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Abstract

Urban computing harnesses big data to decode complex urban dynamics and revo-
lutionize location-based services. Traditional approaches have treated geospatial
prediction tasks (e.g., estimating socio-economic indicators) and retrieval tasks
(e.g., querying geographic objects) as isolated challenges, necessitating separate
models with distinct training objectives. This fragmentation imposes significant
computational burdens and limits cross-task synergy, despite advances in represen-
tation learning and multi-task foundation models.

We present UrbanSparse, a pioneering framework that unifies geospatial predic-
tion and retrieval through a novel sparse-dense representation architecture. By
synergistically combining these tasks, UrbanSparse eliminates redundant systems
while amplifying their mutual strengths. Our approach introduces two innovations:
(1) Bloom filter-based sparse encodings that compress high-sparsity geographic
queries and fine-grained text terms for retrieval effectiveness, and (2) a dense se-
mantic codebook that captures granular urban features to boost prediction accuracy.
A two-view contrastive learning mechanism further bridges urban objects, regions,
and contexts. Experiments on real-world datasets demonstrate 25.16% gains in
prediction accuracy and 20.76% improvements in retrieval precision over state-
of-the-art baselines, alongside 65.97% faster training. These advantages position
UrbanSparse as a scalable solution for large urban datasets. To our knowledge, this
is the first unified framework bridging geospatial prediction and retrieval, opening
new frontiers in data-driven urban intelligence
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1 Introduction

Over the past decade, we have witnessed a surge of urban data from a variety of sources, e.g., remote
sensing images, points of interest (POIs), and human trajectories. This presents unprecedented
opportunities for developing data-driven solutions to address various long-standing challenges, where
various machine learning models have been developed for many tasks, such as economic growth
prediction [26], air quality analysis [[72]], transport planning [7], and trajectory search [64]. Such
tasks fall under two categories: prediction and retrieval.

Prediction tasks, also known as Geospatial Predictions [45]], estimate holistic urban socio-economic
indicators, either from data-rich areas to unknown areas or from the past to the future [38]]. Rep-
resentative tasks in this strand include predicting land use, population density, crime rates, and
transportation [1, 24, 25/ 133 40, 45, |68]]. Retrieval tasks, also known as Geographic Information
Retrieval (GIR) [15} 132} 142} 58] focus on identifying relevant geographic entities by considering both
keyword relevance and geographic proximity. For example, users searching for “coffee” along with
GPS coordinates receive a list of nearby coffee shops. In this process, a GIR model computes the
relevance scores between user queries and geographic objects to determine the order in which results
are displayed to users. The effectiveness of retrieval can be evaluated and enhanced using labeled
queries, where each query is labeled with one or more user-selected geographic objects. Prediction
and retrieval tasks have traditionally been studied independently, driven by the long-held assumption
that they require fundamentally different features (i.e., retrieval tasks emphasize low-frequency text
terms [S6], whereas prediction or classification tasks prioritize common or aggregated features [44]]).
With the development of representation learning and multi-task methods in both domains [[1} [14} 27]],
which train one foundation model for multiple downstream tasks, it naturally leads us to a critical
question: can we develop a unified model to tackle and enhance both geospatial prediction and
retrieval tasks?

In this work, we reveal the great complementary advantages of jointly tackling the two tasks. For
example, conventional prediction methods usually rely on POI density to estimate population density,
which may fail in regions with a few large residential buildings (each suggesting a high number
of residents). A unified model can utilize the abundant search queries from these residents to
improve predictions. Likewise, traditional retrieval sorts geographic objects solely by fine-grained
linguistic similarities and geographic proximity [18] 21} 39], whereas a unified model considers POI
associations across the whole city and recommends similar areas that may meet a user’s needs.

Despite these potential benefits, reconciling the inherent conflicts between the two tasks poses signifi-
cant challenges. The first challenge is to preserve fine-grained textual features. Existing methods for
prediction tasks generally use region-level data aggregation to extract geospatial proximity [50, |59]
and regional associations [17}[70]. Such aggregation can ruin the textual details, leading to poor
retrieval effectiveness. The second challenge is to extract predictive information from various text
terms. While some distinctive, low-frequency text terms for retrieval tasks enhance predictions, many
(e.g., "Postcode 101011") don’t have semantics and may introduce noise or outliers into predictions.
The third challenge is to leverage labeled queries. Though studies [14} 29/ [39] demonstrate that
fine-tuning on labeled queries improves retrieval performance, achieving such improvements in pre-
diction tasks remains non-trivial and unexplored. Finally, existing prediction models require capturing
complex spatial relationships, and retrieval methods often involve fine-tuning large language models,
both face efficiency challenges on large datasets.

To address these challenges, we propose UrbanSparse, a unified framework for geospatial prediction
and retrieval that employs a two-view learning mechanism capturing both fine-grained textual details
and holistic regional context. First, in Individual View, we preserve fine-grained features by splitting
texts with multiple tokenizers and encoding them as Bloom filter bits, evaluating and recording
term-level importance with neural networks to mitigate information loss. Second, in Collective
View, we maximize mutual information between regions and their geographic context to extract key
predictive features while filtering out noise. Third, both views share a dense codebook trained with
a novel warm-up strategy: we start with prediction tasks and then interleave training on both tasks,
ensuring a smooth task transition. Finally, we introduce row- and column-selection techniques that
leverage Bloom filter sparsity to boost efficiency. Experiments on real-world datasets demonstrate
that UrbanSparse outperforms state-of-the-art baselines, achieving up to 25.16% improvement in
prediction and 20.76% in retrieval effectiveness while reducing training time by 65.97% and memory
requirements by 86.49% compared to traditional BERT-based embeddings.



In summary, our contributions are at least threefold:

* A Novel Research Problem: We tackle the critical yet underexplored challenge of unifying
geospatial prediction and retrieval within a single framework. By showing that these traditionally
separate tasks can be co-optimized for mutual benefit, our work paves the way for next-generation
geospatial foundation models.

* A Two-View Learning Mechanism: We propose a two-view learning process that combines
Bloom filter-based sparse representations for fine-grained textual encoding with graph contrastive
learning for local and contextual geographic encoding. By maximizing the mutual information
between regions and their surroundings, our approach learns useful features from Bloom filter bits
without extensive pre-training.

