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Abstract

Potential games are arguably one of the most important and widely studied classes1

of normal form games. They define the archetypal setting of multi-agent coordina-2

tion as all agent utilities are perfectly aligned with each other via a common poten-3

tial function. Can this intuitive framework be transplanted in the setting of Markov4

Games? What are the similarities and differences between multi-agent coordination5

with and without state dependence? We present a novel definition of Markov Po-6

tential Games (MPG) that generalizes prior attempts at capturing complex stateful7

multi-agent coordination. Counter-intuitively, insights from normal-form poten-8

tial games do not carry over as MPGs can consist of settings where state-games9

can be zero-sum games. In the opposite direction, Markov games where every10

state-game is a potential game are not necessarily MPGs. Nevertheless, MPGs11

showcase standard desirable properties such as the existence of deterministic Nash12

policies. In our main technical result, we prove fast convergence of independent13

policy gradient to Nash policies by adapting recent gradient dominance property14

arguments developed for single agent MDPs to multi-agent learning settings.15

1 Introduction16

Reinforcement learning (RL) has been a fundamental driver of numerous recent advances in Artificial17

Intelligence (AI) applications that range from super-human performance in competitive game-playing18

[28, 29, 5] and strategic decision-making in multiple tasks [21, 23, 33] to robotics, autonomous-19

driving and cyber-physical systems [6, 37]. A core ingredient for the success of single-agent RL20

systems, which are typically modelled as Markov Decision Processes (MDPs), is the guarantee of21

existence of stationary deterministic optimal policies [3, 30]. This allows for the design of efficient22

algorithms that provably converge towards the optimal policy [1]. However, a majority of the above23

systems involve multi-agent interactions and despite the notable empirical advancements, there is24

a lack of understanding about the theoretical convergence guarantees of the existing multi-agent25

reinforcement learning (MARL) algorithms.26

The main challenge in the transition from single to multi-agent RL settings is the computation of27

Nash policies. A Nash policy for n > 1 agents is defined to be a profile of policies (π∗1 , ..., π
∗
n) so28

that by fixing the stationary policies of all agents but i, π∗i is an optimal policy for the resulting29

single-agent MDP and this is true for all 1 ≤ i ≤ n 1 (see Definition 1). Note that in multi-agent30

settings, Nash policies may not be unique in principle.31

A common approach for computing Nash policies in MDPs is the use of policy gradient methods.32

The significant progress in the analysis of such methods during the last couple of years, including33

[1] (and references therein), mainly concerns the single-agent case: the convergence properties of34

1Analogue of Nash equilibrium notion.
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policy gradient in MARL remain poorly understood. Existing steps towards a theory for multi-agent35

settings involve the papers of [10] who show convergence of independent policy gradient to the36

optimal policy, for two-agent zero-sum stochastic games, of [36] who improve the result of [10] using37

optimistic policy gradient and of [38] who study extensions of Natural Policy Gradient using function38

approximation. It is worth noting that the positive results of [10, 36] and [38] depend on the fact that39

two-agent stochastic zero-sum games satisfy the “min-max equals max-min” property [27] (even40

though the value-function landscape may not be convex-concave, which implies that Von Neumann’s41

celebrated minimax theorem may not be applicable).42

Model and Informal Statement of Results. While the previous works make progress in competi-43

tive interactions, i.e., interactions in which gains can only come at the expense of others, MARL in44

cooperative settings remains largely under-explored and constitutes one of the current frontiers in AI45

research [9, 8]. Based on this, our work is motivated by the following natural question:46

Can we get (provably) fast convergence guarantees for multi-agent RL settings47

in which cooperation is desirable?48

To address this question, we define and study a class of n-agent MDPs that naturally generalize49

normal form potential games [22], called Markov Potential Games (MPGs). In words, a multi-agent50

MDP is a MPG as long as there exists a (state-dependent) real-valued potential function Φ so that if an51

agent i changes their policy (and the rest of the agents keep their policy unchanged), the difference in52

agent i’s value/utility, V i, is captured by the difference in the value of Φ (see Definition 2). Weighted53

and ordinal MPGs are defined similar to the normal form counterparts (see Remark 1).54

Under our definition, we answer the above motivating question in the affirmative. In particular, we55

show that if every agent i independently runs (with simultaneous updates) policy gradient on his56

utility/value V i, after O(1/ε2) iterations, the system will reach an ε-approximate Nash policy (see57

informal Theorem 1.1 and formal Theorem 4.2). Moreover, we show the finite sample analogue, that58

is if every agent i independently runs (with simultaneous updates) stochastic policy gradient, then59

with high probability, the system will reach an ε-approximate Nash policy after O(1/ε6) iterations.60

