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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated exceptional
capabilities in processing vision-language tasks. One of the crux of MLLMs
lies in vision tokenization, which involves efficiently transforming input visual
signals into feature representations that are most beneficial for LLMs. However,
existing vision tokenizers, essential for semantic alignment between vision and
language, remain problematic. Existing methods aggressively fragment visual
input, corrupting the visual semantic integrity. To address this, this work presents
a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok), which groups
visual features into semantic units via a dynamic clustering algorithm, flexibly
determining the number of tokens based on image complexity. The resulting vision
tokens effectively preserve semantic integrity and capture both low-frequency and
high-frequency visual features. The proposed MLLM (SETOKIM) equipped with
SeTok significantly demonstrates superior performance across various tasks, as
evidenced by our experimental results. The code and model will be released.

1 INTRODUCTION

Recently, the research on MLLMs has garnered intense interest (Zhang et al., 2024a; Lin et al.,
2023; Dong et al., 2023; Wu et al., 2024a). By building upon the unprecedented intelligence of
language-based LLMs (Chiang et al., 2023; Touvron et al., 2023a), and integrating multimodal
encoders (Radford et al., 2021) at the input side and decoders (Rombach et al., 2022) at the output
side, current MLLMs have developed powerful multimodal capabilities. Particularly, in the visual
modality, the state-of-the-art (SoTA) MLLMs have now achieved a grand slam across the four major
visual-language task groups, i.e., understanding (Liu et al., 2023c; Wu et al., 2023; Team, 2024),
generating (Ge et al., 2023; Dong et al., 2023; Jin et al., 2023b; Pan et al., 2024), segmenting (Ren
et al., 2023; You et al., 2023), and editing (Huang et al., 2023b; Jin et al., 2023b; Fu et al., 2023b).
Central to this capability is the design of vision tokenization (Dosovitskiy et al., 2021; Esser et al.,
2021; Yu et al., 2024), which focuses on effectively converting input visual signals into visual tokens
that can be seamlessly understood by LLMs. Existing vision tokenizers primarily produce three types
of visual tokens: 1) patch-level continuous tokens (cf. Figure 1(a)), 2) patch-level discrete tokens (cf.
Figure 1(b)), and 3) learnable query tokens (cf. Figure 1(c)).

While existing MLLMs have achieved promising performances across various tasks, a significant
bottleneck remains with current visual tokenization methods, i.e., resulting in insufficient semantic
alignments between language and vision tokens. On the language side, linguistic tokens (or words)
are naturally discrete, representing well-encapsulated semantic units, whereas, on the vision side,
visual pixels are inherently continuous data with no physical boundaries. Intuitively, language tokens
should correspond to semantically encapsulated objects (or compositional regions) within an image.
For example, when “a dog” is mentioned, the “dog” token should correspond to the direct pixel
region of the dog in the image. However, as illustrated in Figure 1(a&b), both existing tokenization
methods divide the image into fixed patch squares, fragmenting objects across multiple patches.
This disrupts the integrity of visual semantic units, resulting in a significant loss of high-frequency
visual information (Zhang et al., 2023b), e.g., the object’s edges and contours. Moreover, methods
employing a fixed number of query tokens, as depicted in Figure 1(c), struggle to align with actual
visual semantic units and meanwhile offer limited interpretability (Yang et al., 2022; Wu et al., 2024b).
Ultimately, this misalignment between vision and language within MLLMs undermines the effective
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Figure 1: Comparison between existing MLLMs in tokenized visual inputs: (a) patch-level continuous
token, (b) patch-level discrete token, (c) learnable query token, and (d) semantic-equivalent continuous
token (ours). In (e), we show four language-driven vision tasks enhanced with semantic-equivalent
vision tokens, with token masks showing regions of the same color representing a single vision token.

understanding of visual signals, significantly hindering progress in a range of vision-language tasks
that require precise, fine-grained semantic alignment between vision and language elements.

To this end, this work proposes a Semantic-Equivalent Tokenizer (SeTok) for enhancing MLLMs,
where we encourage the vision and language tokens to be semantically congruent. The core idea
involves automatically grouping visual features from input images by applying a clustering algorithm
(Engelcke et al., 2021), such that each unique cluster represents an encapsulated semantic unit within
the vision. As illustrated in Figure 1(d), the red visual area aggregated by SeTok corresponds to a
complete semantic concept—“person”, while the yellow area corresponds to the “surface board”
concept. Furthermore, we recognize that tokenizing images into a fixed number of patches is
impractical. From a semantic perspective, different images should contain varying numbers of
semantically encapsulated objects, and the granularity of compositional regions also needs to be
flexibly determined. For example, we only need to identify a person in the image, while at other
times, we may need to delineate the person’s head precisely. This implies that it is more reasonable
to dynamically determine the division of visual tokenization. To address this, we propose a dynamic
clustering mechanism (Engelcke et al., 2021) that iteratively determines cluster centers based on
density peaks, assigning visual features to these centers until all features are allocated. The design of
this mechanism allows for the dynamic determination of the number of concept visual tokens, rather
than fixing the ratio (Jin et al., 2023a) or merely merging the top-k visual tokens (Bolya et al., 2023).
After clustering, we devise a token merger to aggregate the visual features within each cluster, that
is dedicated to learning a complete visual semantic unit feature, including both high-frequency and
low-frequency information. To enable the effective learning of the semantic-equivalent token, we
propose reconstructing the raw image based on these tokens, and further introducing the concept-level
image-text contrastive loss to explicitly align the language and vision at the concept level.

We further build an MLLM equipped with our SeTok, named SETOKIM, capable of addressing four
types of language-driven vision tasks simultaneously, as demonstrated in Figure 1(e). Built on a pre-
trained LLM (Touvron et al., 2023b), SETOKIM performs reasoning on a unified multimodal sequence
concatenating text token with visual tokens generated by Setok. During inference, SETOKIM yields
the text and visual tokens autoregressively, which are then processed by a visual detokenizer and mask
decoder to produce images and corresponding masks. Inspired by Li et al. (2024a), we introduce a
unified autoregressive training objective for optimization through pre-training and instruction-tuning

2
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Figure 2: Overview of SeTok. SeTok tokenizes visual features extracted from an image by a
vision encoder into semantically equivalent vision tokens, which then are fed into a detokenizer to
reconstruct the image and meanwhile employed to perform the concept-level image-text alignment.

on the massive multimodal data. We evaluate SETOKIM on various common visual language tasks,
including visual question-answering, image generation & editing, and referring segmentation. Our
results reveal that semantic-equivalent tokenization significantly enhances vision-language learning
compared to standard patch-level tokenization or learnable queries, achieving higher performance on
various tasks. Meanwhile, in-depth analyses and visualizations intuitively show SeTok enjoys the
superiority of tokenizing vision input into more interpretable and semantic-complete vision tokens,
achieving fine-grained vision-language alignment.

2 METHODOLOGY

In this work, we aim to generate semantically complete vision tokens aligned with text tokens to
facilitate fine-grained semantic interactions between vision and language, thereby enhancing the
performance of MLLMs in various multimodal tasks. In pursuit of this goal, we propose constructing
a semantic-equivalent tokenizer, called SeTok, which tokenizes the given input image into a sequence
of semantically complete visual tokens, as illustrated in Figure 2. Integrated with the SeTok, we
further design a multimodal large language model, i.e., SETOKIM shown in Figure 3, where the
semantic-equivalent vision tokens concatenated with text tokens are fed into LLMs for interleaved
image-text understanding and generation.