* Comprehensive Performance and Efficiency Gains: Extensive experiments validate the supe-
riority of UrbanSparse over state-of-the-art baselines, demonstrating significant improvements
in effectiveness and efficiency. This framework not only advances task performance but also
establishes a new standard for scalable and resource-efficient urban computing solutions.

2 Related Work

2.1 Geospatial Predictions

Geospatial predictions aim to estimate key urban characteristics by leveraging statistics and associa-
tions across urban regions. Early works like Yuan et al.[65] analyzed human mobility and POIs to
identify functional zones, while Zheng et al.[72] combined meteorological data, road networks, and
taxi movements to predict air quality. Street-level imagery has been used to assess urban safety [49],
and social media data has uncovered urban patterns [16]. POI and check-in data are also used to
classify urban zones [63]. However, these task-specific models lack generalizability.

Recent work explores unsupervised methods to get rid of task-specific labels and learn generalized
urban representations. Wang et al.[60] introduced mobility graphs with human movements as edges,
while Fu et al.[[17]] enhanced these with POIs via graph auto-encoders. Zhai et al.[67] modeled POI
co-occurrence, and Niu and Silva[50] incorporated spatial proximity. Recent approaches include
adversarial training for multi-modal data [70]], attention mechanisms for cross-modal features [69],
contrastive learning on multi-view [68] or hierarchical graphs [24] aggregation, and pre-trained
foundation models [[1, [27]] for general-purpose region embeddings. However, these methods prioritize
holistic features and neglect fine-grained details, unfeasible for retrieval tasks. In contrast, our method
preserves both granular textual terms and holistic geospatial correlations to support both tasks.

2.2 Geographic Information Retrieval

Geographic Information Retrieval (GIR) handles text-based queries with geographic distances [52].
Early research [6, [10H12} 43]] use a linear combination of distances [54] and unsupervised text
similarities including TF-IDF [57]] and BM25 [53]] to identify relevant objects for queries. These
methods use bag-of-words (BOW) to represent texts, which lacks deep semantics and limits their
retrieval effectiveness and prediction accuracies. The integration of deep learning models into GIR
marked a significant shift, using dense representations to compute text similarities. Early learning-
based models 66, [71] encode texts with lightweight neural networks, yet they lack inherent semantic
knowledge and rely on extensive labeled queries. Some text-based IR models [18, 21]] are adapted to
GIR tasks, which use Word2Vec [48]] embeddings to estimate semantic relevance. However, empirical
studies [39] demonstrate that these approaches [18} 21} 51] fail to compete with classical methods in
retrieval effectiveness. Moreover, these methods don’t generate reusable representations and struggle
on large-scale GIR databases. Pre-trained Language Models (PLMs) like BERT [13] and ERNIE [22]]
advanced GIR by embedding semantic understanding. DrW [39] aligned BERT-based representations
with query-aware geographic preferences, while MGeo [14] and ERNIE-GeoL [22] pre-trained on
city-specific datasets, integrating mobility data and multi-modality features. Despite strong retrieval
performance, these methods lacked holistic urban representations needed for prediction tasks and were
computationally intensive. Our approach bridges this divide by learning individual-level relevance
from labeled queries while incorporating collective-level urban context to support predictions.



3 Preliminaries

Definition 1 (Representation Learning for Geographic Information Retrieval). Given a spatial
keyword query q and a geo-textual object o, each with a location and text, representation learning
encodes their texts into vectors f(q), f(0) € RY so that

Relevance(q, 0) = F (DistSim(q,0), TextSim(f(q), f(0))),

where DistSim and TextSim measure spatial proximity and text similarity, and F' combines them. The
top-k relevant objects are then retrieved from S = {o01,...,0n}.

Definition 2 (Representation Learning for Geospatial Predictions). Given an urban region v € U,
representation learning encodes its spatial, functional, and containing objects into f(u,0) € R, A
predictor g : R¥ — R then estimates attributes Y (u) (e.g., socio-economic indicators).

Problem Statement. Given geo-textual objects S = {o1,...,0x} and regions U = {uq,... }, learn
a unified mapping f such that

f(a), f(o) eRY,  f(u) € R,

where d and k are the dimensions for queries/objects and regions, respectively.
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Figure 1: Overview of the UrbanSparse framework. (1) The Individual View encodes query and
object text into Bloom filters, transforming them into sparse representations with fine-grained text
importance. (2) The Collective View maximizes the mutual information between regions and their
context, thereby learning meaningful geographic associations from Bloom filters.

We present UrbanSparse, a unified framework for geospatial prediction and retrieval that addresses
four key challenges: (1) preserving fine-grained textual details for retrieval, (2) learning effective
urban associations for prediction, (3) leveraging labeled queries for mutual task enhancement, and
(4) improving computational efficiency. As shown in Figure|l| our system processes textual queries,
geographic objects, and their spatial locations through two complementary views: First, the Individual
View encodes text terms into Bloom filters via multiple hash functions. A neural network converts
them into weighted sparse representations, avoiding information loss of dense vector aggregation.
Second, the Collective View models urban regions through dual graph contrastive learning: an urban
region graph capturing spatial proximity and a context graph encoding broader spatial influences. The
mutual information maximization between regions and their contexts extracts geographic associations
and filters noise. Third, a shared codebook connects the two view, with a warm-up training strategy
for seamless task fusion. In addition, we propose row- and column-selection techniques that exploit
Bloom filter sparsity to improve computational efficiency.

4.1 Text Encoding with Bloom filters

Textual descriptions of geographic objects are crucial for geospatial retrieval and prediction tasks.
Traditional retrieval methods like BM25 use Bag-of-Words (BOW) representations, which effectively



identify key terms but struggle with scalability due to the vast vocabulary of geographic texts. Most
prediction methods employ one-hot encoding of object categories [24 133, 68], which neglect fine-
grained text information. While recent pre-trained language models (PLMs) [} [14} 29} [39] have
improved semantic understanding, they incur high computational costs and slow inference speeds.