Along the way, we prove several properties about the structure of MPGs and their Nash policies (see61

Theorem 1.2 and Section 3). Our results can be summarized in the following two Theorems.62

Theorem 1.1 (Convergence of Policy Gradient (Informal)). Consider a MPG with n agents and let63

ε > 0. (a) If each agent i runs independent policy gradient using direct parameterization on his policy64

and that the updates are simultaneous, then, the learning dynamics reach an ε-Nash policy after65

O(1/ε2) iterations. (b) If each agent i runs stochastic policy gradient using greedy parameterization66

(see (3)) on his policy and the updates are simultaneous, then the learning dynamics reach an ε-Nash67

policy after O(1/ε6) iterations.68

This result holds trivially for weighted MPGs and asymptotically also for ordinal MPGs, see Remark 2.69

Theorem 1.2 (Structural Properties of MPGs). The following facts are true for MPGs with n-agents:70

(a) There always exists a Nash policy profile (π∗1 , . . . , π
∗
n) so that π∗i is deterministic for each71

agent i (see Theorem 3.1).72

(b) We can construct MDPs for which each state is an underlying potential game but the MDPs73

are not MPGs. This can be true regardless of whether the whole MDP is competitive or cooperative74

in nature (see Examples 1 and 2, respectively). On the opposite side, we can construct MDPs that75

are MPGs but which include states that are purely competitive (i.e., zero-sum games), see Example 3.76

(c) We provide sufficient conditions so that a MDP is a MPG. These include cases where each state77

is an underlying potential game and the transition probabilities are not affected by agents actions or78

the reward functions satisfy certain regularity conditions between different states (see conditions C179

and C2 in Proposition 3.2).80

Technical Overview. The first challenge in the proof of Theorem 1.1 is that multi-agent settings81

(MPGs) do not satisfy the gradient dominance property, which is an important part in the proof of82

convergence of policy gradient in single-agent settings [1]. In particular, there is no uniqueness of83

optimal policies and as a result, there is not a properly defined notion of value in MPGs (in contrast to84

zero-sum stochastic games [10]). On the positive side, we show that agent-wise (i.e., after fixing the85

policy of all agents but i), the value function, V i, satisfies the gradient dominance property along the86

direction of πi (policy of agent i). This can be leveraged to show that every (approximate) stationary87
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point (Definition 4) of the potential function Φ is an (approximate) Nash policy (Lemma 4.1). As a88

result, convergence to an approximate Nash policy is established by showing that Φ is smooth and89

then applying Projected Gradient Ascent (PGA) on Φ. This step uses the rather well-known fact that90

(PGA) converges to ε-stationary points in O(1/ε2) iterations for smooth functions. As a result, by91

applying PGA on the potential Φ, one gets an approximate Nash policy. Our convergence result then92

follows by showing that PGA on the potential function, Φ, generates the same dynamics as if each93

agent i runs independent PGA on their value function, V i.94

In the case that agents do not have access to exact gradients, we derive a similar result for finite95

samples. In this case, we apply Projected Stochastic Gradient Ascent (PSGA) on Φ which (as was96

the case for PGA) can be shown to be the same as when agents apply PSGA independently on their97

individual value functions. The key is to get an unbiased sample for the gradient of the value functions98

and prove that it has bounded variance (in terms of the parameters of the MPG). This comes from the99

discount factor, γ; in this case, 1− γ can be interpreted as the probability to terminate the MDP at100

a particular state (and γ to continue). This can be used to show that a trajectory of the MDP is an101

unbiased sample for the gradient of the value functions. To guarantee that the estimate has bounded102

variance, we apply the approach of [10] which requires that agents perform PSGA with α-greedy103

exploration (see (3)). The main idea is that this parameterization stays away from the boundary of the104

simplex throughout its trajectory.105

Concerning our structural results in Theorem 1.2, the main challenge is (again) the lack of a value in106

general multi-agent settings and the dependence of state-transitions (in addition to agents’ rewards)107

on agents’ actions. The proof of Theorem 3.1 shows that these issues can be still successfully handled108

within the class of MPGs by studying single-agent deviations (to deterministic optimal policies)109

which keep the value of the potential constant (at its global maximum). Our examples in this part110

show that the class of MPGs can be significantly larger than state based potential games but also that111

even simple coordination games may fail to satisfy the (exact) MPG property.112

2 Preliminaries113

Markov Decision Process (MDP). The following notation is standard and largely follows [1] and114

[10]. We consider a setting with n agents who repeatedly select actions in a shared Markov Decision115

Process (MDP). The goal of each agent is to maximize their respective value function. Formally, a116