2.1 SEMANTIC-EQUIVALENT VISION TOKENIZER

Given an input image I ∈ RH×W×3, we first employ a vision encoder to extract a sequence of
visual patch embeddings X = {xi,j} ∈ Rh×w×d, where d is the embedding dimension 1. Then, to
obtain semantically complete visual tokens, we propose to amalgamate the visual embeddings into
concept-like scene components by a Token Cluster.
Token Cluster. We take the visual patch embeddings X as input and then assign individual patches
into a semantic complete cluster, which can be formulated as obtaining a variable number of concept
masks M ∈ [0, 1]h×w×C , with

∑
c Mi,j,c = 1 for all patch coordinate tuples (i, j) in an image,

where C is the number of semantic-equivalent tokens. Inspired by Engelcke et al. (2021), this
is intuitively achieved by (1) selecting the location (i, j) of the visual patch feature that has not
yet been assigned to a cluster, (2) creating a cluster assignment according to the distance of the
embeddings at the selected location to all other embeddings according to a distance kernel φ(·) 2, and
(3) repeating the first two steps until all visual embeddings are accounted for or a stopping criterion is
met. Different from (Du et al., 2016) employing uniformed seed scores performing the stochastic
selection of visual embeddings, we propose to choose the visual embeddings based on their density
peaks, as a higher density shows a higher potential to be the cluster center. Specifically, we first
calculate the local density ρi,j of the token xi,j ∈ X by referring its neighbors:

ρi,j = exp(− 1

K

∑
xm,n∈KNN(xi,j ,X)

φ(xm,n,xi,j)), (1)

1When using ViT-based vision encoder, h = H
p
, w = W

p
, where p is the patch size. Similarly, p denotes the

downsampling factor when using a CNN-based encoder.
2In this work, we employ φ(u,v) = exp(−∥u− v∥2 · C ln 2)
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where KNN(xi,j ,X) denotes the K-nearest neighbors of xi,j in X . We then measure the minimal
distance δi,j between the feature xi,j and other features with higher density:

δi,j =

{
minm,n:ρm,n>ρi,j

φ(xm,n,xi,j), if ∃ m,n : ρm,n > ρi,j
maxm,n φ(xm,n,xi,j), otherwise

(2)

Finally, we summarize the score si,j of the feature by combining the local density ρi,j and minimal
distance δi,j as ρi,j × δi,j . Based on the score, we select the location (i, j) of the visual feature that
has the highest score si,j and has not yet been assigned to a cluster and iteratively assign the visual
feature into a certain cluster until a stopping condition is satisfied, at which point the additional mask
is added for any remaining visual embeddings. The detailed algorithm is described in Appendix §C.1.
Token Merger. After clustering, the visual embeddings are grouped based on the attention masks
M . To optimally retain information within each cluster, we adopt a token merger that aggregates
visual embeddings beyond merely using cluster centers as definitive vision tokens. In addition,
considering the significance of positional information for representing a semantic concept in an
image, we integrate 2D position embeddings (PE, Heo et al. (2024)) into the merger, calculated
as X̂c = PE(X) ⊙Mc ⊕X ⊙Mc. Then, we apply Linner c Transformer layers on all the visual
embeddings within a cluster, followed by an average pooling to obtain the final token feature
uc = Avg(Transformer(X̂c), L

inner c) ∈ Rd. To facilitate the representation of coherent scenes with
semantic equivalent tokens, we add inter-cluster Transformer layers to model relationships between
vision tokens, i.e., V = {v1, · · · ,vC} = Transformer({u1, · · · ,uC}, Linter c) ∈ RC×d.
SeTok Training. To facilitate diverse visual understanding and generation tasks when building
MLLMs, we argue that effective semantic-equivalent tokens should embody two key attributes:
complete and enriched high-level semantic information, and undistorted pixel-level details. Therefore,
we propose to include concept-level image-text contrastive loss and image reconstruction loss, as
shown in Figure 2. During the training phase, to ensure each token’s semantic independence and
completeness, we adopt a concept-level image-text conservative loss, inspired by Xu et al. (2022).
This loss aligns visual tokens with corresponding textual concepts semantically, thereby enhancing
their suitability for integration in LLMs. Additionally, to ensure the tokens retain adequate pixel-level
details, we feed these tokens into a detokenizer (Yu et al., 2024) to reconstruct the original image and
calculate the reconstruction loss. Finally, we employ a weighted sum to combine the contrastive loss
and reconstruction loss, optimizing both semantic fidelity and visual detail retention:

Lsetok = αLrec + βLcitc. (3)

In practice, α and β are set to 1. We use ImageNet-1K (Deng et al., 2009) for reconstruction learning
and OpenImages (Kuznetsova et al., 2020) for both reconstruction and alignment learning.

2.2 SETOKIM

LLM

[Img] [/Img]

[/Img][Img]

Visual 
Detokenizer

Mask 
Decoder

The man is standing 
on the beach hold-
ing a surfboard.

Input Text

SeTok

Input Image

Text Encoder

Text Decoder

Figure 3: The overview of SETOKIM.

Upon acquiring SeTok, we propose
to integrate it with the pre-trained
LLM to construct an MLLM, i.e., SE-
TOKIM. The overall framework is
depicted in Figure 3. The input im-
age will be tokenized into a sequence
of semantic-equivalent visual tokens
by SeTok, which are then concate-
nated with text tokens to form a uni-
fied multimodal sequence. To effec-
tively distinguish between modalities
and facilitate visual content genera-
tion, two special tokens, ‘[Img]’ and
‘[/Img]’ are introduced to signify
the beginning and the end of the vi-
sual sequence, respectively. The backbone LLM subsequently processes this multimodal sequence to
perform multimodal understanding and generation. The output vision tokens are then fed into the
visual detokenizer to restore the images. Meanwhile, we observe that the generated concept-centric
tokens inherently embed approximate locations of each concept within the original image, as illus-
trated in 7. To exploit this spatial and semantic encoding, we incorporate a lightweight mask decoder
(Kirillov et al., 2023) utilizing the generated vision tokens as input to yield the referring mask. The
detailed implementations are provided in the Appendix §D.
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Method Size Vis. Tok. Flickr30K VQAv2 OK-VQA GQA POPE MME MM-Vet
InstructBLIP (Liu et al., 2023a) 13B Q.C - - - 49.5 78.9 1212.8 -
Qwen-VL-Chat (Bai et al., 2023) 7B Q.C - 78.2* - 57.5* - 1487.5 -
Emu (Zhang et al., 2023a) 7B Q.C 77.4 57.2 43.4 - - - -
DreamLLM (Dong et al., 2023) 7B P.C - 72.9 - 41.8 - - 36.6
LLaVA-1.5 (Liu et al., 2023c) 7B P.C - 78.5* - 62.0* 85.9 1510.7 33.1
NExT-GPT (Wu et al., 2023) 7B P.C 84.5 66.7 52.1 - - - -
SEED-X (Ge et al., 2023) 17B P.C 52.3 - - 47.9 84.2 1435.7 -
LaVIT (Jin et al., 2023b) 7B P.C 83.0 66.0 54.6 46.8 - - -
Unified-IO-2 (Lu et al., 2023) 6.8B P.D - 79.4* - - 87.7 - -
CM3Leon (Yu et al., 2023a) 7B P.D - 47.6 23.8 - - - -
Chameleon (Team, 2024) 34B P.D 74.7 66.0 - - - - -
SETOKIM 7B SE.C 86.9 78.7* 60.2* 65.6* 89.1 1537.8 45.2

Table 1: Comparison of MLLMs on image understanding benchmarks. ∗ indicates the training sets
observed during training. “C” and “D” represent continuous and discrete visual tokens, respectively.
“P” refers to patch-level features, “Q” denotes learnable queries, and “SE” is semantic-equivalent.

