Reconciling Geospatial Prediction and Retrieval via Sparse Representations

Yi Li

College of Computing and Data Science Nanyang Technological University liyi0067@e.ntu.edu.sg

Weiming Huang

School of Geography, University of Leeds W.Huang@leeds.ac.uk

Yuanlong Chen

College of Computing and Data Science Nanyang Technological University yuanlong001@e.ntu.edu.sg

Xiaoli Li

Institute for Infocomm Research, A*STAR
College of Computing and Data Science
Nanyang Technological University
xlli@i2r.a-star.edu.sg

Gao Cong*

College of Computing and Data Science Nanyang Technological University gaocong@ntu.edu.sg

Abstract

Urban computing harnesses big data to decode complex urban dynamics and revolutionize location-based services. Traditional approaches have treated geospatial prediction tasks (e.g., estimating socio-economic indicators) and retrieval tasks (e.g., querying geographic objects) as isolated challenges, necessitating separate models with distinct training objectives. This fragmentation imposes significant computational burdens and limits cross-task synergy, despite advances in representation learning and multi-task foundation models.

We present UrbanSparse, a pioneering framework that unifies geospatial prediction and retrieval through a novel sparse-dense representation architecture. By synergistically combining these tasks, UrbanSparse eliminates redundant systems while amplifying their mutual strengths. Our approach introduces two innovations: (1) Bloom filter-based sparse encodings that compress high-sparsity geographic queries and fine-grained text terms for retrieval effectiveness, and (2) a dense semantic codebook that captures granular urban features to boost prediction accuracy. A two-view contrastive learning mechanism further bridges urban objects, regions, and contexts. Experiments on real-world datasets demonstrate 25.16% gains in prediction accuracy and 20.76% improvements in retrieval precision over state-of-the-art baselines, alongside 65.97% faster training. These advantages position UrbanSparse as a scalable solution for large urban datasets. To our knowledge, this is the first unified framework bridging geospatial prediction and retrieval, opening new frontiers in data-driven urban intelligence.²

^{*}Corresponding author.

²Data and code available at https://github.com/pkuliyi2015/UrbanSparse

1 Introduction

Over the past decade, we have witnessed a surge of urban data from a variety of sources, e.g., remote sensing images, points of interest (POIs), and human trajectories. This presents unprecedented opportunities for developing data-driven solutions to address various long-standing challenges, where various machine learning models have been developed for many tasks, such as economic growth prediction [26], air quality analysis [72], transport planning [7], and trajectory search [64]. Such tasks fall under two categories: *prediction* and *retrieval*.

Prediction tasks, also known as Geospatial Predictions [45], estimate holistic urban socio-economic indicators, either from data-rich areas to unknown areas or from the past to the future [38]. Representative tasks in this strand include predicting land use, population density, crime rates, and transportation [1, 24, 25, 33, 40, 45, 68]. Retrieval tasks, also known as Geographic Information Retrieval (GIR) [5, 32, 42, 58] focus on identifying relevant geographic entities by considering both keyword relevance and geographic proximity. For example, users searching for "coffee" along with GPS coordinates receive a list of nearby coffee shops. In this process, a GIR model computes the relevance scores between user queries and geographic objects to determine the order in which results are displayed to users. The effectiveness of retrieval can be evaluated and enhanced using labeled queries, where each query is labeled with one or more user-selected geographic objects. Prediction and retrieval tasks have traditionally been studied independently, driven by the long-held assumption that they require fundamentally different features (i.e., retrieval tasks emphasize low-frequency text terms [56], whereas prediction or classification tasks prioritize common or aggregated features [44]). With the development of representation learning and multi-task methods in both domains [1, 14, 27], which train one foundation model for multiple downstream tasks, it naturally leads us to a critical question: can we develop a unified model to tackle and enhance both geospatial prediction and retrieval tasks?

In this work, we reveal the great complementary advantages of jointly tackling the two tasks. For example, conventional prediction methods usually rely on POI density to estimate population density, which may fail in regions with a few large residential buildings (each suggesting a high number of residents). A unified model can utilize the abundant search queries from these residents to improve predictions. Likewise, traditional retrieval sorts geographic objects solely by fine-grained linguistic similarities and geographic proximity [18, 21, 39], whereas a unified model considers POI associations across the whole city and recommends similar areas that may meet a user's needs.

Despite these potential benefits, reconciling the inherent conflicts between the two tasks poses significant challenges. The first challenge is to *preserve fine-grained textual features*. Existing methods for prediction tasks generally use region-level data aggregation to extract geospatial proximity [50, 59] and regional associations [17, 70]. Such aggregation can ruin the textual details, leading to poor retrieval effectiveness. The second challenge is to *extract predictive information* from various text terms. While some distinctive, low-frequency text terms for retrieval tasks enhance predictions, many (e.g., "Postcode 101011") don't have semantics and may introduce noise or outliers into predictions. The third challenge is to *leverage labeled queries*. Though studies [14, 29, 39] demonstrate that fine-tuning on labeled queries improves retrieval performance, achieving such improvements in prediction tasks remains non-trivial and unexplored. Finally, existing prediction models require capturing complex spatial relationships, and retrieval methods often involve fine-tuning large language models, both face efficiency challenges on large datasets.

To address these challenges, we propose UrbanSparse, a unified framework for geospatial prediction and retrieval that employs a two-view learning mechanism capturing both fine-grained textual details and holistic regional context. First, in *Individual View*, we preserve fine-grained features by splitting texts with multiple tokenizers and encoding them as Bloom filter bits, evaluating and recording term-level importance with neural networks to mitigate information loss. Second, in *Collective View*, we maximize mutual information between regions and their geographic context to extract key predictive features while filtering out noise. Third, both views share a dense codebook trained with a novel warm-up strategy: we start with prediction tasks and then interleave training on both tasks, ensuring a smooth task transition. Finally, we introduce row- and column-selection techniques that leverage Bloom filter sparsity to boost efficiency. Experiments on real-world datasets demonstrate that UrbanSparse outperforms state-of-the-art baselines, achieving up to 25.16% improvement in prediction and 20.76% in retrieval effectiveness while reducing training time by 65.97% and memory requirements by 86.49% compared to traditional BERT-based embeddings.

In summary, our contributions are at least threefold:

- A Novel Research Problem: We tackle the critical yet underexplored challenge of unifying
 geospatial prediction and retrieval within a single framework. By showing that these traditionally
 separate tasks can be co-optimized for mutual benefit, our work paves the way for next-generation
 geospatial foundation models.
- A Two-View Learning Mechanism: We propose a two-view learning process that combines Bloom filter-based sparse representations for fine-grained textual encoding with graph contrastive learning for local and contextual geographic encoding. By maximizing the mutual information between regions and their surroundings, our approach learns useful features from Bloom filter bits without extensive pre-training.
- Comprehensive Performance and Efficiency Gains: Extensive experiments validate the superiority of UrbanSparse over state-of-the-art baselines, demonstrating significant improvements in effectiveness and efficiency. This framework not only advances task performance but also establishes a new standard for scalable and resource-efficient urban computing solutions.

2 Related Work

2.1 Geospatial Predictions

Geospatial predictions aim to estimate key urban characteristics by leveraging statistics and associations across urban regions. Early works like Yuan et al.[65] analyzed human mobility and POIs to identify functional zones, while Zheng et al.[72] combined meteorological data, road networks, and taxi movements to predict air quality. Street-level imagery has been used to assess urban safety [49], and social media data has uncovered urban patterns [16]. POI and check-in data are also used to classify urban zones [63]. However, these task-specific models lack generalizability.

Recent work explores unsupervised methods to get rid of task-specific labels and learn generalized urban representations. Wang et al.[60] introduced mobility graphs with human movements as edges, while Fu et al.[17] enhanced these with POIs via graph auto-encoders. Zhai et al.[67] modeled POI co-occurrence, and Niu and Silva[50] incorporated spatial proximity. Recent approaches include adversarial training for multi-modal data [70], attention mechanisms for cross-modal features [69], contrastive learning on multi-view [68] or hierarchical graphs [24] aggregation, and pre-trained foundation models [1, 27] for general-purpose region embeddings. However, these methods prioritize holistic features and neglect fine-grained details, unfeasible for retrieval tasks. In contrast, our method preserves both granular textual terms and holistic geospatial correlations to support both tasks.

