
Under review as a conference paper at ICLR 2022

MODEL-BASED OPPONENT MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

When one agent interacts with a multi-agent environment, it is challenging to deal
with various opponents unseen before. Modeling the behaviors, goals, or beliefs
of opponents could help the agent adjust its policy to adapt to different opponents.
In addition, it is also important to consider opponents who are learning simulta-
neously or capable of reasoning. However, existing work usually tackles only one
of the aforementioned types of opponent. In this paper, we propose model-based
opponent modeling (MBOM), which employs the environment model to adapt to
all kinds of opponent. MBOM simulates the recursive reasoning process in the
environment model and imagines a set of improving opponent policies. To ef-
fectively and accurately represent the opponent policy, MBOM further mixes the
imagined opponent policies according to the similarity with the real behaviors of
opponents. Empirically, we show that MBOM achieves more effective adaptation
than existing methods in competitive and cooperative environments, respectively
with different types of opponents, i.e., fixed policy, naïve learner, and reasoning
learner.

1 INTRODUCTION

Reinforcement learning (RL) has made great progress in multi-agent competitive games, e.g., Al-
phaGo (Silver et al., 2016), OpenAI Five (OpenAI, 2018), and AlphaStar (Vinyals et al., 2019). In
multi-agent environments, an agent usually has to compete against or cooperate with diverse other
agents (collectively termed as opponents whether collaborators or competitors) unseen before. Since
the opponent policy influences the transition dynamics experienced by the agent, interacting with di-
verse opponents makes the environment seem nonstationary from the agent’s perspective. Due to the
complexity and diversity in opponent policies, it is very challenging for the agent to retain overall
supremacy.

Explicitly modeling the behaviors, goals, or beliefs of opponents (Albrecht & Stone, 2018), rather
than treating them as a part of the environment, could help the agent adjust its policy to adapt to
different opponents. Many studies rely on predicting the actions (He et al., 2016; Hong et al., 2018;
Grover et al., 2018; Papoudakis & Albrecht, 2020) and goals (Rabinowitz et al., 2018; Raileanu
et al., 2018) of opponents during training. When facing diverse or unseen opponents, the agent
policy conditions on the prediction or representation generated by corresponding modules. However,
opponents may also have the same reasoning ability, e.g., an opponent who makes prediction about
the agent’s goal. In this scenario, higher-level reasoning and some other modeling techniques are
required to handle such sophisticated opponents (Wen et al., 2019; Yang et al., 2019; Yuan et al.,
2020). In addition, the opponents may learn simultaneously, and the modeling becomes unstable and
the fitted models with historical experiences lag behind. To enable the agent to continuously adapt to
learning opponents, LOLA (Foerster et al., 2018a) takes into account the gradients of the opponent’s
learning for policy update, Meta-PG (Al-Shedivat et al., 2018) formulates continuous adaptation
as a meta-learning problem, and Meta-MAPG (Kim et al., 2021a) combines meta-learning with
LOLA. However, LOLA requires knowing the learning algorithm of opponents, while Meta-PG and
Meta-MAPG require all opponents use a same learning algorithm.

Unlike existing work, we do not make such assumptions and focus on enabling the agent to learn ef-
fectively by directly representing the policy improvement of opponents when interacting with them,
even if they may be also capable of reasoning. Inspired from the intuition that human could antici-
pate the future behaviors of opponents by simulating the interactions in the brain after knowing the
rules and mechanics of the environment, in this paper, we propose model-based opponent modeling

1



Under review as a conference paper at ICLR 2022

(MBOM), which employs the environment model to predict and capture the policy improvement
of opponents. By simulating the interactions in the environment model, we could obtain the best
responses of opponents under the agent policy conditioned on the opponent model. Then, the op-
ponent model can be fine-tuned using the simulated best responses to get the higher-level opponent
model. The higher-level opponent model reasons more deeply and thus more competitive. By re-
cursively repeating the simulation and fine-tuning, MBOM imagines the learning and reasoning of
opponents and generates a set of opponent models with different levels, which could also be seen
as recursive reasoning. However, since the learning and reasoning of opponents are unknown, a
certain-level opponent model might overestimate or underestimate the opponent. To effectively and
accurately represent the opponent policy, we further propose to mix the imagined opponent policies
according to the similarity with the real behaviors of opponents updated by Bayesian rule.