Training Objectives. To facilitate autoregressive modeling across both text and visual generation,
we unified adopt a next-token prediction:

p(y1, · · · , yn) =
n∏

i=1

p(yi|y1, · · · , yi). (4)

Specifically, in terms of text generation, we adopt the Cross-entropy loss Ltext, i.e., the standard
language modeling objective, to maximize the likelihood of text tokens. For image generation,
drawing inspiration from Li et al. (2024a), we utilize the LLM, to produce a conditioning vector
zi based on previous tokens: zi = LLM(y1, · · · , yi−1). We then model the probability of the next
token by p(yi|zi), and employ the Diffusion loss (Li et al., 2024a), denoted Lvis, to optimize the
parameters of LLM. Moreover, we follow Li et al. (2024b) to use binary cross-entropy loss Lbce and
dice loss Ldice for optimizing the parameters in mask decoder.
Training Receipts. Given that we try to perform generation and understanding with one single
generative model, large-scale pretraining is required to achieve effective alignment between textual
and visual content. To this end, we propose a two-stage training procedure. Stage-I: Multimodal
Pretraining. In this stage, we focus on enhancing the alignment between text and image. We employ
massive multimodal data, including ImageNet-1K and 28M text-image pair dataset, to train our
model for conditional image generation and image captioning. Furthermore, we utilize the English
text corpus from the SlimPajama (Soboleva et al., 2023) dataset to reduce catastrophic forgetting
of the reasoning capacity during LLM training. Toward the end of the first phase of training, once
the trainable modules of SETOKIM have converged, we freeze these modules and exclusively train
the mask decoder on the segmentation datasets, like MSCOCO (Lin et al., 2014), to promote the
learning of fine-grained object boundaries. Stage-II: Instruction Tuning. Building upon the pre-
trained weights, we further perform multimodal instruction tuning with both public datasets covering
multimodal instruction datasets (e.g., ALLaVA (Chen et al., 2024) and LLaVA-665K (Liu et al.,
2023d) ), fine-grained visual QA (e.g., VQAv2 (Goyal et al., 2019), GQA (Hudson & Manning,
2019), OK-VQA (Marino et al., 2019), A-OKVQA (Schwenk et al., 2022)), image generation (e.g.,
LAION-aesthetics (Schuhmann et al., 2022)), and editing (e.g., InstructPix2Pix (Brooks et al., 2023)
and Magicbrush (Zhang et al., 2024b)). More details can be found in the Appendix §D.3.

3 SETTINGS
Our experiments employ the LLaMA-2-7B (Touvron et al., 2023b) to initialize our LLM backbone.
For the SeTok, we apply pre-trained SigLIP-SO400M-patch14-384 (Zhai et al., 2023) as our vision
encoder, and the numbers of inner-cluster and inter-cluster transformer layers are set as 12, and 8,
respectively. The dimension of the semantic-equivalent token is 512. For the detokenizer, we adopt
L = 12 blocks for mask tokens to query visual information contained in the semantic-equivalent
tokens, and then an upsampler inspired by the architect of Yu et al. (2024) is employed as the pixel
decoder. More implementation details are provided in Appendix §D.1.

For examining visual understanding ability, we evaluate our model on Flicker30K (Young et al.,
2014), VQAv2(Goyal et al., 2019), GQA (Hudson & Manning, 2019), OK-VQA (Marino et al.,
2019), as well as three MLLM benchmarks, e.g., POPE (Li et al., 2023), MME (Fu et al., 2023a) and
MM-Vet (Yu et al., 2023b). Besides, we evaluate the visual generation fidelity on the MSCOCO (Lin
et al., 2014) dataset. Following Pan et al. (2024), we evaluate the image editing capabilities of the
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Method Type Decoder MS-COCO MagicBrush MA5K EVR

FID ↓ CLIPim ↑ L1 ↓ LPIPS↓ L1 ↓ CLIPim ↑ L1 ↓
• Diffusion-based Method
Make-A-Scene (Gafni et al., 2022) Autoregressive - 11.8 - - - - - -
Ins.P2P* (Brooks et al., 2023) Diffusion - - 83.4 12.1 35.9 17.6 81.4 18.9
SD v2.1 (Rombach et al., 2022) Diffusion - 9.0 - - - - - -
• MLLM-based Method
DreamLLM (Dong et al., 2023) LLM (Cont.) SDv2.1 8.7 - - - - - -
SEED-X (Ge et al., 2023) LLM (Cont.) SDXL 14.9 - - - - - -
CM3Leon (Yu et al., 2023a) LLM (Disc.) VQGAN 10.3 - - - - - -
LaVIT* (Jin et al., 2023b) LLM (Disc.) SDv1.5 7.4 81.1 25.3 36.9 25.1 73.8 26.8
LWM (Liu et al., 2024) LLM (Disc.) VQGAN 12.6 - - - - - -
MGIE* (Fu et al., 2023b) LLM (Cont.) SDv1.5 - 91.1 8.2 29.8 13.3 81.7 16.3
Emu-2-gen* (Sun et al., 2023a) LLM (Cont.) SDXL - 85.7 19.9 28.4 20.5 80.3 22.8
Morph-Token* (Pan et al., 2024) LLM (Cont.) VQGAN - 87.9 7.6 27.9 14.6 82.6 15.3
SETOKIM LLM (Cont.) SeTok 8.3 89.6 6.3 26.4 15.7 83.5 14.1

Table 2: Performance of various models in zero-shot text-to-image generation and editing on bench-
marks. *: denotes editing performances sourced from (Pan et al., 2024). “LLM (Cont.)” means LLM
outputs continuous representation utilized in the decoder to generate images, while “LLM (Disc.)”
stands for discrete representation generated for image generation.

SEKTOIM on Magicbrush (Zhang et al., 2024b), EVR (Tan et al., 2019) and MA5K (Shi et al., 2021).
Furthermore, refCOCOg (Mao et al., 2016), refCOCO+ (Yu et al., 2016), and Reaseg (Lai et al.,
2023) are utilized to examine the potential referring segmentation capabilities of the proposed model.

4 EXPERIMENTAL RESULTS

4.1 MAIN RESULTS

Model #Tokens Latent size rFID ↓ Top-1 ↑
VQ-GAN (Esser et al., 2021) Fixed 16 × 16 7.94 -
VAE (Rombach et al., 2022) Fixed 32 × 32 2.63 -
RQ-VAE (Lee et al., 2022) Fixed 16 × 16 3.20 -
ViT-VQGAN (Yu et al., 2022) Fixed 32 × 32 1.28 -
MQ-VAE (Huang et al., 2023a) Fixed 32 × 32 5.29 -
TiTok (Yu et al., 2024) Fixed 32 × 1 2.21 72.6
SeTok Dynamic - 2.07 76.4

Table 3: Reconstruction results (rFID) and image classification
performance (Top-1 Accuracy) on 256× 256 ImageNet(val.)
dataset. #Tokens refers to the number of tokens.

The Quality of SeTok We employ
reconstruction FID (rFID) and Top-1
accuracy for image classification on
ImageNet to measure the reconstruc-
tion and text alignment capabilities
of the SeTok in Table 3. SeTok can
achieve a comparable reconstruction
quality to well-trained VQ models.
Unlike prior methods that typically
utilize 2D latent grids preserving
spatial mappings between latent to-
kens and image patches, which al-
lows for the retention of precise low-level information but limits high-level semantic acquisition and
development of more compressed latent space, SeTok integrates both high- and low-level information
that is crucial for producing high-quality images and creating semantic compact and complete latent
representations. In comparison, the latest models like TiTok utilize a fixed number of 1D latent
representations that suffer from a lack of semantic interpretability and poor textual alignment, i.e.,
obtaining inferior image classification performance (72.6 vs 76.4 top-1 accuracy). We visualize the
visual token in Section 4.2, and more reconstruction examples can be found in Appendix §E.