2.2 Geographic Information Retrieval

Geographic Information Retrieval (GIR) handles text-based queries with geographic distances [52]. Early research [6, 10-12, 43] use a linear combination of distances [54] and unsupervised text similarities including TF-IDF [57] and BM25 [53] to identify relevant objects for queries. These methods use bag-of-words (BOW) to represent texts, which lacks deep semantics and limits their retrieval effectiveness and prediction accuracies. The integration of deep learning models into GIR marked a significant shift, using dense representations to compute text similarities. Early learningbased models [66, 71] encode texts with lightweight neural networks, yet they lack inherent semantic knowledge and rely on extensive labeled queries. Some text-based IR models [18, 21] are adapted to GIR tasks, which use Word2Vec [48] embeddings to estimate semantic relevance. However, empirical studies [39] demonstrate that these approaches [18, 21, 51] fail to compete with classical methods in retrieval effectiveness. Moreover, these methods don't generate reusable representations and struggle on large-scale GIR databases. Pre-trained Language Models (PLMs) like BERT [13] and ERNIE [22] advanced GIR by embedding semantic understanding. DrW [39] aligned BERT-based representations with query-aware geographic preferences, while MGeo [14] and ERNIE-GeoL [22] pre-trained on city-specific datasets, integrating mobility data and multi-modality features. Despite strong retrieval performance, these methods lacked holistic urban representations needed for prediction tasks and were computationally intensive. Our approach bridges this divide by learning individual-level relevance from labeled queries while incorporating collective-level urban context to support predictions.

3 Preliminaries

Definition 1 (Representation Learning for Geographic Information Retrieval). Given a spatial keyword query q and a geo-textual object o, each with a location and text, representation learning encodes their texts into vectors f(q), $f(o) \in \mathbb{R}^d$ so that

$$Relevance(q, o) = F(DistSim(q, o), TextSim(f(q), f(o))),$$

where DistSim and TextSim measure spatial proximity and text similarity, and F combines them. The top-k relevant objects are then retrieved from $S = \{o_1, \ldots, o_N\}$.

Definition 2 (Representation Learning for Geospatial Predictions). Given an urban region $u \in \mathcal{U}$, representation learning encodes its spatial, functional, and containing objects into $f(u, o) \in \mathbb{R}^k$. A predictor $g : \mathbb{R}^k \to \mathbb{R}$ then estimates attributes Y(u) (e.g., socio-economic indicators).

Problem Statement. Given geo-textual objects $S = \{o_1, \dots, o_N\}$ and regions $\mathcal{U} = \{u_1, \dots\}$, learn a unified mapping f such that

$$f(q), f(o) \in \mathbb{R}^d, \quad f(u) \in \mathbb{R}^k,$$

where d and k are the dimensions for queries/objects and regions, respectively.

4 Method

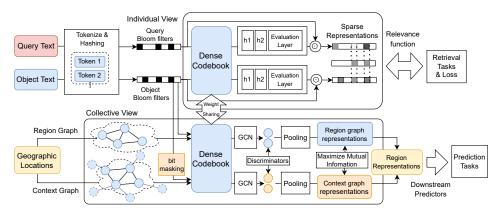


Figure 1: Overview of the UrbanSparse framework. (1) The *Individual View* encodes query and object text into Bloom filters, transforming them into sparse representations with fine-grained text importance. (2) The *Collective View* maximizes the mutual information between regions and their context, thereby learning meaningful geographic associations from Bloom filters.

We present UrbanSparse, a unified framework for geospatial prediction and retrieval that addresses four key challenges: (1) preserving fine-grained textual details for retrieval, (2) learning effective urban associations for prediction, (3) leveraging labeled queries for mutual task enhancement, and (4) improving computational efficiency. As shown in Figure 1, our system processes textual queries, geographic objects, and their spatial locations through two complementary views: First, the *Individual View* encodes text terms into Bloom filters via multiple hash functions. A neural network converts them into weighted sparse representations, avoiding information loss of dense vector aggregation. Second, the *Collective View* models urban regions through dual graph contrastive learning: an urban region graph capturing spatial proximity and a context graph encoding broader spatial influences. The mutual information maximization between regions and their contexts extracts geographic associations and filters noise. Third, a shared codebook connects the two view, with a warm-up training strategy for seamless task fusion. In addition, we propose row- and column-selection techniques that exploit Bloom filter sparsity to improve computational efficiency.

4.1 Text Encoding with Bloom filters

Textual descriptions of geographic objects are crucial for geospatial retrieval and prediction tasks. Traditional retrieval methods like BM25 use Bag-of-Words (BOW) representations, which effectively

identify key terms but struggle with scalability due to the vast vocabulary of geographic texts. Most prediction methods employ one-hot encoding of object categories [24, 33, 68], which neglect finegrained text information. While recent pre-trained language models (PLMs) [1, 14, 29, 39] have improved semantic understanding, they incur high computational costs and slow inference speeds.

We observe that geographic texts contain distinctive city-specific terms like addresses, landmarks, and local business names. PLM-based approaches often underperform on these terms as they appear infrequently in pre-training corpora, requiring substantial fine-tuning data to match classical methods' performance (Table 4). This suggests deep semantic understanding from PLMs may be unnecessary, and that representing city-specific terms through finer lexical granularity could suffice. We therefore propose to decompose texts with multiple n-gram and dictionary-based tokenizers and then encode them to Bloom filters [2] via random hashing. This strategy preserves critical lexical patterns similar to BOW while maintaining constant dimensionality for efficient computation. We use vanilla Bloom filters in implementation, detailed in Appendix A.

Two key concerns arise in using Bloom filters: (1) Hash Collision, which means that distinct text terms may sometimes share the same hash value, leading to inaccurate representations. However, we empirically find that such collision doesn't significantly affect the holistic urban features important for predictions. In retrieval tasks, we can leverage a membership test (as in in Appendix A) to exclude query terms not present in the object's Bloom filters, reducing the negative impact of hash collisions. (2) Loss of Token Order, as Bloom filters only record the existence of terms without capturing their order. This may lead to inaccuracies in handling order-sensitive queries in retrieval tasks (e.g. treating "Unit 123456" and "Unit 654321" as the same term). However, the spatial keyword queries handled in GIR tasks are typically concise, and the n-gram tokenizer (as in DSSM [23]) is generally sufficient. A 3-gram tokenizer will turn "123456" into "12#", "#34#", "#56", encoding the local order of tokens.

4.2 Relevance Learning with Neural Networks

We then handle retrieval tasks with neural networks, computing a relevance score to determine the order in which results are displayed to users, as in Definition 1. We empirically found that methods based on term-matching can achieve strong effectiveness without training (e.g., BM25-D in Table. 4), as they effectively match city-specific terms without prior knowledge. Hence, we propose to leverage the inherent term-matching capabilities of Bloom filters, i.e., the non-zero bits in each Bloom filter correspond to text terms from the query or objects. Specifically, we keep the representation sparse, performing a bit-by-bit evaluation on Bloom filter bits:

$$\operatorname{TextSim}(q, o) = (B_q \odot F_q(B_q)) \cdot (B_o \odot F_o(B_o)) \tag{1}$$

In Eq. 1, B_q and B_o are the Bloom filters (length m) for the query and object, respectively. We compute two sparse representations by reweighting the bits within the query and object Bloom filters separately. As in Figure 1, the encoders F_q and F_o contain a large, shared codebook matrix to encode the Bloom filters into dense embeddings, followed by two non-linear hidden layers that further compress them into low-dimensional space, extracting potential semantic relevance. Finally, the embeddings are expanded back via an Evaluation Layer to the dimension of the input Bloom filters, where each dimension is regarded as the importance of the bit at the corresponding position. The object Bloom filters can be evaluated offline, reducing online computations. The neural network F(B) can be defined as:

$$\mathbf{h}_1 = cb(B) = \sigma(W_c B / \sum_i^m B_i), \quad W_c \in \mathbb{R}^{h_1 \times m}$$

$$\mathbf{h}_2 = \sigma(W_2 \mathbf{h}_1 + b_2), \quad W_2 \in \mathbb{R}^{h_2 \times h_1}$$
(3)

$$\mathbf{h}_2 = \sigma(W_2 \mathbf{h}_1 + b_2), \quad W_2 \in \mathbb{R}^{h_2 \times h_1} \tag{3}$$

$$\mathbf{h}_3 = \sigma(W_3 \mathbf{h}_2 + b_3), \quad W_3 \in \mathbb{R}^{h_3 \times h_2} \tag{4}$$

$$F(B) = \sigma(W_4 \mathbf{h}_3) + 1, W_4 \in \mathbb{R}^{m \times h_3} \leftarrow 0 \tag{5}$$

Here, h_i denotes the output of i-th layer with dimension h_i , weight W_i , and bias b_i . σ denotes the activation function. W_c is the codebook matrix shared between the query and object encoder F_q and F_o , and $\sum_{i=1}^{m} B_i$ is the number of non-zero bits within the Bloom filters, ensuring a consistent h_1 across the varying amount of text terms. Eq 5 is an evaluation layer tailored for Bloom filters, where $W_4 \in \mathbb{R}^{m \times h_3}$ is set to zero, ensuring each intersecting bit has equal initial importance of 1. This preserves the term-matching capabilities of Bloom filters, which gives a good starting point in optimization that leads to faster convergence. Finally, we normalize and combine the text similarities with geographic distances:

$$T(q, o) = \operatorname{Sigmoid}(\beta_1 \operatorname{TextSim}(q, o) + \beta_2) \tag{6}$$

$$D(q, o) = -\log(1 + \operatorname{Dist}(q, o)) \tag{7}$$

$$Relevance(q, n) = T(q, n) + \gamma_1 D(q, n) + \gamma_2 T(q, n) D(q, n)$$
(8)

Here, we use the logarithm function to align the distance with human spatial perceptions, i.e., individuals are more sensitive to differences in proximity with nearby objects, while this sensitivity diminishes for objects further apart. The normalization of the text similarities facilitates its smooth combination with geographic distances. $\beta_1, \beta_2, \gamma_1, \gamma_2$ rescale and balance the influence of two similarities and their first-order interaction, which better excludes proximate objects with little text similarities. We initially set $\beta_2 = \gamma_2 = 0$ and $\beta_1 = \gamma_1 = 1$, and train these parameters together with the neural networks via LambdaRank [3] loss.

