
Published as a conference paper at ICLR 2023

SYNTHETIC DATA GENERATOR FOR
ADAPTIVE INTERVENTIONS IN GLOBAL HEALTH

Aditya Rastogi, Juan Francisco Garamendi, Ana Fernández del Rı́o, Anna Guitart,
Moiz Hassan Khan, Dexian Tang & África Periáñez
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ABSTRACT

Artificial Intelligence and digital health have the potential to transform global
health. However, having access to representative data to test and validate algo-
rithms in realistic production environments is essential. We introduce HealthSyn,
an open-source synthetic data generator of user behavior for testing reinforcement
learning algorithms in the context of mobile health interventions. The generator
utilizes Markov processes to generate diverse user actions, with individual user
behavioral patterns that can change in reaction to personalized interventions (i.e.,
reminders, recommendations, and incentives). These actions are translated into
actual logs using an ML-purposed data schema specific to the mobile health appli-
cation functionality included with HealthKit, and open-source SDK. The logs can
be fed to pipelines to obtain user metrics. The generated data, which is based on
real-world behaviors and simulation techniques, can be used to develop, test, and
evaluate, both ML algorithms in research and end-to-end operational RL-based
intervention delivery frameworks.

1 INTRODUCTION

Digital tools have become essential for frontline health workers (FHWs) everywhere, particularly in
resource-poor settings where they are often designed to mitigate the effects of the lack of resources or
infrastructure (Marsch, 2021; Overdijkink et al., 2018). From capacity building and communication
to patient management and triage assistance or medical supply delivery, there is an array of mobile
health solutions to help workers provide the best care possible to their communities (Overdijkink
et al., 2018; Hosny & Aerts, 2019; Wahl et al., 2018; Forero et al., 2018).

These tools provide an excellent opportunity for personalization through adaptive technologies, us-
ing the rich information about provider and patient behavior and outcomes contained in the records
generated through the use of digital applications (Olaniyi et al., 2022; Guitart et al., 2021a;b; Kat-
saris et al., 2021). This allows us to provide additional support by adapting the content to each
FHW’s and patient’s evolving needs and by delivering timely reminders, suggestions, or personal-
ized incentives specifically designed to work for them at precisely that time. We thus increase the
chances of success by adopting an adaptive, contextualized approach to innovation that allows for
rapid deployment cycles. Big tech has excelled at this iterative model, although optimizing for en-
gagement and monetization rather than well-being.

Statistical analysis and machine learning (ML) models play a crucial role in using the information
available to understand and predict individual FHW or patient behavior in order to design the best
interventions for each use case (Hosny & Aerts, 2019; Wahl et al., 2018). Reinforcement learning
(RL), a subset of these methodologies, additionally provides the algorithmic framework for making
decisions about when and which interventions to send (Yom-Tov et al., 2017; Forman et al., 2019;
Liao et al., 2020; Wang et al., 2021; Trella et al., 2022). It allows us to fine-tune the system de-
pending on how much weight on knowledge extraction (i.e., gathering data that will allow statistical
inference with enough power) or on optimization (i.e., using all information to make the best choice
for each individual even if it hinders statistical significance) we want to put.
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Synthetic data is becoming increasingly important due to concerns about reproducibility and es-
tablishing baselines (Jordon et al., 2020). Healthcare data is extraordinarily sensitive, and privacy
through appropriate de-identification is a crucial step (largely yet to be overcome) before any data
can be shared for analysis and ML (Yoon et al., 2020; Jordon et al., 2021). Adaptive technologies
involve complex feedback cycles and long-term effects, so having a way to simulate user behavior,
both in the absence of interventions and in their reactions to them, becomes essential for safe devel-
opment and testing before the deployment with real subjects.