Visual Understanding. We evaluate the visual understanding capabilities of our model and other
leading MLLMs across a wide range of benchmarks, as detailed in Table 1. Different from the
prevalent use of patch-level continuous visual tokens by foundational models like CLIP, the discrete
tokens utilized in VQGAN models show weaker semantic alignment with text, which detracts from
their performance in various understanding tasks. Besides, learnable continuous queries transformed
via Q-former or cross-attention framework are introduced to alleviate the efficiency issues. However,
these methods still struggle with fine-grained semantic alignment with text, potentially limiting
the depth of interaction between textual and visual content. By incorporating semantic-equivalent
tokens via SeTok, our model secures competitive performances in various vision-understanding tasks.
Moreover, our model demonstrates performance improvement on GQA by 3.6%, highlighting our
method’s superior capability in complex relationships and object quantities reasoning.

Visual Generation and Editing. Table 2 demonstrates a comparative analysis of SETOKIM and
other diffusion-based and LLM-based methods in vision generation and editing. Notably, compared
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Method refCOCOg refCOCO+ Reaseg

val(U) test(U) val testA testB gIoU cIoU
ReLA 65.0 66.0 66.0 71.0 57.7 - -
SEEM 65.7 - - - - 24.3 18.7
PixelLM 69.3 70.5 66.3 71.7 58.3 - -
NExT-Chat 67.0 67.0 65.1 71.9 56.7 - -
LISA 67.9 70.6 65.1 70.8 58.1 47.3 48.4
SETOKIM 71.3 71.3 68.0 72.4 61.2 50.7 52.7

Table 4: Results on 3 referring expression
segmentation benchmarks. We report cIoU for
RefCOCO+/g.

Mechanism #Tokens TFLOPs Flickr30K OK-VQA
Hard-clustering 25∗ 8.3 86.9 60.2
Soft-clustering 23∗ 8.2 86.7 58.9

Fixed

256 15.7 85.1 51.7
64 13.9 84.1 53.6
32 10.1 83.4 51.1
8 8.0 82.1 50.1

Table 5: The effect of different clustering strate-
gies. The first three rows consist of dynamic strate-
gies. #Tokens is the number of tokens, and * de-
notes the average token number.

Method ImageNet Flickr30K VQAv2 GQA MSCOCO
(rFID↓) (CIDEr↑) (Accuracy↑) (Accuracy↑) (FID↓)

SeTok 2.07 86.9 78.5 65.6 8.3
w/o Lcitc 4.15 78.1 65.8 49.7 9.6
w/o PE 3.56 86.1 76.2 61.4 12.8
w/o inter-cluster Transformer 7.91 82.7 71.4 54.2 13.9
w/o inner-cluster Transformer 6.25 85.4 73.7 53.4 11.0
w/o Token Merger 8.64 80.3 66.1 50.5 14.7

Table 6: Ablation Study on SeTok to image reconstruction, visual understanding, and generation.

to other MLLMs integrated with advanced vision decoders such as SD v2.1 (Rombach et al., 2022)
and SD-XL (Podell et al., 2024), our method achieves comparable performance on complex prompts.
This highlights the effectiveness and efficiency of SeTok in learning the correlations between visual
and textual modalities within our unified framework. Further evaluations on instruction-based image
editing are conducted. Standard pixel difference (L1), LPIPS (Zhang et al., 2018), and visual feature
similarity (CLIPim) are employed as metrics. Our model exhibits marked superiority in L1 and CLIP
scores compared to existing MLLMs. This enhanced performance can be attributed to SeTok’s ability
to capture semantically equivalent visual tokens, thereby enhancing the semantic interaction between
text and images. Moreover, editing tasks typically involve conceptual replacements within images,
and the concept-level token representations learned by our model are inherently well-suited to such
tasks involving straightforward replacements or modifications.

Referring Expression Segmentation. Table 4 presents MLLMs’ performances on referring expres-
sion segmentation tasks. Our model consistently outperforms the current SoTA on the RefCOCO+/g
and ReaSeg dataset, demonstrating the proficiency of our vision tokens derived from SeTok in
capturing not only object-centric semantic details but also the high-frequency boundary information.

4.2 IN-DEPTH ANALYSIS AND QUALITATIVE EVALUATION

Ablation Study. Table 6 summarizes the results of an ablation study evaluating the design benefits
of SeTok and the influence of SETOKIM across various vision-language tasks. Firstly, we observe
that while the model can achieve commendable reconstruction quality without using contrastive loss,
its performance markedly decreases in downstream vision understanding tasks. This suggests that
exclusive reliance on reconstruction learning may cause the model to prioritize low-level information
at the expense of high-level semantic insights. Furthermore, replacing the token merger with a simple
average visual representation for each cluster also results in a significant decline in fine-grained visual
understanding and generation performance, possibly due to the averaging process potentially leading
to information loss. Lastly, the removal of positional encoding (PE) and both the inner-cluster and
inter-cluster transformers degrade the model’s performance across various tasks to some extent.

The Impact of the Clustering Mechanism. Here, we compare the impact of different clustering
mechanisms on model performance. As shown in Table 5, we can observe that tokenizers constructed
using dynamic clustering mechanisms achieve superior overall performance compared to those with a
fixed setup while simultaneously accelerating training time and reducing computational costs during
inference. In contrast to soft-clustering, which yields soft attention masks, our findings suggest
that hard-clustering produces better results, as it may be because hard clustering leads to higher
consistency of cluster outcomes (Haurum et al., 2023), leading to more stable visual tokens and
enhancing both the stability and performance of the model. When employing a fixed number of
clusters, the critical challenge is to determine the optimal number of clusters. As demonstrated in
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Where can I see this sign? What 

does it mean?

Describe the image in detail.

The image captures an outdoor 

seating area of a restaurant or cafe. 

The seating area is arranged around a 

central table, with multiple chairs 

placed around it. In the foreground, 

there is a large black umbrella 

providing shade for the seating area. 

To the left of the seating area, there is 

a sign that read s  "A NEW 

EXPERIENCE COMING YOUR 

WAY". The sign is white with black 

text, and it is placed on a small stand. 

In the background, there is a building 

with a glass facade. The building 

appears to be a commercial or retail 

space, possibly related to the new

experience mentioned in the sign ...

lt's a traffic sign which is usually seen 

beside the street, instructing drivers to 

stop completely.

Do you see any person who is playing 

on the beach?

No, there is no one playing on the 

beach in this image. The beach is 

mostly empty except for a few items 

like a striped towel, a blue surfboard, a 

red bag, and a couple of chairs. There 

are also a few people in the distance, 

but they are not actively playing.

I want to open my own coffee shop, 

which should have a very 

comfortable and warm environment. 

Can you help me design it? Show 

me a picture of it.

Sure, l can show you a picture of a 

cozy coffee shop. Here is a picture:

please give an explanation of your 

design

In this image, we can see a cozy coffee 

shop. The shop is filled with wooden 

furniture, including tables and chairs, 

which adds a warm and inviting 

atmosphere. There are also some potted 

plants placed around the shop, which 

brings a touch of nature indoors. On the 

tables, there are various cups and 

saucers, as well as bottles and glasses, 

suggesting that the shop offers a variety 

of beverages. The walls are adorned 

with pictures and shelves, which add 

character to the space. The lighting in 

the shop is dim, creating a relaxed and 

intimate ambiance. Overall, this coffee 

shop is designed to be a comfortable 

and welcoming place for customers to 

enjoy their beverages and socialize.

show me a scene of a blue squirrel 

holding a flower, perched on a fence 

beside a cluster of purple flowers!