4.3 Extracting Collective Features

Our objective is to learn geospatial associations critical for prediction tasks. Following most geospatial models [9], we employ Graph Neural Networks (GNNs) to preserve POI spatial relationships [8]. However, common self-supervised approaches like graph reconstruction struggle with Bloom filters, as they inherently mix informative text terms with useless terms. We posit that informative terms are those shared across regions but exhibit diverse spatial distributions. Unique terms like "Postcode 114514" are unhelpful because they only exist in one place and cannot be leveraged by downstream predictors. The density of useful terms like "Starbucks" helps identify commercial zones.

Inspired by Tobler's Second Law of Geography ("the phenomenon external to a geographic area of interest affects what goes on inside"), we learn useful information from Bloom filters by maximizing the mutual information between city regions and their surroundings. Specifically, we construct a city-wise graph with Delaunay Triangulation following [24, 33] and perform contrastive learning on two graphs following [20, 73]. The two graphs include: 1) A region graph consisting of objects within a region, which captures intra-region bit distribution patterns, and 2) A context graph incorporating K-hop neighborhoods of the region graph. We utilize two 2-layer Graph Convolutional Networks (GCNs) [30] to compute object-level and graph-level representations:

$$Z_o^r = \mathrm{MLP}_1 \left(\sigma(A_r H_r W_1^r + b_1^r) W_2^r + b_2^r \right), \quad Z_g^r = \mathrm{MLP}_2 \left(\mathrm{AvgPool}(Z_o^r) \right), \tag{9}$$

$$Z_o^c = \text{MLP}_1(\sigma(A_c H_c W_1^c + b_1^c) W_2^c + b_2^c), \quad Z_g^c = \text{MLP}_2(\text{AvgPool}(Z_o^c)).$$
 (10)

where A_r, A_c are adjacency matrices, H_r, H_c are the features from the dense codebook in Eq. 2, W_i^r, W_i^c are learnable weights, and b_i^r, b_i^c are biases in the i-th GCN layer. AvgPool denotes the graph-level average pooling. We then maximize the mutual information (MI) between the region and context graphs, defined as:

$$\mathcal{L}_{\text{pred}} = -\frac{1}{|\mathcal{V}|} \sum_{o=1}^{|\mathcal{V}|} \left\{ \text{MI}(Z_o^r, Z_g^c) + \text{MI}(Z_o^c, Z_g^r) \right\}, \tag{11}$$

where the MI estimation is computed as:

$$\begin{aligned} & \operatorname{MI}(Z_o^r, Z_g^c) = \mathbb{E}_{r,c} \left[\log D(Z_o^r, Z_g^c) \right] + \mathbb{E}_{\hat{r},c} \left[\log \left(1 - D(\hat{Z}_o^r, Z_g^c) \right) \right], \\ & \operatorname{MI}(Z_o^c, Z_g^r) = \mathbb{E}_{c,r} \left[\log D(Z_o^c, Z_g^r) \right] + \mathbb{E}_{\hat{c},r} \left[\log \left(1 - D(\hat{Z}_o^c, Z_g^r) \right) \right]. \end{aligned}$$

where $D(a,b)=a^{\top}Wb$ is a bilinear discriminator, and \hat{r},\hat{c} are negative samples generated by randomly removing a portion of bits (e.g., 20%) from the Bloom filters before encoding them with the dense codebook in Eq 2. This design enhances the fine-grained text terms encoded by Bloom filters. By maximizing the mutual information between regions and their context while discriminating negative inputs with any missing bits, we extract critical geographic associations from shared bits.

4.4 Training Strategy and Optimizations

The shared codebook must balance coarse region-level features (for prediction) and fine query-object matches (for retrieval). Direct joint training causes codebook overfitting to retrieval data due to scale disparity: prediction tasks generally uses only thousands of regions, while retrieval tasks can involve millions of user queries. To resolve this, we employs two-phase training: (1) Warm-up Phase: Train exclusively on prediction tasks for some (i.e., 2-3) epochs, and (2) Alternating Phase: Iteratively training on prediction and retrieval data batches. This effectively balances holistic region features while absorbing object specifics (full algorithm in Appendix B).

In addition, we propose to accelerate the computation leveraging Bloom filter sparsity. As shown in Figure 2, we propose row and column selection in the codebook and the evaluation layer, significantly accelerating training and inference computations.

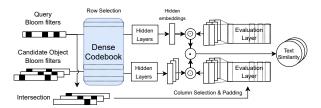


Figure 2: Illustration of the proposed optimization technique.

5 Experiments

In this section, we evaluate the output representations on geographic prediction and retrieval tasks following previous literature [1, 39]. We also perform efficiency and ablation studies.

5.1 Experimental setups

Datasets We use data from two cities, i.e. *Beijing* and *Shanghai*. The datasets include Point-of-Interests (POIs) from Meituan [39], a leading consumer service platform in China. The statistics of the datasets are shown in Table 1.

Table 1: Dataset Statistics

City	POIs	Labeled Queries	Regions
Beijing	122420	168,998	1010
Shanghai	116859	127,183	1358

Downstream tasks and Evaluation Protocols We evaluate the learned representations on three downstream tasks: *POI retrieval*, *Population Density Prediction*, and *House Price Prediction*. POI retrieval is one of the most common tasks in the location-based service. We evaluate following [39], where the user-selected objects on the Meituan platform are labeled as ground truth and the results are measured with Recall and Normalized Discounted Cumulative Gain (NDCG). Population density and house price prediction are two common tasks in the literature [9], and we measure the results with Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination (R²). More details for downstream tasks and metrics are provided in Appendix D.

Baselines The proposed method is compared with strong GIR and Urban Region Representation Learning baselines, including GraphSAGE [19], DGI [59], MVGRL [20], SpaBERT [35], HGI [24], and CityFM [1] for prediction tasks, and BM25 [53], BERT [13], OpenAI³, DRMM [18], DrW [39], MGeo [14], and DPR [29] for retrieval tasks. Many other recent prediction methods [28, 34, 62, 69] rely on other data types (e.g., GPS trajectory data of vehicles) as inputs. However, GPS trajectory data are only available in very few cities, and we did not find them for our datasets. Thus, we cannot run these methods for comparison in our experiments. It's noteworthy that we omit PLM-based retrieval methods with sparse representations [4, 15] due to their common failure on common GIR addresses and numbers. More details of these baselines can be found in Appendix E.

5.2 Experimental Results in Prediction Tasks

We evaluate the effectiveness of UrbanSparse on Population Density Prediction (population per square kilometer) and on House Price Prediction (CNY per square meter) as in Table 2 and 3. The results give us important insights: (1) Graph contrastive learning methods (DGI, MVGRL), while incorporating geospatial proximity within region graphs, perform similar or worse than a direct

³https://platform.openai.com/docs/guides/embeddings

feature reconstruction over input features (i.e., GraphSAGE) due to the loss of fine-grained textual features. (2) Competitive baselines HGI and CityFM have mitigated the problem via rule-based geographic context learning, where CityFM pre-trains on extensive OpenStreetMap data to achieve the second-best performance. (3) UrbanSparse stands out by leveraging Bloom filters as fine-grained text features with its novel contrastive learning at multiple granularities. Particularly, we compare it with its variant *UrbanSparse w/o Individual* (where labels from retrieval tasks are removed). The results show that improvements from labeled queries are small (but statistically significant, i.e., T-test p-value < 0.05). Without these labels, our framework still outperform other baselines.