MDP is defined as a tuple G = (S,N , {Ai, Ri}i∈N , P, γ, ρ), where S is a finite state space of size117

S = |S|,N = {1, 2, . . . , n} is a the set of active agents in the MDP and Ai is a finite action space of118

size Ai = |Ai| for each agent i ∈ N with generic element ai ∈ Ai. We will write A =
∏
i∈N Ai119

and A−i =
∏
j 6=iAj to denote the joint action spaces of all agents and of all agents other than i120

with generic elements a = (ai)i∈N and a−i = (aj)j 6=i, respectively. Ri : S × A → [−1, 1] is the121

individual reward function of agent i ∈ N , i.e., Ri(s, ai,a−i) is the instantaneous reward of agent i122

when agent i takes action ai and all other agents take actions a−i at state s ∈ S. P is the transition123

probability function, for which P (s′ | s,a) is the probability of transitioning from s to s′ when124

a ∈ A is the action profile chosen by the agents. Finally, γ is a discount factor for future rewards of125

the MDP, shared by all agents and ρ ∈ ∆(S) is a distribution for the initial state at time t = 0.2126

Whenever time is relevant, we will index the above terms with t. In particular, at each time step127

t ≥ 0, all agents observe the state st ∈ S, select actions at = (ai,t,a−i,t), receive rewards128

ri,t := Ri(st,at), i ∈ N and transition to the next state st+1 ∼ P (· | st,at). We will write129

τ = (st,at, rt)t≥0 to denote the trajectories of the system, where rt := (ri,t), i ∈ N .130

Policies and Value Functions. For each agent i ∈ N , a deterministic, stationary policy πi : S →131

Ai specifies the action of agent i at each state s ∈ S, i.e., πi(s) = ai ∈ Ai for each s ∈ S. A132

stochastic, stationary policy πi : S → Πi, where Πi := ∆(Ai)S , specifies a probability distribution133

over the actions of agent i for each state s ∈ S. In this case, we will write ai ∼ πi(· | s) to denote134

the randomized action of agent i at state s ∈ S. As above, we will write π = (πi)i∈N ∈ Π :=135

×i∈N∆(Ai)S and π−i = (πj)i 6=j∈N ∈ Π−i := ×i 6=j∈N∆(Aj)S to denote the joint policies of all136

agents and of all agents other than i, respectively. A joint policy π induces a distribution Prπ over137

trajectories τ = (st,at, rt)t≥0, where s0 is drawn from the initial state distribution ρ and ai,t is138

drawn from πi(· | st) for all i ∈ N .139

2We will write ∆(X ) to denote the set of probability distributions over any set X .
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The value function, V is : Π → R, gives the expected reward of agent i ∈ N when s0 = s and the140

agents draw their actions, at = (ai,t,a−i,t), at time t ≥ 0 from policies π = (πi, π−i)141

V is (π) := Eπ
[∑∞

t=0
γtri,t | s0 = s

]
. (1)

We also denote V iρ (π) = Es∼ρ
[
V is (π)

]
if the initial state is random and follows distribution ρ. The142

solution concept that we will be focusing on are the Nash Policies. Formally:143

Definition 1 (ε-Nash Policy). A joint policy π∗ = (π∗i )i∈N is an ε-Nash policy if there exists an ε ≥ 0144

so that for each agent i ∈ N , V is (π∗i , π
∗
−i) ≥ V is (πi, π

∗
−i)− ε, for all πi ∈ ∆(Ai)S , and all s ∈ S.145

If ε = 0, then π∗ is a called a Nash policy. In this case, π∗i maximizes each agent i’s value function146

for each starting state s ∈ S given the policies, π∗−i = (π∗j )j 6=i, of all other agents j 6= i ∈ N . The147

definition of a Nash policy remains the same if s ∼ ρ (random starting state).148

3 Markov Potential Games149

We are now ready to define the class of MDPs that we will focus on for the rest of the paper, i.e.,150

Markov Potential Games.151

Definition 2 (Markov Potential Game). A Markov Decision Process (MDP), G, is called a Markov152

Potential Game (MPG) if there exists a (state-dependent) function Φs : Π→ R for s ∈ S so that153

