Leveraging LLLM-based sentiment analysis for portfolio optimization with
proximal policy optimization

Abstract

Portfolio optimization requires adaptive strate-
gies to maximize returns while managing risk.
Reinforcement learning (RL) has gained trac-
tion in financial decision-making, with Proxi-
mal Policy Optimization (PPO) demonstrating
strong performance in dynamic asset alloca-
tion. However, traditional PPO relies solely
on historical price data, ignoring market senti-
ment, which plays a crucial role in asset move-
ments. We propose a sentiment-augmented
PPO (SAPPO) model that integrates daily fi-
nancial news sentiment extracted from Refinitiv
using LLaMA 3.3, a large language model opti-
mized for financial text analysis. The sentiment
layer refines portfolio allocations by incorporat-
ing real-time market sentiment alongside price
movements. We evaluate both PPO and SAPPO
on a three-stock portfolio consisting of Google,
Microsoft, and Meta, comparing performance
against standard market benchmarks. Results
show that SAPPO improves risk-adjusted re-
turns, demonstrating superior Sharpe ratios and
reduced drawdowns. Our findings highlight
the value of integrating sentiment analysis into
RL-driven portfolio management.

1 Introduction

Portfolio optimization is a central task in financial
management, aiming to allocate resources across
various assets to achieve maximum returns while
minimizing risks. Traditionally, this problem has
been addressed using techniques such as mean-
variance optimization (MVO), rooted in modern
portfolio theory (Markowitz, 1952). However,
these static methods rely on historical data to esti-
mate returns and covariances, often failing to adapt
dynamically to changing market conditions.

The advent of reinforcement learning and deep
reinforcement learning (DRL) has introduced new
possibilities in solving sequential decision-making
problems, including portfolio optimization. RL
agents learn optimal strategies by interacting with

an environment, while DRL incorporates deep neu-
ral networks to approximate complex value func-
tions and policies. In financial contexts, DRL meth-
ods have demonstrated effectiveness in tasks such
as trading, hedging, and portfolio management by
leveraging the ability to learn directly from data
and adapt to non-linear and non-stationary environ-
ments (Deng et al., 2016; Ye et al., 2020).

Moreover, the integration of DRL into portfo-
lio optimization has enabled dynamic adaptabil-
ity to market conditions, addressing a key limita-
tion of traditional approaches. Techniques such
as Proximal Policy Optimization (PPO) and deep
@-networks (DQN) have been widely adopted in
financial research, providing robust frameworks for
tackling continuous state and action spaces (Sutton
and Barto, 2018; Wang et al., 2019). PPO opti-
mizes portfolio weights through stable policy up-
dates, allowing efficient learning of asset allocation
strategies.

In this study, we first implement and evaluate
PPO as a reinforcement learning framework for
portfolio optimization. We analyze its performance
using historical financial data and assess its abil-
ity to generate optimal portfolio allocation strate-
gies. However, while PPO effectively captures
price-based patterns, it does not explicitly account
for market sentiment, which plays a crucial role
in investor behavior and asset price movements
(Tetlock, 2007).

We introduce a sentiment layer as an extension
to PPO to address this limitation. This layer inte-
grates real-time sentiment analysis into the rein-
forcement learning framework, allowing the model
to incorporate external financial news sentiment
into its decision-making process. Specifically, we
use Refinitiv’s financial news database (Refinitiv,
2024) to retrieve daily market news articles related
to portfolio assets. These articles are processed
using Llama 3.3, a large language model (LLM)
optimized for financial text analysis, which gen-



erates a daily sentiment score for each stock (Al,
2024)

By comparing vanilla PPO with sentiment aug-
mented PPO (SAPPO), we evaluate the impact of
integrating financial news sentiment on portfolio
performance. Our analysis focuses on key finan-
cial metrics, including Sharpe ratio (Sharpe, 1994),
annualized returns, and drawdowns, to determine
whether sentiment-based reinforcement learning
enhances trading strategies. We contribute to the
growing body of research on sentiment-aware rein-
forcement learning in finance, demonstrating how
market sentiment can improve adaptability and ro-
bustness in portfolio optimization.