We introduce HealthSyn (benshi.ai, 2023a), an open-source library for mobile health data genera-
tion, and describe its components and methodology. It can be used for ML model development and
can be coupled to algorithmic decision-making on interventions to which the user will react, thus
providing an end-to-end simulation environment for RL-based interventions in mobile health. User
behavioral logs from mobile health applications are tracked using HealthKit (benshi.ai, 2023b), an
open-source Software Developer Kit (SDK) for mobile health. It is responsible for the tracking, la-
beling, and organization of the logs in a data schema optimized for ML and intervention purposes.
HealthKit tracks general in-app users’ behavior (actions, sessions, etc.) and additional events or-
ganized based on the type of content (patient management, capacity building, etc.). It also delivers
the interventions and tracks the user’s reaction to them (e.g. whether notifications were opened,
discarded, or blocked). It distinguishes between online and offline activity, which is particularly
important when working with global health applications, as they are often used without an internet
connection, impacting both user behavior and the interventions that will work best for them.

1.1 OUR CONTRIBUTION

To the best of our knowledge, HealthSyn is the first synthetic log generation library openly available.
Complemented by the open HealthKit SDK, responsible for most of the heavy lifting regarding data
tracking, labeling, and organization, it provides a simulation environment for RL-based interven-
tions for mobile health. Although other behavioral simulators exist (see appendix A 1), they focus
on modeling subject daily activity (e.g., sleep hours, or alcohol consumption). The simulation en-
vironment presented here generates the information as if generated by app use. It is well-suited
explicitly for digital tools designed to support FHW in low- and middle-income countries.

2 MOBILE HEALTH LOG SYNTHETIC GENERATOR ARCHITECTURE

HealthSyn is made up of three components: the environment definition and event generator mod-
ules, and a collection of external wrappers to link those modules to HealthKit, data pipelines, and
RL-based nudge delivery system. These components allow for the simulation of an end-to-end inter-
vention delivery framework as depicted in Figure 1, which shows the production system (described
in more detail in appendix B) shaded in orange, and how this is emulated using HealthSyn in green.

2.1 ENVIRONMENT DEFINITION

The environment definition module is composed of submodules responsible for determining user
behavior (both unaltered and in response to nudging) and the context (i.e., the set of traits that will
be considered as defining their state) and rewards for the contextual or restless bandits from the RL-
component with which HealthSyn can be coupled for adaptive intervention simulation.

User behavior is modeled using a Markov processes. A key component of this model is the transition
probability matrix, which can be defined differently for each user or context, or be the same for the
entire population. This matrix serves as a baseline for the users’ behavior, and it establishes the
behavior in the absence of interventions.

User response to nudges is defined using a decay model that takes into account the number of
nudges received on the last d days (where d is another parameter to be set for the environment).
The decay model is a linear combination of three functions, each representing different types of user
behavior. These are represented in Figure 2, with parameters that can be determined through a fitting
process using real-world historical data to ensure that the model accurately reflects users’ actual

1Related works have not been included in the main paper for the sake of space, but the interested reader can
find this section as an appendix.
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Figure 1: Overview of the production (modules involved in the delivery of interventions to real users in produc-
tion settings, shaded in orange) and simulation (modules that mimic synthetic users and their reactions to inter-
ventions, shaded in green) environments. Modules included with HealthSyn are highlighted, and the HealthKit
is included as the interface between users and the platform.

Figure 2: Decay functions used to model user reaction to nudges. The x-axis represents the number of nudges
received. The solid blue line represents a response inversely proportional to the interventions (nudging has a
negative effect). The black dotted line is characteristic of a positive reaction to the intervention until fatigue
wears off the effect. The dashed green line represents a positive reaction that does not decay, but has decreasing
returns that saturate the effect at a certain level.

behavior. One function (in solid blue) models an effect that is maximum when no interventions
are received (the nudging negatively impacts users whose behavior is modeled by it exclusively).
Another function (in dotted black) represents an initial positive effect that eventually whines to zero.
The final function (in dashed green) models an effect that builds up with increasing returns per
nudge until it saturates at a constant level. Note that the combination of these can model complex
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user reactions to nudging, including long-lasting, novelty, and fatigue effects. See appendix C for a
formal definition of the functions.

2.2 SYNTHETIC IN-APP ACTIVITY GENERATION

Figure 3: Overview of a single iteration in the simulation. The baseline behavior as defined in the environment
definition and used by the event generator module to create a comprehensive list of in-app events or actions.
These events are then translated into metrics that are used by the RL algorithm for intervention decisions, which
in turn impacts user transition probabilities according to the user decay model. Dashed arrows represent input
for the next iteration.

