝑛
, (𝛩𝑡)##𝑀𝑛

𝑡𝑛
)) . (37)

Note that:

(𝛩𝑡)##𝑀𝑛
𝑡𝑛
= 1
𝑡𝑛 ∫

𝑡+𝑡𝑛

𝑡
𝛿(𝛩𝑠)#𝑚𝑛𝑑𝑠 .

In particular, for every Borel set 𝐴 ⊂ 𝑝(), |(𝛩𝑡)##𝑀𝑛
𝑡𝑛
(𝐴) −𝑀𝑛

𝑡𝑛
(𝐴)| ≤ 2𝑡∕𝑡𝑛. The Lévy–Prokhorov distance being bounded by the 

total variation distance, 𝑑𝐿(𝑀𝑛
𝑡𝑛
, (𝛩𝑡)##𝑀𝑛

𝑡𝑛
) ≤ 2𝑡∕𝑡𝑛 which tends to zero. The l.h.s. of Eq. (37) is zero, which proves the statement 

for a fixed value of 𝑡. The proof of the statement for all 𝑡, is easily concluded by a using dense denumerable subset argument. □

Define: 𝑝 = {𝑀 ∈ (𝑝()) ∶ 𝑀(BC𝑝) = 1} .

Proposition 11.  For every 𝛶 ∈ M , 𝛶 (𝑝) = 1.

Proof.  Consider an arbitrary sequence of the form ((𝑀𝑛
𝑡𝑛
)#P) where 𝑡𝑛 → ∞, converging in distribution to some measure 𝛶 ∈ M

as 𝑛 → ∞. By Lemma  9, the map (𝛩𝑡)# ∶ 𝑝() → 𝑝() preserves the measure 𝑀 , for all 𝑀 𝛶 -a.e., and for all 𝑡. By Lemma  8, 
𝑀(𝖵𝑝) = 1. Thus, the restriction of the map (𝛩𝑡)# to 𝖵𝑝, still denoted by (𝛩𝑡)# ∶ 𝖵𝑝 → 𝖵𝑝 preserves the measure 𝑀 as well, for all 
𝑀 𝛶 -a.e.. By the Poincaré recurrence theorem, stated in Th. 2.3 of [47], it follows that 𝑀(BC𝑝) = 1 for all 𝑀 𝛶 -a.e. □

Proof of Theorem  1.  By Lemma  7, the set M  is non-empty. Consequently, by Proposition  11, 𝑝 is non-empty, which implies that 
BC𝑝 is also non-empty. To conclude, assume by contradiction that the conclusion of Theorem  1 does not hold. Then, there exists 
𝜀 > 0 and a sequence, which, without restriction, we may assume to have the form ((𝑀𝑛

𝑡𝑛
)#P), such that for all 𝑛 large enough, 

E(⟨𝖶𝑝( . ,BC𝑝),𝑀𝑛
𝑡𝑛
⟩) > 𝜀 , (38)

where ⟨ . , . ⟩ is the natural dual pairing on 𝐶𝑏(𝑝()) × (𝑝()). Using Lemma  7, one can extract an other subsequence, which we 
still denote by ((𝑀𝑛

𝑡𝑛
)#P), converging to 𝛶 ∈ M . As a consequence,

lim
𝑛→∞

E((𝖶𝑝( . ,BC𝑝),𝑀𝑛
𝑡𝑛
)) = ∬ 𝖶𝑝(𝑚,BC𝑝)𝑑𝑀(𝑚)𝑑𝛶 (𝑀) = 0 ,

where we used the fact that, due to Proposition  11, ∫ 𝖶𝑝(𝑚,BC𝑝)𝑑𝑀(𝑚) = 0 for 𝛶 -almost all 𝑀 . This contradicts Eq. (38). □

5.4. Proof of Corollary  1

Throughout this paragraph, we assume that 1 ≤ 𝑝 ≤ 2. We define the functions, for 𝜇 ∈ 𝑝(R𝑑 ),

𝑔1(𝜇) ∶= 𝑊𝑝(𝜇,BC
0
𝑝) ,

and

𝑔2(𝜇) ∶= 𝑊𝑝(𝜇,BC
0
𝑝)
𝑝 .

Consider the r.v.

𝑌𝑛,𝓁(𝑠) ∶= 𝑔𝓁

(

1
𝑛

𝑛
∑

𝑖=1
𝛿𝑋̄𝑖,𝑛𝑠

)

,

for 𝓁 ∈ [2]. 

Lemma 10.  The r.v. (𝑌𝑛,𝓁(𝑠) ∶ 𝑠 > 0, 𝑛 ∈ N) are uniformly integrable for 𝓁 ∈ [2].

Proof.  Let 𝓁 ∈ [2]. Note that 𝑌𝑛,𝓁(𝑠) ≤ 𝐶(1 + 1
𝑛
∑

𝑖 ‖𝑋̄
𝑖,𝑛
𝑠 ‖

𝑝). Hence for a convex, and increasing function 𝐹 ∶ R∗
+ → R, by the 

exchangeability stated in Assumption  3, we obtain E(𝐹 (𝑌𝑛,𝓁(𝑠))) ≤ E(𝐹 (𝐶(1 + 1
𝑛
∑

𝑖 ‖𝑋̄
𝑖,𝑛
𝑠 ‖

𝑝))) ≤ 𝐹 (𝐶(1 + E(‖𝑋̄1,𝑛
𝑠 ‖

𝑝))). By de la Vallée 
Poussin theorem, the random variables (𝑌𝑛,𝓁(𝑠) ∶ 𝑠 > 0, 𝑛 ∈ N) are uniformly integrable if the random variables (‖𝑋̄1,𝑛

𝑠 ‖

𝑝 ∶ 𝑠 > 0, 𝑛 ∈ N)
are uniformly integrable. We conclude using Lemma  4. □

Let 𝓁 ∈ [2], recall the definition of 𝑀𝑛
𝑡  in Eq. (36), and recall that M  is the set of cluster points of ((𝑀𝑛

𝑡 )#P ∶ 𝑡 ≥ 0, 𝑛 ∈ N∗) as 
(𝑡, 𝑛) → (∞,∞). Consider an arbitrary sequence 𝑡𝑛 → ∞, such that (𝑀𝑛

𝑡𝑛
)#P converges to some measure 𝛶 ∈ M . Consider 𝜀 > 0. By 

Lemma  10, there exists 𝑎 > 0 such that sup𝑛,𝑠 E(𝑌𝑛,𝓁(𝑠)1𝑌𝑛,𝓁 (𝑠)>𝑎) < 𝜀. Using the inequality 𝑦 ≤ 𝑎 ∧ 𝑦 + 𝑦1𝑦>𝑎, we obtain:

E
(

1 𝑡𝑛
𝑌𝑛,𝓁(𝑠)𝑑𝑠

)

≤ E
(

1 𝑡𝑛
𝑎 ∧ 𝑌𝑛,𝓁(𝑠)𝑑𝑠

)

+ 𝜀

𝑡𝑛 ∫0 𝑡𝑛 ∫0

21 



P. Bianchi et al. Stochastic Processes and their Applications 186 (2025) 104647 
= E
(

∫ 𝑎 ∧ 𝑔𝓁((𝜋0)#𝑚)𝑑𝑀𝑛
𝑡𝑛
(𝑚)

)

+ 𝜀 (39)

The restriction of 𝜋0 to 𝑝(), which we still denote by 𝜋0, is a continuous function on (𝑝(),𝖶𝑝) → (𝑝(R𝑑 ),𝑊𝑝), where 𝑊𝑝
represents the 𝑝th order Wasserstein distance on (R𝑑 ). As a consequence, the pushforward map (𝜋0)# ∶ (𝑝()) → (𝑝(R𝑑 ))
is continuous. Therefore, as (𝜋0)# BC𝑝 is non empty by Proposition  11, the function 𝑀 ↦ ∫ 𝑎 ∧ 𝑔𝓁((𝜋0)#𝑚)𝑑𝑀(𝑚) is bounded and 
continuous on (𝑝()). Recall that 𝑀𝑛

𝑡𝑛
 converges in distribution to 𝛶 , and noting that, by Proposition  11,

∬ 𝑔𝓁((𝜋0)#𝑚)𝑑𝑀(𝑚)𝑑𝛶 (𝑀) = 0 .

Hence, by letting 𝑛→ ∞ in Eq. (39), we obtain lim sup𝑛 E(
1
𝑡𝑛
∫ 𝑡𝑛0 𝑌𝑛(𝑠)𝑑𝑠) ≤ 𝜀. As 𝜀 is arbitrary, 

lim
𝑛→∞

E
(

1
𝑡𝑛 ∫

𝑡𝑛

0
𝑌𝑛(𝑠)𝑑𝑠

)

= 0 . (40)

In order to establish the statement of Corollary  1, we now should consider replacing the integral in Eq. (40) by a sum. This last part 
is only technical. Recall the definition of 𝑘𝑡 ∶= inf{𝑘 ∶

∑𝑘
𝑖=1 𝛾𝑖 ≥ 𝑡}, and 𝜏𝑘 in Eq. (4). Let (𝛼𝑛) be a sequence of integers tending to 

infinity. By the triangular inequality,

E

(
∑𝛼𝑛
𝑙=1 𝛾𝑙𝑔𝓁(𝜇

𝑛
𝑙 )

∑𝛼𝑛
𝑙=1 𝛾𝑙

)

= E

(

1
𝜏𝛼𝑛 ∫

𝜏𝛼𝑛

0
𝑔𝓁(𝜇𝑛𝑘𝑠 )𝑑𝑠

)

≤ E

(

1
𝜏𝛼𝑛 ∫

𝜏𝛼𝑛

0
𝑊𝑝(𝜇𝑛𝑘𝑠 ,

1
𝑛
∑

𝑖∈[𝑛]
𝛿𝑋̄𝑖,𝑛𝑠 )1𝓁=1𝑑𝑠

)

+ E

(

1
𝜏𝛼𝑛 ∫

𝜏𝛼𝑛

0
𝑊𝑝(𝜇𝑛𝑘𝑠 ,

1
𝑛
∑

𝑖∈[𝑛]
𝛿𝑋̄𝑖,𝑛𝑠 )𝑝1𝓁=2𝑑𝑠

)

+ E

(

1
𝜏𝛼𝑛 ∫

𝜏𝛼𝑛

0
𝑌𝑛(𝑠)𝑑𝑠

)

.