Φs(πi, π−i)− Φs(π
′
i, π−i) = V is (πi, π−i)− V is (π′i, π−i),

for all agents i ∈ N , all states s ∈ S and all policies πi, π′i ∈ Πi, π−i ∈ Π−i. We should note that154

by linearity of expectation, it follows that Φρ(πi, π−i)−Φρ(π
′
i, π−i) = V iρ (πi, π−i)− V iρ (π′i, π−i),155

where Φρ(π) := Es∼ρ [Φs(π)] .156

As in normal-form games, an immediate consequence of this definition is that the value function of157

each agent in a MPG can be written as a sum of the potential (common term) and a term that does not158

depend on that agent’s policy (dummy term), cf. Proposition B.1 in Appendix B, i.e., for each agent159

i ∈ N there exists a function U is : Π−i → R so that V is (π) = Φs(π) + U is(π−i), for all π ∈ Π.160

Remark 1 (Ordinal and Weighted Potential Games). Similar to normal-form games, we may also161

define more general notions of MPGs, such as weighted or ordinal MPGs. Specifically, if there exist162

positive constants wi > 0, i ∈ N so that163

Φs(πi, π−i)− Φs(π
′
i, π−i) = wi(V

i
s (πi, π−i)− V is (π′i, π−i)),

then G is called a Weighted Markov Potential Game (WMPG). If for all agents i ∈ N , all states s ∈ S164

and all policies πi, π′i ∈ Πi, π−i ∈ Π−i, the function Φs, s ∈ S satisfies165

Φs(πi, π−i)− Φs(π
′
i, π−i) > 0 ⇐⇒ V is (πi, π−i)− V is (π′i, π−i) > 0,

then the MPD, G, is called an Ordinal Markov Potential Game (OMPG).166

Similarly to normal-form games, such classes are naturally motivated also in the setting of multi-agent167

MDPs. As Example 2 shows, even simple potential-like settings, i.e., settings in which coordination is168

desirable for all agents, may fail to be exact MPGs (but may still be ordinal or weighted MPGs). From169

our current perspective, ordinal and weighted MPGs remain relevant, since our main convergence170

results on the convergence of policy gradient carry over (in an exact or asymptotic sense) also in these171

classes of games (see Remark 2). As with the rest of the proofs (and technical details) of Section 3,172

the proof of Theorem 3.1 is provided in Appendix B.173

Existence of Deterministic Nash Policies in MPGs. Before studying which types of MDPs are174

captured by Definition 2, we first show that MPGs always possess deterministic Nash policies175

(similarly to their single-state counterparts, i.e., normal-form potential games [22]). This is established176

in Theorem 3.1, which settles part (a) of Theorem 1.2177

Theorem 3.1 (Deterministic Optimal Policy Profile). Let G be a Markov Potential Game (MPG).178

Then, there exists a Nash policy π∗ ∈ ∆(A)S which is deterministic, i.e., for each agent i ∈ N and179

each state s ∈ S, there exists an action ai ∈ Ai so that π∗i (ai | s) = 1.180
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s0

( 0 1

0 2, 0 2, 0
1 2, 0 2, 0

)
s1

( 0 1

0 0, 2 0, 2
1 0, 2 0, 2

)

a0
A ⊕ a0

B = 0

otherwise

otherwise

a1
A ⊕ a1

B = 0

Figure 1: A MDP with normal-from potential
games at each state (shown in matrix form be-
low each state) but which is not a MPG due to
conflicting preferences over states.

s0

( 0 1

0 5, 2 −1,−2
1 −5,−4 1, 4

)
s1

(0, 0)

(a0
A, a

0
B) = (0, 0)

otherwise

Figure 2: A MDP with normal-form potential
games at each state which is an ordinal MPG
but not a MPG despite common preferences over
states.

Starting from an arbitrary Nash policy profile that is also a global maximizer of the potential function,181

the proof of Theorem 3.1 (which is deferred to Appendix B) relies on an iterative reduction process182

of its non-deterministic components. At each iteration, we isolate an agent i ∈ N , and find a183

deterministic (optimal) policy for that agent in the (single-agent) MDP in which the policies of all184

other agents but i remain fixed. The important observation is that the resulting profile is again a185

global maximizer of the potential and hence, a Nash policy profile. This argument critically relies on186

the MPG structure and does not seem directly generalizable to MDPs that do not satisfy Definition 2.187

Sufficient Conditions for MPGs. Based on the above, it is tempting to think that MDPs which188

are potential at every state (meaning that the immediate rewards at every state are captured by a189

(normal-form) potential game at that state) are trivially MPGs. As we show in Examples 1 and 2,190

this intuition fails in the most straightforward way: we can construct simple MDPs that are potential191

at every state but which are purely competitive (do not possess a deterministic Nash policy) overall192

(Example 1) or which are cooperative in nature overall but which do not possess an exact potential193

function (Example 2).194

Example 1. Consider the MDP in Figure 1. To show that G is not a MPG, it suffices to show that195

it cannot have a deterministic optimal policy as should be the case according to Theorem 3.1. To196

obtain a contradiction, assume that agent A is using a deterministic action a0
A ∈ {0, 1} at state 0.197