2 Background

Recent advancements in DRL have significantly in-
fluenced financial decision-making, particularly in
portfolio optimization. DRL-based approaches al-
low adaptive portfolio management by learning op-
timal strategies through interactions with the mar-
ket environment. PPO has emerged as a leading
policy-gradient method in financial reinforcement
learning, offering a balance between exploration
and exploitation when optimizing portfolio weights
over time (Sutton and Barto, 2018; Schulman et al.,
2017).

However, traditional reinforcement learning
models, including PPO, rely solely on structured
price and volume data, overlooking market sen-
timent, which plays a crucial role in investor be-
havior, risk perception, and asset price movements
(Tetlock, 2007; Baker and Wurgler, 2012; Huang
et al., 2023). Financial markets are highly sensitive
to external information, and news-driven events
often create price fluctuations that historical price-
based models fail to anticipate. This limitation
has led to an increasing focus on integrating sen-
timent analysis into quantitative finance (Zhang
et al., 2020; Chen et al., 2022).

The integration of natural language processing
(NLP) and LLMs has significantly expanded the
scope of reinforcement learning in financial appli-
cations. Traditional DRL models process struc-
tured numerical data but fail to leverage the vast
amount of unstructured textual information, such
as financial news articles, earnings reports, and ana-
lyst opinions (Lopez-Lira and Tang, 2023; Ke et al.,
2019). Sentiment analysis has been widely studied
in finance, demonstrating that market sentiment can
improve return predictions, volatility forecasting,

and risk-adjusted performance (Chen et al., 2022;
Smales, 2014; Jin and Wang, 2023).

Recent research highlights the increasing role
of transformer-based architectures in extracting in-
sights from textual data. Domain-specific finan-
cial LLMs, such as FinBERT (Araci, 2019), have
demonstrated superior sentiment classification per-
formance compared to general-purpose models.
The development of LLaMA 3.3 (Dubey et al.,
2024) further enhances the ability to process and
interpret financial news. LLaMA 3.3 is a decoder-
only transformer model fine-tuned for financial
text analysis, trained on a large corpus of earn-
ings reports, market commentary, and analyst opin-
ions. This specialization allows it to distinguish be-
tween neutral reporting, speculative opinions, and
sentiment-driven market movements, making it a
valuable tool for financial reinforcement learning
applications.

The increasing adoption of LLM-based senti-
ment analysis in financial markets suggests that
multi-modal approaches, incorporating both struc-
tured time-series data and unstructured textual in-
formation, may improve decision-making in algo-
rithmic trading. Studies by Kirtac and Germano
(2024) explore how financial LLLMs enhance textual
analysis by contextualizing financial narratives, re-
ducing ambiguity, and refining sentiment-driven
signals for investment strategies. The work of
Bollen et al. (2011) further supports the idea that
social media and financial news sentiment impact
market returns, reinforcing the need to integrate
sentiment-aware models into trading algorithms.

These developments highlight the potential for
reinforcement learning frameworks to integrate fi-
nancial sentiment as an additional market signal,
moving beyond conventional price-based optimiza-
tion techniques. The introduction of sentiment-
aware reinforcement learning models, such as
SAPPO, marks a shift toward more adaptive and
information-rich portfolio optimization strategies.
This approach aligns with existing studies demon-
strating that hybrid sentiment-price models outper-
form purely historical price-based strategies (Ding
and Duan, 2015; Liu and Zhu, 2020; Dai and Li,
2022).

3 Methodology

The financial market is represented by a state ar-
ray s, that consists of a vector of current portfolio
weights w,, and a vector of current adjusted clos-



ing spot prices S,, for multiple assets. This setup
allows decision-making based on both the agent’s
portfolio position and overall market conditions
(Markowitz, 1952; Sutton and Barto, 2018). The
discrete index n = [t/At]| counts trading days,
where ¢ is time and At = 1 day. Additionally, the
agent maintains a cash account.

