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Abstract

Portfolio optimization requires adaptive strate-001
gies to maximize returns while managing risk.002
Reinforcement learning (RL) has gained trac-003
tion in financial decision-making, with Proxi-004
mal Policy Optimization (PPO) demonstrating005
strong performance in dynamic asset alloca-006
tion. However, traditional PPO relies solely007
on historical price data, ignoring market senti-008
ment, which plays a crucial role in asset move-009
ments. We propose a sentiment-augmented010
PPO (SAPPO) model that integrates daily fi-011
nancial news sentiment extracted from Refinitiv012
using LLaMA 3.3, a large language model opti-013
mized for financial text analysis. The sentiment014
layer refines portfolio allocations by incorporat-015
ing real-time market sentiment alongside price016
movements. We evaluate both PPO and SAPPO017
on a three-stock portfolio consisting of Google,018
Microsoft, and Meta, comparing performance019
against standard market benchmarks. Results020
show that SAPPO improves risk-adjusted re-021
turns, demonstrating superior Sharpe ratios and022
reduced drawdowns. Our findings highlight023
the value of integrating sentiment analysis into024
RL-driven portfolio management.025

1 Introduction026

Portfolio optimization is a central task in financial027

management, aiming to allocate resources across028

various assets to achieve maximum returns while029

minimizing risks. Traditionally, this problem has030

been addressed using techniques such as mean-031

variance optimization (MVO), rooted in modern032

portfolio theory (Markowitz, 1952). However,033

these static methods rely on historical data to esti-034

mate returns and covariances, often failing to adapt035

dynamically to changing market conditions.036

The advent of reinforcement learning and deep037

reinforcement learning (DRL) has introduced new038

possibilities in solving sequential decision-making039

problems, including portfolio optimization. RL040

agents learn optimal strategies by interacting with041

an environment, while DRL incorporates deep neu- 042

ral networks to approximate complex value func- 043

tions and policies. In financial contexts, DRL meth- 044

ods have demonstrated effectiveness in tasks such 045

as trading, hedging, and portfolio management by 046

leveraging the ability to learn directly from data 047

and adapt to non-linear and non-stationary environ- 048

ments (Deng et al., 2016; Ye et al., 2020). 049

Moreover, the integration of DRL into portfo- 050

lio optimization has enabled dynamic adaptabil- 051

ity to market conditions, addressing a key limita- 052

tion of traditional approaches. Techniques such 053

as Proximal Policy Optimization (PPO) and deep 054

Q-networks (DQN) have been widely adopted in 055

financial research, providing robust frameworks for 056

tackling continuous state and action spaces (Sutton 057

and Barto, 2018; Wang et al., 2019). PPO opti- 058

mizes portfolio weights through stable policy up- 059

dates, allowing efficient learning of asset allocation 060

strategies. 061

In this study, we first implement and evaluate 062

PPO as a reinforcement learning framework for 063

portfolio optimization. We analyze its performance 064

using historical financial data and assess its abil- 065

ity to generate optimal portfolio allocation strate- 066

gies. However, while PPO effectively captures 067

price-based patterns, it does not explicitly account 068

for market sentiment, which plays a crucial role 069

in investor behavior and asset price movements 070

(Tetlock, 2007). 071

We introduce a sentiment layer as an extension 072

to PPO to address this limitation. This layer inte- 073

grates real-time sentiment analysis into the rein- 074

forcement learning framework, allowing the model 075

to incorporate external financial news sentiment 076

into its decision-making process. Specifically, we 077

use Refinitiv’s financial news database (Refinitiv, 078

2024) to retrieve daily market news articles related 079

to portfolio assets. These articles are processed 080

using Llama 3.3, a large language model (LLM) 081

optimized for financial text analysis, which gen- 082
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erates a daily sentiment score for each stock (AI,083