The third term in the righthand side of the above inequality tends to zero by Eq. (40) with 𝑡𝑛 = 𝜏𝛼𝑛 . We should therefore establish 
that the first and the second term vanish. For an arbitrary integer 𝑙 and 𝑠 ∈ [𝜏𝑙 , 𝜏𝑙+1],

E

[

𝑊𝑝

(

𝜇𝑛𝑙 ,
1
𝑛
∑

𝑖∈[𝑛]
𝛿𝑋̄𝑖,𝑛𝑠

)]

≤ E
⎛

⎜

⎜

⎝

(

1
𝑛
∑

𝑖∈[𝑛]
‖𝑋𝑖,𝑛

𝑙 − 𝑋̄𝑖,𝑛
𝑠 ‖

𝑝

)1∕𝑝
⎞

⎟

⎟

⎠

≤ (E(‖𝑋1,𝑛
𝑙 − 𝑋̄1,𝑛

𝑠 ‖

𝑝))1∕𝑝 .

where the last inequality uses Jensen’s inequality and the exchangeability assumption. Continuing the estimation,

E(‖𝑋1,𝑛
𝑙 − 𝑋̄1,𝑛

𝑠 ‖

𝑝) ≤ E(‖𝑋1,𝑛
𝑙+1 −𝑋

1,𝑛
𝑙 ‖

𝑝)

≤ E
[

3𝑝−1𝛾𝑝𝑙+1‖𝑏(𝑋
1,𝑛
𝑙 , 𝜇𝑛𝑙 )‖

𝑝
]

+ E
[

3𝑝−1𝛾𝑝∕2𝑙+1‖𝜉
1,𝑛
𝑙+1‖

𝑝
]

+ E
[

3𝑝−1𝛾𝑝𝑙+1‖𝜁
1,𝑛
𝑙+1‖

𝑝
]

.

≤ 𝐶(𝛾𝑝∕2𝑙+1 + 𝛾𝑝𝑙+1),

where we used Assumption  1, and 3. Consequently,

E

(

1
𝜏𝛼𝑛 ∫

𝜏𝛼𝑛

0
𝑊𝑝(𝜇𝑛𝑘𝑠 ,

1
𝑛
∑

𝑖∈[𝑛]
𝛿𝑋̄𝑖,𝑛𝑠 )𝑑𝑠

)

≤

∑𝛼𝑛
𝑙=1 𝛾𝑙

(

𝐶(𝛾𝑝∕2𝑙+1 + 𝛾𝑝𝑙+1)
)1∕𝑝

∑𝛼𝑛
𝑙=1 𝛾𝑙

.

and, by the same computation,

E

(

1
𝜏𝛼𝑛 ∫

𝜏𝛼𝑛

0
𝑊𝑝(𝜇𝑛𝑘𝑠 ,

1
𝑛
∑

𝑖∈[𝑛]
𝛿𝑋̄𝑖,𝑛𝑠 )𝑝𝑑𝑠

)

≤

∑𝛼𝑛
𝑙=1 𝛾𝑙

(

𝐶(𝛾𝑝∕2𝑙+1 + 𝛾𝑝𝑙+1)
)

∑𝛼𝑛
𝑙=1 𝛾𝑙

.

As Assumption  2 holds, 𝐶(𝛾𝑝∕2𝑙+1+𝛾
𝑝
𝑙+1) →𝑙→∞ 0, and ∑𝑙≥1 𝛾𝑙 = ∞. Therefore, by Stolz–Cesàro theorem, the r.h.s. of the above inequality 

converges to 0 when 𝑛→ ∞. Hence,

lim
𝑛→∞

E

(
∑𝛼𝑛
𝑙=1 𝛾𝑙𝑔𝓁(𝜇

𝑛
𝑙 )

∑𝛼𝑛
𝑙=1 𝛾𝑙

)

= 0 ,

for an arbitrary sequence (𝛼 ) diverging to ∞. By Markov’s inequality, Corollary  1 is proven.
𝑛
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5.5. Proof of Corollary  2

Let 𝐴 ⊂ 𝑝(R𝑑 ), we define

conv(𝐴) ∶=
{

∑

𝑖∈[𝑛]
𝜆𝑖𝜇𝑖 ∶ (𝜇𝑖)𝑖∈[𝑛] ∈ 𝐴𝑛, 𝜆𝑖 > 0,

∑

𝑖∈[𝑛]
𝜆𝑖 = 1, 𝑛 ∈ N∗

}

.

Let (𝜇𝑖, 𝜈𝑖)𝑖∈[2] be measures in 𝑝(R𝑑 ), and let 𝜆 ∈ [0, 1]. We claim that 

𝑊𝑝(𝜆𝜇1 + (1 − 𝜆)𝜇2, 𝜆𝜈1 + (1 − 𝜆)𝜈2)𝑝 ≤ 𝜆𝑊𝑝(𝜇1, 𝜈1)𝑝 + (1 − 𝜆)𝑊𝑝(𝜇2, 𝜈2)𝑝 . (41)

Indeed let (𝜋𝜀1 , 𝜋𝜀2 ) ∈ 𝛱(𝜇1, 𝜈1) ×𝛱(𝜇2, 𝜈2) satisfying for 𝑖 ∈ [2]:
|

|

|

|

∫ ‖𝑥 − 𝑦‖𝑝𝑑𝜋𝜀𝑖 (𝑥, 𝑦) −𝑊𝑝(𝜇𝑖, 𝜈𝑖)𝑝
|

|

|

|

≤ 𝜀 .

Since 𝜆𝜋𝜀1 + (1 − 𝜆)𝜋𝜀2 ∈ 𝛱(𝜆𝜇1 + (1 − 𝜆)𝜇2, 𝜆𝜈1 + (1 − 𝜆)𝜈2), we obtain
𝑊𝑝(𝜆𝜇1 + (1 − 𝜆)𝜇2, 𝜆𝜈1 + (1 − 𝜆)𝜈2)𝑝

≤ 𝜆∫ ‖𝑥 − 𝑦‖𝑝𝑑𝜋𝜀1 (𝑥, 𝑦) + (1 − 𝜆)∫ ‖𝑥 − 𝑦‖𝑝𝑑𝜋𝜀2 (𝑥, 𝑦)

≤ 𝜆𝑊𝑝(𝜇1, 𝜈1)𝑝 + (1 − 𝜆)𝑊𝑝(𝜇2, 𝜈2)𝑝 + 2𝜀 .

Since it is true for every 𝜀 > 0, this proves our claim.
Now, let 𝐴 ⊂ 𝑝(R𝑑 ), there exists 𝜈𝜀1 , 𝜈𝜀2 ∈ 𝐴 satisfying

𝜆𝑊𝑝(𝜇1, 𝐴)𝑝 + (1 − 𝜆)𝑊𝑝(𝜇2, 𝐴)𝑝 ≥ 𝜆𝑊𝑝(𝜇1, 𝜈𝜀1 )
𝑝 + (1 − 𝜆)𝑊𝑝(𝜇2, 𝜈𝜀2 )

𝑝 − 2𝜀 .

Since this is true for every 𝜀 > 0, by Eq. (41): 
𝜆𝑊𝑝(𝜇1, 𝐴)𝑝 + (1 − 𝜆)𝑊𝑝(𝜇2, 𝐴)𝑝 ≥ 𝑊𝑝(𝜆𝜇1 + (1 − 𝜆)𝜇2, conv(𝐴))𝑝 . (42)

Applying Eq. (42) to the second claim of Corollary  1, we obtain

𝑊𝑝

(
∑

𝑙∈[𝑘] 𝛾𝑙𝜇
𝑛
𝑙

𝑛
∑

𝑙∈[𝑘] 𝛾𝑙
, conv((𝜋0)#(BC𝑝))

)

P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑘,𝑛)→(∞,∞)

0 .

Since 𝑊𝑝(⋅, ⋅) ≥ 𝑊1(⋅, ⋅), we can apply the Kantorovich duality theorem and interchange the inf and sup to obtain our result.

5.6. Proof of Corollary  3

Let 𝑖 ≤ 𝑛. We define the 𝐼 𝑖,𝑛𝑡  as
𝐼 𝑖,𝑛𝑡 ∶= (𝑋̄1,𝑛

𝑡 ,… , 𝑋̄𝑖,𝑛
𝑡 )#P .

Define the measure 

𝐽 𝑖,𝑛𝑡 = 1
𝑡 ∫

𝑡

0
𝛿𝐼 𝑖,𝑛𝑠 𝑑𝑠 . (43)

We define the measure 𝐽 𝑖,𝑛𝑡 ∈ 𝑝((R𝑑 )𝑖)

𝐽 𝑖,𝑛𝑡 (𝐴) ∶= ∫ 𝜇(𝐴)𝑑𝐽 𝑖,𝑛𝑡 (𝜇) ,

for every 𝐴 ∈ ((R𝑑 )𝑖). Recalling the definition of 𝑀𝑛
𝑡  in Eq. (36), we remark that

(𝜋0)##𝑀𝑛
𝑡 = 1

𝑡 ∫

𝑡

0
𝛿𝑚𝑛𝑠 𝑑𝑠 .

We define the measure 𝑀̃ 𝑖,𝑛
𝑡 ∈ 𝑝((R𝑑 )𝑖) as

𝑀̃ 𝑖,𝑛
𝑡 (𝐴) ∶= E

(

∫ 𝜇⊗𝑖(𝐴)𝑑(𝜋0)##𝑀𝑛
𝑡 (𝜇)

)

,

for every 𝐴 ∈ ((R𝑑 )𝑖). 

Lemma 11.  There exits a constant 𝐶, independent of 𝑡 and 𝑛, such that

sup
𝐴∈((R𝑑 )𝑖)

|

|

|

𝑀̃ 𝑖,𝑛
𝑡 (𝐴) − 𝐽 𝑖,𝑛𝑡 (𝐴)||

|

≤ 𝐶
𝑛
,

for every 𝑡, 𝑛.
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Proof.  First we assume that 𝐴 = (𝐴1,… , 𝐴𝑖) ∈ ((R𝑑 ))𝑖. Remark that

𝐽 𝑖,𝑛𝑡 (𝐴) = 1
𝑡 ∫

𝑡

0
P((𝑋̄1,𝑛

𝑠 ,… , 𝑋̄𝑖,𝑛
𝑠 ) ∈ (𝐴1,… , 𝐴𝑖))𝑑𝑠 ,

and

𝑀̃ 𝑖,𝑛
𝑡 (𝐴) = 1

𝑡𝑛𝑖 ∫

𝑡

0

𝑛
∑

𝑗1 ,…,𝑗𝑖=1
P((𝑋̄𝑗1 ,𝑛

𝑠 ,… , 𝑋̄𝑗𝑖 ,𝑛
𝑠 ) ∈ (𝐴1,… , 𝐴𝑖))𝑑𝑠 .