At the end of each trading day, adjusted closing
prices are observed, daily returns are computed,
and new allocation weights are selected. The port-
folio is rebalanced on the next morning using a
market-order strategy with trades executed at the
volume-weighted average price (VWAP) over the
first ten minutes of the trading session. This ap-
proach mitigates volatility effects associated with
raw opening prices. The action a,, is the change in
portfolio holdings at day n, where positive values
indicate purchases and negative values denote sales

W, = Wp_1+a, (D

To achieve self-financing, the total trade value
sums to zero

a,-S,=0 2

Transaction costs of 0.05% of the total turnover
are deducted to account for realistic market fric-
tions.

The immediate reward is the logarithmic portfo-
lio return, which is scale-invariant

W - Sn+1

— 3)

Tp+1 = log
Alternatively, the relative return R, can be
used, with the relationship

Tpy1 = log(1+ Ryy1) “4)

Both return formulations approximate each other
for small values, ensuring stable reinforcement
learning.

The state-action-value function Q(sy, a,,) rep-
resents the expected cumulative discounted future
reward at time step n
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This function estimates how much cumulative
reward can be obtained from state s,, onward when

sampling the action a,, from a conditional prob-
ability density function 7(ay,|s,), given the tran-
sition probability density function p(s,t1|s,, ay)
(Sutton and Barto, 2018). The discount factor
~v € (0,1] determines the importance of future
rewards. A higher v prioritizes long-term rewards,
while a lower v focuses on immediate returns. We
set v = 0.99.

Deep reinforcement learning employs deep neu-
ral networks to approximate the state-action-value
function @ and to learn the policy 7 (Sood et al.,
2023). We implement this with PPO that oper-
ates in continuous action spaces, enabling dynamic
and adaptive portfolio rebalancing based on mar-
ket trends. PPO uses a multivariate Gaussian dis-
tribution for the stochastic policy 7, with the con-
straint in Eq. (2) ensuring that trades remain budget-
neutral. The mean and covariance functions of this
Gaussian distribution are learned by a deep neural
network with parameters 6.

3.1 Experiment 1: PPO for Portfolio
Optimization

PPO is a policy-gradient algorithm that iteratively

refines the stochastic policy 7 (Schulman et al.,

2017). The optimization objective function is de-

fined as

Lppo = Es,, a, [A(sn7 a,) min (r(sn, a,), 1 —1—6)]

(6)

where the advantage function A(s,,a,) mea-

sures how much better an action a,, is compared to
the expected baseline

A(sp,an) = Q(sn,an) — V(Sn) @)

The policy ratio (s, a,) quantifies the change
between old and new policies

m(ap|sn; 0)
7(an|sn; Oola)
3.2 Experiment 2: SAPPO

To enhance portfolio optimization, we introduce
SAPPO, a sentiment-augmented extension of PPO
that integrates real-time sentiment analysis into re-
inforcement learning. This framework allows the
model to incorporate external financial news senti-
ment into decision-making.

Sentiment data from Refinitiv is processed us-
ing LLaMA 3.3, a financial LLM fine-tuned for
market sentiment analysis (Face, 2024). The state

®)
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representation in SAPPO is expanded to include the
daily sentiment score m,, for each asset, yielding
the augmented state

Sp = (Wna Sn, mn) )

where m,, is a normalized sentiment score in the
range [—1, 1].

The SAPPO model adjusts the action policy
7(ay, s, ) by incorporating a sentiment-adjusted ad-
vantage function

Al(sp,an) = A(sn,ap) + Amy, (10)

where ) is a hyperparameter controlling the in-
fluence of sentiment on portfolio allocations.

To prevent redundant sentiment information, a
cosine similarity check ensures that only unique
financial news articles contribute to the final senti-
ment score

mi-mj
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Articles with similarity scores exceeding 0.8
within a 20-day rolling window are removed.