We observe that geographic texts contain distinctive city-specific terms like addresses, landmarks,
and local business names. PLM-based approaches often underperform on these terms as they appear
infrequently in pre-training corpora, requiring substantial fine-tuning data to match classical methods’
performance (Tabled). This suggests deep semantic understanding from PLMs may be unnecessary,
and that representing city-specific terms through finer lexical granularity could suffice. We therefore
propose to decompose texts with multiple n-gram and dictionary-based tokenizers and then encode
them to Bloom filters [2] via random hashing. This strategy preserves critical lexical patterns similar
to BOW while maintaining constant dimensionality for efficient computation. We use vanilla Bloom
filters in implementation, detailed in Appendix [A]

Two key concerns arise in using Bloom filters: (1) Hash Collision, which means that distinct text
terms may sometimes share the same hash value, leading to inaccurate representations. However, we
empirically find that such collision doesn’t significantly affect the holistic urban features important
for predictions. In retrieval tasks, we can leverage a membership test (as in in Appendix [A)) to exclude
query terms not present in the object’s Bloom filters, reducing the negative impact of hash collisions.
(2) Loss of Token Order, as Bloom filters only record the existence of terms without capturing their
order. This may lead to inaccuracies in handling order-sensitive queries in retrieval tasks (e.g. treating
"Unit 123456" and "Unit 654321" as the same term). However, the spatial keyword queries handled
in GIR tasks are typically concise, and the n-gram tokenizer (as in DSSM [23]]) is generally sufficient.
A 3-gram tokenizer will turn "123456" into "12#", "#34#", "#56", encoding the local order of tokens.

4.2 Relevance Learning with Neural Networks

We then handle retrieval tasks with neural networks, computing a relevance score to determine the
order in which results are displayed to users, as in Definition[I] We empirically found that methods
based on term-matching can achieve strong effectiveness without training (e.g., BM25-D in Table. f)),
as they effectively match city-specific terms without prior knowledge. Hence, we propose to leverage
the inherent term-matching capabilities of Bloom filters, i.e., the non-zero bits in each Bloom filter
correspond to text terms from the query or objects. Specifically, we keep the representation sparse,
performing a bit-by-bit evaluation on Bloom filter bits:

TextSim(q, 0) = (By © Fy(By)) - (B, © Fo(B,)) €]

In Eq.[T} B, and B, are the Bloom filters (length m) for the query and object, respectively. We
compute two sparse representations by reweighting the bits within the query and object Bloom
filters separately. As in Figure [T} the encoders I, and I, contain a large, shared codebook matrix
to encode the Bloom filters into dense embeddings, followed by two non-linear hidden layers that
further compress them into low-dimensional space, extracting potential semantic relevance. Finally,
the embeddings are expanded back via an Evaluation Layer to the dimension of the input Bloom
filters, where each dimension is regarded as the importance of the bit at the corresponding position.
The object Bloom filters can be evaluated offline, reducing online computations. The neural network
F(B) can be defined as:

hy = cb(B) = o(W.B/ Y Bi), W.eRMm*™ )
hy = o(Wahy +by), W, € Rh2xMm 3)
hs = o(Wshy + b3), Wy € Rhexhz )
F(B) = 6(Wshg) + 1, W, e R™*"s 0 )

Here, h; denotes the output of i-th layer with dimension h;, weight W;, and bias b;. ¢ denotes the
activation function. W, is the codebook matrix shared between the query and object encoder F
and F,, and ) " B; is the number of non-zero bits within the Bloom filters, ensuring a consistent
hy across the varying amount of text terms. Eq[5]is an evaluation layer tailored for Bloom filters,
where W, € R™*"s is set to zero, ensuring each intersecting bit has equal initial importance of 1.



This preserves the term-matching capabilities of Bloom filters, which gives a good starting point in
optimization that leads to faster convergence. Finally, we normalize and combine the text similarities
with geographic distances:

T(q,0) = Sigmoid (8 TextSim(q, 0) + f32) (6)
D(q,0) = —log(1 + Dist(q, 0)) )
Relevance(q,n) = T(q,n) + 11.D(g,n) + T (q,n)D(g,n) (®)

Here, we use the logarithm function to align the distance with human spatial perceptions, i.e.,
individuals are more sensitive to differences in proximity with nearby objects, while this sensitivity
diminishes for objects further apart. The normalization of the text similarities facilitates its smooth
combination with geographic distances. i, 32,71, 72 rescale and balance the influence of two
similarities and their first-order interaction, which better excludes proximate objects with little text
similarities. We initially set 32 = vo = 0 and 1 = 7y; = 1, and train these parameters together with
the neural networks via LambdaRank [3]] loss.

4.3 Extracting Collective Features

Our objective is to learn geospatial associations critical for prediction tasks. Following most geospatial
models [9], we employ Graph Neural Networks (GNNSs) to preserve POI spatial relationships [8§]].
However, common self-supervised approaches like graph reconstruction struggle with Bloom filters,
as they inherently mix informative text terms with useless terms. We posit that informative terms
are those shared across regions but exhibit diverse spatial distributions. Unique terms like "Postcode
114514" are unhelpful because they only exist in one place and cannot be leveraged by downstream
predictors. The density of useful terms like "Starbucks" helps identify commercial zones.

Inspired by Tobler’s Second Law of Geography ("the phenomenon external to a geographic area of
interest affects what goes on inside"), we learn useful information from Bloom filters by maximizing
the mutual information between city regions and their surroundings. Specifically, we construct a
city-wise graph with Delaunay Triangulation following [24} 33]] and perform contrastive learning on
two graphs following [20,73]. The two graphs include: 1) A region graph consisting of objects within
a region, which captures intra-region bit distribution patterns, and 2) A context graph incorporating
K-hop neighborhoods of the region graph. We utilize two 2-layer Graph Convolutional Networks
(GCNs) [30] to compute object-level and graph-level representations:

Z5 = MLP; (0(AH, W} + b))Wy +1b3), Z5 = MLP;(AvgPool(Z])), 9)
Z¢ = MLPy (0(AH WY + b)Ws +b5),  ZS = MLP, (AvgPool(ZY)). (10)

where A,., A, are adjacency matrices, H,, H. are the features from the dense codebook in Eq.[2]
W[, W¢ are learnable weights, and b}, bf are biases in the i-th GCN layer. AvgPool denotes the

graph-level average pooling. We then maximize the mutual information (MI) between the region and
context graphs, defined as:

v
Lyt =~y Z{MI (27, 7) + MI(Z, Z’“)} (11)

where the MI estimation is computed as:
MI(Z}, Z5) = Ey.. [log D(Z5, 25)] + Bz [log (1 - D(Z3. Z5)] |

MI(ZS,Z;) =E., DOgD(ZgaZ;ﬂ +Eer |:10g (1 - D(ZAS’Z;))} :

where D(a,b) = a' Wb is a bilinear discriminator, and #, ¢ are negative samples generated by
randomly removing a portion of bits (e.g., 20%) from the Bloom filters before encoding them with
the dense codebook in Eq[2} This design enhances the fine-grained text terms encoded by Bloom
filters. By maximizing the mutual information between regions and their context while discriminating
negative inputs with any missing bits, we extract critical geographic associations from shared bits.