Here is the scene.

Can you change it into a cartoon style?

Sure, here are the cartoon image.

Figure 4: Qualitative results on image understanding and generation. The words marked in green are
key elements in questions and answers. Best view it on screen.

Table 5, different datasets achieve optimal performance at varying numbers of clusters, with a uniform
count across all datasets, resulting in suboptimal outcomes.

Qualitative Analysis of Visual Understanding and Generation. As illustrated in Figure 4, our
model exhibits proficiency in intricate image understanding tasks, such as deciphering reversed text,
exemplified by the word “stop”, and accurately identifying text “A NEW EXPERIENCE COMING
YOUR WAY” that is partially covered. In tasks involving detailed image descriptions, our approach
prioritizes object-level information within images, which substantially mitigates the incidence of
hallucinatory responses commonly observed in MLLMs. Moreover, in text-to-image generation, our
model demonstrates remarkable capabilities in synthesizing coherent images, which maintain high
fidelity and relevance to the textual context, such as the “flower”, “fence” and “squirrel”.

Qualitative Analysis of Visual Segmentation. We present the segmentation examples in Figure
5. It is easy to note that the attention mask closely aligns with the object mask, and our model
shows superiority in achieving more accurate and detailed segmentation results than other LLM-
based segmentation methods. Notably, as depicted in the second row of this figure, the visual
token generated by our method encompasses all depicted fish, effectively achieving a complete
segmentation of the fish in the scene. In contrast, other models produce only partial segmentation.
This effectiveness of the segmentation highlights the precise content representation and improved
interpretability of the visual tokens. Such visual tokens can eventually enhance the vision-language
understanding incorporated with the text tokens.

Qualitative Analysis of Visual Editing. Here, we evaluate the efficacy of image manipulation
using our model compared to the previous diffusion-based method MagicBrush (Zhang et al., 2024b),
and various MLLMs including Emu-2-Gen (Sun et al., 2023a), MGIE (Fu et al., 2023b), and Mini-
Gemini (Li et al., 2024c). As depicted in Figure 6, SETOKIM displays superior performance by
closely adhering to the provided instructions and preserving intricate image details. For instance,
our model seamlessly adds “tomato slices” to an image without altering other elements on the pizza,
while Emu-2-Gen and MGIE fall short. Furthermore, our model exhibits remarkable precision in

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

OsperyInput Token Mask SETOKIM GLaMM

Figure 5: The visualizations for segmentation results compared with GLaMM (Rasheed et al., 2023)
and Osprey (Yuan et al., 2023).

Add some tomato 

slices on the pizza

MagicBruch Emu-2-Gen MGIE Mini-Gemini OursOriginal

Change the color of 

umbrella to red

Remove the unusual 

part of this image

Change it into a 

clay-style

Figure 6: Qualitative comparison between MLLMs for the image editing. SETOKIM excels in
adhering to instructions and preserving low-level image details.

(1) (2) (3) (4) (5) (6) (7)

Figure 7: Token mask M visualization of visual tokens generated by SeTok.
changing the color of an umbrella, while visual objects not intended for alteration retain a high level
of consistency before and after editing. Additionally, SETOKIM demonstrates to precisely follow
implicit user instructions to remove unusual elements from an image, i.e., the banana, preserving the
surrounding context, whereas Emu-2-Gen mistakenly removes a telephone cord and MGIE fails to
remove the banana properly, altering the cord’s texture. These examples underscore the effectiveness
of SETOKIM for high-precision image manipulation, leveraging semantically equivalent visual tokens
to achieve nuanced and context-aware results.

Qualitative Analysis of Visual Tokens. In Figure 7, we demonstrate how input visual features are
assigned to visual tokens after tokenization. First, we observe that our tokenization process resembles

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

partial segmentations, producing semantically complete units. For example, in the second image,
visual tokens correspond to distinct elements such as the giraffe, grass, tree, and background, aligning
with semantic intuition. Second, the number of tokens obtained from Setok is dynamic and not
fixed. Third, SeTok is capable of adapting to different levels of semantic granularity for the same
concept, as seen in images (4) and (5), where the person is represented as a single token. In contrast,
in the image (1), the person is divided into tokens for the head, body, and legs. Lastly, in complex
scenes, such as the image (7), SeTok can still tokenize elements like traffic lights and billboards
into semantically complete tokens. Overall, our approach ensures that similar visual features are
consistently recognized and processed, improving both coherence and efficiency in tokenization.

5 RELATED WORK
Currently, benefiting from the emergent phenomenon, LLMs have demonstrated near-human-level
intelligence in language processing (Chiang et al., 2023; Touvron et al., 2023a; Taori et al., 2023).
Simultaneously, researchers have been attempting to develop MLLMs by integrating multimodal
encoders and decoders into LLMs (Dong et al., 2023; Koh et al., 2023; Lu et al., 2023; Li et al.,
2024c; Sun et al., 2023a;b). From the initial MLLMs that could only understand multimodal input
signals (Liu et al., 2023c;d) to later versions supporting the generation of multimodal contents (Sun
et al., 2023b;a; Koh et al., 2023; Wu et al., 2023), MLLMs have shown powerful capabilities and
a broader range of applications. Among all modalities, the integration of vision, known as visual
MLLM, has received the most extensive research and application (Gao et al., 2023; Schwenk et al.,
2022; Liu et al., 2023b; Lu et al., 2021). The latest MLLM research has not only achieved both
understanding and generation of visual content, but also developed more refined, pixel-level visual
modeling, including segmentation and editing functions (Yuan et al., 2023; Rasheed et al., 2023;
Zhang et al., 2023a; You et al., 2023; Lai et al., 2023).
On the other hand, an increasing body of research indicates that visual tokenization (Dosovitskiy
et al., 2021; Ge et al., 2023; Jin et al., 2023b) significantly impacts MLLM capabilities in vision tasks.
The fundamental approach involves encoding the input visual content into feature representations via
a visual encoder (e.g., Clip-VIT Radford et al. (2021)) and mapping these to an LLM, thus enabling
a language-based LLM to understand vision. The corresponding method involves patchifying the
original visual images of various sizes into smaller fixed-size patches (Dosovitskiy et al., 2021;
Bavishi et al., 2023; Liu et al., 2023d; Sun et al., 2023b), treating these as tokens, and encoding
each patch/token to obtain corresponding embeddings, which are then fed into the LLM. Subsequent
research (Jin et al., 2023b; Ge et al., 2023), aiming further to unify the training objectives of language
and visual modalities by introducing codebook techniques, where visual elements are represented
as discrete tokens. This allows visual training to be treated similarly to language training, i.e.,
conducting next token prediction (Ge et al., 2023). Unfortunately, whether in the above visual
encoding or tokenization techniques, there is a significant bottleneck of MLLM performance: the
integrity of visual semantic units, either visual objects or compositional regions, is compromised
during the patchifying process. This results in a less effective semantic alignment between vision and
language within the LLM. This paper is the first to propose a solution to this problem, introducing a
novel Semantic Equivalent Tokenization for MLLM.
In addition, this work is also related to scene decomposition (Yang et al., 2022; Niu et al., 2023;
Locatello et al., 2020), which involves segmenting a scene into objects. Typically, these methods
use a fixed number of query tokens (Kirillov et al., 2023; Suzuki, 2022) and apply cross-attention
(Yang et al., 2022; Qi et al., 2023) to aggregate visual features implicitly. However, this fixed-token
approach may not only correspond to the actual visual content but also requires complex network
architectures (Caron et al., 2018; Gansbeke et al., 2021) and extensive data for optimization. When
combined with LLMs, such complexity significantly increases computational resource demands.
Conversely, we learn a dynamic number of semantic objects and do not require complex model
structures for optimization, thereby enhancing resource efficiency and providing a more adaptable
solution for integrating visual and language modalities.