By exchangeability,
|

|

|

𝑀̃ 𝑖,𝑛
𝑡 (𝐴) − 𝐽 𝑖,𝑛𝑡 (𝐴)||

|

≤ 𝐶
𝑛
,

for our specific choice of 𝐴 and a constant 𝐶 independent of 𝐴. We conclude by a density argument. □

Since the total variation distance is greater than the Lévy–Prokhorov distance denoted by 𝑑𝐿, by the triangular inequality and 
Lemma  11

𝑑𝐿
(

𝐽 𝑖,𝑛𝑡 , (𝜌∗0)
⊗𝑖) ≤ 𝑑𝐿

(

𝑀̃ 𝑖,𝑛
𝑡 , (𝜌

∗
0)
⊗𝑖) + 𝐶

𝑛
.

By Assumption  5 and Proposition  11, we obtain M = {𝛿𝛿𝜌∗ }. Consequently, for every (𝑡𝑛, 𝜑𝑛) → (∞,∞), 𝑑𝐿(𝑀̃ 𝑖,𝜑𝑛
𝑡𝑛

, (𝜌∗0)
⊗𝑖) → 0, which 

means that 𝐽 𝑖,𝑛𝑡  converges to (𝜌∗0)⊗𝑖 in ((R𝑑 )𝑖). By [1, Lem. 3.14], 𝐽 𝑖,𝜑𝑛𝑡𝑛
 converges to 𝛿(𝜌∗0 )⊗𝑖  in (((R𝑑 )𝑖)).

By an application of Proposition  4 with Lemma  2, {𝐽 𝑖,𝜑𝑛𝑡𝑛
∶ 𝑡 ≥ 0, 𝑛 ∈ N} is a compact subspace of (𝑝((R𝑑 )𝑖)). Consequently, 

for every (𝑡𝑛, 𝜑𝑛) → (∞,∞), 𝐽 𝑖,𝜑𝑛𝑡𝑛
 converges to 𝛿(𝜌∗0 )⊗𝑖  in (𝑝((R𝑑 )𝑖)). The conclusion follows from the same proof as in Corollary  1.

5.7. Proof of Corollary  4

In the proof of Corollary  3, we showed that for every subsequence (𝑡𝑛, 𝜑𝑛) → (∞,∞), 𝐽 1,𝜑𝑛
𝑡𝑛

→ 𝛿𝛿𝜌∗0
.

Let 𝑈 ⊂ 𝑝(R𝑑 ) be an open neighborhood of 𝜌∗0. Then, by the Portmanteau theorem,

lim sup
𝑛→∞

𝐽 1,𝜑𝑛
𝑡𝑛

(𝑈 ) ≥ lim inf
𝑛→∞

𝐽 1,𝜑𝑛
𝑡𝑛

(𝑈 ) ≥ 1𝜌∗0∈𝑈
= 1,

for every (𝑡𝑛, 𝜑𝑛) → (∞,∞). By similar arguments as in Corollary  1, 𝜌∗0 is an essential accumulation point of (𝐼
1,𝑛
𝑘 )𝑘,𝑛.

Let 𝜇̃ be a essential accumulation point of (𝐼1,𝑛𝑘 )𝑛,𝑘. Then, by similar arguments as in Corollary  1, for every open neighborhood 
𝑈 ⊂ 𝑝(R𝑑 ) of 𝜇̃

lim sup
𝑛→∞

𝐽 1,𝜑𝑛
𝑡𝑛

(𝑈 ) > 0,

for some (𝑡𝑛, 𝜑𝑛) → (∞,∞). Assume that 𝜇̃ ≠ 𝜌∗0. Define the closed set 𝐹0 ∶= {𝜇 ∈ 𝑝(R𝑑 ) ∶ 𝑊𝑝(𝜇, 𝜇̃) ≤ 𝑊𝑝(𝜌∗0 , 𝜇̃)∕2}. The open set 
𝑈0 = {𝜇 ∈ 𝑝(R𝑑 ) ∶ 𝑊𝑝(𝜇, 𝜇̃) < 𝑊𝑝(𝜌∗0 , 𝜇̃)∕2} is a neighborhood of 𝜇̃ satisfying 𝑈0 ⊂ 𝐹0. Then by Portmanteau theorem

0 = 1𝜌∗0∈𝐹0
≥ lim sup

𝑛→∞
𝐽 1,𝜑𝑛
𝑡𝑛

(𝐹0) ≥ lim sup
𝑛→∞

𝐽 1,𝜑𝑛
𝑡𝑛

(𝑈0) > 0,

for every (𝑡𝑛, 𝜑𝑛) → (∞,∞). This contradicts our claim: 𝜇̃ ≠ 𝜌∗0. Consequently, 𝜌∗0 is the unique accumulation point of (𝐼
1,𝑛
𝑘 )𝑘,𝑛.

5.8. Proof of Theorem  2

We let the assumptions of the theorem hold.

Lemma 12.  For a nonempty compact set 𝐾 ⊂ 𝑝(R𝑑 ), it holds that
lim
𝑡→∞

max
𝜈∈𝐾

𝑊𝑝(𝛹𝑡(𝜈), 𝐴𝑝) = 0 .

Proof.  Assume for the sake of contradiction that
∃𝜀 > 0,∃(𝜈𝑛) ⊂ 𝐾,∃(𝑡𝑛) → ∞ such that 𝑊𝑝(𝛹𝑡𝑛 (𝜈𝑛), 𝐴𝑝) > 𝜀 .

Choose 𝛿 > 0 small enough so that the 𝛿-neighborhood 𝐴𝛿𝑝 of 𝐴𝑝 for the distance 𝑊𝑝 is included in the fundamental neighborhood 
of 𝐴𝑝. Up to taking a subsequence, we can assume by the compactness of 𝐾 that there exists 𝜈∞ ∈ 𝐾 such that 𝜈𝑛 →𝑛 𝜈∞. Since 𝐴𝑝 is 
a global attractor, there exists 𝑇 > 0 such that 𝑊𝑝(𝛹𝑇 (𝜈∞), 𝐴𝑝) ≤ 𝛿∕2. Furthermore, by the continuity of 𝛹 , there exists 𝑛0 such that

∀𝑛 ≥ 𝑛0, 𝑊𝑝(𝛹𝑇 (𝜈𝑛), 𝛹𝑇 (𝜈∞)) ≤ 𝛿∕2.

This implies that 𝛹𝑇 (𝜈𝑛) ∈ 𝐴𝛿𝑝 for all 𝑛 ≥ 𝑛0. Since 𝐴𝛿𝑝 is included in the fundamental neighborhood of 𝐴𝑝, there exists 𝑇 > 0 such 
that

∀𝑛 ≥ 𝑛0,∀𝑡 ≥ 𝑇 , 𝑊𝑝(𝛹𝑇+𝑡(𝜈𝑛), 𝐴𝑝) ≤ 𝜀,

and we obtain our contradiction. □
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We now prove Theorem  2. Recall that the collection {𝛷𝑡(𝑚𝑛)} is tight in 𝑝() by Proposition  4. Let (𝑡𝑛, 𝜑𝑛) be a sequence such 
that (𝑡𝑛, 𝜑𝑛) →𝑛 (∞,∞) and such that (𝛷𝑡𝑛 (𝑚𝜑𝑛 ))𝑛 converges in distribution to 𝑀 ∈  as given by (14). To prove Theorem  2, it will 
be enough to show that

∀𝛿, 𝜀 > 0,∃𝑇 > 0, lim sup
𝑛

P
(

𝑊𝑝

(

𝑚𝜑𝑛𝑡𝑛+𝑇 , 𝐴𝑝
)

≥ 𝛿
)

≤ 𝜀.

This shows indeed that

𝑊𝑝
(

𝑚𝑛𝑡 , 𝐴𝑝
) P
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→
(𝑡,𝑛)→(∞,∞)

0,

and by taking 𝑡 = 𝜏𝑘 and by recalling that 𝑚𝑛𝜏𝑘 = 𝜇𝑛𝑘, we obtain our theorem.
Fix 𝛿 and 𝜀. By the tightness of the family {𝛷𝑡(𝑚𝑛)}, there exists a compact set  ⊂ 𝑝() such that P(𝛷𝑡(𝑚𝑛) ∈ ) ≥ 1 − 𝜀∕2

for each couple (𝑡, 𝑛). This implies that 𝑀() ≥ 1 − 𝜀∕2 by the Portmanteau theorem. Since 𝖵𝑝 is closed by Proposition  5, the set 
 = ∩𝖵𝑝 is compact in 𝑝(), and by consequence, it is compact in 𝖵𝑝 for the trace topology. By the same proposition, 𝑀(𝖵𝑝) = 1, 
therefore, 𝑀() ≥ 1 − 𝜀∕2.

Since 𝑝() is Polish, we can apply Skorokhod’s representation theorem [44, Th. 6.7] to the sequence (𝛷𝑡𝑛 (𝑚𝜑𝑛 )), yielding the 
existence of a probability space (𝛺, ̃ , P̃), a sequence of 𝑝()-valued random variables (𝑚̃𝑛) on 𝛺 and a 𝑝()-valued random variable 
̃∞ on 𝛺 such that (𝑚̃𝑛)#P̃ = (𝛷𝑡𝑛 (𝑚

𝜑𝑛 ))#P, (𝑚̃∞)#P̃ = 𝑀 , and 𝑚̃𝑛 → 𝑚̃∞ pointwise on 𝛺. Noting that 𝑚𝜑𝑛𝑡𝑛+𝑇  and 𝑚̃
𝑛
𝑇  have the same 

probability distribution as 𝑝(R𝑑 )-valued random variables, we show that 

∃𝑇 > 0, lim sup
𝑛

P̃
(

𝑊𝑝
(

𝑚̃𝑛𝑇 , 𝐴𝑝
)

≥ 𝛿
)

≤ 𝜀. (44)

to establish our theorem. Observing that the function 𝜌 ↦ (𝜋0)#𝜌 is a continuous () → 𝑝(R𝑑 ) function, the set 𝐾 = (𝜋0)# is a 
nonempty compact set of 𝑝(R𝑑 ). Applying Lemma  12 to the semi-flow 𝛹 and to the compact 𝐾, we set 𝑇 > 0 in such a way that

max
𝜈∈𝐾

𝑊𝑝(𝛹𝑇 (𝜈), 𝐴𝑝) ≤ 𝛿∕2.

By the triangular inequality, we have
𝑊𝑝

(

𝑚̃𝑛𝑇 , 𝐴𝑝
)

≤ 𝑊𝑝
(

𝑚̃𝑛𝑇 , 𝑚̃
∞
𝑇
)

+𝑊𝑝
(

𝑚̃∞
𝑇 , 𝐴𝑝

)

.