2024)084

By comparing vanilla PPO with sentiment aug-085

mented PPO (SAPPO), we evaluate the impact of086

integrating financial news sentiment on portfolio087

performance. Our analysis focuses on key finan-088

cial metrics, including Sharpe ratio (Sharpe, 1994),089

annualized returns, and drawdowns, to determine090

whether sentiment-based reinforcement learning091

enhances trading strategies. We contribute to the092

growing body of research on sentiment-aware rein-093

forcement learning in finance, demonstrating how094

market sentiment can improve adaptability and ro-095

bustness in portfolio optimization.096

2 Background097

Recent advancements in DRL have significantly in-098

fluenced financial decision-making, particularly in099

portfolio optimization. DRL-based approaches al-100

low adaptive portfolio management by learning op-101

timal strategies through interactions with the mar-102

ket environment. PPO has emerged as a leading103

policy-gradient method in financial reinforcement104

learning, offering a balance between exploration105

and exploitation when optimizing portfolio weights106

over time (Sutton and Barto, 2018; Schulman et al.,107

2017).108

However, traditional reinforcement learning109

models, including PPO, rely solely on structured110

price and volume data, overlooking market sen-111

timent, which plays a crucial role in investor be-112

havior, risk perception, and asset price movements113

(Tetlock, 2007; Baker and Wurgler, 2012; Huang114

et al., 2023). Financial markets are highly sensitive115

to external information, and news-driven events116

often create price fluctuations that historical price-117

based models fail to anticipate. This limitation118

has led to an increasing focus on integrating sen-119

timent analysis into quantitative finance (Zhang120

et al., 2020; Chen et al., 2022).121

The integration of natural language processing122

(NLP) and LLMs has significantly expanded the123

scope of reinforcement learning in financial appli-124

cations. Traditional DRL models process struc-125

tured numerical data but fail to leverage the vast126

amount of unstructured textual information, such127

as financial news articles, earnings reports, and ana-128

lyst opinions (Lopez-Lira and Tang, 2023; Ke et al.,129

2019). Sentiment analysis has been widely studied130

in finance, demonstrating that market sentiment can131

improve return predictions, volatility forecasting,132

and risk-adjusted performance (Chen et al., 2022; 133

Smales, 2014; Jin and Wang, 2023). 134

Recent research highlights the increasing role 135

of transformer-based architectures in extracting in- 136

sights from textual data. Domain-specific finan- 137

cial LLMs, such as FinBERT (Araci, 2019), have 138

demonstrated superior sentiment classification per- 139

formance compared to general-purpose models. 140

The development of LLaMA 3.3 (Dubey et al., 141

2024) further enhances the ability to process and 142

interpret financial news. LLaMA 3.3 is a decoder- 143

only transformer model fine-tuned for financial 144

text analysis, trained on a large corpus of earn- 145

ings reports, market commentary, and analyst opin- 146

ions. This specialization allows it to distinguish be- 147

tween neutral reporting, speculative opinions, and 148

sentiment-driven market movements, making it a 149

valuable tool for financial reinforcement learning 150

applications. 151

The increasing adoption of LLM-based senti- 152

ment analysis in financial markets suggests that 153

multi-modal approaches, incorporating both struc- 154

tured time-series data and unstructured textual in- 155

formation, may improve decision-making in algo- 156

rithmic trading. Studies by Kirtac and Germano 157

(2024) explore how financial LLMs enhance textual 158

analysis by contextualizing financial narratives, re- 159

ducing ambiguity, and refining sentiment-driven 160

signals for investment strategies. The work of 161

Bollen et al. (2011) further supports the idea that 162

social media and financial news sentiment impact 163

market returns, reinforcing the need to integrate 164

sentiment-aware models into trading algorithms. 165

These developments highlight the potential for 166

reinforcement learning frameworks to integrate fi- 167

nancial sentiment as an additional market signal, 168

moving beyond conventional price-based optimiza- 169

tion techniques. The introduction of sentiment- 170

aware reinforcement learning models, such as 171

SAPPO, marks a shift toward more adaptive and 172

information-rich portfolio optimization strategies. 173

This approach aligns with existing studies demon- 174

strating that hybrid sentiment-price models outper- 175

form purely historical price-based strategies (Ding 176

and Duan, 2015; Liu and Zhu, 2020; Dai and Li, 177

2022). 178

3 Methodology 179

The financial market is represented by a state ar- 180

ray sn that consists of a vector of current portfolio 181

weights wn and a vector of current adjusted clos- 182
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ing spot prices Sn for multiple assets. This setup183