6 CONCLUSION

In this paper, we introduce SeTok, a viable semantic-equivalent tokenizer, that enables to tokenize
automatically patch-level visual features into a variable number of semantic-complete concept vi-
sual tokens. Then, we integrate SeTok with a pre-trained LLM to build an MLLM, SETOKIM,
optimized using a unified autoregressive objective and a two-stage training strategy. Extensive experi-
ments demonstrate that our model performs better on a broad range of comprehension, generation,
segmentation, and editing tasks, highlighting the effectiveness of Setok.
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A ETHIC STATEMENT

This work aims to build semantic equivalence tokenization to segment input images into semantic
complete tokens to enhance the MLLMs in vision understanding, generation, segmentation, and
editing capabilities. Here we discuss all the possible potential impacts of SETOKIM.

Use of Generative Content The SETOKIM, limited by the quantity of fine-tuning data and the
quality of the base models, may generate some low-quality content. Also, as a generative model, the
LLM will produce hallucinated content in multimodal formats that may be harmful to society. We
have reminded users to interpret the results with caution. Anyone who uses this LLM should obey
the rules in a license. And also commercial use of our system is not allowed.

Data Privacy and Security Our research utilizes datasets that are either publicly available or
collected with explicit consent. We adhere to strict data privacy and security protocols to protect the
information and ensure it is used solely for this research.

Bias Mitigation Recognizing the potential for bias in AI models, particularly in vision-language
tasks, we rigorously test our tokenizer across diverse datasets. This approach is designed to identify
and mitigate biases that may affect the model’s performance or lead to unfair outcomes in its
applications.

B LIMITATION

While SETOKIM has achieved further improvements across various language-driven vision tasks,
becoming a zero-shot general specialist, it still faces several limitations.

Model Scale. The evaluation of our model is currently constrained to configurations with 7B
parameters. As shown in (Laurençon et al., 2024), the performance of MLLMs is limited by the
scale of the core backbone LLM. Despite the impressive results achieved, the potential benefits of
employing significantly larger models, such as 65B or 130B, are worth exploring in future studies.

The Resolution of Image. Our model supports images with resolutions up to 384×384, enabling
the understanding of visually fine-grained content. While there have been improvements in under-
standing visually fine-grained content, challenges remain when processing higher-resolution images,
particularly for tasks requiring detailed visual reasoning. Recent advancements have explored various
strategies to address these challenges. For instance, Shi et al. (2024) highlights that straightforward
channel concatenation between low- and high-resolution features serves as an efficient and effective
fusion strategy, achieving a balance between performance and computational efficiency. Moreover,
the use of mixture-of-experts (MoE) structures has shown significant improvements when combining
different vision encoders. Despite these advances, there is still a need to enhance the understanding
of low-resolution inputs and the ability to generalize across diverse modalities, particularly for tasks
where fine-grained details are embedded in low-resolution visual data.

Hallucination. Although our model has made some progress in mitigating hallucination through
fine-grained vision-language alignment, as demonstrated in experiments on the POPE dataset, halluci-
nations remain inevitable. This area continues to pose challenges and is crucial for future exploration
and enhancement.

C DETAILED METHOD

C.1 TOKEN CLUSTER

The formal token clustering algorithm is described in Algorithm 1. Specifically, a scope z = [0, 1]h×w

is initialized to a matrix of ones 1h×w to track the degree to which visual embeddings have been
assigned to clusters. In addition, the seed scores are initialized by combining the local density in
Eq.(1) and distance in Eq.(2) to perform the selection of visual embeddings. At each iteration, a
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single embedding vector xi,j is selected at the spatial location (i, j) which corresponds to the argmax
of the element-wise multiplication of the seed scores and the current scope. This ensures that cluster
seeds are sampled from pixel embeddings that have not yet been assigned to clusters. An alpha
mask αc ∈ [0, 1]h×w is computed as the distance between the cluster seed embedding xi,j and all
individual pixel embeddings according to a distance kernel φ. The output of the kernel φ is one if
two embeddings are identical and decreases to zero as the distance between a pair of embeddings
increases. Additionally, a negative penalty βs is applied to the alpha mask by misusing the seed
scores, where β is a hyper-parameter. This encourages the selection of elements similar to the
current feature with lower information density. The associated concept mask Mc is obtained by the
element-wise multiplication of the alpha masks by the current scope. An element-wise multiplication
with the complement of the alpha masks then updates the scope. This process is repeated until a
stopping condition is satisfied, at which point the final scope is added as an additional mask to explain
any remaining embeddings.

Algorithm 1 Token Clustering Algorithm

Require: visual embeddings X ∈ Rh×w×d

Ensure: masks M ∈ [0, 1]h×w×C with
∑

c Mi,j,c = 1

1: Initialize: masks M = ∅, scope z = 1h×w, seed scores s ∈ Rh×w

2: while not StopCondition(M ) do
3: (i, j) = argmax(z ⊙ s)
4: α = sigmoid(φ(X, (i, j))− βs)
5: M .append(z ⊙ α)
6: z = z ⊙ (1− α)
7: end while
8: M .append(z)

C.2 CONCEPT-LEVEL IMAGE-TEXT CONTRASTIVE LOSS

To enable effective visual concept token learning, we propose concept-level image-text contrastive loss.
Specifically, we randomly select K objects in the image, and acquire the corresponding object labels,
and then prompt each of them with a set of handcrafted sentence templates, e.g., ‘A phote of a
{object label}’. The motivation for selecting objects is that they are the smallest units of image
representation with complete semantics and have a corresponding relationship with the semantic units
in the text. Next, we employ contrastive losses between the new sets of image-‘prompted text’
pairs {(I, T1), (I, T2), · · · , (I, TK)} where {Tk}Kk=1 are all prompted sentences generated from the
objects sampled from the image I . Among the batch B, each image has K positive text pairs and
B(K − 1) negative pairs. Similarly to the standard image-text contrastive loss (Radford et al., 2021),
we define the concept-level image-text contrastive loss as a sum of two two-way contrastive losses:

LI→{Tk}K
k=1

= − 1

B

B∑
i=1

log

∑K
k=1 exp(V

I
i · V Tk

i /τ)∑K
k=1

∑B
j=1 exp(V

I
i · V Tk

j /τ)
, (5)

L{Tk}K
k=1→I = − 1

B

B∑
i=1

log

∑K
k=1 exp(V

Tk
i · V I

i /τ)∑K
k=1

∑B
j=1 exp(V

Tk
j · V I

i /τ)
, (6)

LI↔{Tk}K
k=1

= LI→{Tk}K
k=1

+ L{Tk}K
k=1→I , (7)

where the concept representation V Tk
i is extracted by the pre-trained CLIP-based text encoder, which

is frozen during training.