The first term at the right hand side converges to zero for each 𝜔̃ ∈ 𝛺 by the continuity of the function 𝜌 ↦ (𝜋𝑇 )#𝜌, thus, this 
convergence takes place in probability. We also know that for ̃P-almost all 𝜔̃ ∈ 𝛺, it holds that 𝑚̃∞ ∈ 𝖵𝑝. Thus, regarding the second 
term, we have 𝑚̃∞

𝑇 = 𝛹𝑇 (𝑚̃∞
0 ) for these 𝜔̃, and we can write

P̃
(

𝑊𝑝
(

𝑚̃∞
𝑇 , 𝐴𝑝

)

≥ 𝛿
)

≤ P̃ (𝑚̃∞ ∉ ) + P̃
((

𝑊𝑝
(

𝛹𝑇 (𝑚̃∞
0 ), 𝐴𝑝

)

≥ 𝛿
)

∩
(

𝑚̃∞
0 ∈ 𝐾

))

.

When 𝑚̃∞
0 ∈ 𝐾, it holds that 𝑊𝑝

(

𝛹𝑇 (𝑚̃∞
0 ), 𝐴𝑝

)

≤ 𝛿∕2, thus, the second term at the right hand side of the last inequality is zero. 
The first term satisfies P̃ (𝑚̃∞ ∉ ) = 1 −𝑀() ≤ 𝜀∕2, and the statement (44) follows. Theorem  2 is proven.

6. Proofs of Section 4

The Assumption  6 and 𝜎 > 0 are standing in this section.

6.1. Proof of Proposition  6

Lemma 13.  Let 𝜌 ∈ 𝖵2. For every 𝑡 > 0, 𝜌𝑡 admits a density 𝑥↦ 𝜚(𝑡, 𝑥) ∈ 𝐶1(R𝑑 ,R). For every 𝑅 > 0, 𝑡2 > 𝑡1 > 0, there exists a constant 
𝐶𝑅,𝑡1 ,𝑡2 > 0 such that: 

inf
𝑡∈[𝑡1 ,𝑡2],‖𝑥‖≤𝑅

𝜚(𝑡, 𝑥) ≥ 𝐶𝑅,𝑡1 ,𝑡2 , (45)

and there exist a constant 𝐶𝑡1 ,𝑡2 > 0, such that 

sup
𝑥∈R𝑑 ,𝑡∈[𝑡1 ,𝑡2]

‖∇𝜚(𝑡, 𝑥)‖ + 𝜚(𝑡, 𝑥) ≤ 𝐶𝑡1 ,𝑡2 . (46)

Finally, 

sup
𝑡∈[𝑡1 ,𝑡2]∫

(1 + ‖𝑥‖2)‖∇𝜚(𝑡, 𝑥)‖𝑑𝑥 < ∞ . (47)

Proof.  The result is an application of Th.1.2 in [48] with the non homogeneous vector field 𝑏̃(𝑡, 𝑥) ∶= ∫ 𝑏(𝑥, 𝑦)𝑑𝜌𝑡(𝑦). The proof 
consists in verifying the conditions of the latter theorem. By Assumption  6, for every (𝑥, 𝑦, 𝑇 ) ∈ (R𝑑 )2 × R+,

sup ‖𝑏̃(𝑡, 𝑥) − 𝑏̃(𝑡, 𝑦)‖ ≤ ‖∇𝑉 (𝑥) − ∇𝑉 (𝑦)‖

𝑡∈[0,𝑇 ]
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+ sup
𝑡∈[0,𝑇 ]∫

‖∇𝑈 (𝑥 − 𝑧) − ∇𝑈 (𝑦 − 𝑧)‖𝑑𝜌𝑡(𝑧)

≤ 𝐶(‖𝑥 − 𝑦‖𝛽 ∨ ‖𝑥 − 𝑦‖) ,

Moreover, 

sup
𝑡∈[0,𝑇 ]

𝑏̃(𝑡, 𝑥) ≤ 𝐶(1 + ‖𝑥‖ + ∫ sup
𝑡∈[0,𝑇 ]

‖𝑦𝑡‖𝑑𝜌(𝑦)) ≤ 𝐶(1 + ‖𝑥‖) . (48)

As 𝜎 > 0, [48, Th. 1.2] applies: 𝜌 admits a density 𝑥 ↦ 𝜚(𝑡, 𝑥) ∈ 𝐶1(R𝑑 ), for 0 < 𝑡 ≤ 𝑇 , and there exists four constants (𝐶𝑖,𝑇 , 𝜆𝑖,𝑇 )𝑖∈[2], 
such that:

1
𝐶1,𝑇 𝑡𝑑∕2 ∫ exp

(

−
‖𝑥 − 𝜃𝑡(𝑦)‖2

𝜆1,𝑇 𝑡

)

𝑑𝜌0(𝑦) ≤ 𝜚(𝑡, 𝑥)

𝜚(𝑡, 𝑥) ≤
𝐶1,𝑇

𝑡𝑑∕2 ∫ exp
(

−
𝜆1,𝑇
𝑡

‖𝑥 − 𝜃𝑡(𝑦)‖2
)

𝑑𝜌0(𝑦)

‖∇𝜚(𝑡, 𝑥)‖ ≤
𝐶2,𝑇

𝑡(𝑑+1)∕2 ∫ exp
(

−
𝜆2,𝑇
𝑡

‖𝑥 − 𝜃𝑡(𝑦)‖2
)

𝑑𝜌0(𝑦) ,

where the map 𝑡 ↦ 𝜃𝑡(𝑦) is a solution to the ordinary differential equation: 𝑑𝜃𝑡(𝑦)𝑑𝑡 = 𝑏̃(𝑡, 𝜃𝑡(𝑦)) with initial condition 𝜃0(𝑦) = 𝑦. By 
Grönwall’s lemma and Eq. (48), there exists a constant 𝐶𝑇  such that ‖𝜃𝑡(𝑦)‖ ≤ 𝐶𝑇 ‖𝑦‖, for every 𝑛, 𝑦, and 𝑡 ≤ 𝑇 . For every 𝑡1 ≤ 𝑡 ≤ 𝑡2, 
and every 𝑥, we obtain using a change of variables:

(𝐶1,𝑡2 𝑡1
𝑑∕2)−1 ≥ 𝜚(𝑡, 𝑥)

≥ 𝐶1,𝑡2 𝑡
−𝑑∕2
2 exp

(

− 2
𝜆1,𝑡2 𝑡1

‖𝑥‖2
)

∫ exp

(

−
2𝐶𝑡2
𝜆1,𝑡2 𝑡1

‖𝑦‖2
)

𝑑𝜌0(𝑦)

∫ (1 + ‖𝑥‖2)‖∇𝜚(𝑡, 𝑥)‖𝑑𝑥

≤ 𝐶2,𝑡2 𝑡
−(𝑑+1)∕2
1 ∫ (1 + 2‖𝑥‖2 + 2𝐶2

𝑡2 ∫ ‖𝑦‖2𝑑𝜌0(𝑦)) exp
(

−𝜆2,𝑡2 𝑡
−1
2 ‖𝑥‖2

)

𝑑𝑥 ,

and ‖∇𝜚(𝑡, 𝑥)‖ ≤ 𝐶2,𝑡2 𝑡
−(𝑑+1)∕2
1 . Consequently, 𝜌 satisfies Eq.  (45), Eq. (46) and (47). □

For every 𝜌 ∈ 𝖵2 and every 𝑡 > 0, recall the definition of the velocity field 𝑣𝑡 in Eq. (19): 𝑣𝑡(𝑥) ∶= −∇𝑉 (𝑥) − ∫ ∇𝑈 (𝑥, 𝑦)𝑑𝜌𝑡(𝑦) −
𝜎2∇ log 𝜚(𝑡, 𝑥), where 𝜚(𝑡, 𝑥) is the density of 𝜌𝑡 defined in Lemma  13. 

Lemma 14.  For every 𝜌 ∈ 𝖵2, and every 𝑡2 > 𝑡1 > 0, 

∫

𝑡2

𝑡1
∫ ‖𝑣𝑡(𝑥)‖𝑑𝜌𝑡(𝑥)𝑑𝑡 < ∞ . (49)

Moreover, for every 𝜓 ∈ 𝐶∞
𝑐 (R+ × R𝑑 ,R),

∫ 𝜓(𝑡2, 𝑥)𝑑𝜌𝑡2 (𝑥) − ∫ 𝜓(𝑡1, 𝑥)𝑑𝜌𝑡1 (𝑥)

= ∫

𝑡2

𝑡1
∫ (𝜕𝑡𝜓(𝑡, 𝑥) + ⟨∇𝑥𝜓(𝑡, 𝑥), 𝑣𝑡(𝑥)⟩)𝜌𝑡(𝑑𝑥)𝑑𝑡 . (50)

Proof.  The first point is a direct consequence of Lemma  13. Consider 𝜙 ∈ 𝐶∞
𝑐 (R𝑑 ,R) and 𝜂 ∈ 𝐶∞

𝑐 (R+,R). Using Eq. (9) and (10) 
with ℎ1 = ⋯ = ℎ𝑟 = 1, we obtain that for each 𝜓 ∈ 𝐶∞

𝑐 (R+ × R𝑑 ,R) of the form 𝜓(𝑡, 𝑥) = 𝑔(𝑡)𝜙(𝑥),

∫ 𝜓(𝑡2, 𝑥)𝑑𝜌𝑡2 (𝑥) − ∫ 𝜓(𝑡1, 𝑥)𝑑𝜌𝑡1 (𝑥) =

∫

𝑡2

𝑡1
∫ (𝜕𝑡𝜓(𝑡, 𝑥) + ⟨∇𝜓(𝑠, 𝑥), 𝑏(𝑥, 𝜌𝑡)⟩ + 𝜎2𝛥𝜓(𝑡, 𝑥))𝜌𝑡(𝑑𝑥)𝑑𝑡 . (51)

As the functions of the form (𝑡, 𝑥) ↦ 𝑔(𝑡)𝜙(𝑥) are dense in 𝐶∞
𝑐 (R+×R𝑑 ,R), Eq. (51) holds in fact for any smooth compactly supported 

𝜓 . Using Lemma  13 and an integration by parts of the Laplacian term, Eq. (50) follows. □

The goal now is to establish that the functional H  is a Lyapunov function. This claim will follow from the application of Eq. (50) 
to the functional (𝑡, 𝑥) ↦ 𝜎2 log(𝜚(𝑡, 𝑥)) + 𝑉 (𝑥) + ∫ 𝑈 (𝑥 − 𝑦)𝜚(𝑡, 𝑦)𝑑𝑦. However, this function is not necessarily smooth nor compactly 
supported. In order to be able to apply Lemma  14, mollification should be used. In the sequel, consider two fixed positive numbers 
𝑡2 > 𝑡1.