Then, agent B, who prefers to move to state 1, will optimize their utility by choosing the action198

a0
B ∈ {0, 1} that yields a0

A ⊕ a0
B = 1. In other words, given any deterministic action of agent A at199

state 0, agent B can choose an action that always moves the sequence of play to state 1. Thus, such200

an action cannot be optimal for agent A which implies that the MDP G does not have a deterministic201

optimal policy profile as claimed.202

Intuitively, competition arises in Example 1 because the two agents play a game of matching pennies203

in terms of the states that they prefer (which can be determined by the actions that they choose)204

despite the fact that the immediate rewards at each state are determined by normal form potential205

games. Example 2 shows that a state-based potential game may fail to be a MPG even if agents have206

similar preferences over states.207

Example 2. In s0 the agents play a Battle of the Sexes game and hence a potential game, while in s1208

they receive no reward (which is trivially a potential game). A simple calculation shows that there is209

not an exact potential function due to the dependence of the transitions on agents’ actions (thus, this210

MDP is not a MPG). However, in the case of Example 2, it is straightforward to show that the game211

is an ordinal potential game, cf. Appendix B.1.212

The previous discussion focuses on games that consist of normal-form potential games at every state,213

which leaves an important question unanswered: are there games which are not potential at every214

state but which are captured by the current definition of MPGs? Example 3 (see Figure 3) answers215

this question affirmatively. Together with Example 1, this settles the claim in Theorem 1.2, part (b).216

Proposition 3.2 (Sufficient Conditions for MPGs). Consider a MDP G in which every state s ∈ S217

is a potential game, i.e., the immediate rewards R(s,a) = (Ri(s,a))i∈N for each state s ∈ S are218

captured by the utilities of a potential game with potential function φs. Additionally, assume that one219

of the following conditions holds220

C1. Agent-Independent Transitions: P (s′ | s,a) does not depend on a, that is, P (s′ | s,a) = P (s′ |221

s) is just a function of the present state for all states s, s′ ∈ S.222
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s0

( H T

H 1,−1 −1, 1
T −1, 1 1,−1

)
sHH

(
1
γ ,−

1
γ

)
sHT

(
− 1
γ ,

1
γ

)
sTH

(
− 1
γ ,

1
γ

)
sTT

(
1
γ ,−

1
γ

)
s1

( L R

L (1, 1) (9, 0)
R (0, 9) (6, 6)

)

p0

1− p0

Figure 3: A 2-player MDP which is not potential at every state but which is overall an MPG. While
state s1 corresponds to a zero-sum game, the states inside the dotted rectangle do form a potential
game which can be used to show the MPG property whenever p0 does not depend on agents’ actions.

C2. Equality of Individual Dummy Terms: P (s′ | s,a) is arbitrary but the dummy terms of223

each agent’s immediate rewards are equal across all states, i.e., there exists a function224

ui : ∆(A−i)S → R such that Ri(s, ai,a−i) = φs(πi, π−i) + ui(π−i), for all states s ∈ S.225

If either C1 or C2 are true, then G is a MPG.226

Relation to Other Works on MPGs Condition C2 (or variations of it) is also known as state-227

transitivity and is present as requirement in the existing definitions of potential-like MDPs, see e.g.,228

[16, 19, 20] and along with some additional conditions on the transitions also in [32]. Example 3229

shows that such conditions are restrictive, in the sense that they do not capture simple MDPs that230

intuitively have a cooperative structure. Similarly, Example 2 motivates the study of weighted or231

ordinal MPGs (cf. Remark 1). As we show, our convergence results about independent policy gradient232

naturally apply to these classes as well (see Remark 2).233

Another sufficient condition for a MPD that is potential at every state to be a MPG is that the234

instantaneous rewards of all agents are the same at each state, i.e., that Ri(s, ai,a−i) = φs(ai,a−i)235

for all agents i ∈ N , all actions ai ∈ Ai and all states s ∈ S. MDPs that satisfy this condition are236

called Team Markov Games and their analysis trivially boils down to single agent settings. However,237

they constitute the only (to the best of our knowledge) cooperative multi-agent setting (covered by238

MPGs) that have been successfully addressed in terms of convergence of independent policy gradient239

prior to this work, [35].240

4 Convergence of Policy Gradient in Markov Potential Games241

The current section presents the main lemmas and steps for the proof of convergence of (projected)242

policy gradient (and its stochastic variant) to approximate Nash policies in Markov Potential Games243