4.4 Training Strategy and Optimizations

The shared codebook must balance coarse region-level features (for prediction) and fine query-object
matches (for retrieval). Direct joint training causes codebook overfitting to retrieval data due to scale
disparity: prediction tasks generally uses only thousands of regions, while retrieval tasks can involve
millions of user queries. To resolve this, we employs two-phase training: (1) Warm-up Phase: Train
exclusively on prediction tasks for some (i.e., 2-3) epochs, and (2) Alternating Phase: Iteratively
training on prediction and retrieval data batches. This effectively balances holistic region features
while absorbing object specifics (full algorithm in Appendix [B).

In addition, we propose to accelerate
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5 Experiments Figure 2: Illustration of the proposed optimization technique.

In this section, we evaluate the output
representations on geographic prediction and retrieval tasks following previous literature [1}39]. We
also perform efficiency and ablation studies.

5.1 Experimental setups

Table 1: Dataset Statistics
Datasets We use data from two cities, i.e. Bei-

Jjing and Shanghai. The datasets include Point- City POIs  Labeled Queries Regions
of-Interests (POIs) from Meituan [39], a leading Beijing 122420 168,998 1010
consumer service platform in China. The statistics Shanghai 116859 127,183 1358
of the datasets are shown in Table[Il

Downstream tasks and Evaluation Protocols We evaluate the learned representations on three
downstream tasks: POI retrieval, Population Density Prediction, and House Price Prediction. POl
retrieval is one of the most common tasks in the location-based service. We evaluate following [39],
where the user-selected objects on the Meituan platform are labeled as ground truth and the results are
measured with Recall and Normalized Discounted Cumulative Gain (NDCG). Population density and
house price prediction are two common tasks in the literature [9], and we measure the results with
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination
(R?). More details for downstream tasks and metrics are provided in Appendix

Baselines The proposed method is compared with strong GIR and Urban Region Representation
Learning baselines, including GraphSAGE [19], DGI [59], MVGRL [20]], SpaBERT [35]], HGI [24]],
and CityFM [1] for prediction tasks, and BM25 [53]], BERT [13], OpenA]ﬂ DRMM [18]], DrW [39],
MGeo [14], and DPR [29] for retrieval tasks. Many other recent prediction methods [28}, 134} 162, |69]]
rely on other data types (e.g., GPS trajectory data of vehicles) as inputs. However, GPS trajectory
data are only available in very few cities, and we did not find them for our datasets. Thus, we cannot
run these methods for comparison in our experiments. It’s noteworthy that we omit PLM-based
retrieval methods with sparse representations [4}[15]] due to their common failure on common GIR
addresses and numbers. More details of these baselines can be found in Appendix

5.2 [Experimental Results in Prediction Tasks

We evaluate the effectiveness of UrbanSparse on Population Density Prediction (population per
square kilometer) and on House Price Prediction (CNY per square meter) as in Table[2]and [3] The
results give us important insights: (1) Graph contrastive learning methods (DGI, MVGRL), while
incorporating geospatial proximity within region graphs, perform similar or worse than a direct

*https://platform.openai.com/docs/guides/embeddings



feature reconstruction over input features (i.e., GraphSAGE) due to the loss of fine-grained textual
features. (2) Competitive baselines HGI and CityFM have mitigated the problem via rule-based
geographic context learning, where CityFM pre-trains on extensive OpenStreetMap data to achieve
the second-best performance. (3) UrbanSparse stands out by leveraging Bloom filters as fine-grained
text features with its novel contrastive learning at multiple granularities. Particularly, we compare it
with its variant UrbanSparse w/o Individual (where labels from retrieval tasks are removed). The
results show that improvements from labeled queries are small (but statistically significant, i.e., T-test
p-value < 0.05). Without these labels, our framework still outperform other baselines.

Table 2: Population Density Prediction, with the best in bold and the second best underlined

Method Beijing Shanghai
MAE/| RMSE] R*t MAE/| RMSE] R*t

GraphSage 4566 4361 7113 4+811  0.60+0.06 11020 £807 15142 41827 0.34 +0.05
DGI 5703 £259 8403 £234 047 £0.04 13022 £567 174824371  0.17 +0.04
MVGRL 56754248 8397 £378 047 £0.05 12266 £633 16739 £ 774  0.24 +0.01
SpaBERT 6494 432 9088 £856 0.34+£0.06 11586+ 672 15401 & 1333  0.31 & 0.07
HGI 45474349 72104754 0594005 8942 +£755 13606 + 1512 0.46 + 0.09
CityFM 4420 4348 6496 + 694  0.66 +0.04 6930 £ 633 10751 4+ 1184  0.67 + 0.05
UrbanSparse 3307 £ 14 5772+£31  0.754+0.003 5343 £55 8958 + 169  0.78 £ 0.01
- w/o Individual ~ 3368 £53 5871 £78  0.74 £0.01 5467 + 81 9189+ 177  0.76 £0.01
(Gains) 25.16% 11.14% 13.64% 22.90% 16.68% 16.42%

Table 3: House Price Prediction, with the best in bold and the second best underlined

Method Beijing Shanghai
MAE] RMSE/ R* MAE] RMSE/| R*t

SpaBERT 21015 + 1837 28083 +£2289 0.55+0.05 16772 £ 1253 25340 + 3405 0.31 +0.08
GraphSage 14239 + 1824 19947 + 2836  0.77 £0.05 17408 + 1065 25118 £ 3217 0.32 £ 0.05
DGI 16203 & 1352 22399 £ 1796 0.70 £0.05 18415 4+426 25876 £ 600  0.14 + 0.04
MVGRL 16799 2035 23792 +£2753  0.66 +£0.09 17833 +£211 25011 +237  0.20 £+ 0.01
HGI 14974 + 1251 21833 £2022 0.72+£0.06 16095 + 1140 24022 + 3478  0.38 + 0.06
CityFM 17721 £ 2178 24123 +2884 0.66 +0.06 15694 + 1727 24862 + 4444 033 +0.15
UrbanSparse 11983 + 507  17155+767 0.82+0.01 13281 +325 20610 =671  0.46 + 0.04
- wlo Individual ~ 12881 4+569 18326 £ 691  0.80 +0.02 137564+ 166 21669 + 535  0.40 + 0.03
(Gains) 15.84% 14.00% 6.49% 15.38% 13.90% 17.95%