Define a smooth, compactly supported, even function 𝜂 ∶ R𝑑 → R+ such that ∫ 𝜂(𝑥)𝑑𝑥 = 1, and define 𝜂𝜀(𝑥) ∶= 𝜀−𝑑𝜂(𝑥∕𝜀) for 
every 𝜀 > 0. For every 𝑡 > 0, we introduce the density 𝜚 (𝑡, ⋅) ∶= 𝜂 ∗ 𝜌 (𝑡, ⋅), and we denote by 𝜌𝜀(𝑑𝑥) = 𝜚 (𝑡, 𝑥)𝑑𝑥 the corresponding 
𝜖 𝜀 𝜖 𝑡 𝜖
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probability measure. Finally, we define:

𝑣𝜀𝑡 ∶=
𝜂𝜀 ∗ (𝑣𝑡𝜚(𝑡, ⋅))

𝜚𝜖(𝑡, ⋅)
.

With these definitions at hand, it is straightforward to check that the statements of Lemma  14 hold when 𝜌𝑡, 𝑣𝑡 are replaced by 
𝜌𝜀𝑡 , 𝑣

𝜀
𝑡 . More specifically, we shall apply Eq. (50) using a specific smooth function 𝜓 = 𝜓𝜀,𝛿,𝑅, which we will define hereafter for fixed 

values of 𝛿, 𝑅 > 0, yielding our main equation:

∫ 𝜓𝜀,𝛿,𝑅(𝑡2, 𝑥)𝜚𝜀(𝑡2, 𝑥)𝑑𝑥 − ∫ 𝜓𝜀,𝛿,𝑅(𝑡1, 𝑥)𝜚𝜀(𝑡1, 𝑥)𝑑𝑥 =

∫

𝑡2

𝑡1
∫ (𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥) + ⟨∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥), 𝑣𝜀𝑡 (𝑥)⟩)𝜚𝜀(𝑡, 𝑥)𝑑𝑥𝑑𝑡 . (52)

We now provide the definition of the function 𝜓𝜀,𝛿,𝑅 ∈ 𝐶∞
𝑐 (R+×R𝑑 ,R) used in the above equality. Let 𝜃 ∈ 𝐶∞

𝑐 (R,R) be a nonnegative 
function supported by the interval [−𝑡1, 𝑡1] and satisfying ∫ 𝜃(𝑡)𝑑𝑡 = 1. For every 𝛿 ∈ (0, 1), define 𝜃𝛿(𝑡) = 𝜃(𝑡∕𝛿)∕𝛿. We define 
𝜚𝜀,𝛿(⋅, 𝑥) ∶= 𝜃𝛿 ∗ 𝜚𝜀(⋅, 𝑥). The map 𝑡 ↦ 𝜚𝜀,𝛿(𝑡, )̇ is well defined on [𝑡1, 𝑡2], non negative, and smooth in both variables 𝑡, 𝑥. In addition, 
we define 𝑉𝜀 ∶= 𝜂𝜀 ∗ 𝑉 , 𝑈𝜀 ∶= 𝜂𝜀 ∗ 𝑈 . Finally, we introduce a smooth function 𝜒 on R𝑑 equal to one on the unit ball and to zero 
outside the ball of radius 2, and we define 𝜒𝑅(𝑥) ∶= 𝜒(𝑥∕𝑅). For every (𝑡, 𝑥) ∈ [𝑡1, 𝑡2] × R, we define: 

𝜓𝜀,𝛿,𝑅(𝑡, 𝑥) ∶= (𝜎2 log 𝜚𝜀,𝛿(𝑡, 𝑥) + 𝑉𝜀(𝑥) + ∫ 𝑈𝜀(𝑥 − 𝑦)𝜒𝑅(𝑦)𝜚𝜀,𝛿(𝑡, 𝑦)𝑑𝑦)𝜒𝑅(𝑥) . (53)

We extend 𝜓𝜀,𝛿,𝑅 to a smooth compactly supported function on R+ × R𝑑 , and we apply Eq. (52) to the latter. We now investigate 
the limit of both sides of the equality (52) as 𝛿, 𝜀, 𝑅 successively tend to 0, 0,∞. First consider the lefthand side. Note that for all 
𝑡 ∈ [𝑡1, 𝑡2],

lim
𝜀→0

lim
𝛿→0

𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝜚𝜀(𝑡, 𝑥)

∶=
(

𝜎2 log 𝜚(𝑡, 𝑥) + 𝑉 (𝑥) + ∫ 𝑈 (𝑥 − 𝑦)𝜒𝑅(𝑦)𝜚(𝑡, 𝑦)𝑑𝑦
)

𝜚(𝑡, 𝑥)𝜒𝑅(𝑥) .

The domination argument that allows to interchange limits and integrals is provided by Lemma  13. Indeed, for a fixed 𝑅 > 0, there 
exists a constant 𝐶𝑅 such that 𝜚𝜀,𝛿(𝑡, 𝑥) ≤ 𝐶𝑅 and 𝜓𝜀,𝛿,𝑅(𝑡, 𝑥) ≤ 𝐶𝑅 for all ‖𝑥‖ ≤ 𝑅 and all 𝑡 ∈ [𝑡1, 𝑡2]. As a consequence,

lim
𝜀→0

lim
𝛿→0∫ 𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝜚𝜀(𝑡, 𝑥) = 𝜎2 ∫ 𝜒𝑅(𝑥)𝜚(𝑡, 𝑥) log 𝜚(𝑡, 𝑥)𝑑𝑥 +

∫ 𝑉 (𝑥)𝜒𝑅(𝑥)𝑑𝜌𝑡(𝑥) + ∫ 𝑈 (𝑥 − 𝑦)𝜒𝑅(𝑦)𝜒𝑅(𝑥)𝜚(𝑡, 𝑥)𝜚(𝑡, 𝑦)𝑑𝑥𝑑𝑦 .

Since 𝜌𝑡 ∈ 2(R𝑑 ), ∫ 𝜚(𝑡, 𝑥)| log 𝜚(𝑡, 𝑥)|𝑑𝑥 < ∞, and the first term in the r.h.s. of the above equation converges to 𝜎2 ∫ 𝜚(𝑡, 𝑥) log 𝜚(𝑡, 𝑥)𝑑𝑥
as 𝑅 → ∞. Similarly, ∫ 𝑉 (𝑥)𝜒𝑅(𝑥)𝑑𝜌𝑡(𝑥) tends to ∫ 𝑉 𝑑𝜌𝑡 as 𝑅 → ∞, by use of the linear growth condition on ∇𝑉  in Assumption  6, 
along with the fact that 𝜌𝑡 admits a second order moment. The same holds for the last term. Finally, we have shown that, for every 
𝑡 ∈ [𝑡1, 𝑡2],

lim
𝑅→∞

lim
𝜀→0

lim
𝛿→0∫ 𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝜚𝜀(𝑡, 𝑥)𝑑𝑥 = H (𝜌𝑡) +

1
2 ∫ ∫ 𝑈 (𝑥 − 𝑦)𝑑𝜌𝑡(𝑦)𝑑𝜌𝑡(𝑥) ,

recalling H (𝜌𝑡) ∶= 𝜎2 ∫ log 𝜚(𝑡, ⋅)𝑑𝜌𝑡 + ∫ 𝑉 𝑑𝜌𝑡 +
1
2 ∫ ∫ 𝑈 (𝑥− 𝑦)𝑑𝜌𝑡(𝑦)𝑑𝜌𝑡(𝑥) . As 𝛿, 𝜀, 𝑅 successively tend to 0, 0,∞, we have shown that 

the l.h.s. of Eq. (52) converges to:
H (𝜌𝑡2 ) − H (𝜌𝑡1 )

+1
2 ∫ ∫ 𝑈 (𝑥 − 𝑦)𝑑𝜌𝑡2 (𝑦)𝑑𝜌𝑡2 (𝑥) −

1
2 ∫ ∫ 𝑈 (𝑥 − 𝑦)𝑑𝜌𝑡1 (𝑦)𝑑𝜌𝑡1 (𝑥). (54)

We should now identify the above term with the limit of the r.h.s. of Eq. (52) in the same regime. The latter is composed of two 
terms. First consider the second term:

∫

𝑡2

𝑡1
∫ ⟨∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥), 𝑣𝜀𝑡 (𝑥)⟩𝜌

𝜀
𝑡 (𝑑𝑥)𝑑𝑡

= ∫

𝑡2

𝑡1
∫ ⟨∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥), 𝜂𝜀 ∗ (𝑣𝑡(𝑥)𝜚(𝑡, 𝑥))⟩𝑑𝑥𝑑𝑡 .

We can let 𝛿 → 0 in this equation and interchange the limit and the integral. This is justified by Lemma  13, which implies that for 
every 𝑅 > 0, there exists a constant 𝐶𝑅 such that for every 𝜀 > 0, 𝛿 ∈ (0, 1), 𝑡 ∈ [𝑡1, 𝑡2], 𝑥 ∈ R𝑑 , 

‖∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)‖ ≤ 𝐶𝑅 . (55)

Using Eq. (55) along with Eq. (49), the dominated convergence applies. Letting 𝜀 → 0 in a second step, the exact same argument 
applies, and we obtain:

lim lim
𝑡2

⟨∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥), 𝑣𝜀𝑡 (𝑥)⟩𝜚𝜀(𝑡, 𝑥)𝑑𝑥𝑑𝑡
𝜀→0 𝛿→0∫𝑡1 ∫
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= ∫

𝑡2

𝑡1
∫ lim

𝜀→0
lim
𝛿→0

⟨∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥), 𝜂𝜀 ∗ (𝑣𝑡(𝑥)𝜚(𝑡, 𝑥))⟩𝑑𝑥𝑑𝑡

= ∫

𝑡2

𝑡1
∫ ⟨∇(lim

𝜀→0
lim
𝛿→0

𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)), 𝑣𝑡(𝑥)⟩𝜚(𝑡, 𝑥)𝑑𝑥𝑑𝑡 ,

where the interchange between ∇ and the limits is again a consequence of Lemma  13. We now write the gradient in the above inner 
product. Note that:

lim
𝜀→0

lim
𝛿→0

𝜓𝜀,𝛿,𝑅(𝑡, 𝑥) = (𝜎2 log 𝜚(𝑡, 𝑥) + 𝑉 (𝑥) + ∫ 𝑈 (𝑥 − 𝑦)𝜒𝑅(𝑦)𝜚(𝑡, 𝑦)𝑑𝑦)𝜒𝑅(𝑥) .