The event generator module generates user in-app actions or events as a collection of tuples, with
each tuple representing an (id, timestamp, action, and metadata). Users are modeled as Markov
processes; the generated actions are the states reached through the process.

Figure 3 illustrates the dynamic changes in the transition matrix for two users due to online interven-
tions as the simulation progresses. In this illustration, we observe that both users start with the same
baseline transition matrix and receive an intervention at the last decision point. However, the matrix
evolves differently for each user based on each particular decay model. As shown in Figure 2, ’user-
1’ has an adverse reaction to interventions and is modeled as the blue function, while ’user-2’ has
a positive response and is modeled as the dashed green line. The ’action generator’ module adjusts
the transition matrix accordingly, with probabilities of specific actions decreasing and probabilities
of transitioning to the ’Out of the app’ state increasing for ’user-1’ and the opposite occurring for
’user-2’. For users who do not receive an intervention, the transition probabilities will not change.

2.3 EXTERNAL WRAPPER

This module translates the simulated user actions into actual logs and metrics. It serves as the bridge
between the simulated world and the real world, and it is composed of three sub-modules. The
HealthKit Wrapper reads and interprets the actions and then uses the SDK to generate the associated
logs in the SDK schema. The Pipeline Wrapper reads the logs generated by the SDK wrapper, uses
an existing data pipeline to compute the metrics, and saves them into a database. Finally, the RL
Wrapper converts these metrics into context and rewards (according to the environment definition)
that can be directly fed to the chosen RL algorithm. It also feeds back information on intervention
decisions to the action generator module.

3 SUMMARY AND CONCLUSIONS

We have proposed a workflow that offers a systematic approach for evaluating RL algorithms for
adaptive interventions in mobile health using synthetic data. It uses HealthSyn, an open-source
library to simulate the behavior of FHWs in digital tools, and HealthKit, an open-source SDK which
can track and label their logs in a data schema optimized for ML.
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gagement and churn in mobile health applications. In Proceedings of 2022 ACM KDD Workshop
on Applied Data Science for Healthcare (DSHealth 2022), 2022.

Sanne B Overdijkink, Adeline V Velu, Ageeth N Rosman, Monique DM Van Beukering, Marjolein
Kok, and Regine PM Steegers-Theunissen. The usability and effectiveness of mobile health
technology–based lifestyle and medical intervention apps supporting health care during preg-
nancy: systematic review. JMIR mHealth and uHealth, 6(4):e8834, 2018.

Sekou L. Remy and Oliver Bent. A global health gym environment for rl applications. In Hugo Jair
Escalante and Raia Hadsell (eds.), Proceedings of the NeurIPS 2019 Competition and Demon-
stration Track, volume 123 of Proceedings of Machine Learning Research, pp. 253–261. PMLR,
08–14 Dec 2020. URL https://proceedings.mlr.press/v123/remy20a.html.

Marlesson R.O. Santana, Luckeciano C. Melo, Fernando H.F. Camargo, Bruno Brandao, Anderson
Soares, Renan M. Oliveira, and Sandor Caetano. Mars-gym: A gym framework to model, train,
and evaluate recommender systems for marketplaces. 2020 International Conference on Data
Mining Workshops (ICDMW), 2020-November:189–197, 11 2020. ISSN 23759259. doi: 10.
1109/ICDMW51313.2020.00035.

Ashudeep Singh, Yoni Halpern, Nithum Thain, Konstantina Christakopoulou, Ed H Chi, Jilin Chen,
Alex Beutel, and Google Research. Building healthy recommendation sequences for everyone: A
safe reinforcement learning approach. In ACM RecSys 2020, 9 2020.

Anna L. Trella, Kelly W. Zhang, Inbal Nahum-Shani, Vivek Shetty, Finale Doshi-Velez, and Su-
san A. Murphy. Designing reinforcement learning algorithms for digital interventions: Pre-
implementation guidelines. Algorithms 2022, Vol. 15, Page 255, 15:255, 7 2022. ISSN 1999-
4893. doi: 10.3390/A15080255. URL https://www.mdpi.com/1999-4893/15/8/
255/htmhttps://www.mdpi.com/1999-4893/15/8/255.