5.3 Experimental Results in Retrieval Tasks

We evaluate UrbanSparse in POI retrieval tasks against strong retrieval baselines, where standard
deviations are omitted as they are very small (< 0.003). As the vanilla BM25, BERT, OpenAl,
and DPR only consider text similarity, we supplement BM25-D, BERT-D, OpenAlI-D, and DPR-D
to incorporate geographic distances following [39] by defining Relevance(q,0) = (1 — a)(1 —
Diorm(q,0)) + - Trorm(q, 0), where Dy,orm (g, 0) denotes the geographic distances, 15,0, denotes
the text similarity from the vanilla baseline, both are normalized to [0, 1]. « is a hyper-parameter
balancing the text and the distance similarities, set by grid searching on the dev set. In addition,
DRMM, DrW, DPR, UrbanSparse are fine-tuned on labeled queries while the rest are not. The results
in Table[d]provide several key insights: (1) The classical term-matching method BM25-D significantly
outperform vector-based methods BERT-D and the leading commercial product, OpenAl-D. This
underscores the critical importance of term-matching capabilities in retrieval tasks. (2) UrbanSparse
surpasses heavy-weight BERT-based methods such as DrW and DPR-D, showcasing the effectiveness
of evaluating Bloom filter bits. Furthermore, its superiority over its variant without the Collective
View (denoted as w/o Collective) validates the benefits of incorporating prediction tasks.

5.4 Efficiency Studies

Training Time We evaluate the training time of UrbanSparse against top-performing baselines on
1 NVIDIA V100 32GB. As shown in Table[5] DPR, GraphSAGE, HGI, CityFM, and DrW require



Table 4: Point-of-Interest Retrieval, with the best in bold and the second best underlined

Method Beijing Shanghai
Recall@10 NDCG@5 NDCG@1 | Recall@10 NDCG@5 NDCG@1

BM25 0.3401 0.2199 0.1634 0.3274 0.1913 0.1260
BM25-D 0.5477 0.4263 0.3569 0.6484 0.5215 0.4380
BERT 0.1602 0.1169 0.0979 0.1277 0.0853 0.0662
BERT-D 0.2400 0.1614 0.1298 0.2622 0.1687 0.1233
OpenAl 0.3265 0.2157 0.1637 0.3213 0.1875 0.1258
OpenAI-D 0.5206 0.3803 0.3078 0.6313 0.4852 0.3864
DRMM 0.1773 0.1105 0.0758 0.1921 0.1287 0.0804
DRMM-D 0.4357 0.2378 0.1566 0.4380 0.2433 0.1595
Drw 0.6316 0.4814 0.3791 0.7159 0.5394 04114
DPR 0.4183 0.2775 0.2121 0.4087 0.2498 0.1746
DPR-D 0.6688 0.4980 0.4132 0.7281 0.5641 0.4554
UrbanSparse 0.7062 0.5734 0.4990 0.7589 0.6209 0.5315
- w/o Collective 0.6988 0.5695 0.4991 0.7526 0.6157 0.5289
(Gains) 5.59% 15.14% 20.76% 4.23% 10.07% 16.71%

Table 5: Training Time (Minutes) and Inference Memory (MB)

(a) Prediction Tasks (b) Retrieval Tasks

Method Training Time Memory Usage Method Training Time Memory Usage

Beijing  Shanghai  Beijing  Shanghai Beijing Shanghai  Beijing  Shanghai
GraphSAGE 24 19 3.95 3.95 OpenAl N/A N/A 717.30 684.72
HGI 281 510 0.25 0.33 Drw 142 97 11806.29  10210.42
CityFM 510 355 3.95 3.95 DPR-D 448 282 507.80 491.60
UrbanSparse 22 11 0.25 0.33 UrbanSparse 51 33 71.92 66.40
(Saves) 8.33% 42.11% 0.00% 0.00% (Saves) 64.08% 65.97% 85.84% 86.49%

considerably longer training time. This is particularly evident for DPR and CityFM as they rely on
fine-tuning BERT, resulting in substantial training overhead. UrbanSparse leverages the sparsity of
Bloom filters to significantly reduce computational demands.

Inference Memory Usage We also report the memory usage in inference, with all embeddings
stored in 32-bit float numbers. For prediction tasks, as the trained models can be offloaded and
urban regions are relatively few, the memory usage across methods exhibits negligible differences.
In retrieval tasks, however, significant differences emerge due to the model parameters needed to
process user queries and a large amount of POIs. UrbanSparse produces sparse representation with a
fixed dimension of 8192 and a density of only 2-3%, achieving dramatically reduced memory usage,
making it a resource-efficient choice for retrieval tasks.

Query Processing Speed We further evalu-

ate the query processing speed of UrbanSparse Table 6: Query Per Second Comparison
against DPR-D by running a brute-force search.

We do not evaluate DrW as it requires > 24 Method #Params (M) Beijing Shanghai
hours for evaluation. As shown in Table [0l ~orp 110 133.05 133.94
UrbanSparse significantly outperforms DPR-D,  yrpanSparse 272 47629  505.20

achieving approximately 3.6x and 3.8x higher
Queries Per Second (QPS) in Beijing and Shang-
hai, respectively. This substantial improvement is attributed to UrbanSparse’s small model size and
high representation sparsity.

*While we achieve a 40x reduction in parameters, the 4x QPS gain is bounded by our custom CUDA kernels
for sparse representation calculations: the non-coalesced memory accesses in our kernel and an insufficiently
optimized kernel dispatch strategy incur significantly higher latency than vendor-optimized dense kernels from
experts. We anticipate that expert-tuned kernels will further narrow this gap.



Scalability UrbanSparse is lightweight and can theoretically scale up due to low computational
complexity. To empirically verify this, we evaluate on established large datasets GeoGLUE [31], a
public GIR benchmark with 2,849,754 POIs. However, the benchmark doesn’t support prediction
tasks as it contains over 50% fake POIs for anonymity. As shown in Table [/} our methods show
competitive retrieval effectiveness while trains much faster than PLM-based method DPR-D. DrW
and DRMM are omitted as they reports OOM on this dataset.