(MPGs). We analyze these cases using direct and α-greedy parameterization, respectively. All proofs244

and auxiliary materials are deferred to the supplementary material (full version).245

Independent Policy Gradient and Direct Parameterization. We assume that all agents update246

their policies independently according to the projected gradient ascent (PGA) or policy gradient247

algorithm. Independence here refers to the fact that (PGA) requires only local information (each248

agent’s own rewards, actions and view of the environment) to determine the updates. Such protocols249

are naturally motivated in distributed AI settings in which all information about the interacting agents,250

the type of interaction and the agent’s actions (policies) is encoded in the environment of each agent.3251

The PGA algorithm is given by252

π
(t+1)
i := P∆(Ai)S

(
π

(t)
i + η∇πi

V iρ (π(t))
)
, (PGA)

for each agent i ∈ N , where P∆(Ai)S is the projection onto ∆(Ai)S in the Euclidean norm. Here,253

the additional argument t ≥ 0 denotes time. We also assume that all players i ∈ N use direct254

policy parameterizations, i.e., πi(a | s) = xi,s,a, with xi,s,a ≥ 0 for all s ∈ S, a ∈ Ai and255 ∑
a∈Ai

xi,s,a = 1 for all s ∈ S. This parameterization is complete in the sense that any stochastic256

policy can be represented in this class [1].257

3In practice, even though each agent treats their environment as fixed, the environment changes as other
agents update their policies. This makes the analysis of such protocols particularly challenging in general and
highlights the importance of studying classes of MDPs in which convergence can be obtained.
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In practice, agents use projected stochastic gradient ascent (PSGA), according to which, the actual258

gradient,∇πi
V iρ (π(t)), is replaced by an estimate thereof that is calculated from a randomly selected259

(yet finite) sample of trajectories of the MDP. This estimate, ∇̂(t)
πi may be derived from a single or a260

batch of observations which in expectation behave as the actual gradient. We choose the estimate of261

the gradient of V iρ to be262

∇̂(t)
πi

= R
(T,t)
i

T∑
k=0

∇ log πi(a
(t)
k | s

(t)
k ), (2)

where st0 ∼ ρ, and R(T,t)
i =

∑T
k=0 r

k
i,t is the sum of rewards of agent i for a batch of time horizon T263

along the trajectory generated by the stochastic gradient ascent algorithm at its t-th iterate.264

The direct parameterization is not sufficient to ensure that the variance of the gradient estimator is265

bounded (as policies approach the boundary). In this case, we will require that each agent i ∈ N266

uses instead direct parameterization with α-greedy exploration as follows267

πi(a | s) = (1− αi)xi,s,a + α/Ai, (3)

where α is the exploration parameter for all agents. Under greedy exploration, it can be shown that268

(2) is unbiased and has bounded variance for α-greedy exploration (see Lemma 4.3). The form of269

PSGA is given below:270

π
(t+1)
i := P∆(Ai)S

(
π

(t)
i + η∇̂(t)

πi

)
. (PSGA)

Proofs of main results. The first step is to observe that, in MPGs, the (partial) derivatives of271

the value functions and the potential function are equal, i.e., ∇πiV
i
s (π) = ∇πiΦ(π) for all i ∈ N272

(property P2 in Proposition B.1). Together with the separability of the projection operator, i.e., the fact273

that projecting independently for each agent i on ∆(Ai)S is the same as jointly projecting on ∆(A)S274

(see Lemma 4.1), this establishes that running (PGA) or (PSGA) on each agent’s value function is275

equivalent to running (PGA) or (PSGA) on the potential function Φ.276

Based on the above, the next step is to study the stationary points of Φ. Lemma 4.1 suggests that277

as long as policy gradient reaches a point π(t) with small gradient along the directions in ∆(A)S , it278

must be the case that π(t) is an approximate Nash policy.279

Lemma 4.1 (Stationarity of Φ implies Nash). Let ε ≥ 0, π be an ε-stationary point of Φ (see280

Definition 4). Then, it holds that π is a
√
SDε

1−γ -Nash policy.281

Lemma 4.1 will be the one of two mains ingredients to establish convergence of (PGA) and (PSGA).282

To prove Lemma 4.1, we will use an agent-wise version of the “Gradient Domination property”, that283

has been shown to hold in single-agent MDPs [1] (see Lemma 4.3). The second main ingredient is284

the fact that Φ is a β-smooth function (its gradient is Lipschitz) with parameter β = 2nγAmax