Table 2: Population Density Prediction, with the best in **bold** and the second best underlined

Method	Beijing				Shanghai		
	MAE↓	RMSE↓	$R^2\uparrow$	MAE↓	RMSE↓	$R^2\uparrow$	
GraphSage DGI MVGRL SpaBERT HGI CityFM	4566 ± 361 5703 ± 259 5675 ± 248 6494 ± 432 4547 ± 349 4420 ± 348	7113 ± 811 8403 ± 234 8397 ± 378 9088 ± 856 7210 ± 754 6496 ± 694	$\begin{array}{c} 0.60 \pm 0.06 \\ 0.47 \pm 0.04 \\ 0.47 \pm 0.05 \\ 0.34 \pm 0.06 \\ 0.59 \pm 0.05 \\ \underline{0.66} \pm 0.04 \end{array}$	$\begin{array}{c} 11020 \pm 807 \\ 13022 \pm 567 \\ 12266 \pm 633 \\ 11586 \pm 672 \\ 8942 \pm 755 \\ \underline{6930} \pm 633 \end{array}$	$\begin{array}{c} 15142 \pm 1827 \\ 17482 \pm 371 \\ 16739 \pm 774 \\ 15401 \pm 1333 \\ 13606 \pm 1512 \\ \underline{10751} \pm 1184 \end{array}$	$\begin{array}{c} 0.34 \pm 0.05 \\ 0.17 \pm 0.04 \\ 0.24 \pm 0.01 \\ 0.31 \pm 0.07 \\ 0.46 \pm 0.09 \\ \underline{0.67} \pm 0.05 \end{array}$	
UrbanSparse - w/o Individual (Gains)	3307 ± 14 3368 ± 53 25.16%	5772 ± 31 5871 ± 78 11.14%	0.75 ± 0.003 0.74 ± 0.01 13.64%	5343 ± 55 5467 ± 81 22.90%	8958 ± 169 9189 ± 177 16.68%	0.78 ± 0.01 0.76 ± 0.01 16.42%	

Table 3: House Price Prediction, with the best in **bold** and the second best underlined

Method		Beijing			Shanghai		
	MAE↓	RMSE↓	$R^2\uparrow$	MAE↓	$RMSE\!\!\downarrow$	$R^2\uparrow$	
SpaBERT	21015 ± 1837	28083 ± 2289	0.55 ± 0.05	16772 ± 1253	25340 ± 3405	0.31 ± 0.08	
GraphSage	14239 ± 1824	19947 ± 2836	0.77 ± 0.05	17408 ± 1065	25118 ± 3217	0.32 ± 0.05	
DGÍ	$\overline{16203} \pm 1352$	22399 ± 1796	$\overline{0.70} \pm 0.05$	18415 ± 426	25876 ± 600	0.14 ± 0.04	
MVGRL	16799 ± 2035	23792 ± 2753	0.66 ± 0.09	17833 ± 211	25011 ± 237	0.20 ± 0.01	
HGI	14974 ± 1251	21833 ± 2022	0.72 ± 0.06	16095 ± 1140	24022 ± 3478	0.38 ± 0.06	
CityFM	17721 ± 2178	24123 ± 2884	0.66 ± 0.06	15694 ± 1727	24862 ± 4444	0.33 ± 0.15	
UrbanSparse	11983 ± 507	17155 ± 767	0.82 ± 0.01	13281 ± 325	20610 ± 671	0.46 ± 0.04	
 w/o Individual 	12881 ± 569	18326 ± 691	0.80 ± 0.02	13756 ± 166	21669 ± 535	0.40 ± 0.03	
(Gains)	15.84%	14.00%	6.49%	15.38%	13.90%	17.95%	

5.3 Experimental Results in Retrieval Tasks

We evaluate UrbanSparse in POI retrieval tasks against strong retrieval baselines, where standard deviations are omitted as they are very small (< 0.003). As the vanilla BM25, BERT, OpenAI, and DPR only consider text similarity, we supplement BM25-D, BERT-D, OpenAI-D, and DPR-D to incorporate geographic distances following [39] by defining $Relevance(q,o) = (1-\alpha)(1-D_{norm}(q,o)) + \alpha \cdot T_{norm}(q,o)$, where $D_{norm}(q,o)$ denotes the geographic distances, T_{norm} denotes the text similarity from the vanilla baseline, both are normalized to [0,1]. α is a hyper-parameter balancing the text and the distance similarities, set by grid searching on the dev set. In addition, DRMM, DrW, DPR, UrbanSparse are fine-tuned on labeled queries while the rest are not. The results in Table 4 provide several key insights: (1) The classical term-matching method BM25-D significantly outperform vector-based methods BERT-D and the leading commercial product, OpenAI-D. This underscores the critical importance of term-matching capabilities in retrieval tasks. (2) UrbanSparse surpasses heavy-weight BERT-based methods such as DrW and DPR-D, showcasing the effectiveness of evaluating Bloom filter bits. Furthermore, its superiority over its variant without the Collective View (denoted as w/o Collective) validates the benefits of incorporating prediction tasks.

5.4 Efficiency Studies

Training Time We evaluate the training time of UrbanSparse against top-performing baselines on 1 NVIDIA V100 32GB. As shown in Table 5, DPR, GraphSAGE, HGI, CityFM, and DrW require

Table 4: Point-of-Interest Retrieval, with the best in **bold** and the second best underlined

Method	Recall@10	Beijing NDCG@5	NDCG@1	Recall@10	Shanghai NDCG@5	NDCG@1
BM25	0.3401	0.2199	0.1634	0.3274	0.1913	0.1260
BM25-D	0.5477	0.4263	0.3569	0.6484	0.5215	0.4380
BERT	0.1602	0.1169	0.0979	0.1277	0.0853	0.0662
BERT-D	0.2400	0.1614	0.1298	0.2622	0.1687	0.1233
OpenAI	0.3265	0.2157	0.1637	0.3213	0.1875	0.1258
OpenAI-D	0.5206	0.3803	0.3078	0.6313	0.4852	0.3864
DRMM	0.1773	0.1105	0.0758	0.1921	0.1287	0.0804
DRMM-D	0.4357	0.2378	0.1566	0.4380	0.2433	0.1595
DrW	0.6316	0.4814	0.3791	0.7159	0.5394	0.4114
DPR	0.4183	0.2775	0.2121	0.4087	0.2498	0.1746
DPR-D	0.6688	0.4980	0.4132	0.7281	0.5641	0.4554
UrbanSparse	0.7062	0.5734	0.4990	0.7589	0.6209	0.5315
- w/o Collective	0.6988	0.5695	0.4991	0.7526	0.6157	0.5289
(Gains)	5.59%	15.14%	20.76%	4.23%	10.07%	16.71%

Table 5: Training Time (Minutes) and Inference Memory (MB)

(a) Prediction Tasks

(b) Retrieval Tasks

Method	Traini	ng Time	Memo	ry Usage	Method	Traini	ng Time	Memor	y Usage
	Beijing	Shanghai	Beijing	Shanghai		Beijing	Shanghai	Beijing	Shanghai
GraphSAGE	24	19	3.95	3.95	OpenAI	N/A	N/A	717.30	684.72
HGI	281	510	0.25	0.33	DrW	142	97	11806.29	10210.42
CityFM	510	355	3.95	3.95	DPR-D	448	282	507.80	491.60
UrbanSparse	22	11	0.25	0.33	UrbanSparse	51	33	71.92	66.40
(Saves)	8.33%	42.11%	0.00%	0.00%	(Saves)	64.08%	65.97%	85.84%	86.49%

considerably longer training time. This is particularly evident for DPR and CityFM as they rely on fine-tuning BERT, resulting in substantial training overhead. UrbanSparse leverages the sparsity of Bloom filters to significantly reduce computational demands.

Inference Memory Usage We also report the memory usage in inference, with all embeddings stored in 32-bit float numbers. For prediction tasks, as the trained models can be offloaded and urban regions are relatively few, the memory usage across methods exhibits negligible differences. In retrieval tasks, however, significant differences emerge due to the model parameters needed to process user queries and a large amount of POIs. UrbanSparse produces sparse representation with a fixed dimension of 8192 and a density of only 2–3%, achieving dramatically reduced memory usage, making it a resource-efficient choice for retrieval tasks.

Query Processing Speed We further evaluate the query processing speed of UrbanSparse against DPR-D by running a brute-force search. We do not evaluate DrW as it requires > 24 hours for evaluation. As shown in Table 6, UrbanSparse significantly outperforms DPR-D, achieving approximately 3.6x and 3.8x higher Queries Per Second (QPS) in Beijing and Shang-

Table 6: Query Per Second Comparison

Method	#Params (M)	Beijing	Shanghai
DPR-D	110	133.05	133.94
UrbanSparse	2.72	476.29	505.20

hai, respectively. This substantial improvement is attributed to UrbanSparse's small model size and high representation sparsity.⁴

 $^{^4}$ While we achieve a $40\times$ reduction in parameters, the $4\times$ QPS gain is bounded by our custom CUDA kernels for sparse representation calculations: the non-coalesced memory accesses in our kernel and an insufficiently optimized kernel dispatch strategy incur significantly higher latency than vendor-optimized dense kernels from experts. We anticipate that expert-tuned kernels will further narrow this gap.

Scalability UrbanSparse is lightweight and can theoretically scale up due to low computational complexity. To empirically verify this, we evaluate on established large datasets GeoGLUE [31], a public GIR benchmark with 2,849,754 POIs. However, the benchmark doesn't support prediction tasks as it contains over 50% fake POIs for anonymity. As shown in Table 7, our methods show competitive retrieval effectiveness while trains much faster than PLM-based method DPR-D. DrW and DRMM are omitted as they reports OOM on this dataset.