Table 7: Point-of-Interest Retrieval and Training Time on GeoGLUE

Method Recall@10 NDCG@5 NDCG@1 Training Time (Min)
MGeo [14] N/A N/A 0.5270 Unknown
DPR-D 0.7611 0.6318 0.5350 131
UrbanSparse 0.7621 0.6344 0.5310 54

5.5 Ablation Studies

While UrbanSparse’s prediction advantages stem from Bloom filter-contrastive learning integration,
can other contrastive learning methods replicate this by simply adopting Bloom filters? Our evaluation
shows fundamental limitations: Table[§|reveals Bloom filters’ inconsistent impact. While producing
150%+ improvements for Shanghai population prediction with DGI/MVGRL, other tasks show mixed
results (-11.4% to +36.3%). In conclusion, standard contrastive objectives appear poorly suited to
extract Bloom filters’ encoded bit patterns, while UrbanSparse achieves consistent gains. We also
studied other hyperparameters (e.g., tokenizers, hash functions, Bloom filter length), and put these
technical details in Appendix [F]

Table 8: Effect of Bloom Filters vs BERT Embeddings

Method Pop. Pred. R*t House Pred. R*t
Beijing Shanghai Beijing Shanghai
DGI 0.4682 0.1877 0.7240 0.1511
w/ Bloom filters 0.4807 0.4752 0.7521 0.2060
(Gains) 2.7% 153.2% 3.9% 36.3%
MVGRL 0.4483 0.1716 0.6686 0.1866
w/ Bloom filters 0.3974 0.4416 0.7085 0.2130
(Gains) -11.4% 157.2% 6.0% 14.2%
UrbanSparsegerry ~ 0.3830 0.3046 0.3388 0.1010
UrbanSparse 0.7480 0.7805 0.8234 0.4612
(Gains) 95.3% 156.2% 143.0% 356.6%

6 Conclusion

In this work, we introduced UrbanSparse, a unified framework integrating the traditionally separate
geospatial prediction and retrieval tasks via a two-view learning mechanism that combines Bloom
filter-based sparse representations and graph contrastive learning. Extensive experiments demonstrate
its ability to outperform state-of-the-art baselines while achieving significant gains in efficiency,
accuracy, and scalability. This study pioneers a new research direction in urban computing, offering a
transformative solution to unify task frameworks and address complex urban challenges with greater
resource efficiency.
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A Bloom Filters and Membership Tests

A Bloom filter is a space-efficient probabilistic data structure designed for set membership testing.
Given a set A = {ay, as,...,a,} of n elements, a Bloom filter encodes A using a bit vector B of
length m, initially filled with zeros. It relies on k independent hash functions Hy, Ho, . .., Hy, each
mapping an input element to a position in {1,..., m}.

To insert an element a € A, the bits at indices Hy(a), H2(a), ..., Hi(a) in the bit vector B are set
to 1. To check whether a query element g belongs to the set, the Bloom filter examines the bits at
positions Hi(q), H2(q), . .., Hi(q). If any of these bits is 0, ¢ is definitely not in A. If all are 1, the
Bloom filter reports that ¢ may belong to A, introducing a false positive probability but guaranteeing
no false negatives.

This tradeoff makes Bloom filters particularly useful in large-scale applications where space efficiency
and fast membership queries are critical. In our implementation, we empirically found m > 8192,
k > 2 sufficient for small false positive rates (See table . We use SHA-256 as random hash
functions, leaving more sophisticated designs to future work.

B Training Algorithm

We hereby detail the training algorithm used to balance the training on retrieval and prediction tasks
in our framework.

Algorithm 1 Two-Phase Training of UrbanSparse

1: Input: Dy (region data), Dy (query-object pairs), Ewarm = 3, o1 = 20
: Parameter: Model fy with codebook C

2

3. procedure WARM-UP PHASE

4: for epoch = 1 to Eyum do

5: for each batch B € Dyq do
6: Compute Lpreq

7 Update 0 < 0 — Vg Lpreq
8: end for
9: end for

10: end procedure

11: procedure ALTERNATING PHASE
12: for epoch = Eyum + 1 to Eygyy do

13: Shuffle Dyreq and Dieyr

14: for i = 1 to max(|Dpred|; | Drerr|) do

15: Sample batch By, ~ Dpyeq, By ~ Dreyr
16: Compute Lpeq 0n By, via Eq.3

17: Compute L on B, via LambdaRank
18: Update 6§ <— 0 — nV(Lpred + Lretr)
19: end for

20: end for

21: end procedure

C Complexity Analysis

We analyze the time complexity of the proposed UrbanSparse in retrieval tasks. The prediction
tasks are not analyzed as they vary significantly with downstream predictors. Let h; be the output
dimension of the i-th model layer, u, e the count of non-zero bits in the user query and object
Bloom filters, the time complexity of model forward process during training is given by O((u +
e)h1 + hihga 4+ hohs + min(u, e)hs). As hq, ho, and hs are small constants, (i.e., 256 and 32 in
our implementation), the training time is dominated by u + e, which is only affected by the query
and object text lengths, and the number of hash functions. The time complexity during inference is
O(u(hy + h3) 4+ h1he + hohs), which is dominated by the query length.
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D Downstream Tasks and Evaluation Protocols

To evaluate the quality of the learned representations, we consider three downstream tasks:

* POI Retrieval. Given a user query, retrieve relevant points of interest (POIs). We follow the
dataset split and protocol of [39]], where Meituan user-selected POIs serve as ground truth.

 Population Density Prediction. Predict the population density of a geographic region based
on its learned embedding.

* House Price Prediction. Estimate the average house price in a region using its representa-
tion.

It is noteworthy that land use, population density, and house price prediction are the top-3 common
tasks according to the recent survey [9]]. However, we fail to find high-quality land use ground truth
in the two studied cities, so we only evaluate the latter two tasks.

Evaluation Metrics We employ the following metrics for each task:

¢ Recall@K and NDCG@K (Normalized Discounted Cumulative Gain) for POI retrieval.
Recall@K measures the fraction of ground-truth POIs appearing in the top-K results, while
NDCG@K accounts for both relevance and ranking position.

e Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of De-
termination (R?) for the regression tasks (population density and house price). MAE and
RMSE quantify absolute and squared deviations, respectively; R? indicates the proportion
of variance explained by the model.