6

https://proceedings.neurips.cc/paper/2019/file/5dec707028b05bcbd3a1db5640f842c5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5dec707028b05bcbd3a1db5640f842c5-Paper.pdf
https://arxiv.org/abs/2012.04580
https://proceedings.mlr.press/v133/jordon21a.html
/pmc/articles/PMC8439432/ /pmc/articles/PMC8439432/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439432/
/pmc/articles/PMC8439432/ /pmc/articles/PMC8439432/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439432/
/pmc/articles/PMC8439432/ /pmc/articles/PMC8439432/?report=abstract https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8439432/
https://proceedings.mlr.press/v123/remy20a.html
https://www.mdpi.com/1999-4893/15/8/255/htm https://www.mdpi.com/1999-4893/15/8/255
https://www.mdpi.com/1999-4893/15/8/255/htm https://www.mdpi.com/1999-4893/15/8/255


Published as a conference paper at ICLR 2023

Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela van der Schaar. De-
caf: Generating fair synthetic data using causally-aware generative networks. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 22221–22233. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
ba9fab001f67381e56e410575874d967-Paper.pdf.

Brian Wahl, Aline Cossy-Gantner, Stefan Germann, and Nina R Schwalbe. Artificial intelligence
(AI) and global health: how can AI contribute to health in resource-poor settings? BMJ global
health, 3(4):e000798, 2018.
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A APPENDIX: RELATED WORK

There are many recent examples of statistical and ML research around digital interventions and
mobile health; good examples are Forman et al. (2019); Yom-Tov et al. (2017); Liao et al. (2020).
A data science framework for the design of RL algorithms for digital interventions is presented in
Trella et al. (2022). Wang et al. (2021) uses a data-driven behavioral simulator (trained using real
data) to model the user’s behavior and generate simulated data that can be used to train and evaluate
the RL algorithm specifically for mobile health.

The van der Schaar lab has produced seminal and ground-breaking research around synthetic data
generated within the framework of privacy (Jordon et al., 2018b; 2019; 2021; Yoon et al., 2020),
electronic health record (EHRs), and its application for ML for healthcare (Alaa & van der Schaar,
2019; Jordon et al., 2019; 2020; 2021; Yoon et al., 2020). Their work includes methods to gener-
ate data using Generative Adversarial Networks (GANs) (Jordon et al., 2018b; Yoon et al., 2019;
2020), taking into account its time series nature (Yoon et al., 2019; Alaa et al., 2021a; Jarrett et al.,
2021), evaluation methods for synthetic data generation (Jordon et al., 2018a; Alaa et al., 2021b),
fairness van Breugel et al. (2021), and methods that include models of some of the physical pro-
cesses underlying clinical parameters in the generation process (Alaa & van der Schaar, 2019).

The KDD Cup Challenge 2019 included a competition on policy learning for malaria control using
RL (Nguyen et al., 2019; Zou, 2021), for which a global health environment for simulation of RL
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applications was introduced (Remy & Bent, 2020). Understanding the adaptive intervention delivery
as a recommendation problem, a simulation environment specifically designed for RL algorithm
development and testing is presented in Ie et al. (2019). The MARS-Gym framework (Santana et al.,
2020) provides a set of tools and environments, built on top of the OpenAI Gym library (Brockman
et al., 2016), to model, train and evaluate RL-based recommender systems. In Singh et al. (2020), a
simulation environment is used to test RL recommendation algorithms in the context of safe RL.

B APPENDIX: ADAPTIVE INTERVENTION DELIVERY FRAMEWORK

The architecture for the adaptive intervention delivery framework for mobile health is as follows.
The central piece is a data-centric platform that connects to the apps through the HealthKit SDK,
which ensures all the information that is needed is tracked in a data schema optimized for data
science and machine learning purposes. A use-case-specific data pipeline then turns the incoming
information into actionable insights and metrics that are then readily available for visualization,
and analysis, and to be consumed by (predictive and recommendation) ML models that produce
additional metrics. The complete individual characterization provided by the resulting observational,
predictive, and recommendation metrics is then available for the design of adaptive interventions.
They are used to define the cohort of users that will be targeted, the content and scheduling of the
interventions, and the state (or context, as we are limiting the discussion here to the use of contextual
and restless bandits) and rewards for the RL component. The latter then uses the information to
decide whether to assign subjects to treatment or control groups at each decision point in an adaptive
experiment. In the case of adaptive interventions deployed in production, it decides whether to
deliver or not or which of a finite set of interventions to deliver at each decision point for all users
in the targeted cohort. This is schematically represented in Figure 1 by the orange shaded block
labeled platform and the cohort of real users it is linked to.