Table 7: Point-of-Interest Retrieval and Training Time on GeoGLUE

Method	Recall@10	NDCG@5	NDCG@1	Training Time (Min)
MGeo [14]	N/A	N/A	0.5270	Unknown
DPR-D	0.7611	0.6318	0.5350	131
UrbanSparse	0.7621	0.6344	0.5310	54

5.5 Ablation Studies

While UrbanSparse's prediction advantages stem from Bloom filter-contrastive learning integration, can other contrastive learning methods replicate this by simply adopting Bloom filters? Our evaluation shows fundamental limitations: Table 8 reveals Bloom filters' inconsistent impact. While producing 150%+ improvements for Shanghai population prediction with DGI/MVGRL, other tasks show mixed results (-11.4% to +36.3%). In conclusion, standard contrastive objectives appear poorly suited to extract Bloom filters' encoded bit patterns, while UrbanSparse achieves consistent gains. We also studied other hyperparameters (e.g., tokenizers, hash functions, Bloom filter length), and put these technical details in Appendix F.

Table 8: Effect of Bloom Filters vs BERT Embeddings

Method	Pop. Pred. R ² ↑		House Pred. R ² ↑	
	Beijing	Shanghai	Beijing	Shanghai
DGI	0.4682	0.1877	0.7240	0.1511
w/ Bloom filters	0.4807	0.4752	0.7521	0.2060
(Gains)	2.7%	153.2%	3.9%	36.3%
MVGRL	0.4483	0.1716	0.6686	0.1866
w/ Bloom filters	0.3974	0.4416	0.7085	0.2130
(Gains)	-11.4%	157.2%	6.0%	14.2%
UrbanSparse _(BERT)	0.3830	0.3046	0.3388	0.1010
UrbanSparse	0.7480	0.7805	0.8234	0.4612
(Gains)	95.3%	156.2%	143.0%	356.6%

6 Conclusion

In this work, we introduced UrbanSparse, a unified framework integrating the traditionally separate geospatial prediction and retrieval tasks via a two-view learning mechanism that combines Bloom filter-based sparse representations and graph contrastive learning. Extensive experiments demonstrate its ability to outperform state-of-the-art baselines while achieving significant gains in efficiency, accuracy, and scalability. This study pioneers a new research direction in urban computing, offering a transformative solution to unify task frameworks and address complex urban challenges with greater resource efficiency.

Acknowledgment

This research/project is supported by the National Research Foundation, Singapore, under its AI Singapore Programme (AISG Award No: AISG2-PhD-2021-08-020[T]) and A*STAR RIE2025 Manufacturing, Trade and Connectivity (MTC) Programmatic Fund (M24N6b0043) administered by A*STAR. Yuanlong Chen's work is supported by the Singapore International Graduate Award.

References

- [1] Pasquale Balsebre, Weiming Huang, Gao Cong, and Yi Li. City foundation models for learning general purpose representations from openstreetmap. In *Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, CIKM 2024, Boise, ID, USA, October 21-25, 2024*, pages 87–97, 2024.
- [2] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. *Commun. ACM*, 13(7): 422–426, 1970. ISSN 0001-0782.
- [3] Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost functions. In *Advances in Neural Information Processing Systems*, volume 19, 2006.
- [4] Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding: Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge distillation, 2023.
- [5] Lisi Chen, Gao Cong, Christian S. Jensen, and Dingming Wu. Spatial keyword query processing: An experimental evaluation. *Proc. VLDB Endow.*, 6(3):217–228, 2013.
- [6] Yen-Yu Chen, Torsten Suel, and Alexander Markowetz. Efficient query processing in geographic web search engines. In Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pages 277–288, 2006.
- [7] Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, Cheng Long, Yiding Liu, Arun Kumar Chandran, and Richard Ellison. Robust road network representation learning: When traffic patterns meet traveling semantics. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, CIKM '21, page 211–220, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384469.
- [8] Yile Chen, Xiucheng Li, Gao Cong, Cheng Long, Zhifeng Bao, Shang Liu, Wanli Gu, and Fuzheng Zhang. Points-of-interest relationship inference with spatial-enriched graph neural networks. *Proc. VLDB Endow.*, 15(3):504–512, November 2021. ISSN 2150-8097.
- [9] Yile Chen, Weiming Huang, Kaiqi Zhao, Yue Jiang, and Gao Cong. Self-supervised representation learning for geospatial objects: A survey. *Information Fusion*, 123:103265, 2025. ISSN 1566-2535.
- [10] Maria Christoforaki, Jinru He, Constantinos Dimopoulos, Alexander Markowetz, and Torsten Suel. Text vs. space: efficient geo-search query processing. In *Proceedings of the 20th ACM International Conference* on Information and Knowledge Management, CIKM '11, page 423–432, 2011. ISBN 9781450307178.
- [11] Gao Cong, Christian S. Jensen, and Dingming Wu. Efficient retrieval of the top-k most relevant spatial web objects. *Proc. VLDB Endow.*, 2(1):337–348, 2009. ISSN 2150-8097.
- [12] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on spatial databases. In 2008 IEEE 24th International conference on data engineering, pages 656–665. IEEE, 2008.
- [13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.
- [14] Ruixue Ding, Boli Chen, Pengjun Xie, Fei Huang, Xin Li, Qiang Zhang, and Yao Xu. Mgeo: A multi-modal geographic pre-training method. *Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval*, 2023.
- [15] Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking, page 2288–2292. Association for Computing Machinery, New York, NY, USA, 2021. ISBN 9781450380379.

- [16] Vanessa Frias-Martinez, Victor Soto, Heath Hohwald, and Enrique Frias-Martinez. Characterizing urban landscapes using geolocated tweets. In *Proceedings of the 2012 International Conference on Privacy*, Security, Risk and Trust and 2012 International Conference on Social Computing, pages 239–248, 2012.
- [17] Yanjie Fu, Pengyang Wang, Jiadi Du, Le Wu, and Xiaolin Li. Efficient region embedding with multi-view spatial networks: A perspective of locality-constrained spatial autocorrelations. In *Proceedings of the 32rd AAAI Conference on Artificial Intelligence*, pages 906–913, 2019.
- [18] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance matching model for ad-hoc retrieval. In *Proceedings of the 25th ACM International on Conference on Information and Knowledge Management*, CIKM '16, page 55–64, 2016. ISBN 9781450340731.
- [19] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pages 1024–1034, 2017.
- [20] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on graphs. In *Proceedings of International Conference on Machine Learning*, pages 3451–3461. 2020.
- [21] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures for matching natural language sentences. In *Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2*, NIPS'14, page 2042–2050, 2014.
- [22] Jizhou Huang, Haifeng Wang, Yibo Sun, Yunsheng Shi, Zhengjie Huang, An Zhuo, and Shikun Feng. Erniegeol: A geography-and-language pre-trained model and its applications in baidu maps. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22, page 3029–3039, 2022. ISBN 9781450393850.
- [23] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep structured semantic models for web search using clickthrough data. In *Proceedings of the 22nd ACM International Conference on Information & Knowledge Management*, CIKM '13, page 2333–2338, 2013. ISBN 9781450322638.
- [24] Weiming Huang, Daokun Zhang, Gengchen Mai, Xu Guo, and Lizhen Cui. Learning urban region representations with pois and hierarchical graph infomax. ISPRS Journal of Photogrammetry and Remote Sensing, 196:134–145, 2023. ISSN 0924-2716.
- [25] Weiming Huang, Jing Wang, and Gao Cong. Zero-shot urban function inference with street view images through prompting a pretrained vision-language model. *International Journal of Geographical Information Science*, 38(7):1414–1442, 2024.
- [26] Bo Hui, Da Yan, Wei-Shinn Ku, and Wenlu Wang. Predicting economic growth by region embedding: A multigraph convolutional network approach. In *Proceedings of the 29th ACM International Conference on Information and Knowledge Management*, pages 555–564, 2020.
- [27] Krzysztof Janowicz, Gengchen Mai, Weiming Huang, Rui Zhu, Ni Lao, and Ling Cai. Geofm: how will geo-foundation models reshape spatial data science and geoai? *International Journal of Geographical Information Science*, 39(9):1849–1865, 2025.
- [28] Porter Jenkins, Ahmad Farag, Suhang Wang, and Zhenhui Li. Unsupervised representation learning of spatial data via multimodal embedding. In CIKM, pages 1993–2002, 2019.
- [29] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 6769–6781, 2020.
- [30] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In Proceedings of the 5th International Conference on Learning Representations, 2017.
- [31] Dongyang Li, Ruixue Ding, Qiang Zhang, Zheng Li, Boli Chen, Pengjun Xie, Yao Xu, Xin Li, Ning Guo, Fei Huang, and Xiaofeng He. Geoglue: A geographic language understanding evaluation benchmark. *CoRR*, abs/2305.06545, 2023.
- [32] Yi Li and Gao Cong. Geobloom: Revisiting lightweight models for geographic information retrieval. *Proc. VLDB Endow.*, 18(5):1348–1361, 2025.