For retrieval tasks, we requested and got the established benchmark from [39], which has a fixed split
with the train/dev/val ratio 0.81:0.09:0.10. As the splits are fixed without randomness, the standard
deviations appear to be very small (< 0.003 for all methods) and we omit the standard deviations in
our table. For prediction tasks, we follow common practice of unsupervised representation learning,
evaluating the learned representations with scikit-learn RandomForestRegressor on all urban regions
using 5-fold cross-validation. We strictly repeat all experiments 10 times, report the average results
and standard deviations without cherry-picking.

Data Sources All datasets (or their corresponding embeddings/Bloom filters) used in this paper are
publicly available. Table [J]lists each data type along with its source and download link.

Table 9: Data sources and download links

Data Type Source Link

POI datasets and queries Meituan https://anonymous.4open.science/r/UrbanSparse
Population density WorldPop https://hub.worldpop.org

House prices Beike https://ke.com

Administrative boundaries GADM https://gadm.org

Due to licensing constraints, the raw Meituan query and POI text data cannot be shared. Instead, we
provide the corresponding Bloom filters and geographic coordinates in our GitHub repository, along
with BERT, OpenAl, and our trained DPR embeddings to enable full replication of all experiments.

E Baselines and Implementation Details

We compared with the following baselines from the prediction and retrieval tasks respectively:

(1) Prediction Methods

» GraphSage [19]: This classical graph learning algorithm samples and aggregates neighbor
nodes to compute node embeddings. It is commonly used as a geospatial representation learning
baseline with node feature or graph structure reconstruction objectives.It is noteworthy that
we have tested both vanilla GCN and GraphSAGE as representative graph learning baselines.
However, GCN suffers from scalability issue and reports OOM in our datasets.
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* DGI [59]: This method maximizes the mutual information between node and graph embeddings.
We take its graph embedding as the region representation. It doesn’t explicitly learn geospatial
correlations.

* MVGRL [20]: Inspired by DGI, this method maximizes the mutual information between the
node and graph embedding from the original graph and an augmented graph constructed by
graph diffusion. We use its graph embedding as the region representation. It doesn’t explicitly
learn geospatial correlations.

» SpaBERT [35]: This method utilizes pre-trained BERT to learn geographic object repre-
sentations with text and geospatial proximity. We average its object embeddings as region
representation.

* HGI [24]]: Inspired by DGI, this method incorporates geospatial domain knowledge by hierar-
chically maximizing the mutual information between POI, region, and city representations. It
proposes a novel rule-based strategy of positive and negative sampling to preserve fine-grained
and holistic information simultaneously.

* CityFM [1]: This method learns general-purpose geospatial representations from multimodal
OpenStreetMap node, polyline, and polygon data. We use its node encoder to encode POI
representations and average them as the region representation.

(2) Retrieval Methods

* BM25 [53]]: This classical information retrieval method computes text similarities based on
bag-of-words (BOW) representations and term-matching.

* BERT [13]: BERT is a representative pre-trained language model that excels in capturing deep
semantics. We use the cosine similarity between queries and object representations to assess
text similarities.

. OpenAIE} OpenAl’s text-embedding-3-small generates high-quality text embedding effective
for retrieval tasks. Its technical details remain proprietary.

* DRMM [18]: This model evaluates text similarities based on pairwise local interactions at the
term level. It doesn’t account for geographic proximity.

e DrW [39]: This method utilizes BERT to capture term-level text similarities and propose a
novel query-aware combination strategy with geospatial distances.

* DPR [29]: This method finetunes BERT on labeled queries, shortening the distance between
textual similarities between relevant query-object pairs.

* MGeo [14]]: This method applies multi-task pre-training on a BERT-based encoder and fine-
tunes it by user queries. As we are unable to replicate the results of MGeo with their official
code, we don’t evaluate on the two datasets in the main content of the paper, and only reference
the evaluation results on GeoGLUE in Table[/|as presented by the authors.

(3) UrbanSparse Variants

* UrbanSparse w/o Individual, where we remove the proposed Individual View in Figure|T]
* UrbanSparse w/o Collective, where we remove the proposed Collective View in Figure[T}

It is worth noting that although many recent methods for urban region representation learning rely on
human mobility data (e.g., vehicle trajectories), such data are available for only a limited number
of cities, so we do not include them in our comparisons. Instead, to ensure relevance, we compare
against the most recent versions of HGI (2023) and CityFM (2024). On the other hand, sparse
retrieval methods such as SPLADE [15] and BGE-M3 [4] rely on PLM tokenizers that split each
digit of an address number into a separate token. As a result, they cannot properly match street or
house numbers and cannot work properly in our datasets.

For retrieval baselines BM25, BERT, OpenAl, and DPR only consider text similarity, we supplement
BM25-D, BERT-D, OpenAI-D, and DPR-D to incorporate geographic distances following [39]
by defining Relevance(q,0) = (1 — a)(1 — Dpnorm(q,0)) + & - Thorm(q, 0), where Dy, orm (g, 0)
denotes the geographic distances, T,,.,, denotes the text similarity from the vanilla baseline, both
are normalized to [0, 1]. « is a hyper-parameter balancing the text and the distance similarities, set by
grid searching on the dev dataset as in Table[T0]

The representation dimension d varies among different baselines. We set d = 64 for HGI, d = 512 for
DGI and MVGRL, d = 768 for BERT SpaBERT, and DPR, d = 1024 for CityFM and GraphSAGE,

>https://platform.openai.com/docs/guides/embeddings
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Table 10: « value for baselines
Method Beijing Shanghai

BM25-D 04 0.4
BERT-D 04 04
OpenAl-D 0.3 0.3
DRMM-D 0.7 0.7
DPR-D 0.3 0.3

and d = 1536 for OpenAl, following the settings recommended in the corresponding paper. For
the proposed UrbanSparse, we fix the Bloom filter length to m = 8192 with & = 2 SHA-256 hash
functions. In prediction tasks, we set the output region representation dimension d = 64. For retrieval
tasks, all methods run a brute-force search over all POIs unless otherwise specified. All experiments
are conducted on 1 NVIDIA V100 32 GB.

F Additional Ablation Studies

F.1 Bloom Filter Length & Number of Hash functions

We analyze the effect of Bloom filter length m and the number of hash functions & using NDCG@5
on the POI retrieval in Beijing, chosen for its low standard deviation (below 0.002) and sensitivity to
Bloom filter changes. As shown in Table[TI] m < 2048 and k < 2 lead to worse performance due to
insufficient capacity, while m > 8192 or k£ > 2 yields negligible gains, suggesting that Bloom filters
reach their optimal capacity when m and k are sufficient to encode the geographic vocabulary, and
further increases offer no additional benefits.