The SAPPO agent generates allocation decisions
at market close, using both price movements and
sentiment scores. Orders execute at the VWAP of
the first 10 minutes of the next trading day.

3.3 Evaluation Metrics

The performance of PPO and SAPPO is evalu-
ated using cumulative portfolio return, Sharpe ratio,
maximum drawdown, and turnover. We compare
model performance against benchmarks including
the S&P 500, Dow Jones Industrial Average (DJI),
and NASDAQ-100 (Wang et al., 2019). The Sharpe
ratio quantifies risk-adjusted returns, while maxi-
mum drawdown measures peak-to-trough declines.
Portfolio turnover is assessed to determine trading
frequency.

A comparative analysis of PPO and SAPPO
evaluates the effectiveness of integrating sentiment
analysis into reinforcement learning-based portfo-
lio management.

4 Experiments and Results

The evaluation involves backtesting the trained
DRL agent on unseen market data, benchmark-
ing its performance against traditional strategies

such as buy-and-hold and equal-weighted port-
folios (Jansen, 2000). Performance metrics in-
clude annualized returns, which measure the com-
pound growth rate of the portfolio, the Sharpe ra-
tio, which evaluates risk-adjusted returns by con-
sidering volatility (Sharpe, 1994), and maximum
drawdown, which quantifies the largest peak-to-
trough decline in portfolio value (Sortino and Van
Der Meer, 1994). Turnover is also assessed to mea-
sure the frequency of portfolio rebalancing, as this
impacts transaction costs (Treynor, 1966).

To ensure robust evaluation, we partitioned the
dataset into training (90%) and testing (10%) peri-
ods. The training phase allows the DRL agent to
learn optimal allocation strategies, while the test-
ing phase evaluates generalization capabilities in
unseen market conditions. The backtesting frame-
work accounts for transaction costs, slippage, and
liquidity constraints to provide a realistic assess-
ment of the models’ applicability to financial mar-
kets.
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Figure 1: Risk-return scatter plot as of January 1, 2020,
for the SAPPO, PPO portfolios and NASDAQ-100, DJI,
S&P 500 indexes.

The reinforcement learning agent demonstrates
strong performance across multiple evaluation met-
rics. The annualized return of the SAPPO portfolio
reaches approximately 31%, while the PPO port-
folio achieves around 25%. Both portfolios out-
perform major benchmark indices, including the
NASDAQ-100 (20%), the S&P 500 (15%), and
the DJI (10%). The risk-return scatter plot (Fig-
ure 1) highlights SAPPO’s superior positioning
in terms of volatility-adjusted returns, followed
by PPO. Compared to traditional indices, SAPPO
and PPO exhibit higher returns but at the cost of
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Figure 2: Portfolio weight allocation over time for the
PPO portfolio, showing the distribution across Google,
Microsoft, and Meta stocks.

increased volatility, indicating their ability to ex-
ploit market inefficiencies more effectively. The
Sharpe ratio of SAPPO surpasses that of PPO and
all benchmark indices, confirming its improved
risk-adjusted performance and highlighting the ef-
fectiveness of sentiment-aware reinforcement learn-
ing in portfolio optimization (Fama and MacBeth,
1973).

Portfolio allocation dynamics (Figure 2) reveal
how the PPO agent adjusts asset weights over time.
The model increases exposure to Microsoft during
high-volatility periods, capitalizing on its stability,
while balancing Google and Meta allocations for di-
versification. This adaptive reallocation highlights
the agent’s ability to respond to market changes
dynamically (Markowitz, 1952).
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Figure 3: 30-day rolling volatility comparison of the
SAPPO and PPO portfolios with the NASDAQ-100,
S&P 500, and DJI indices.