- [33] Yi Li, Weiming Huang, Gao Cong, Hao Wang, and Zheng Wang. Urban region representation learning with openstreetmap building footprints. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA, USA, August 6-10, 2023*, pages 1363–1373, 2023.
- [34] Zechen Li, Weiming Huang, Kai Zhao, Min Yang, Yongshun Gong, and Meng Chen. Urban region embedding via multi-view contrastive prediction. In AAAI, pages 8724–8732, 2024.
- [35] Zekun Li, Jina Kim, Yao-Yi Chiang, and Muhao Chen. SpaBERT: A pretrained language model from geographic data for geo-entity representation. In *Findings of the Association for Computational Linguistics:* EMNLP 2022, pages 2757–2769, 2022.
- [36] Chenxi Liu, Hao Miao, Qianxiong Xu, Shaowen Zhou, Cheng Long, Yan Zhao, Ziyue Li, and Rui Zhao. Efficient multivariate time series forecasting via calibrated language models with privileged knowledge distillation. In 2025 IEEE 41st International Conference on Data Engineering (ICDE), pages 3165–3178, 2025.
- [37] Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, and Rui Zhao. Timecma: Towards Ilm-empowered multivariate time series forecasting via cross-modality alignment. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pages 18780–18788, 2025.
- [38] Chenxi Liu, Shaowen Zhou, Qianxiong Xu, Hao Miao, Cheng Long, Ziyue Li, and Rui Zhao. Towards cross-modality modeling for time series analytics: A survey in the LLM era. In *Proceedings of the Thirty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2025, Montreal, Canada, August 16-22, 2025*, pages 10564–10572. ijcai.org, 2025.
- [39] Shang Liu, Gao Cong, Kaiyu Feng, Wanli Gu, and Fuzheng Zhang. Effectiveness perspectives and a deep relevance model for spatial keyword queries. Proceedings of the ACM on Management of Data, 1(1):1–25, 2023.
- [40] Shuai Liu, Guojie Song, and Wenhao Huang. Real-time transportation prediction correction using reconstruction error in deep learning. ACM Trans. Knowl. Discov. Data, 14(2), February 2020. ISSN 1556-4681.
- [41] Shuai Liu, Xiucheng Li, Yile Chen, Yue Jiang, and Gao Cong. Disentangling dynamics: Advanced, scalable and explainable imputation for multivariate time series. *IEEE Transactions on Knowledge and Data Engineering*, 2025.
- [42] Ahmed Mahmood and Walid G. Aref. Query processing techniques for big spatial-keyword data. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD '17, page 1777–1782, 2017. ISBN 9781450341974.
- [43] Thomas Mandl, Paula Carvalho, Giorgio Maria Di Nunzio, Fredric Gey, Ray R Larson, Diana Santos, and Christa Womser-Hacker. Geoclef 2008: The clef 2008 cross-language geographic information retrieval track overview. In Evaluating Systems for Multilingual and Multimodal Information Access: 9th Workshop of the Cross-Language Evaluation Forum, CLEF 2008, Aarhus, Denmark, September 17-19, 2008, Revised Selected Papers 9, pages 808–821. Springer, 2009.
- [44] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. *Introduction to Information Retrieval*. 2008. ISBN 978-0-521-86571-5.
- [45] Rohin Manvi, Samar Khanna, Gengchen Mai, Marshall Burke, David B. Lobell, and Stefano Ermon. Geollm: Extracting geospatial knowledge from large language models. In *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*, 2024.
- [46] Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, Feiteng Huang, Jiandong Xie, and Christian S. Jensen. A unified replay-based continuous learning framework for spatio-temporal prediction on streaming data. In 40th IEEE International Conference on Data Engineering, ICDE 2024, Utrecht, The Netherlands, May 13-16, 2024, pages 1050–1062. IEEE, 2024.
- [47] Hao Miao, Yan Zhao, Chenjuan Guo, Bin Yang, Kai Zheng, and Christian S. Jensen. Spatio-temporal prediction on streaming data: A unified federated continuous learning framework. *IEEE Transactions on Knowledge and Data Engineering*, 37(4):2126–2140, 2025.
- [48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In Advances in Neural Information Processing Systems, volume 26, 2013.

- [49] Nikhil Naik, Jade Philipoom, Ramesh Raskar, and César Hidalgo. Streetscore predicting the perceived safety of one million streetscapes. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 793–799, 2014.
- [50] Haifeng Niu and Elisabete A. Silva. Delineating urban functional use from points of interest data with neural network embedding: A case study in greater london. *Computers, Environment and Urban Systems*, 88:101651, 2021.
- [51] Paolo Palmieri, Luca Calderoni, and Dario Maio. Spatial bloom filters: Enabling privacy in location-aware applications. In *Information Security and Cryptology*, pages 16–36, 2015. ISBN 978-3-319-16745-9.
- [52] Ross S Purves, Paul Clough, Christopher B Jones, Mark H Hall, Vanessa Murdock, et al. Geographic information retrieval: Progress and challenges in spatial search of text. *Foundations and Trends® in Information Retrieval*, 12(2-3):164–318, 2018.
- [53] S. E. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In *SIGIR* '94, pages 232–241, 1994. ISBN 978-1-4471-2099-5.
- [54] Angela Schwering. Approaches to semantic similarity measurement for geo-spatial data: a survey. *Transactions in GIS*, 12(1):5–29, 2008.
- [55] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A latent semantic model with convolutional-pooling structure for information retrieval. In *Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management*, CIKM '14, page 101–110, 2014. ISBN 9781450325981.
- [56] Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval. *Journal of Documentation*, 28(1):11–21, 1972.
- [57] Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval, page 132–142. 1988. ISBN 0947568212.
- [58] Jiabao Sun, Jiajie Xu, Kai Zheng, and Chengfei Liu. Interactive spatial keyword querying with semantics. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM '17, page 1727–1736, 2017. ISBN 9781450349185.
- [59] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon Hjelm. Deep graph infomax. In *Proceedings of the 7th International Conference on Learning Representations*, 2019.
- [60] Hongjian Wang and Zhenhui Li. Region representation learning via mobility flow. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, page 237–246, 2017. ISBN 9781450349185.
- [61] Tonglong Wei, Youfang Lin, Yan Lin, Shengnan Guo, Lan Zhang, and Huaiyu Wan. Micro-macro spatial-temporal graph-based encoder-decoder for map-constrained trajectory recovery. *IEEE Transactions on Knowledge and Data Engineering*, 36(11):6574–6587, 2024.
- [62] Shangbin Wu, Xu Yan, Xiaoliang Fan, Shirui Pan, Shichao Zhu, Chuanpan Zheng, Ming Cheng, and Cheng Wang. Multi-graph fusion networks for urban region embedding. In *Proceedings of the 31st International Joint Conference on Artificial Intelligence*, pages 2312–2318, 2022.
- [63] Zijun Yao, Yanjie Fu, Bin Liu, Wangsu Hu, and Hui Xiong. Representing urban functions through zone embedding with human mobility patterns. In *Proceedings of the 27th International Joint Conference on Artificial Intelligence*, pages 3919–3925, 2018.
- [64] Haitao Yuan and Guoliang Li. Distributed in-memory trajectory similarity search and join on road network. In 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019, pages 1262–1273. IEEE, 2019.
- [65] Jing Yuan, Yu Zheng, and Xing Xie. Discovering regions of different functions in a city using human mobility and pois. In *Proceedings of the 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 186–194, 2012.
- [66] Zixuan Yuan, Hao Liu, Yanchi Liu, Denghui Zhang, Fei Yi, Nengjun Zhu, and Hui Xiong. Spatio-temporal dual graph attention network for query-poi matching. SIGIR '20, page 629–638, 2020. ISBN 9781450380164.

- [67] Wei Zhai, Xueyin Bai, Yu Shi, Yu Han, Zhong-Ren Peng, and Chaolin Gu. Beyond word2vec: An approach for urban functional region extraction and identification by combining place2vec and pois. *Computers, Environment and Urban Systems*, 74:1–12, 2019.
- [68] Liang Zhang, Cheng Long, and Gao Cong. Region embedding with intra and inter-view contrastive learning. *IEEE Transactions on Knowledge and Data Engineering*, pages 1–6, 2022.
- [69] Mingyang Zhang, Tong Li, Yong Li, and Pan Hui. Multi-view joint graph representation learning for urban region embedding. In *Proceedings of the 29th International Joint Conference on Artificial Intelligence*, pages 4431–4437, 2020.
- [70] Yunchao Zhang, Yanjie Fu, Pengyang Wang, Xiaolin Li, and Yu Zheng. Unifying inter-region autocorrelation and intra-region structures for spatial embedding via collective adversarial learning. In *Proceedings of the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 1700–1708, 2019.
- [71] Ji Zhao, Dan Peng, Chuhan Wu, Huan Chen, Meiyu Yu, Wanji Zheng, Li Ma, Hua Chai, Jieping Ye, and Xiaohu Qie. Incorporating semantic similarity with geographic correlation for query-poi relevance learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):1270–1277, 2019.
- [72] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. U-air: when urban air quality inference meets big data. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1436–1444, 2013.
- [73] Haicang Zhou, Weiming Huang, Yile Chen, Tiantian He, Gao Cong, and Yew Soon Ong. Road network representation learning with the third law of geography. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang, editors, *Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 15, 2024*, 2024.