Table 11: Effect of k and m on Beijing POI Retrieval

M 512 2048 8192 32768

0.5392  0.5382 0.5569 0.5464
0.5578 0.5689 0.5724 0.5738
0.5530 0.5689 0.5717 0.5730
0.5312  0.5679 0.5717 0.5727

0 W N —

F.2 Effect of Tokenizers

We analyze how the choice of tokenizers affects the retrieval effectiveness of UrbanSparse. We
tested n-gram tokenizers as in DSSM [55] and a dictionary-based tokenizer Jieba (https://github.
com/fxsjy/jieba). Table[I2]shows that the combination of 1-gram, 2-gram, and dictionary-based
tokenizers achieves the best Recall@20 and NDCG @5, enhancing the term-matching capability of
Bloom filters.

Table 12: Effect of Tokenizers on Beijing POI retrieval

Tokenizer Recall@20 NDCG@5
1-gram 0.7022 0.5547
2-gram 0.7175 0.5623
3-gram 0.6642 0.4511
1,2,3-gram 0.7133 0.5551
Dict. (Jieba) 0.7264 0.5633
1,2-gram+Dict. 0.7427 0.5740

F.3 Effect of Context Graph Construction

The context graph, constructed by randomly sampling from the K -hop neighbors of objects within
the region graph, plays a critical role in the proposed Collective View. Larger K values create more
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diverse and comprehensive context graphs, which can enhance the model’s ability to capture complex
relationships. As shown in Table[I3] K = 3 and K = 4 achieve the highest effectiveness for both
population and house price prediction tasks. K > 4 yields no significant gains in effectiveness.

Table 13: Effect of K-hop Context Graphs
K Pop. Pred. R*t House Pred. R*t
Beijing Shanghai Beijing Shanghai

0.6035 0.6614 0.7656 0.3751
0.6818 0.7228 0.7910 0.4470
0.7399 0.7857 0.8200 0.4530
0.7480 0.7805 0.8234 0.4612

B W —

F.4 Effect of Training Algorithms

We evaluate the effect of the proposed training algorithm as in Algorithm[I|by (1) training on two
datasets separately in each epoch instead of interweaving each data batch and (2) removing the
warm-up epochs. The results in Table [I4] demonstrate that these modifications lead to reduced
effectiveness in either the prediction or retrieval task. This suggests that the proposed training
algorithm successfully trained a codebook to share useful information between the two tasks.

Table 14: Effect of Training Algorithms

Method Pop. Pred. R*t Retrieval NDCG @57
Beijing Shanghai Beijing  Shanghai
UrbanSparse 0.7480 0.7805 0.5734 0.6209
Train separately  0.7001 0.7450 0.5459 0.6140
No warm-up 0.7290 0.7670 0.5553 0.6162

F.5 Effect of Row/Column Selection

We evaluate the efficiency gain of the two sparsification optimizations described in Figure[2] i.e.,
row selection and column selection, by analyzing the training time (minutes) and training memory
usage (MB) on both cities. As shown in Table[I3] both optimizations reduce memory footprint via
sparsifying dense computations. Column selection alone yields > 4x speedup (214 — 51 min) and
> 2x memory reduction (166.5 — 71.9 MB) by computing only query—bit—matched entries. Row
selection brings a smaller but complementary gain (72 — 51 min). When POI Bloom filters contain
many bits, the sparse—dense kernel in PyTorch does not significantly outperform dense multiplication
due to memory access patterns, so column selection delivers the major efficiency gains while row
selection acts as a secondary refinement.

Table 15: Effect of Row and Column Selection Optimizations on Training Efficiency.

Method Training Time (min)| Training Memory (MB),
Beijing  Shanghai  Beijing Shanghai

UrbanSparse 51 33 71.92 66.40

w/o Row Selection 72 40 127.38 112.21

w/o Column Selection 214 133 166.51 147.75

G Further Discussions

G.1 Limitations and Future Work

First, UrbanSparse unifies prediction and retrieval through Bloom-filter encodings and learned em-
beddings, but it presumes sufficiently rich geo-textual inputs and discards text sequence information,
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which may degrade performance on sparse or highly noisy data. In future work, two straightforward
strategies may be useful to strengthen robustness: (1) Designing off-the-shelf query rewriting modules
to formalize queries and eliminate noises. (2) Explicitly marking empty areas with special markers
(e.g., random points) to better inform the model [33]. Second, all our experiments rely on Meituan
data from Beijing and Shanghai, and the model’s hyperparameters (e.g. filter size, hash count, training
schedule) were tuned for these cities, potentially limiting generalization to other urban environments.
Third, the prediction tasks in this paper only involve the prediction from known areas to known
areas. Future work should consider the spatio-temporal prediction tasks [46, 47|, such as time series
forecasting [136} [37]], imputation [41]], and recovery [61]. Finally, UrbanSparse may inadvertently
reflect or amplify existing biases in spatial data sources (i.e., POIs in this work), thereby reinforcing
socioeconomic disparities across urban regions. Future work should adopt fairness-aware sampling
and noise-injected query augmentation during training, and include systematic bias auditing and
fairness calibration across cities and demographic groups.

G.2 Broader Impact

By improving population density and house-price estimates and enhancing POI retrieval, UrbanSparse
can aid urban planning, resource allocation, and user-facing location services while reducing com-
putational costs. However, the use of fine-grained user queries and POI data risk privacy concerns,
models trained on major-city data may underperform in underserved regions, and high-precision
retrieval could be misused for targeted marketing or surveillance.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the research topic, with 3 major
contributions summarized at the end of the introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the proposed method in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper doesn’t include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We released all essential details needed to reproduce our experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All datasets and code are released. The URL is provided in the first page of
the paper as footnote using anonymous Github.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all essential details of dataset, baselines, and implementation
details in the Appendix [D]and [E]

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provided essential standard deviation.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided the GPU type we used and the training time essential for our
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide the broader impact of the proposed method in Appendix
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our released datasets are either publicly available or properly anonymized. We
have the copyright of the trained model weights.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have properly cited all original paper of existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have extensively documented our new assets in the released Anouymous
Github repository.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper doesn’ use LLM for any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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