Figure 3 presents the 30-day rolling volatil-
ity comparison, showing that the SAPPO and
PPO portfolios exhibit higher volatility than ma-
jor benchmark indices such as the NASDAQ-100,
S&P 500, and DJI. The SAPPO portfolio demon-
strates the highest volatility for most of the ob-

served period, indicating a more aggressive trading
strategy that reacts dynamically to market fluctua-
tions. The PPO portfolio follows a similar trend but
with slightly lower volatility, suggesting a relatively
more balanced risk exposure.

Both SAPPO and PPO portfolios experience pro-
nounced volatility spikes, particularly around mid-
2019, aligning with increased market uncertainty.
As the period progresses, their volatility gradually
declines but remains above traditional indices, re-
inforcing their active trading and frequent realloca-
tion approach. The NASDAQ-100, S&P 500, and
Dow Jones exhibit more stable and lower volatil-
ity levels, consistent with their passive investment
nature.

The results confirm that the sentiment-aware re-
inforcement learning strategies adapt quickly to
market changes, capturing short-term trends effi-
ciently. However, the higher volatility associated
with SAPPO and PPO highlights the tradeoff be-
tween increased return potential and short-term risk
exposure.
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Figure 4: Correlation heatmap of asset returns com-
paring the PPO portfolio with major indices such as
NASDAQ-100, S&P 500, and DJIL.

The correlation heatmap (Figure 4) shows that
the PPO portfolio maintains a moderate level of in-
dependence from major indices, with correlations
of 0.67 with the DJI and 0.75 with the S&P 500.
This diversification suggests that the PPO agent de-
velops unique portfolio allocation strategies, reduc-
ing reliance on broader market movements (Camp-
bell and Viceira, 2002).

The second experiment introduces market senti-
ment analysis into the PPO framework, forming the
SAPPO model. By incorporating sentiment data
from Refinitiv financial news sources, processed
using LLaMA 3.3 via Hugging Face transformers,



the agent receives an additional market signal to
guide allocation decisions. This enables sentiment-
driven adjustments in response to market sentiment
shifts.
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Figure 5: Cumulative return comparison of PPO and
SAPPO portfolios against NASDAQ-100, S&P 500, and
DIJI indices.

The cumulative return comparison (Figure 5)
highlights the performance improvement achieved
by SAPPO over standard PPO. SAPPO consistently
outperforms PPO in cumulative returns, leveraging
sentiment-aware trading strategies to enhance prof-
itability. By reacting to shifts in market sentiment,
SAPPO is better equipped to capture momentum
and avoid adverse market conditions.

Maetric PPO SAPPO NASDAQ-100
Sharpe ratio 1.55 1.90 1.25
Annualized return  26.5% 30.2% 21.3%
Max drawdown -17.5% -13.8% -21.9%
Volatility 11.8% 11.2% 14.5%
Turnover rate 35% 37% N/A

Table 1:
SAPPO.

Performance comparison of PPO versus

Table 1 presents a quantitative comparison be-
tween PPO and SAPPO. The Sharpe ratio of
SAPPO (1.90) is higher than that of PPO (1.55),
indicating improved risk-adjusted returns. Annual-
ized returns increase from 26.5% (PPO) to 30.2%
(SAPPO), demonstrating better profitability. Addi-
tionally, SAPPO exhibits a lower maximum draw-
down (-13.8%) compared to PPO (-17.5%), sug-
gesting enhanced downside protection.

These results indicate that sentiment-aware rein-
forcement learning enhances portfolio management
by integrating external market sentiment signals.
The ability to react to news-driven market senti-
ment fluctuations provides an additional layer of
adaptability beyond price-based decision-making.

The findings highlight the potential of combining
reinforcement learning with financial sentiment
analysis for dynamic investment strategies.

5 Impact

The integration of sentiment-aware reinforcement
learning into portfolio optimization has significant
implications for both academic research and real-
world financial applications. By incorporating fi-
nancial news sentiment into a deep reinforcement
learning framework, our study demonstrates how
external market signals can enhance portfolio al-
location decisions beyond traditional price-based
strategies. The SAPPO model consistently outper-
forms the vanilla PPO framework by leveraging
market sentiment as an additional decision-making
factor.