We obtain:

lim
𝜀→0

lim
𝛿→0∫

𝑡2

𝑡1
∫ ⟨∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥), 𝑣𝜀𝑡 (𝑥)⟩𝜚𝜀(𝑡, 𝑥)𝑑𝑥𝑑𝑡 =

−∫

𝑡2

𝑡1
∫ ‖𝑣𝑡(𝑥)‖2𝜒𝑅(𝑥)𝜚(𝑡, 𝑥)𝑑𝑥𝑑𝑡

−∫

𝑡2

𝑡1
∫ ⟨𝑣𝑡(𝑥),∫ (1 − 𝜒𝑅(𝑦))∇𝑈 (𝑥 − 𝑦)𝑑𝜌𝑡(𝑦)⟩𝜒𝑅(𝑥)𝑑𝜌𝑡(𝑥)

−∫

𝑡2

𝑡1
∫ ⟨𝑣𝑡(𝑥),∇𝜒𝑅(𝑥)(𝑉 (𝑥) + ∫ 𝑈 (𝑥 − 𝑦)𝜒𝑅(𝑦)𝑑𝜌𝑡(𝑦))⟩𝑑𝜌𝑡(𝑥) . (56)

By the dominated convergence theorem, Assumption  6 and Eq. (47), the last two terms in the r.h.s. of Eq. (56) tend to zero as 
𝑅→ ∞, while the first term is handled by the monotone convergence theorem. We thus obtain:

lim
𝑅→∞

lim
𝜀→0

lim
𝛿→0∫

𝑡2

𝑡1
∫ ⟨∇𝜓𝜀,𝛿,𝑅(𝑡, 𝑥), 𝑣𝜀𝑡 (𝑥)⟩𝜚𝜀(𝑡, 𝑥)𝑑𝑥𝑑𝑡

= −∫

𝑡2

𝑡1
∫ ‖𝑣𝑡(𝑥)‖2𝜚(𝑡, 𝑥)𝑑𝑥𝑑𝑡 . (57)

As a last step, we should evaluate the limit of the first term in the r.h.s. of Eq. (52), which writes: ∫ 𝑡2𝑡1 ∫ 𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝜚𝜀(𝑡, 𝑥)𝑑𝑥𝑑𝑡 .
Here the domination argument allowing to interchange limits and integrals requires more attention, and is justified by the following 
lemma, whose proof is provided at the end of the section. 

Lemma 15.  Let 𝑡2 > 𝑡1 > 0 be fixed. For every 𝑅, 𝜀 > 0, there exists a constant 𝐶𝑅,𝜀 such that for every 𝛿 ∈ (0, 1), 𝑡 ∈ [𝑡1, 𝑡2], 𝑥 ∈ R𝑑 , 
|

|

𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)|| ≤ 𝐶𝑅,𝜀 , (58)

for every 𝑡 ≤ 𝑇 , 𝛿 > 0, and every 𝑥 ∈ R𝑑 .

By Eq. (58) and by the continuity of the map 𝑡 ↦ 𝜕𝑡𝜚𝜀 (see the proof of Lemma  15), we can expand the first term in the r.h.s. of 
Eq. (52) as: 

∫

𝑡2

𝑡1
∫ 𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝑑𝜌𝜀𝑡 (𝑥)𝑑𝑡 = ∫

𝑡2

𝑡1
∫ 𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝜚𝜀,𝛿(𝑡, 𝑥)𝑑𝑥𝑑𝑡 + 𝑜𝜀,𝑅(𝛿) , (59)

where 𝑜𝜀,𝑅(𝛿) represents a term which tends to zero as 𝛿 → 0, for fixed values of 𝜀,𝑅. Note that: 

𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥) = 𝜎2
𝜕𝑡𝜚𝜀,𝛿(𝑡, 𝑥)
𝜚𝜀,𝛿(𝑡, 𝑥)

𝜒𝑅(𝑥) + ∫ 𝑈𝜀(𝑥 − 𝑦)𝜒𝑅(𝑦)𝜒𝑅(𝑥)𝜕𝑡𝜚𝜀,𝛿(𝑡, 𝑦)𝑑𝑦 . (60)

Plugging this equality into (59) and noting that 𝑈𝜀 is even (because 𝑈 and 𝜂𝜀 are), we obtain:

∫

𝑡2

𝑡1
∫ 𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝜚𝜀,𝛿(𝑡, 𝑥)𝑑𝑥𝑑𝑡

= 𝜎2 ∫

𝑡2

𝑡1
∫ 𝜕𝑡𝜚

𝜀(𝑡, 𝑥)𝜒𝑅(𝑥)𝑑𝑥𝑑𝑡

+ 1
2 ∫

𝑡2

𝑡1
∫ ∫ 𝑈𝜀(𝑥 − 𝑦)𝜕𝑡(𝜚𝜀,𝛿(𝑡, 𝑦)𝜚𝜀,𝛿(𝑡, 𝑥))𝜒𝑅(𝑥)𝜒𝑅(𝑦)𝑑𝑥𝑑𝑦𝑑𝑡

= 𝜎2 ∫ 𝜚𝜀,𝛿(𝑡2, 𝑥)𝜒𝑅(𝑥)𝑑𝑥 − 𝜎2 ∫ 𝜚𝜀,𝛿(𝑡1, 𝑥)𝜒𝑅(𝑥)𝑑𝑥

+ 1
2 ∬ 𝑈𝜀(𝑥 − 𝑦)𝜒𝑅(𝑥)𝜒𝑅(𝑦)𝜚𝜀,𝛿(𝑡2, 𝑥)𝜚𝜀,𝛿(𝑡2, 𝑦)𝑑𝑥𝑑𝑦

− 1
2 ∬ 𝑈𝜀(𝑥 − 𝑦)𝜒𝑅(𝑥)𝜒𝑅(𝑥)𝜚𝜀,𝛿(𝑡1, 𝑥)𝜚𝜀,𝛿(𝑡1, 𝑦)𝑑𝑥𝑑𝑦 .

By the dominated convergence theorem, we finally obtain:

lim lim lim
𝑡2

𝜕𝑡𝜓𝜀,𝛿,𝑅(𝑡, 𝑥)𝑑𝜌𝜀𝑡 (𝑥)𝑑𝑡 =
𝑅→∞ 𝜀→0 𝛿→0∫𝑡1 ∫
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1
2 ∬ 𝑈 (𝑥 − 𝑦)𝜚(𝑡2, 𝑥)𝜚(𝑡2, 𝑦)𝑑𝑥𝑑𝑦 −

1
2 ∬ 𝑈 (𝑥 − 𝑦)𝜚(𝑡1, 𝑥)𝜚(𝑡1, 𝑦)𝑑𝑥𝑑𝑦 . (61)

Putting together Eq. (54), (57) and (61), and passing to the limit in the continuity equation (52), the statement of Proposition  6 
follows.

Proof of Lemma  15.  Using Eq. (52) and integration by parts,
𝜚𝜀(𝑡2, 𝑥) − 𝜚𝜀(𝑡1, 𝑥)

= ∫

𝑡2

𝑡1
∫ ⟨∇𝜂𝜀(𝑥 − 𝑦), 𝑏(𝑦, 𝜌𝑠)⟩𝑑𝜌𝑠(𝑦)𝑑𝑠 + 𝜎2 ∫

𝑡2

𝑡1
∫ 𝛥𝜂𝜀(𝑥 − 𝑦)𝑑𝜌𝑠(𝑦)𝑑𝑠 .

Since 𝜌 ∈ 2(), sup𝑡∈[1,𝑇 ] ‖𝑏(𝑦, 𝜌𝑡)‖ ≤ 𝐶(1 + ‖𝑦‖) + 𝐶 ∫ sup𝑡∈[1,𝑇 ] ‖𝑥𝑡‖𝑑𝜌(𝑥). As a consequence, sup𝑡∈[1,𝑇 ] ‖𝑏(𝑦, 𝜌𝑡)‖ ≤ 𝐶(1 + ‖𝑦‖) . Along 
with the observation that, for any fixed 𝜀, ∇𝜂𝜀 and 𝛥𝜂𝜀 are bounded, it follows that 𝑡 ↦ 𝜚𝜀(𝑡, 𝑥) is Lipschitz continuous on [𝑡1, 𝑡2], and 
that its derivative almost everywhere is given by: 𝜕𝑡𝜚𝜀(𝑡, 𝑥) = ∫ (⟨∇𝜂𝜀(𝑥 − 𝑦), 𝑏(𝑦, 𝜌𝑡)⟩ + 𝛥𝜂𝜀(𝑥 − 𝑦))𝑑𝜌𝑡(𝑦). Thus, there exists a constant 
𝐶𝜀 > 0, such that:

sup
𝑡∈[𝑡1 ,𝑡2],𝑥∈R𝑑

𝜕𝑡𝜚
𝜀(𝑡, 𝑥) ≤ 𝐶𝜀 .

Considering the second term in the r.h.s. of Eq. (60), the presence of the product of the compactly supported functions 𝜒𝑅(𝑥)𝜒𝑅(𝑦)
implies that the former is bounded in absolute value:

|

|

|

|

∫ 𝑈𝜀(𝑥 − 𝑦)𝜒𝑅(𝑦)𝜒𝑅(𝑥)𝜕𝑡𝜚𝜀,𝛿(𝑡, 𝑦)𝑑𝑦
|

|

|

|

≤ 𝐶𝑅,𝜀 .

On the otherhand, using the lower bound (45), the first term in the r.h.s. of Eq. (60), is also bounded, and finally, Eq. (58) follows.

6.2. Proof of Proposition  7

The map H ∶ 𝜌 ↦ H (𝜌𝜖) is real valued and lower semicontinuous by Proposition  6 and Fatou’s lemma. Moreover, for every 
𝜌 ∈ 𝖵2, H (𝛷𝑡(𝜌)) − H (𝜌) = H (𝜌𝑡+𝜖) − H (𝜌𝜖) = − ∫ 𝑡+𝜖𝜖 ∫ ‖𝑣𝑠‖2𝑑𝜌𝑠𝑑𝑠. Therefore, H (𝛷𝑡(𝜌)) is decreasing w.r.t. 𝑡, and, as such, H  is 
a Lyapunov function. In addition, the identity H (𝛷𝑡(𝜌)) = H (𝜌) for all 𝑡, is equivalent to: 𝑣𝑡 = 0 𝜌𝑡-a.e., for every 𝑡 ≥ 𝜖. By Lemma 
14, this implies that 𝜌𝑡 = 𝜌𝜖 for all 𝑡 ≥ 𝜖. Thus, H (𝛷𝑡(𝜌)) = H (𝜌) for all 𝑡, if and only if 𝑣𝜖 = 0 and 𝜌𝑡 = 𝜌𝜖 for all 𝑡. This means that 
H  is a Lyapunov function for the set 𝛬𝜖 . The first point is proven.