allows decision-making based on both the agent’s184

portfolio position and overall market conditions185

(Markowitz, 1952; Sutton and Barto, 2018). The186

discrete index n = ⌊t/∆t⌋ counts trading days,187

where t is time and ∆t = 1 day. Additionally, the188

agent maintains a cash account.189

At the end of each trading day, adjusted closing190

prices are observed, daily returns are computed,191

and new allocation weights are selected. The port-192

folio is rebalanced on the next morning using a193

market-order strategy with trades executed at the194

volume-weighted average price (VWAP) over the195

first ten minutes of the trading session. This ap-196

proach mitigates volatility effects associated with197

raw opening prices. The action an is the change in198

portfolio holdings at day n, where positive values199

indicate purchases and negative values denote sales200

wn = wn−1 + an (1)201

To achieve self-financing, the total trade value202

sums to zero203

an · Sn = 0 (2)204

Transaction costs of 0.05% of the total turnover205

are deducted to account for realistic market fric-206

tions.207

The immediate reward is the logarithmic portfo-208

lio return, which is scale-invariant209

xn+1 = log
wn · Sn+1

wn · Sn
(3)210

Alternatively, the relative return Rn+1 can be211

used, with the relationship212

xn+1 = log(1 +Rn+1) (4)213

Both return formulations approximate each other214

for small values, ensuring stable reinforcement215

learning.216

The state-action-value function Q(sn,an) rep-217

resents the expected cumulative discounted future218

reward at time step n219

Q(sn,an) = E

[ ∞∑
k=1

γkxn+k

∣∣∣ sn,an] (5)220

This function estimates how much cumulative221

reward can be obtained from state sn onward when222

sampling the action an from a conditional prob- 223

ability density function π(an|sn), given the tran- 224

sition probability density function p(sn+1|sn,an) 225

(Sutton and Barto, 2018). The discount factor 226

γ ∈ (0, 1] determines the importance of future 227

rewards. A higher γ prioritizes long-term rewards, 228

while a lower γ focuses on immediate returns. We 229

set γ = 0.99. 230

Deep reinforcement learning employs deep neu- 231

ral networks to approximate the state-action-value 232

function Q and to learn the policy π (Sood et al., 233

2023). We implement this with PPO that oper- 234

ates in continuous action spaces, enabling dynamic 235

and adaptive portfolio rebalancing based on mar- 236

ket trends. PPO uses a multivariate Gaussian dis- 237

tribution for the stochastic policy π, with the con- 238

straint in Eq. (2) ensuring that trades remain budget- 239

neutral. The mean and covariance functions of this 240

Gaussian distribution are learned by a deep neural 241

network with parameters θ. 242

3.1 Experiment 1: PPO for Portfolio 243

Optimization 244

PPO is a policy-gradient algorithm that iteratively 245

refines the stochastic policy π (Schulman et al., 246

2017). The optimization objective function is de- 247

fined as 248

LPPO = Esn,an

[
A(sn,an)min

(
r(sn,an), 1+ϵ

)]
(6) 249

where the advantage function A(sn,an) mea- 250

sures how much better an action an is compared to 251

the expected baseline 252

A(sn,an) = Q(sn,an)− V (sn) (7) 253

The policy ratio r(sn,an) quantifies the change 254

between old and new policies 255

r(sn,an) =
π(an|sn;θ)
π(an|sn;θold)

(8) 256

3.2 Experiment 2: SAPPO 257

To enhance portfolio optimization, we introduce 258

SAPPO, a sentiment-augmented extension of PPO 259

that integrates real-time sentiment analysis into re- 260

inforcement learning. This framework allows the 261

model to incorporate external financial news senti- 262

ment into decision-making. 263

Sentiment data from Refinitiv is processed us- 264

ing LLaMA 3.3, a financial LLM fine-tuned for 265

market sentiment analysis (Face, 2024). The state 266
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representation in SAPPO is expanded to include the267