A Bloom Filters and Membership Tests

A Bloom filter is a space-efficient probabilistic data structure designed for set membership testing. Given a set $A = \{a_1, a_2, \dots, a_n\}$ of n elements, a Bloom filter encodes A using a bit vector B of length m, initially filled with zeros. It relies on k independent hash functions H_1, H_2, \dots, H_k , each mapping an input element to a position in $\{1, \dots, m\}$.

To insert an element $a \in A$, the bits at indices $H_1(a), H_2(a), \ldots, H_k(a)$ in the bit vector B are set to 1. To check whether a query element q belongs to the set, the Bloom filter examines the bits at positions $H_1(q), H_2(q), \ldots, H_k(q)$. If any of these bits is 0, q is definitely not in A. If all are 1, the Bloom filter reports that q may belong to A, introducing a false positive probability but guaranteeing no false negatives.

This tradeoff makes Bloom filters particularly useful in large-scale applications where space efficiency and fast membership queries are critical. In our implementation, we empirically found $m \geq 8192$, $k \geq 2$ sufficient for small false positive rates (See table 11). We use SHA-256 as random hash functions, leaving more sophisticated designs to future work.

B Training Algorithm

We hereby detail the training algorithm used to balance the training on retrieval and prediction tasks in our framework.

Algorithm 1 Two-Phase Training of UrbanSparse

```
1: Input: \mathcal{D}_{pred} (region data), \mathcal{D}_{retr} (query-object pairs), E_{warm} = 3, E_{total} = 20
 2: Parameter: Model f_{\theta} with codebook C
 3: procedure WARM-UP PHASE
 4:
            for epoch = 1 to E_{\text{warm}} do
 5:
                  for each batch B \in \mathcal{D}_{\text{pred}} do
                         Compute \mathcal{L}_{pred}
Update \theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{pred}
 6:
 7:
 8:
                   end for
 9:
            end for
10: end procedure
11: procedure Alternating Phase
            for epoch = E_{\text{warm}} + 1 to E_{\text{total}} do
12:
                   Shuffle \mathcal{D}_{pred} and \mathcal{D}_{retr}
13:
                  for i = 1 to \max(|\mathcal{D}_{pred}|, |\mathcal{D}_{retr}|) do
14:
                         Sample batch B_p \sim \mathcal{D}_{\text{pred}}, B_r \sim \mathcal{D}_{\text{retr}}
15:
                         Compute \mathcal{L}_{pred} on B_p via Eq.3
16:
                         Compute \mathcal{L}_{\text{retr}} on B_r via LambdaRank Update \theta \leftarrow \theta - \eta \nabla_{\theta} (\mathcal{L}_{\text{pred}} + \mathcal{L}_{\text{retr}})
17:
18:
                  end for
19:
            end for
20:
21: end procedure
```

C Complexity Analysis

We analyze the time complexity of the proposed UrbanSparse in retrieval tasks. The prediction tasks are not analyzed as they vary significantly with downstream predictors. Let h_i be the output dimension of the i-th model layer, u, e the count of non-zero bits in the user query and object Bloom filters, the time complexity of model forward process during training is given by $O((u+e)h_1+h_1h_2+h_2h_3+min(u,e)h_3)$. As h_1 , h_2 , and h_3 are small constants, (i.e., 256 and 32 in our implementation), the training time is dominated by u+e, which is only affected by the query and object text lengths, and the number of hash functions. The time complexity during inference is $O(u(h_1+h_3)+h_1h_2+h_2h_3)$, which is dominated by the query length.

D Downstream Tasks and Evaluation Protocols

To evaluate the quality of the learned representations, we consider three downstream tasks:

- **POI Retrieval.** Given a user query, retrieve relevant points of interest (POIs). We follow the dataset split and protocol of [39], where Meituan user-selected POIs serve as ground truth.
- **Population Density Prediction.** Predict the population density of a geographic region based on its learned embedding.
- House Price Prediction. Estimate the average house price in a region using its representation.

It is noteworthy that land use, population density, and house price prediction are the top-3 common tasks according to the recent survey [9]. However, we fail to find high-quality land use ground truth in the two studied cities, so we only evaluate the latter two tasks.

Evaluation Metrics We employ the following metrics for each task:

- Recall@K and NDCG@K (Normalized Discounted Cumulative Gain) for POI retrieval. Recall@K measures the fraction of ground-truth POIs appearing in the top-K results, while NDCG@K accounts for both relevance and ranking position.
- Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient of Determination (\mathbb{R}^2) for the regression tasks (population density and house price). MAE and RMSE quantify absolute and squared deviations, respectively; \mathbb{R}^2 indicates the proportion of variance explained by the model.

For retrieval tasks, we requested and got the established benchmark from [39], which has a fixed split with the train/dev/val ratio 0.81:0.09:0.10. As the splits are fixed without randomness, the standard deviations appear to be very small (<0.003 for all methods) and we omit the standard deviations in our table. For prediction tasks, we follow common practice of unsupervised representation learning, evaluating the learned representations with scikit-learn RandomForestRegressor on all urban regions using 5-fold cross-validation. We strictly repeat all experiments 10 times, report the average results and standard deviations without cherry-picking.

Data Sources All datasets (or their corresponding embeddings/Bloom filters) used in this paper are publicly available. Table 9 lists each data type along with its source and download link.

Data TypeSourceLinkPOI datasets and queries
Population densityMeituan
WorldPop
Beikehttps://anonymous.4open.science/r/UrbanSparse
https://hub.worldpop.orgHouse prices
Administrative boundariesBeike
GADMhttps://ke.com
https://gadm.org

Table 9: Data sources and download links

Due to licensing constraints, the raw Meituan query and POI text data cannot be shared. Instead, we provide the corresponding Bloom filters and geographic coordinates in our GitHub repository, along with BERT, OpenAI, and our trained DPR embeddings to enable full replication of all experiments.

E Baselines and Implementation Details

We compared with the following baselines from the prediction and retrieval tasks respectively:

(1) Prediction Methods

• GraphSage [19]: This classical graph learning algorithm samples and aggregates neighbor nodes to compute node embeddings. It is commonly used as a geospatial representation learning baseline with node feature or graph structure reconstruction objectives. It is noteworthy that we have tested both vanilla GCN and GraphSAGE as representative graph learning baselines. However, GCN suffers from scalability issue and reports OOM in our datasets.

- DGI [59]: This method maximizes the mutual information between node and graph embeddings.
 We take its graph embedding as the region representation. It doesn't explicitly learn geospatial correlations.
- MVGRL [20]: Inspired by DGI, this method maximizes the mutual information between the node and graph embedding from the original graph and an augmented graph constructed by graph diffusion. We use its graph embedding as the region representation. It doesn't explicitly learn geospatial correlations.
- SpaBERT [35]: This method utilizes pre-trained BERT to learn geographic object representations with text and geospatial proximity. We average its object embeddings as region representation.
- HGI [24]: Inspired by DGI, this method incorporates geospatial domain knowledge by hierarchically maximizing the mutual information between POI, region, and city representations. It proposes a novel rule-based strategy of positive and negative sampling to preserve fine-grained and holistic information simultaneously.
- CityFM [1]: This method learns general-purpose geospatial representations from multimodal OpenStreetMap node, polyline, and polygon data. We use its node encoder to encode POI representations and average them as the region representation.

(2) Retrieval Methods

- BM25 [53]: This classical information retrieval method computes text similarities based on bag-of-words (BOW) representations and term-matching.
- BERT [13]: BERT is a representative pre-trained language model that excels in capturing deep semantics. We use the cosine similarity between queries and object representations to assess text similarities.
- OpenAI ⁵: OpenAI's text-embedding-3-small generates high-quality text embedding effective for retrieval tasks. Its technical details remain proprietary.
- DRMM [18]: This model evaluates text similarities based on pairwise local interactions at the term level. It doesn't account for geographic proximity.
- DrW [39]: This method utilizes BERT to capture term-level text similarities and propose a novel query-aware combination strategy with geospatial distances.
- DPR [29]: This method finetunes BERT on labeled queries, shortening the distance between textual similarities between relevant query-object pairs.
- MGeo [14]: This method applies multi-task pre-training on a BERT-based encoder and fine-tunes it by user queries. As we are unable to replicate the results of MGeo with their official code, we don't evaluate on the two datasets in the main content of the paper, and only reference the evaluation results on GeoGLUE in Table 7 as presented by the authors.