Consider a recurrent point 𝜌 ∈ 𝖵2, say 𝜌 = lim𝛷𝑡𝑛 (𝜌). By Proposition  3, 𝜌 ∈ 𝛬𝜖 , for any 𝜖 > 0. This means that there exists 𝜇 ∈ 
such that 𝜌𝑡 = 𝜇 for all 𝑡 > 0. By continuity of the map (𝜋0)#, 𝜌0 = lim 𝜌𝑡𝑛 . Thus, 𝜌0 = 𝜇. This means that 𝜌𝑡 = 𝜇 for all 𝑡 ≥ 0, which 
writes 𝜌 ∈ 𝛬0. The proof is complete.

6.3. Proof of Proposition  8

Since 𝛽 = 1, we obtain by Assumption  6 that ∇𝑈 and ∇𝑉  are Lipschitz continuous, therefore, the functions 𝑈 and 𝑉  are weakly 
convex. Thus, we obtain from our assumptions that the functions 𝑈 and 𝑉  with 𝑈 being even are differentiable, weakly convex, 
and they satisfy the doubling assumption. In these conditions, the following facts hold true by [22, Th. 11.2.8] (see also, e.g., [49]): 
for each measure 𝜈0 ∈ 2(R𝑑 ), there exists an unique function 𝑡↦ 𝜈𝑡 ∈ 2(R𝑑 ) that satisfies the following properties:

(i) 𝜈𝑡 → 𝜈0 as 𝑡 ↓ 0.
(ii) sup𝑡∈[0,𝑇 ] ∫ ‖𝑥‖2𝜈𝑡(𝑑𝑥) <∞ for each 𝑇 > 0.
(iii) The measure 𝜈𝑡 has a density 𝜂𝑡 = 𝑑𝜈𝑡∕𝑑L 𝑑 for each 𝑡 > 0. This density satisfies 𝜂𝑡 ∈ 𝐿1

loc((0,∞);𝑊 1,1
loc (R

𝑑 )).
(iv) The continuity equation

𝜕𝑡𝜈𝑡 + ∇ ⋅
(

𝜈𝑡𝑤𝑡
)

= 0

is satisfied in the distributional sense, where

𝑤𝑡(𝑥) = −
𝜎2∇𝜂𝑡(𝑥)
𝜂𝑡(𝑥)

− ∇𝑉 (𝑥) − ∫ ∇𝑈 (𝑥 − 𝑦)𝜂𝑡(𝑦)𝑑𝑦.

(v) ‖

‖

𝑤𝑡‖‖𝐿2(𝜈𝑡)
∈ 𝐿2

loc(0,∞).

Furthermore, the function 𝑡 ↦ 𝜈𝑡 is the solution of the gradient flow in 2(R𝑑 ) of the functional H  provided in the statement, and 
𝑤𝑡 ∈ −𝜕H (𝜈𝑡), where 𝜕H  is the Fréchet sub-differential of H . From the general properties of the gradient flows detailed in [22, 
Chap. 11], one can then check that we can write 𝜈𝑡 = 𝛹𝑡(𝜈0) where 𝛹 is a semi-flow on 2(R𝑑 ).

With this at hand, all we have to do is to check that for each 𝜌 ∈ 𝖵2, the function 𝑡 ↦ 𝜌𝑡 satisfies the five properties stated 
above. The first two hold true for each 𝜁 ∈ 2(): to check the first one, let 𝑋 ∼ 𝜁 . Observe that 𝑋𝑡 →𝑡→0 𝑋0 by continuity and 
that ‖𝑋𝑡 − 𝑋0‖

2 ≤ 2 sup𝑠∈[0,1] ‖𝑋𝑠‖
2 for 𝑡 small, and use the Dominated Convergence. The second property follows from the very 

definition of 2(). Property 3 follows from Lemma  13. By Lemma  14, the continuity equation is satisfied by the function 𝑡 ↦ 𝜌𝑡
with 𝑣 = 𝑤 , hence Property 4. Finally, Property 5 follows from Proposition  6, Eq. (18). This completes the proof of Proposition  8.
𝑡 𝑡
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6.4. Proof of Proposition  9

First, we will show Eq. (12). Let 𝜇 ∈ 2(R𝑑 ),

∫ ⟨𝑥, 𝑏(𝑥, 𝜇)⟩𝑑𝜇(𝑥) = −∫ ⟨𝑥,∇𝑉 (𝑥)⟩𝑑𝜇(𝑥) − ∫ ∫ ⟨𝑥,∇𝑈 (𝑥 − 𝑦)⟩𝑑𝜇(𝑥)𝑑𝜇(𝑦).

Since 𝑈 is even, ∇𝑈 (−𝑥) = −∇𝑈 (𝑥). Therefore,

∫ ∫ ⟨𝑥,∇𝑈 (𝑥 − 𝑦)⟩𝑑𝜇(𝑥)𝑑𝜇(𝑦) = 1
2 ∫ ∫ ⟨𝑥 − 𝑦,∇𝑈 (𝑥 − 𝑦)⟩𝑑𝜇(𝑥)𝑑𝜇(𝑦).

Recalling that ⟨∇𝑈 (𝑥), 𝑥⟩ ≥ −𝐶 and ⟨𝑥,∇𝑉 (𝑥)⟩ ≥ 𝜆‖𝑥‖2, Eq. (12) holds:

∫ ⟨𝑥, 𝑏(𝑥, 𝜇)⟩𝑑𝜇(𝑥) ≤ −𝜆∫ ‖𝑥‖2𝑑𝜇(𝑥) + 𝐶 .

Eq. (13) is obtained by the same computation as above, where in addition, we used ‖∇𝑈 (𝑥)‖ ≤ 𝐶(1 + ‖𝑥‖). Let 𝜇 ∈ 2(R𝑑 ),

∫ ⟨𝑥, 𝑏(𝑥, 𝜇)⟩‖𝑥‖2𝑑𝜇(𝑥)

= −∫ ⟨𝑥,∇𝑉 (𝑥)⟩‖𝑥‖2𝑑𝜇(𝑥) − ∫ ∫ ⟨𝑥,∇𝑈 (𝑥 − 𝑦)⟩‖𝑥‖2𝑑𝜇(𝑥)𝑑𝜇(𝑦)

= −∫ ⟨𝑥,∇𝑉 (𝑥)⟩‖𝑥‖2𝑑𝜇(𝑥) − ∫ ∫ ⟨𝑥 − 𝑦,∇𝑈 (𝑥 − 𝑦)⟩‖𝑥‖2𝑑𝜇(𝑥)𝑑𝜇(𝑦)

− ∫ ∫ ⟨𝑦,∇𝑈 (𝑥 − 𝑦)⟩‖𝑥‖2𝑑𝜇(𝑥)𝑑𝜇(𝑦)

≤ −𝜆∫ ‖𝑥‖4𝑑𝜇(𝑥) + 𝐶 ∫ ‖𝑥‖2𝑑𝜇(𝑥) + 𝐶 ∫ ∫ ‖𝑥‖2‖𝑦‖𝑑𝜇(𝑥)𝑑𝜇(𝑦)

+ 𝐶 ∫ ∫ ‖𝑥‖3‖𝑦‖𝑑𝜇(𝑥)𝑑𝜇(𝑦) + 𝐶 ∫ ∫ ‖𝑥‖2‖𝑦‖2𝑑𝜇(𝑥)𝑑𝜇(𝑦).

By Cauchy–Schwarz’s inequality,

∫ ∫ ‖𝑥‖3‖𝑦‖𝑑𝜇(𝑥)𝑑𝜇(𝑦) ≤ ∫ ‖𝑥‖2𝑑𝜇(𝑥)
(

∫ ‖𝑥‖4𝑑𝜇(𝑥)
)1∕2

,

∫ ∫ ‖𝑥‖2‖𝑦‖𝑑𝜇(𝑥)𝑑𝜇(𝑦) ≤ ∫ ‖𝑥‖2𝑑𝜇(𝑥)
(

∫ ‖𝑥‖4𝑑𝜇(𝑥)
)1∕4

.

Therefore, we obtain Eq. (13)

∫ ⟨𝑥, 𝑏(𝑥, 𝜇)⟩‖𝑥‖2𝑑𝜇(𝑥)

≤ −𝜆∫ ‖𝑥‖4𝑑𝜇(𝑥) + 𝐶
(

1 + ∫ ‖𝑥‖2𝑑𝜇(𝑥)
)

(

1 +
(

∫ ‖𝑥‖4𝑑𝜇(𝑥)
)1∕2

)

.

6.5. Proof of Theorem  4

The convergence provided in the statement follows at once from Proposition  8 and Theorem  2. We need to prove that  = 𝐴2
when 𝐴2 = {𝜌∞}. For an absolutely continuous probability measure 𝑑𝜈(𝑥) = 𝜂(𝑥)𝑑𝑥 ∈ 2(R𝑑 ) with 𝜂 ∈ 𝐶1(R𝑑 ,R), write

𝑢𝜈 (𝑥) = −∇𝑉 (𝑥) − ∫ ∇𝑈 (𝑥 − 𝑦)𝜂(𝑦)𝑑𝑦 − 𝜎2∇ log 𝜂(𝑥) .

With this at hand, using Eq. (18) in conjunction with the identity 𝜌∞ = 𝛹𝑡(𝜌∞) for each 𝑡 ≥ 0 shows that 𝑢𝜌∞ (𝑥) = 0 for 𝜌∞-almost 
all 𝑥. This shows that 𝜌∞ ∈ . On the other hand, for 𝜈 ≠ 𝜌∞ in 2(R𝑑 ), we obtain from Eq. (18) that the function 𝑡 ↦ H (𝛹𝑡(𝜈)) is 
strictly decreasing. Thus, ∫ ‖𝑢𝜈‖2𝑑𝜈 > 0 which shows that 𝜈 ∉ .
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Appendix. Technical proofs

A.1. Proof of Proposition  1

Let 𝐼 ⊂ R, we denote by 𝐶(𝐼,R𝑑 ) the set of continuous function from 𝐼 to R𝑑 . One can show, that (𝜌𝑛) is a Cauchy sequence in 
the complete space (𝑝(𝐶([0, 𝑘],R𝑑 )),𝑊𝑝). Thus, there exists a sequence of compact sets (𝐾𝑘) in 𝐶([0, 𝑘],R𝑑) such that:

(𝜋[0,𝑘])#𝜌𝑛(𝐾𝑘) > 1 − 𝜀
2𝑘
,

for all 𝑘 ∈ N∗. Let  ∶=
⋂

𝑘≥1 𝜋
−1
[0,𝑘](𝐾𝑘) ⊂ . The union bound yields 𝜌𝑛() > 1− 𝜀. Referring to [50, Th. 2, Sec. X, Chapter 5],  has 

a compact closure in . Hence, there exists a converging subsequence (𝜌𝜑𝑛 ) converging to 𝜌 ∈ (). Following the proof of [32, Th. 
6.18], one can readily check that lim𝑛→∞𝑊𝑝((𝜋[0,𝑘])#𝜌𝑛, (𝜋[0,𝑘])#𝜌) = 0, for every 𝑘. Consequently, lim𝑛→∞ 𝖶𝑝(𝜌𝑛, 𝜌) = 0, which means 
the completeness of 𝑝(). It remains to obtain its separability.