daily sentiment score mn for each asset, yielding268

the augmented state269

sn = (wn,Sn,mn) (9)270

where mn is a normalized sentiment score in the271

range [−1, 1].272

The SAPPO model adjusts the action policy273

π(an|sn) by incorporating a sentiment-adjusted ad-274

vantage function275

A′(sn,an) = A(sn,an) + λmn (10)276

where λ is a hyperparameter controlling the in-277

fluence of sentiment on portfolio allocations.278

To prevent redundant sentiment information, a279

cosine similarity check ensures that only unique280

financial news articles contribute to the final senti-281

ment score282

sim(mi,mj) =
mi ·mj

∥mi∥∥mj∥
(11)283

Articles with similarity scores exceeding 0.8284

within a 20-day rolling window are removed.285

The SAPPO agent generates allocation decisions286

at market close, using both price movements and287

sentiment scores. Orders execute at the VWAP of288

the first 10 minutes of the next trading day.289

3.3 Evaluation Metrics290

The performance of PPO and SAPPO is evalu-291

ated using cumulative portfolio return, Sharpe ratio,292

maximum drawdown, and turnover. We compare293

model performance against benchmarks including294

the S&P 500, Dow Jones Industrial Average (DJI),295

and NASDAQ-100 (Wang et al., 2019). The Sharpe296

ratio quantifies risk-adjusted returns, while maxi-297

mum drawdown measures peak-to-trough declines.298

Portfolio turnover is assessed to determine trading299

frequency.300

A comparative analysis of PPO and SAPPO301

evaluates the effectiveness of integrating sentiment302

analysis into reinforcement learning-based portfo-303

lio management.304

4 Experiments and Results305

The evaluation involves backtesting the trained306

DRL agent on unseen market data, benchmark-307

ing its performance against traditional strategies308

such as buy-and-hold and equal-weighted port- 309

folios (Jansen, 2000). Performance metrics in- 310

clude annualized returns, which measure the com- 311

pound growth rate of the portfolio, the Sharpe ra- 312

tio, which evaluates risk-adjusted returns by con- 313

sidering volatility (Sharpe, 1994), and maximum 314

drawdown, which quantifies the largest peak-to- 315

trough decline in portfolio value (Sortino and Van 316

Der Meer, 1994). Turnover is also assessed to mea- 317

sure the frequency of portfolio rebalancing, as this 318

impacts transaction costs (Treynor, 1966). 319

To ensure robust evaluation, we partitioned the 320

dataset into training (90%) and testing (10%) peri- 321

ods. The training phase allows the DRL agent to 322

learn optimal allocation strategies, while the test- 323

ing phase evaluates generalization capabilities in 324

unseen market conditions. The backtesting frame- 325

work accounts for transaction costs, slippage, and 326

liquidity constraints to provide a realistic assess- 327

ment of the models’ applicability to financial mar- 328

kets. 329

Figure 1: Risk-return scatter plot as of January 1, 2020,
for the SAPPO, PPO portfolios and NASDAQ-100, DJI,
S&P 500 indexes.

The reinforcement learning agent demonstrates 330

strong performance across multiple evaluation met- 331

rics. The annualized return of the SAPPO portfolio 332

reaches approximately 31%, while the PPO port- 333

folio achieves around 25%. Both portfolios out- 334

perform major benchmark indices, including the 335

NASDAQ-100 (20%), the S&P 500 (15%), and 336

the DJI (10%). The risk-return scatter plot (Fig- 337

ure 1) highlights SAPPO’s superior positioning 338

in terms of volatility-adjusted returns, followed 339

by PPO. Compared to traditional indices, SAPPO 340

and PPO exhibit higher returns but at the cost of 341
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Figure 2: Portfolio weight allocation over time for the
PPO portfolio, showing the distribution across Google,
Microsoft, and Meta stocks.

increased volatility, indicating their ability to ex-342

ploit market inefficiencies more effectively. The343

Sharpe ratio of SAPPO surpasses that of PPO and344

all benchmark indices, confirming its improved345

risk-adjusted performance and highlighting the ef-346

fectiveness of sentiment-aware reinforcement learn-347

ing in portfolio optimization (Fama and MacBeth,348

1973).349

Portfolio allocation dynamics (Figure 2) reveal350

how the PPO agent adjusts asset weights over time.351

The model increases exposure to Microsoft during352

high-volatility periods, capitalizing on its stability,353

while balancing Google and Meta allocations for di-354

versification. This adaptive reallocation highlights355

the agent’s ability to respond to market changes356

dynamically (Markowitz, 1952).357

Figure 3: 30-day rolling volatility comparison of the
SAPPO and PPO portfolios with the NASDAQ-100,
S&P 500, and DJI indices.