(3) UrbanSparse Variants

- UrbanSparse w/o Individual, where we remove the proposed Individual View in Figure 1.
- UrbanSparse w/o Collective, where we remove the proposed Collective View in Figure 1.

It is worth noting that although many recent methods for urban region representation learning rely on human mobility data (e.g., vehicle trajectories), such data are available for only a limited number of cities, so we do not include them in our comparisons. Instead, to ensure relevance, we compare against the most recent versions of HGI (2023) and CityFM (2024). On the other hand, sparse retrieval methods such as SPLADE [15] and BGE-M3 [4] rely on PLM tokenizers that split each digit of an address number into a separate token. As a result, they cannot properly match street or house numbers and cannot work properly in our datasets.

For retrieval baselines BM25, BERT, OpenAI, and DPR only consider text similarity, we supplement BM25-D, BERT-D, OpenAI-D, and DPR-D to incorporate geographic distances following [39] by defining $Relevance(q,o) = (1-\alpha)(1-D_{norm}(q,o)) + \alpha \cdot T_{norm}(q,o)$, where $D_{norm}(q,o)$ denotes the geographic distances, T_{norm} denotes the text similarity from the vanilla baseline, both are normalized to [0,1]. α is a hyper-parameter balancing the text and the distance similarities, set by grid searching on the dev dataset as in Table 10.

The representation dimension d varies among different baselines. We set d=64 for HGI, d=512 for DGI and MVGRL, d=768 for BERT SpaBERT, and DPR, d=1024 for CityFM and GraphSAGE,

⁵https://platform.openai.com/docs/guides/embeddings

Table 10: α value for baselines

Method	Beijing	Shanghai
BM25-D	0.4	0.4
BERT-D	0.4	0.4
OpenAI-D	0.3	0.3
DRMM-D	0.7	0.7
DPR-D	0.3	0.3

and d=1536 for OpenAI, following the settings recommended in the corresponding paper. For the proposed UrbanSparse, we fix the Bloom filter length to m=8192 with k=2 SHA-256 hash functions. In prediction tasks, we set the output region representation dimension d=64. For retrieval tasks, all methods run a brute-force search over all POIs unless otherwise specified. All experiments are conducted on 1 NVIDIA V100 32 GB.

F Additional Ablation Studies

F.1 Bloom Filter Length & Number of Hash functions

We analyze the effect of Bloom filter length m and the number of hash functions k using NDCG@5 on the POI retrieval in Beijing, chosen for its low standard deviation (below 0.002) and sensitivity to Bloom filter changes. As shown in Table 11, m < 2048 and k < 2 lead to worse performance due to insufficient capacity, while m > 8192 or k > 2 yields negligible gains, suggesting that Bloom filters reach their optimal capacity when m and k are sufficient to encode the geographic vocabulary, and further increases offer no additional benefits.

Table 11: Effect of k and m on Beijing POI Retrieval

k m	512	2048	8192	32768
1	0.5392	0.5382	0.5569	0.5464
2	0.5578	0.5689	0.5724	0.5738
3	0.5530	0.5689	0.5717	0.5730
8	0.5312	0.5679	0.5717	0.5727

F.2 Effect of Tokenizers

We analyze how the choice of tokenizers affects the retrieval effectiveness of UrbanSparse. We tested n-gram tokenizers as in DSSM [55] and a dictionary-based tokenizer Jieba (https://github.com/fxsjy/jieba). Table 12 shows that the combination of 1-gram, 2-gram, and dictionary-based tokenizers achieves the best Recall@20 and NDCG@5, enhancing the term-matching capability of Bloom filters.

Table 12: Effect of Tokenizers on Beijing POI retrieval

Tokenizer	Recall@20	NDCG@5
1-gram	0.7022	0.5547
2-gram	0.7175	0.5623
3-gram	0.6642	0.4511
1,2,3-gram	0.7133	0.5551
Dict. (Jieba)	0.7264	0.5633
1,2-gram+Dict.	0.7427	0.5740

F.3 Effect of Context Graph Construction

The context graph, constructed by randomly sampling from the K-hop neighbors of objects within the region graph, plays a critical role in the proposed Collective View. Larger K values create more

diverse and comprehensive context graphs, which can enhance the model's ability to capture complex relationships. As shown in Table 13, K=3 and K=4 achieve the highest effectiveness for both population and house price prediction tasks. K>4 yields no significant gains in effectiveness.

Table 13: Effect of *K*-hop Context Graphs

K	Pop. P	Pred. R ² ↑	House	Pred. R ² ↑
	Beijing	Shanghai	Beijing	Shanghai
1	0.6035	0.6614	0.7656	0.3751
2	0.6818	0.7228	0.7910	0.4470
3	0.7399	0.7857	0.8200	0.4530
4	0.7480	0.7805	0.8234	0.4612

F.4 Effect of Training Algorithms

We evaluate the effect of the proposed training algorithm as in Algorithm 1 by (1) training on two datasets separately in each epoch instead of interweaving each data batch and (2) removing the warm-up epochs. The results in Table 14 demonstrate that these modifications lead to reduced effectiveness in either the prediction or retrieval task. This suggests that the proposed training algorithm successfully trained a codebook to share useful information between the two tasks.

Table 14: Effect of Training Algorithms

Method	Pop. Pred. R ² ↑		Retrieval NDCG@5↑	
	Beijing	Shanghai	Beijing	Shanghai
UrbanSparse Train separately No warm-up	0.7480 0.7001 0.7290	0.7805 0.7450 0.7670	0.5734 0.5459 0.5553	0.6209 0.6140 0.6162

F.5 Effect of Row/Column Selection

We evaluate the efficiency gain of the two sparsification optimizations described in Figure 2, i.e., row selection and column selection, by analyzing the training time (minutes) and training memory usage (MB) on both cities. As shown in Table 15, both optimizations reduce memory footprint via sparsifying dense computations. Column selection alone yields $> 4\times$ speedup ($214 \rightarrow 51$ min) and $> 2\times$ memory reduction ($166.5 \rightarrow 71.9$ MB) by computing only query–bit–matched entries. Row selection brings a smaller but complementary gain ($72 \rightarrow 51$ min). When POI Bloom filters contain many bits, the sparse–dense kernel in PyTorch does not significantly outperform dense multiplication due to memory access patterns, so column selection delivers the major efficiency gains while row selection acts as a secondary refinement.

Table 15: Effect of Row and Column Selection Optimizations on Training Efficiency.

Method	Training Time (min) ↓		Training Memory (MB)↓	
	Beijing	Shanghai	Beijing	Shanghai
UrbanSparse	51	33	71.92	66.40
w/o Row Selection	72	40	127.38	112.21
w/o Column Selection	214	133	166.51	147.75

G Further Discussions

G.1 Limitations and Future Work

First, UrbanSparse unifies prediction and retrieval through Bloom-filter encodings and learned embeddings, but it presumes sufficiently rich geo-textual inputs and discards text sequence information,

which may degrade performance on sparse or highly noisy data. In future work, two straightforward strategies may be useful to strengthen robustness: (1) Designing off-the-shelf query rewriting modules to formalize queries and eliminate noises. (2) Explicitly marking empty areas with special markers (e.g., random points) to better inform the model [33]. Second, all our experiments rely on Meituan data from Beijing and Shanghai, and the model's hyperparameters (e.g. filter size, hash count, training schedule) were tuned for these cities, potentially limiting generalization to other urban environments. Third, the prediction tasks in this paper only involve the prediction from known areas to known areas. Future work should consider the spatio-temporal prediction tasks [46, 47], such as time series forecasting [36, 37], imputation [41], and recovery [61]. Finally, UrbanSparse may inadvertently reflect or amplify existing biases in spatial data sources (i.e., POIs in this work), thereby reinforcing socioeconomic disparities across urban regions. Future work should adopt fairness-aware sampling and noise-injected query augmentation during training, and include systematic bias auditing and fairness calibration across cities and demographic groups.

G.2 Broader Impact

By improving population density and house-price estimates and enhancing POI retrieval, UrbanSparse can aid urban planning, resource allocation, and user-facing location services while reducing computational costs. However, the use of fine-grained user queries and POI data risk privacy concerns, models trained on major-city data may underperform in underserved regions, and high-precision retrieval could be misused for targeted marketing or surveillance.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the research topic, with 3 major contributions summarized at the end of the introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of the proposed method in Appendix G.1 Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper doesn't include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We released all essential details needed to reproduce our experimental results. Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All datasets and code are released. The URL is provided in the first page of the paper as footnote using anonymous Github.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide all essential details of dataset, baselines, and implementation details in the Appendix D and E.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided essential standard deviation.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provided the GPU type we used and the training time essential for our experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly follow the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the broader impact of the proposed method in Appendix G.2.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our released datasets are either publicly available or properly anonymized. We have the copyright of the trained model weights.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have properly cited all original paper of existing assets.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We have extensively documented our new assets in the released Anouymous Github repository.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper doesn' use LLM for any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.