The platform can integrate with the digital tools (and additional sources of digitalized information)
through the HealthKit SDK, which supports data collection in an opinionated data schema optimized
for data science and ML, and which is also responsible for the delivery of content and messaging
interventions back to the tool. It guarantees all incoming information into the platform is adequately
tracked and organized.

In the platform, incoming contextual, patient, and FHW data will be processed by use-case-specific
data pipelines into useful metrics. All these metrics are then available to run statistical and ML
models that will generate additional metrics. Cohorts are defined in terms of these metrics (e.g.
FHWs that are predicted to underperform in their next evaluation) and constitute the basic unit of
aggregate exploration and intervention. Interventions are defined and can use the available metrics
to determine the content and scheduling of the interventions (e.g. content recommendation in the
capacity building module as suggested by an ML model, sent in a push notification the next time
they are predicted to be online). Intervention delivery is RL-based, and it is these metrics too that
can be used to build the reward (e.g. number of questions answered correctly in in-app tests) and
define the state for RL algorithms.

Interventions can combine clinical and behavioral elements. Clinical interventions fall into the realm
of precision medicine and involve leveraging all the information available about a patient to improve
quality of care and patient prognosis. Behavioral interventions aim at ensuring an adequate level of
engagement (with the tool, program, and treatment) of medical care teams and patients.

Once the interventions have been developed, their effect can be measured using the experimentation
platform, which includes fully randomized and adaptive (bandit-based) designs, with and without
multiple assignments.

C APPENDIX: MATHEMATICAL DETAILS

User behavior is defined using a decay model on the activity concerning the number of nudges n ≥ 0
received on the last d days ( d = 5 in our experiments). The decay model is represented by the three
equations, each describing different aspects of the user behavior:

f(n) = a0e
−kan (1)
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g(n) = b0
ka

(
e−kan − e−kbn

)
kb − ka

(2)

h(n) = c0
ka

(
e−kbn − 1

)
− kb

(
e−kan − 1

)
kb − ka

(3)

where ka, kb, a0, b0, c0 are parameters defining the shape of the function. These parameters can be
determined through a fitting process using real-world historical data to ensure that the decay model
accurately reflects users’ actual behavior. The decay model is then used to generate synthetic user
behavior data for testing reinforcement learning algorithms in the context of e-health interventions.

Each equation models a different type of behavior: eq. (1) models the users whose maximum
interaction with the app is when they do not receive intervention, eq. (2) represents users that are
reactive to the interventions but are eventually overwhelmed and stop interacting. Finally, eq. (3)
models users that are reactive to interventions, but at some point, they are saturated, and the activity
does not increase or decrease. Figure 2 shows the shape of the three decay models.

The final behaviour ai(n) for user i is a linear combination of f, g, and h:

a(n) = αif(n) + βig(n) + γih(n) (4)

where αi, βi, γi are parameters defining the individual characteristic of user i and can be itself
random variables.

This allows us to define behavior at three levels, to which we will refer as individual, contextual, and
intervention. By individual, we mean the unique behavior of a user as an individual, independent of
the features defining their context. Contextual behavior represents the expected behavior of a user
based on their context. All users with the same context will exhibit similar behavior to some extent,
which can also be regulated. This is achieved using different parameters or even different functions
f(n), g(n), h(n) depending on the context. Finally, the user changes in in-app activity in response
to an intervention depend on the number of nudges n received over time. It is implemented using
the decay model described above, where the number of nudges n directly depends on the assigned
group of the previous decision points, i.e., eq. (1)-(3) naturally models this behaviour. Note that
it is also possible to define user-specific reactions to the interventions in the app’s level or type of
activity. This is achieved using different weighting parameters αi, βi, γi for each user i.
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