(1−γ)3 .285

Exact gradients case. Theorem 1.1 (restated formally below) about rates of convergence of (PGA)286

can now be proved following standard arguments (in particular an ascent property, Lemma D.1),287

on analysis of convergence of gradient descent to approximate stationary points in non-convex288

optimization [11]. The ascent lemma suggests that for any β-smooth function, f , it holds that289

f(x′)− f(x) ≥ 1
2β ‖x

′ − x‖22, where x′ is the next iterate of (PGA). Thus, having shown that Φ is a290

β-smooth function, the ascent lemma implies in our setting that291

Φµ(π(t+1))− Φµ(π(t)) ≥ (1− γ)3

4γAmaxn

∥∥∥π(t+1) − π(t)
∥∥∥2

2
. (4)

Putting everything together, we can show the following theorem.292

Theorem 4.2 (Formal Theorem 1.1, part (a)). Let G be a MPG and let s0 ∈ S denote an arbitrary293

initial state. Let also Amax = maxi |Ai|, and set the number of iterations to be T = 16γnD2SAmax

(1−γ)5ε2294

and the learning rate (step-size) to be η = (1−γ)3

2γAmaxn
. If the agents run independent projected policy295

gradient (PGA) starting from arbitrarily initialized policies, then there exists a t ∈ {1, . . . , T} such296

that π(t) is an ε-approximate Nash policy.297
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Finite samples case. In the case of finite samples, we analyze (PSGA) on the value V i of each298

agent i which (as was the case for PGA) can be shown to be the same as applying projected gradient299

ascent on Φ. In this case, we choose α-greedy parametrization with α chosen appropriately. The300

key is to get an estimate of the gradient of Φ (see (2)) at every iterate. Lemma 4.3 argues that the301

estimator of equation (2) is unbiased and has bounded variance.302

Lemma 4.3 (Unbiased estimator with bounded variance ). It holds that ∇̂(t)
πi is an unbiased estimator303

of∇πi
Φ with bounded variance for all i ∈ N , i.e.,304

Eπ(t)∇̂(t)
πi

= ∇πiΦµ(π(t)), with Eπ(t)

∥∥∥∇̂(t)
πi

∥∥∥2

2
≤ 24A2

max

ε(1− γ)4
, for all i ∈ N .

In this case, 1 − γ captures the probability for the MDP to terminate after each round since we305

consider finite length trajectories. Using the above, we can now state part (b) of Theorem 1.1.306

Together with Lemma 4.3 and the stationarity-Lemma (Lemma 4.1), i.e., that stationary points of Φ307

are Nash policies, its proof uses the smoothness of Φ and existing tools for the analysis of stochastic308

gradient descent for non-convex functions.309

Theorem 4.4 (Formal Theorem 1.1, part (b)). Let G be a MPG and let s0 ∈ S denote an arbitrary310

initial state. Let Amax = maxi |Ai|, and set the number of iterations to be T = 48(1−γ)AmaxD
4S2δ4

ε6γ3311

and the learning rate (step-size) to be η = ε4(1−γ)3γ
48nD2A2

maxSδ
2 . If the agents run projected stochastic policy312

gradient (PSGA) starting from arbitrarily initialized policies and using α-greedy parametrization with313

α = ε2, then with probability 1− δ there exists a t ∈ {1, . . . , T} such that π(t) is an ε-approximate314

Nash policy.315

Remark 2 (Weighted and ordinal MPGs). We conclude this section with a remark on Weighted and316

Ordinal MPGs (cf. Definition in 1). It is rather straightforward to see that our results carry over for317

WMPGs. The only difference in the running time of (PGA) is to account for the weights (which are318

just multiplicative constants).319

By contrast, the extension to OMPGs is not immediate and the reason is that we cannot prove any320

bound on the smoothness of Φ in that case. Therefore, we cannot have rates of convergence of policy321

gradient. Nevertheless, it is quite straightforward that (PGA) converges asymptotically to critical322

points (in bounded domains) for differentiable functions. Thus, as long as Φ is differentiable, it is323

guaranteed that (PGA) will asymptotically converge to a critical point of Φ. By Lemma 4.1, this324

point will be a Nash policy.325

5 Experiments: Congestion Games326

We next study the performance of policy gradient in a general class of MPGs that are congestion327

games at every state (cf. [4]). The setting of the current experiment is illustrated in Figure 4.328

329

≤ N/4> N/2

4 facilities distancing state

safe state

Figure 4: The 2-state MPG.