The findings contribute to the broader field of
financial reinforcement learning by showcasing the
potential of sentiment-aware trading strategies. The
results suggest that sentiment-driven reinforcement
learning enables agents to react more effectively
to market fluctuations, capturing momentum and
mitigating losses during adverse conditions. This
approach is particularly relevant for institutional in-
vestors, hedge funds, and algorithmic trading firms
seeking adaptive trading models that dynamically
adjust to market sentiment.

Furthermore, our research underscores the grow-
ing relevance of multi-modal financial decision-
making, where reinforcement learning models in-
tegrate structured market data with unstructured
textual information to refine investment strategies.
The application of LLaMA 3.3 for financial senti-
ment extraction highlights the increasing role of Al-
driven financial analysis. By leveraging real-time
news data, the proposed framework bridges the gap
between quantitative finance and natural language
processing, providing a foundation for future re-
search in sentiment-aware algorithmic trading.

6 Limitations and Future Work

Despite its promising results, this study has sev-
eral limitations that should be addressed in future
research.

First, the scope of sentiment analysis is limited to
financial news articles retrieved from Refinitiv and
processed using LLaMA 3.3. While this dataset
provides high-quality sentiment data, it does not
incorporate alternative sources such as social me-
dia, earnings calls, or analyst reports, which could



further improve sentiment-based decision-making.
Future work could explore multi-source sentiment
aggregation to enhance the robustness of sentiment
signals.

Second, the experiment is conducted using a
three-stock portfolio consisting of Google, Mi-
crosoft, and Meta, providing a controlled setting
but lacking the diversity of a fully diversified invest-
ment portfolio. Expanding this research to larger,
sector-diverse portfolios could validate the effec-
tiveness of sentiment-aware reinforcement learning
across different industries and market conditions.

Third, the backtesting period from January 2013
to January 2020 does not account for real-time mar-
ket execution, liquidity constraints, or macroeco-
nomic shocks outside this timeframe. Implement-
ing real-time trading simulations or live trading
experiments would provide a more realistic eval-
uation of model performance under actual market
conditions, including execution delays and bid-ask
spreads.

Finally, the SAPPO framework relies on his-
torical daily news sentiment, meaning sentiment
scores are updated at market close and used for
allocation adjustments the following trading day.
This approach does not capture intra-day sentiment
shifts that could impact trading decisions. Future
research could explore higher-frequency sentiment
updates, integrating real-time news streams into the
reinforcement learning pipeline for more respon-
sive market adaptation.

Addressing these limitations will further refine
sentiment-aware reinforcement learning models,
improving their adaptability, generalization, and
scalability in financial markets.

7 Conclusion

This study extends PPO by incorporating a
sentiment-aware layer into portfolio optimiza-
tion. By leveraging LLM-based sentiment anal-
ysis, the SAPPO framework is introduced to en-
hance decision-making by integrating external mar-
ket sentiment signals.

Experimental results indicate that the sentiment-
enhanced model achieves superior risk-adjusted re-
turns, higher Sharpe ratios, and lower drawdowns
compared to the standard PPO framework. The
SAPPO portfolio consistently outperforms tradi-
tional benchmarks such as the NASDAQ-100, S&P
500, and Dow Jones Industrial Average, demon-
strating that integrating sentiment analysis into re-

inforcement learning improves trading strategies.

The findings suggest that market sentiment
serves as a valuable supplementary feature in rein-
forcement learning-based portfolio optimization,
providing an additional layer of adaptability to
evolving financial conditions. This approach of-
fers an effective alternative to purely price-based
reinforcement learning models by incorporating
investor sentiment as a key factor in portfolio rebal-
ancing.

Overall, this study highlights the importance of
sentiment-aware reinforcement learning in finan-
cial decision-making and provides a foundation
for future research exploring multi-modal trading
models that integrate structured market data with
unstructured financial news.
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