Figure 3 presents the 30-day rolling volatil-358

ity comparison, showing that the SAPPO and359

PPO portfolios exhibit higher volatility than ma-360

jor benchmark indices such as the NASDAQ-100,361

S&P 500, and DJI. The SAPPO portfolio demon-362

strates the highest volatility for most of the ob-363

served period, indicating a more aggressive trading 364

strategy that reacts dynamically to market fluctua- 365

tions. The PPO portfolio follows a similar trend but 366

with slightly lower volatility, suggesting a relatively 367

more balanced risk exposure. 368

Both SAPPO and PPO portfolios experience pro- 369

nounced volatility spikes, particularly around mid- 370

2019, aligning with increased market uncertainty. 371

As the period progresses, their volatility gradually 372

declines but remains above traditional indices, re- 373

inforcing their active trading and frequent realloca- 374

tion approach. The NASDAQ-100, S&P 500, and 375

Dow Jones exhibit more stable and lower volatil- 376

ity levels, consistent with their passive investment 377

nature. 378

The results confirm that the sentiment-aware re- 379

inforcement learning strategies adapt quickly to 380

market changes, capturing short-term trends effi- 381

ciently. However, the higher volatility associated 382

with SAPPO and PPO highlights the tradeoff be- 383

tween increased return potential and short-term risk 384

exposure.

Figure 4: Correlation heatmap of asset returns com-
paring the PPO portfolio with major indices such as
NASDAQ-100, S&P 500, and DJI.

385
The correlation heatmap (Figure 4) shows that 386

the PPO portfolio maintains a moderate level of in- 387

dependence from major indices, with correlations 388

of 0.67 with the DJI and 0.75 with the S&P 500. 389

This diversification suggests that the PPO agent de- 390

velops unique portfolio allocation strategies, reduc- 391

ing reliance on broader market movements (Camp- 392

bell and Viceira, 2002). 393

The second experiment introduces market senti- 394

ment analysis into the PPO framework, forming the 395

SAPPO model. By incorporating sentiment data 396

from Refinitiv financial news sources, processed 397

using LLaMA 3.3 via Hugging Face transformers, 398
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the agent receives an additional market signal to399

guide allocation decisions. This enables sentiment-400

driven adjustments in response to market sentiment401

shifts.402

Figure 5: Cumulative return comparison of PPO and
SAPPO portfolios against NASDAQ-100, S&P 500, and
DJI indices.

The cumulative return comparison (Figure 5)403

highlights the performance improvement achieved404

by SAPPO over standard PPO. SAPPO consistently405

outperforms PPO in cumulative returns, leveraging406

sentiment-aware trading strategies to enhance prof-407

itability. By reacting to shifts in market sentiment,408

SAPPO is better equipped to capture momentum409

and avoid adverse market conditions.

Metric PPO SAPPO NASDAQ-100

Sharpe ratio 1.55 1.90 1.25
Annualized return 26.5% 30.2% 21.3%
Max drawdown -17.5% -13.8% -21.9%
Volatility 11.8% 11.2% 14.5%
Turnover rate 35% 37% N/A

Table 1: Performance comparison of PPO versus
SAPPO.