Experimental setup. There are 8 agents, 4 facilities and 2 states:330

a safe state and a distancing state. In both states, all agents prefer331

to be in the same facility with as many other agents as possible332

(follow the crowd) [12]. In particular, the reward of each agent333

for being at facility k = A,B,C,D is equal to a predefined334

positive weight wsafe
k times the number of agents at that facility.335

The weights satisfy wsafe
A < wsafe

B < wsafe
C < wsafe

D , i.e., facility D336

is the most preferable by all agents. If more than 4 = N/2 agents337

find themselves in the same facility, then the game transitions to338

the distancing state. At that state, the reward structure remains the same, but the weights are reduced339

by a constant factor, i.e., wdist
k = wsafe

k − c, where c > 0 is a (considerably large) constant. To return340

to the safe state, the agents need to achieve maximum distribution over the facilities, i.e., no more341

than 2 = N/4 agents may be in the same facility.342

To see that this MDP is a MPG, it suffices to check that every state is a potential game and that343

condition C2 (i.e., equality of individual dummy terms) of Proposition 3.2 is satisfied. The first claim344

is straightforward since at each state, the agents play a congestion game [22, 25]. The second claim345

follows from the fact that the rewards of all agents in all facilities at the distancing state are shifted by346

the same constant amount, c.347
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Figure 5: Policy gradient in the 2-state MPG with 8 agents of Section 5. In all runs, the 8 agents
learn one of the deterministic Nash policies that leads to the optimal distribution among states (left).
Individual trajectories of the L1-accuracy and averages (with 1-standard deviation error bars) show
fast convergence in all cases (middle and right columns).

Paremeters. We perform episodic updates with T = 20 steps. At each iteration, we estimate the348

policy gradients using the average of mini-batches of size 20. We use γ = 0.99 and a common349

learning rate η = 0.0001 (this η is (several orders of magnitude) larger than the theoretical guarantee,350

η = (1−γ)3

2γAmaxn
≈ 1e − 08, of Theorem 4.2). Experiments with randomly generated learning rates351

(different for each agent), non-deterministic transitions between states and with different weights at352

each facility in the distancing state (that result in non- MPG structure) produce qualitatively equivalent353

results and are presented in Appendix E.354

Results. The left panel of Figure 5 shows that the agents learn the expected Nash profile in both states355

in all runs. Importantly, this (Nash) policy profile is deterministic in line with Theorem 4.2. The356

panels in the middle and right columns depict the L1-accuracy in the policy space at each iteration357

which is defined as the average distance between the current policy and the final policy of all 8 agents,358

i.e., L1-accuracy = 1
N

∑
i∈N |πi − πfinal

i | = 1
N

∑
i∈N

∑
s

∑
a |πi(a | s)− πfinal

i (a | s)|.359

6 Further Discussion and Conclusions360

We presented positive results (both structural and algorithmic) about the performance of independent361

policy gradient in Markov Potential Games (MPGs). We showed that MPGs always possess determin-362

istic Nash policies and that independent policy gradient is guaranteed to converge (polynomially fast363

in the approximation error) to (deterministic) Nash policy profiles even in the case of finite samples364

(assuming a direct parameterization with greedy exploration). Our definition of MPGs generalizes365

prior works on state-based potential MDPs (importantly, by encompassing MDPs that are not nec-366

essarily potential at each state) and demonstrates the effectiveness of simultaneous policy gradient367

in learning Nash policies even without the need to impose additional assumptions on state-based368

potential functions (cf. [16, 32]). Given these positive results, several interesting questions emerge.369

Open questions. When it comes to online learning in normal form potential games, it is possible to370

prove that many naturally motivated dynamics converge to deterministic Nash equilibria with certain371

desirable stability properties for most initial conditions [13, 24, 7, 17]. To produce such equilibrium372

selection results, standard Lyapunov arguments do not suffice and one needs to apply more advanced373

techniques such as the Center-Stable-Manifold theorem [15]. Studying such techniques in the context374

of MPGs is a fascinating direction for future work.375

On the other hand, given the complexities of multi-agent, state-based environments, it is highly376

unlikely to expect that practical algorithms can always guarantee convergence to equilibrium. This is377

already the case even for the more restricted settings of normal-form games [34, 2]. Nevertheless,378

deriving strong theoretical guarantees in the sense of cyclic/recurrent orbits, invariant functions [18]379

or social welfare [31] in the context of exact, weighted or ordinal MPGs is another stimulating380

direction for future work. As a measurement of the inefficiency due to lack of coordination between381

agents, it would also be interesting to perform a Price of Anarchy type of analysis [14] as has been382

excessively done in the context of normal-form potential (congestion) games (e.g., [26]).383

Finally, other natural directions for future work involve the study of policy gradient or variations384

thereof (such as Natural Policy Gradient) in MPGs under different policy parametrizations, cf. [1], or385

the study of settings that fruitfully combine tools from both cooperative and competitive settings (as386

in [10, 36, 38]) that have (up to now) produced results in orthogonal directions.387
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