D DETAILED EXPERIMENTS SETTINGS

D.1 IMPLEMENTATION DETAILS

For the SeTok, we apply pre-trained SigLIP-SO400M-patch14-384 (Zhai et al., 2023) as our vision
encoder, and the numbers of inner-cluster and inter-cluster transformer layers are set as 12, and 8,
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Name Size

SeTok
ImageNet-1K (Deng et al., 2009) 1.2M
OpenImages (Kuznetsova et al., 2020) 9M

Stage-I

CC12M (Changpinyo et al., 2021) 12M
LAION-aesthetics-12M (Schuhmann et al., 2022) 12M
ALLaVA-Caption-4V (Chen et al., 2024) 715K
InstructPix2Pix (Brooks et al., 2023) 313K
LLaVA-595K (Liu et al., 2023d) 595K
MSCOCO (Lin et al., 2014) 313K
Visual Genome (Krishna et al., 2017) 108K
OpenImages (Kuznetsova et al., 2020) 9M
SlimPajama (Soboleva et al., 2023) -

Stage-II

ALLaVA-Instruct-4V (Chen et al., 2024) 661K
ShareGPT4V (Krishna et al., 2017) 80K
Alpaca (Taori et al., 2023) 5K
LLaVA-v1.5-mix-665K (Liu et al., 2023d) 665K
VQAv2 (Goyal et al., 2019) 83K
GQA (Hudson & Manning, 2019) 72K
OKVQA (Marino et al., 2019) 9K
AOKVQA (Schwenk et al., 2022) 50K
RefCOCO/+/g (Kazemzadeh et al., 2014; Mao et al., 2016) 65K
InstructPix2Pix (Brooks et al., 2023) 313K
MagicBrush (Zhang et al., 2024b) 10K

Table 7: The training data used in our experiments.

respectively. The dimension of the semantic-equivalent token is 512. For the detokenizer, we adopt
L = 12 transformer-based layers with cross-attention, where the keys and values are derived from a
fixed number of masked tokens. This process converts the dynamic number of tokens into a fixed-size
representation. Also, inspired by Yu et al. (2024), we employ a CNN-based pixel decoder with an
upsampler to reconstruct the original images.

In the SETOKIM framework, we employ the LLaMA-2-7B (Touvron et al., 2023b) to initialize our
LLM backbone. Following Kirillov et al. (2023), we take the image embedding extracted in the
vision encoder in SeTok and the visual tokens generated by LLM as inputs, which are both fed into
the mask decoder. This decoder uses prompt self-attention and cross-attention in two directions
(prompt-to-image embedding and vice-versa) to update all embeddings. After running two blocks,
we upsample the image embedding and an MLP maps the output token to a dynamic linear classifier,
which then computes the mask foreground probability at each image location. Following Li et al.
(2024a), we employ a small MLP consisting of three residual blocks (He et al., 2016) for computing
the diffusion loss. Each block sequentially applies a LayerNorm (LN) (Ba et al., 2016), a linear layer,
SiLU (Elfwing et al., 2018), and another linear layer, merging with a residual connection.

D.2 TRAINING DATA

Here, we detail the training data utilized for training SeTok and SETOKIM in Table 7. In the
training phase of SeTok, ImageNet-1K (Deng et al., 2009) is employed for reconstruction tasks,
while OpenImages (Kuznetsova et al., 2020) supports both reconstruction and alignment learning.
Additionally, some overlap exists between datasets used in Stage-I and Stage-II training. For instance,
datasets like VQAv2 (Goyal et al., 2019), ShareGPT4V (Krishna et al., 2017), and GQA (Hudson &
Manning, 2019) have been included in LLaVA-v1.5-mix-665 (Liu et al., 2023d). To provide a clear
and comprehensive view of the training data sources and their usage, we explicitly enumerate all
datasets included in the training pipeline.

D.3 TRAINING RECEIPT

In Table 9, we list the detailed hyper-parameters setting at three stages, i.e., Setok training and
two-stage SETOKIM training. All training is conducted on 16× H100 (80G) GPUs.
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Model LLM Vision Encoder Image Resolution
Data Size

Pretrain Finetune

InstructBLIP Vicuna-13B ViT-g/14 224 129M 1.2M
Qwen-VL-Chat Qwen-7B ViT-bigG (Fine-tuned) 448 1.4B 50M

Emu LLaMA-7B EVA-01-CLIP 224 >600M 312K
DreamLLM Vicuna-7B CLIP L/14 224 32M 120K
LLaVA-1.5 Vicuna-1.5 7B CLIP ViT-L/336px 336 558K 665K

SEED-X Llama2-chat-13B Qwen-VL 448 158M >50M
LaVIT LLaMA-7B ViT-G/14 of EVA-CLIP 224 100M 193M

Unified-IO-2 - ViT-B 384 1.127B 559M
CM3Leon - VQVAE 256 2.4T tokens 11.4M
Chameleon - VQVAE 512 >1.4B 1.8M
SETOKIM Llama2-7B SigLIP-SO400M-patch14-384 384 35M 1.2M

Table 8: Configuration comparison between baselines and SETOKIM. “-” indicates training the LLM
from scratch.

D.4 BASELINES.

Here, we explicitly demonstrate a configuration comparison in terms of the LLM version, vision
encoder, and data size used in the baselines and SETOKIM in Table 8.

Configuration SeTok Stage-I Stage-II

Optimizer AdamW AdamW AdamW
Precision bfloat16 bfloat16 bfloat16
Peak learning rate of LLM - 5e-5 5e-5
Peak learning rate of Visual Part 5e-4 1e-4 2e-4
Weight Decay 0.05 0.1 0.01
Learning Rate Scheduler Cosine Cosine Cosine
LR Warmup Steps 10K 2K 5K
Input image resolution 384 ×384 384×384 384×384
Batch Size Per GPU 16 16 16
Gradient Accumulation Steps 8 8 8
Maximum Token Length - 2048 2048

Table 9: Training recipes for SeTok, SETOKIM of Stage-I: Multimodal Pretraining and Stage-II:
End-to-end Instruction Tuning.

E EXTENDED EXPERIMENTAL ANALYSIS

Setting Ir-v Ir-t Text Multi-modal Humanities STEM Social Sciences Other Average

LLaMA-2-7B - 3e-4 100% 0% 42.9 36.4 51.2 52.2 45.3
SETOKIM 1e-4 5e-5 70% 30% 41.7 34.8 49.4 51.0 43.9
SETOKIM 1e-4 5e-5 50% 50% 37.5 31.4 46.3 45.9 40.1
SETOKIM 1e-4 5e-5 30% 70% 30.3 31.7 44.7 41.1 35.4

Table 10: LLM comparison by varying the language-vision dataset ratio.

The Impact of Language Volume. Before performing Stage-2 instruction training, we conduct
experiments with mixing text and image data in various proportions to identify the optimal balance
of additional text data. The experimental results on the MMLU dataset are summarized in Table 10.
Our findings suggest that a ratio of 7:3 (Language:Vision) is optimal, as it minimally impacts the
LLM’s language performance (-1.4 on MMLU) while achieving the best results on both multimodal
understanding and generation tasks.
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Method LLM Max Res. MMB-en MMB-cn SEED-Bench TextVQA OCRBench SEED-Bench-2-Plus

SPHINX LLaMA-2 224 66.9 56.2 69.14 51.63 - -
LLaVA 1.5 Vicuna 1.5 7B 336 64.3 58.3 58.6 58.2 297 36.8
Qwen-VL-Chat Qwen-7B 448 60.6 56.7 58.2 61.5* 488 43.4
Emu2-Chat LLaMA-33B 448 63.6 - 62.8 66.6* 436 -
mPLUG-Owl2 LLaMA-2-7B 448 64.5 - 57.8 54.3 366 33.4
VILA LLaMA-2-7B 336 68.9 61.7 61.7 49.8 - -
SETOKIM LLaMA-2-7B 384 69.1 63.2 64.5 60.7 401 37.8

Table 11: Comparison with SoTA baselines on more general and ORC-related benchmarks. *:
indicate the training datasets are observed during training.

Extended Comparison on More Benchmarks. Table 11 presents the comparison between SOTA
baselines and SETOKIM on more general and ORC-related benchmarks. From the results, we observed
that our model achieves the best performance on general datasets such as MMBench and SEED-
Bench. For fine-grained datasets like TextVQA, our method achieves the best zero-shot performance.
On OCRBench and SEED-Bench-2-Plus, our model shows highly competitive results compared to
baselines with similar data and model scales. It is worth noting that the superior performance of
Qwen-VL-Chat may be attributed to its training on numerous OCR-related datasets, while Emu2-Chat
benefits from a significantly larger LLM size compared to our model.