410

Table 1 presents a quantitative comparison be-411

tween PPO and SAPPO. The Sharpe ratio of412

SAPPO (1.90) is higher than that of PPO (1.55),413

indicating improved risk-adjusted returns. Annual-414

ized returns increase from 26.5% (PPO) to 30.2%415

(SAPPO), demonstrating better profitability. Addi-416

tionally, SAPPO exhibits a lower maximum draw-417

down (-13.8%) compared to PPO (-17.5%), sug-418

gesting enhanced downside protection.419

These results indicate that sentiment-aware rein-420

forcement learning enhances portfolio management421

by integrating external market sentiment signals.422

The ability to react to news-driven market senti-423

ment fluctuations provides an additional layer of424

adaptability beyond price-based decision-making.425

The findings highlight the potential of combining 426

reinforcement learning with financial sentiment 427

analysis for dynamic investment strategies. 428

5 Impact 429

The integration of sentiment-aware reinforcement 430

learning into portfolio optimization has significant 431

implications for both academic research and real- 432

world financial applications. By incorporating fi- 433

nancial news sentiment into a deep reinforcement 434

learning framework, our study demonstrates how 435

external market signals can enhance portfolio al- 436

location decisions beyond traditional price-based 437

strategies. The SAPPO model consistently outper- 438

forms the vanilla PPO framework by leveraging 439

market sentiment as an additional decision-making 440

factor. 441

The findings contribute to the broader field of 442

financial reinforcement learning by showcasing the 443

potential of sentiment-aware trading strategies. The 444

results suggest that sentiment-driven reinforcement 445

learning enables agents to react more effectively 446

to market fluctuations, capturing momentum and 447

mitigating losses during adverse conditions. This 448

approach is particularly relevant for institutional in- 449

vestors, hedge funds, and algorithmic trading firms 450

seeking adaptive trading models that dynamically 451

adjust to market sentiment. 452

Furthermore, our research underscores the grow- 453

ing relevance of multi-modal financial decision- 454

making, where reinforcement learning models in- 455

tegrate structured market data with unstructured 456

textual information to refine investment strategies. 457

The application of LLaMA 3.3 for financial senti- 458

ment extraction highlights the increasing role of AI- 459

driven financial analysis. By leveraging real-time 460

news data, the proposed framework bridges the gap 461

between quantitative finance and natural language 462

processing, providing a foundation for future re- 463

search in sentiment-aware algorithmic trading. 464

6 Limitations and Future Work 465

Despite its promising results, this study has sev- 466

eral limitations that should be addressed in future 467

research. 468

First, the scope of sentiment analysis is limited to 469

financial news articles retrieved from Refinitiv and 470

processed using LLaMA 3.3. While this dataset 471

provides high-quality sentiment data, it does not 472

incorporate alternative sources such as social me- 473

dia, earnings calls, or analyst reports, which could 474
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further improve sentiment-based decision-making.475

Future work could explore multi-source sentiment476

aggregation to enhance the robustness of sentiment477

signals.478

Second, the experiment is conducted using a479

three-stock portfolio consisting of Google, Mi-480

crosoft, and Meta, providing a controlled setting481

but lacking the diversity of a fully diversified invest-482

ment portfolio. Expanding this research to larger,483

sector-diverse portfolios could validate the effec-484

tiveness of sentiment-aware reinforcement learning485

across different industries and market conditions.486

Third, the backtesting period from January 2013487

to January 2020 does not account for real-time mar-488

ket execution, liquidity constraints, or macroeco-489

nomic shocks outside this timeframe. Implement-490

ing real-time trading simulations or live trading491

experiments would provide a more realistic eval-492

uation of model performance under actual market493

conditions, including execution delays and bid-ask494

spreads.495

Finally, the SAPPO framework relies on his-496

torical daily news sentiment, meaning sentiment497

scores are updated at market close and used for498

allocation adjustments the following trading day.499

This approach does not capture intra-day sentiment500

shifts that could impact trading decisions. Future501

research could explore higher-frequency sentiment502

updates, integrating real-time news streams into the503

reinforcement learning pipeline for more respon-504

sive market adaptation.505

Addressing these limitations will further refine506

sentiment-aware reinforcement learning models,507

improving their adaptability, generalization, and508

scalability in financial markets.509

7 Conclusion510

This study extends PPO by incorporating a511

sentiment-aware layer into portfolio optimiza-512

tion. By leveraging LLM-based sentiment anal-513

ysis, the SAPPO framework is introduced to en-514

hance decision-making by integrating external mar-515

ket sentiment signals.516

Experimental results indicate that the sentiment-517

enhanced model achieves superior risk-adjusted re-518

turns, higher Sharpe ratios, and lower drawdowns519

compared to the standard PPO framework. The520

SAPPO portfolio consistently outperforms tradi-521

tional benchmarks such as the NASDAQ-100, S&P522

500, and Dow Jones Industrial Average, demon-523

strating that integrating sentiment analysis into re-524

inforcement learning improves trading strategies. 525

The findings suggest that market sentiment 526

serves as a valuable supplementary feature in rein- 527

forcement learning-based portfolio optimization, 528

providing an additional layer of adaptability to 529

evolving financial conditions. This approach of- 530

fers an effective alternative to purely price-based 531

reinforcement learning models by incorporating 532

investor sentiment as a key factor in portfolio rebal- 533

ancing. 534

Overall, this study highlights the importance of 535

sentiment-aware reinforcement learning in finan- 536

cial decision-making and provides a foundation 537

for future research exploring multi-modal trading 538

models that integrate structured market data with 539

unstructured financial news. 540
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