As  is Polish, there exists a dense sequence (𝑥𝑛) in . Following the proof of [32, Th. 6.18], one can construct a sequence (𝜌𝑛)
in 𝑝() from (𝑥𝑛), such that ((𝜋[0,𝑘])#𝜌𝑛) is dense in 𝐶([0, 𝑘],R𝑑 ) for every 𝑘. With this result, it can be verified that (𝜌𝑛) is dense in 
𝑝().

A.2. Proof of Lemma  2

Since Proposition  1 holds, (I(𝜌𝑛)) is a weak⋆-relatively compact sequence in (), and there exists a sequence of compact sets 
(𝐾𝑘) in , such that

I(𝜌𝑛)(𝐾𝑘) > 1 − 1
𝑘2𝑘

,

for every 𝑘 ∈ N∗ and every 𝑛 ∈ N∗. Let 𝜀 > 0. We define the relatively compact set in ():

𝜀 ∶=
{

𝜌 ∈ () ∶ 𝜌(𝐾𝑘) > 1 − 1
𝑘𝜀

, for every 𝑘 ∈ N∗, such that 𝑘𝜀 > 1
}

.

The union bound and Markov’s inequality yields: 
P
(

𝜌𝑛 ∈ 𝜀
)

> 1 − 𝜀 (A.1)

for every 𝑛 ∈ N∗.
To be relatively compact in 𝑝(), the set 𝜀 must satisfy Eq. (𝑝-UI). Since the sequence (I(𝜌𝑛)) has uniformly integrable 

𝑝-moments, there exists a sequence (𝑎𝑘,𝑙)(𝑘,𝑙)∈(N∗)2 , such that for every 𝑙 ∈ N∗, lim𝑘→∞ 𝑎𝑘,𝑙 = ∞, and

∀(𝑘, 𝑙) ∈ (N∗)2, sup
𝑛∈N∗

E

[

∫ sup
𝑡∈[0,𝑙]

‖𝑥𝑡‖
𝑝1 sup

𝑡∈[0,𝑙]
‖𝑥𝑡‖>𝑎𝑘,𝑙𝑑𝜌

𝑛(𝑥)

]

≤ 1
𝑘𝑙2𝑘+𝑙

.

For 𝜀 > 0, we define a set that satisfies Eq. (𝑝-UI):

𝜀 ∶=

{

𝜌 ∈ 𝑝() ∶ ∫ sup
𝑡∈[0,𝑙]

‖𝑥𝑡‖
𝑝1 sup

𝑡∈[0,𝑙]
‖𝑥𝑡‖>𝑎𝑘,𝑙𝑑𝜌(𝑥) ≤

1
𝜀𝑘𝑙

, 𝑘, 𝑙 ∈ N∗

}

.

Using Markov’s inequality and the union bound, we obtain 
P
(

𝜌𝑛 ∈ 𝜀
)

> 1 − 𝜀 . (A.2)

Putting together Eqs.  (A.1) and (A.2),
P
(

𝜌𝑛 ∈ 𝜀 ∩𝜀
)

> 1 − 2𝜀 .

𝜀 ∩𝜀 is a relatively compact set in 𝑝(). Thus, (𝜌𝑛) is tight in 𝑝().

A.3. Proof of Lemma  3

Given 𝐺 = 𝐺𝑟,𝜙,ℎ1 ,…,ℎ𝑟 ,𝑡,𝑠,𝑣1 ,…,𝑣𝑟 ∈ 𝑝, we first want to show that 𝐺(𝜌𝑛) → 𝐺(𝜌∞) as 𝜌𝑛 → 𝜌∞ in 𝑝(). This last convergence is 
characterized by the fact that 𝜌𝑛 → 𝜌∞ in (), and that the sequence (𝜌𝑛) has uniformly integrable 𝑝-moments defined by (𝑝-UI). 
We write 𝐺(𝜌𝑛) = ∫ 𝑔(𝑥, 𝜌𝑛)𝑑𝜌𝑛(𝑥), where for 𝑥 in  and 𝜌 ∈ 𝑝():

𝑔(𝑥, 𝜌) ∶=
(

𝜙(𝑥𝑡) − 𝜙(𝑥𝑠)−

∫

𝑡

𝑠

(

⟨∇𝜙(𝑥𝑢), 𝑏(𝑥𝑢, 𝜌𝑢)⟩ + 𝜎(𝑥𝑢, 𝜌𝑢)𝑇𝐻𝜙(𝑥𝑢)𝜎(𝑥𝑢, 𝜌𝑢)
)

𝑑𝑢
)

ℎ(𝑥) ,

and ℎ(𝑥) ∶= ∏𝑟 ℎ (𝑥 ).
𝑗=1 𝑗 𝑡𝑗
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We claim that 𝑔 is a continuous bounded function on  × {𝜌𝑛 ∶ 𝑛 ∈ N}. The continuity is given by the assumptions on 𝑏. Using 
Cauchy–Schwarz inequality, we state a useful inequality:

|𝑔(𝑥, 𝜌)| ≤ 𝐶
(

1 + ∫

𝑡

𝑠
‖∇𝜙(𝑥𝑢)‖‖𝑏(𝑥𝑢, 𝜌𝑢)‖𝑑𝑢

)

,

where 𝐶 = ‖ℎ‖∞ max
(

2‖𝜙‖∞ + ‖𝜎‖2∞(𝑡 − 𝑠)‖𝐻𝜙‖∞, 1
)

. Since 𝜙 is compactly supported, by Assumption  1:

𝑏(𝑥, 𝜌𝑛) ≤ 𝐶
(

1 + 𝑡 sup
𝑛∈N∫

sup
𝑢∈[0,𝑡]

‖𝑦𝑢‖𝑑𝜌
𝑛(𝑦)

)

.

The sequence (𝜌𝑛) has uniformly integrable 𝑝-moments in 𝑝(), consequently we obtain the bound:
sup

𝑥∈,𝑛∈N∪{∞}
𝑏(𝑥, 𝜌𝑛) <∞ .

Let 𝜀 > 0. Since, 𝜌𝑛 → 𝜌∞ in 𝑝(), the set {𝜌𝑛 ∶ 𝑛 ∈ N} is a compact subspace of 𝑝(). Hence, there exists a compact subspace 
 ⊂  satisfying

sup
𝑛∈N∪{∞}

𝜌𝑛(𝑐 ) ≤ 𝜀,

where 𝑐 denotes set of function 𝑥 ∈  that doesn’t belong to . By Stone–Weierstrass’s theorem, there exits 𝑘𝜀 ∈ N∗ and continuous 
bounded functions (𝑓𝑖, ℎ𝑖)𝑖∈[𝑘𝜀] ∈ (𝐶(,R) × 𝐶({𝜌𝑛 ∶ 𝑛 ∈ N},R))𝑘𝜀  satisfying

∀(𝑥, 𝑛) ∈  × N ∪ {∞},
|

|

|

|

|

|

∑

𝑖∈[𝑘𝜀]
𝑓𝑖(𝑥)ℎ𝑖(𝜌𝑛) − 𝑔(𝑥, 𝜌𝑛)

|

|

|

|

|

|

≤ 𝜀.

Note that for 𝑛 ∈ N,

|𝐺(𝜌𝑛) − 𝐺(𝜌∞)| ≤
|

|

|

|

|

|

𝐺(𝜌𝑛) −
∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌𝑛(𝑥)ℎ𝑖(𝜌𝑛)

|

|

|

|

|

|

+
|

|

|

|

|

|

∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌∞(𝑥)ℎ𝑖(𝜌∞) − 𝐺(𝜌∞)

|

|

|

|

|

|

+
|

|

|

|

|

|

∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌𝑛(𝑥)ℎ𝑖(𝜌𝑛) −

∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌∞(𝑥)ℎ𝑖(𝜌∞)

|

|

|

|

|

|

. (A.3)

For 𝑛 ∈ N ∪ {∞}, we decompose 𝐺(𝜌𝑛) as follows

𝐺(𝜌𝑛) = ∫ 1𝑥∈

(

𝑔(𝑥, 𝜌𝑛) −
∑

𝑖∈[𝑘𝜀]
𝑓𝑖(𝑥)ℎ𝑖(𝜌𝑛)

)

𝑑𝜌𝑛(𝑥)

+∫ 1𝑥∈𝑐

(

𝑔(𝑥, 𝜌𝑛) −
∑

𝑖∈[𝑘𝜀]
𝑓𝑖(𝑥)𝑔𝑖(𝜌𝑛)

)

𝑑𝜌𝑛(𝑥) +
∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌𝑛(𝑥)ℎ𝑖(𝜌𝑛).

For every 𝜀 > 0, since 𝑔 is bounded, we obtain

sup
𝑛∈N∪{∞}

|

|

|

|

|

|

𝐺(𝜌𝑛) −
∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌𝑛(𝑥)ℎ𝑖(𝜌𝑛)

|

|

|

|

|

|

≤ 2𝜀 .

Consequently, using the latter result in Eq. (A.3), we obtain
|𝐺(𝜌𝑛) − 𝐺(𝜌∞)|

≤ 4𝜀 +
|

|

|

|

|

|

∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌𝑛(𝑥)ℎ𝑖(𝜌𝑛) −

∑

𝑖∈[𝑘𝜀]
∫ 𝑓𝑖(𝑥)𝑑𝜌∞(𝑥)ℎ𝑖(𝜌∞)

|

|

|

|

|

|

.

Since, 𝑓𝑖 and ℎ𝑖 are continuous bounded functions, we obtain for every 𝜀 > 0

lim sup
𝑛→∞

|𝐺(𝜌𝑛) − 𝐺(𝜌∞)| ≤ 4𝜀 ,

which concludes the proof.
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