Method Flickr30K (CIDEr↑) VQAv2 (Accuracy↑) GQA (Accuracy↑)

SeTok 86.9 78.5 65.6
w/ Lrec 78.1 65.8 49.7
w/ Lcite 83.6 76.3 63.4

Table 12: The effect of unlocking vision encoder in training Setok and SETOKIM.

The Loss Impact for Setok. We argue that a reasonable tokenizer must possess two essential
attributes: 1) Complete and enriched high-level semantic information and 2) Undistorted pixel-level
details. Therefore, we design to optimize the Setok by minimizing the reconstruction loss and
concept-level image-text contrastive loss. Here, we conduct further experiments to explore the
effect of each loss on tokenizer performance. As the results shown in Table 12, we observe that
the performance with only Lcite is superior to that with only Lrec. We attribute this to the fact that
relying solely on Lrec causes the tokenizer to focus primarily on pixel-level information, often at the
neglect of high-level semantic information. This imbalance may introduce challenges for the LLM
when interpreting image semantic content with limited training data.

Setting ImageNet (rFID↓) Flickr30(CIDEr.↑) VQAv2 (Acc.↑)
Frozen 123.6 85.4 77.5
UnFrozen 2.07 86.9 78.7

Table 13: The effect of unlocking vision encoder in training Setok and SETOKIM.

The Impact of Unfreeze Vision Encoder. To evaluate the impact of unfreezing the vision encoder,
we conduct an ablation experiment where the vision encoder is kept frozen, and only the token merger
and detokenizer are optimized. We observe that SeTok fails to reconstruct the image as freezing the
vision encoder hinders its ability to learn the low-level features required for accurate reconstruction.
In this scenario, the vision decoder alone is tasked with reconstruction, but it is unable to do so
effectively using only high-level semantic features. Interestingly, freezing the vision encoder did not
noticeably impact SeTok’s performance in vision-language semantic understanding.

The Comparison of Vision tokenizer. To evaluate whether our proposed SeTok effectively inte-
grates with LLMs to enhance model performance, we experimented with different connector strategies,
such as MLP (Liu et al., 2023c), Q-former (Zhu et al., 2023) and Resampler (Alayrac et al., 2022).
Using the same vision encoder (i.e., SigLIP-SO400M-patch14-384), we construct various MLLM
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Mechanism #Tokens TFLOPs Flickr30K VQAv2 OK-VQA
SigLIP + MLP (Liu et al., 2023c) 256(Fixed) 15.8 80.6 72.4 56.1
SigLIP + Q-former (Zhu et al., 2023) 32(Fixed) 12.4 81.3 71.0 54.6
SigLIP + Resampler(Alayrac et al., 2022) 64(Fixed) 13.4 83.4 72.5 54.9
SeTok Dynamic 8.2 86.9 78.7 60.2

Table 14: Comparison between Setok and other vision tokenization approaches, all of which generate
continuous visual tokens that are subsequently fed into the LLM.

Rescontruction

Original

Rescontruction

Original

Figure 8: The image reconstruction results from the visual detokenizer in Setok.

architectures. We follow a two-stage training process on the same dataset. Finally, we assessed
the models’ performance on vision-languages tasks, and the results are presented in Table 14. As
observed, SeTok demonstrates higher efficiency, achieving lower TFLOPS while delivering superior
vision understanding capabilities. These findings validate that SeTok is capable of learning more
aligned and compact visual tokens, leading to better semantic integration and improved performance.

Furthermore, we retrained SETOKIM using the same dataset as LLaVA-1.5, focusing solely on
performance in visual understanding tasks. As shown in Table 15, our model consistently outperforms
LLaVA across benchmarks, highlighting SETOK’s ability to achieve more effective vision-language
alignment and enhance overall performance.

Method VQAv2 GQA VisWiz POPE MME MM-Vet

LLaVA-1.5 78.5* 62.0* 50.0 85.9 1510.7 33.1
SETOKIM 78.6* 63.8* 52.7 87.6 1521.4 40.3

Table 15: Comparison between SETOKIM and LLaVA using the same dataset for training. *: indicate
the training datasets are observed during training.

The Quantitative Reconstruction of SeTok. In Figure 8, we visualize some reconstructed exam-
ples by Setok. It can be seen that, given the tokenized visual tokens, the original input images can be
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A brave knight riding a white horse through an enchanted forest.

A bowl of ramen with steaming 
broth, slices of pork, soft-boiled 
eggs, and green onions, presented in 
a traditional Japanese setting.

A futuristic city with tall, glowing 
skyscrapers and flying cars zooming 
through the sky at night, with neon 
lights illuminating the streets.

A majestic mountain range with 
snow-capped peaks under a clear 
blue sky, surrounded by lush 
green forests and a crystal-clear 
lake.

A mysterious figure in a dark cloak, holding a glowing crystal in one hand 
while standing at the edge of a cliff.

A selfie of a child with a cute 
ghost.

An elephant is eating watermelon.A dog is sitting on the street.

A cozy library filled with 
books, with an armchair in the 
corner and a fireplace 
flickering nearby.

A superhero standing on the rooftop of a tall building, cape billowing in the 
wind, watching over the city at night.

An astronaut floating in space, 
gazing at the Earth with stars 
twinkling in the background.

A cat with a human body wear a 
tuxedo is sitting on a chair, 
reading a book.

 A transparent sculpture of a duck 
made out of glass. The sculpture is 
in front of a painting of a landscape.

Figure 9: The visualization of generation images from SETOKIM.

successfully recovered. The reconstructed examples exhibit a high degree of the construction of the
method.

Visual Generations. Figure 9 visualizes the images generated by SETOKIM.

Visual Understanding. Figure 10 presents additional examples of vision-language understanding
and reasoning tasks. Notably, as shown in Figure 11, SETOKIM exhibits strong in-context learning
and multi-image reasoning capabilities.
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A  man sleeping in bed 
with a cell phone on his 
ear

An older man and woman 
are playing a game with a 
gamepad

Two dogs and a cat laying 
on a bed

A car is parked in front 
of a trolley

A  cat wearing a hat on 
its head

(a) Image Captioning Task

Q: How many apples in 
the picture?

Q: What transportation 
does the man take?

Q: What does this sign 
mean in the picture?

Q: What color is the hat 
on man’s head?

What is the unusual of 
the picture?

(b) Visual Question-Answering  Task

A: Two A: Green.A: Stop.A: Train. A: The frog has  a tail.

Figure 10: The SETOKIM’s performance visualization of image captioning (a) and VQA (b) task.

A dog Two giraffes ?

One man is playing 
tennis in the court

A person is surfing 
on a large wave

?

Four cows

Two people are 
skiing on a 
snowy mountain

Prompt：Can the animal in <img1> live 

in the <img2>?

SETOKIM：The giraffe, which is a land 
mammal typically found in savannas and 
open woodlands, cannot live in the ocean, 
as seen in the second image. 

(a)  In-context Learning Capability (b) Reasoning Capability Over Multiple Images

Prompt：What is the common thing and 

the difference between < i m g 1 >  and 

<img2>?

SETOKIM：Both images capture cats in 
a bathroom, but the first focuses on a cat 
near a sink, while the second shows a cat 
on a toilet.

Figure 11: Illustration of SETOKIM performing in-context learning in (a) with two image-text pairs
and a third image as context to prompt the model, and reasoning across multiple images in (b) with
two images with the question as context to guide the model.
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