We evaluate MBOM in the two competitive tasks, Triangle Game and One-on-One, against three
types of opponent, e.g., fixed policy, naïve learner, and reasoning learner. MBOM outperforms
strong baselines, especially when against naïve learner and reasoning learner, which demonstrates
the effectiveness of recursive imagination and Bayesian mixing. We also show the adaptation ability
of MBOM in the cooperative task Coin Game.

2 RELATED WORK

2.1 OPPONENT MODELING

In multi-agent reinforcement learning (MARL), it is a big challenge to form robust policy due to the
unknown opponent policy. From the perspective of an agent, if opponents are considered as a part of
the environment, the environment is unstable and complex for policy learning when the policies of
opponents are also changing. If the information about opponents is included, e.g., behaviors, goals
and beliefs, the environment may become stable, and the agent could learn using single-agent RL
methods. This line of research is opponent modeling.

One simple idea of opponent modeling is to build a model each time a new opponent or group
of opponents is encountered (Zheng et al., 2018). However, learning a model every time is not
efficient. A more computationally tractable approach is to represent an opponent’s policy with
an embedding vector. Grover et al. (2018) uses a neural network as encoder, taking as input the
trajectory of one agent. Imitation learning and contrastive learning are used to train the encoder.
Then, the learned encoder can be combined with RL by feeding the generated representation into
policy or/and value network. Learning of the model can also be performed simultaneously with
RL, as an auxiliary task (Jaderberg et al., 2016). Based on DQN (Mnih et al., 2015), DRON (He
et al., 2016) and DPIQN (Hong et al., 2018) use a secondary network which takes observations as
input and predicts opponents’ actions. The hidden layer of this network is used by the DQN module
to condition on for a better policy. It is also feasible to model opponents using variational auto-
encoders (Papoudakis & Albrecht, 2020), which means the generated representations are no longer
deterministic vectors, but high-dimensional distributions. ToMnet (Rabinowitz et al., 2018) tries
to make agents have the same Theory of Mind (Premack & Woodruff, 1978) as humans. ToMnet
consists of three networks, reasoning about the agent’s action and goal based on past and current
information. SOM (Raileanu et al., 2018) implements Theory of Mind from a different perspective.
SOM uses own policy, opponent’s observation and opponent’s action to work backwards to learning
opponent’s goal by gradient ascent.

The methods aforementioned only consider opponent policies which are independent of the agent.
If opponents hold belief about the agent, the agent can form higher level belief about opponents’
belief. This process can perform recursively, termed recursive reasoning. PR2 (Wen et al., 2019)
uses SAC (Haarnoja et al., 2018) to approximate opponents’ policies conditioning on the agent’s
action. Since PR2 uses the agent’s Q-function to estimate opponents’ policies, it can only be applied
in cooperative environments. Yuan et al. (2020) takes both level-0 and level-1 beliefs as input to the
value function. Level-0 belief is updated according to Bayesian rule, and level-1 belief is updated
using a learnable neural network. However, these methods use centralized training decentralized
execution algorithms to train a set of fixed agents that cannot handle diverse opponents in execution.
Bayes-ToMoP (Yang et al., 2019) is developed to detect and handle different reasoning opponents,
but the implementation is complex and not scalable.

2



Under review as a conference paper at ICLR 2022

If the opponents are also learning, the modeling mentioned above becomes unstable and the fitted
models with historical experiences lag behind. So it is beneficial to take into consideration the
learning process of opponents. LOLA (Foerster et al., 2018a) introduces the impact of the agent’s
policy on the anticipated parameter update of the opponent. A neural network is used to model
the opponent’s policy and estimate learning gradient of the opponent’s policy, implying that the
learning algorithm used by the opponent should be known, otherwise the estimated gradient will be
inaccurate. Further, the opponents may still be learning continuously during execution. Meta-PG
(Al-Shedivat et al., 2018) is a method based on meta policy gradient, using trajectories come from
the current opponents to do multiple meta-gradient steps and construct a policy that is good for the
updated opponents. Meta-MAPG (Kim et al., 2021a) extends this method by including an additional
term that accounts for the impact of the agent’s current policy on the future policies of opponents,
similar to LOLA. These meta-learning based methods require that the distribution of trajectories
match across training and test, which implicitly means all opponent use a same learning algorithm.

2.2 MODEL-BASED RL AND MARL

Model-based RL allows the agent to have access to the transition function. There are two typical
branches of model-based RL approaches: background planning and decision-time planning. In
background planning, the agent could use the learned model to generate additional experiences for
assisting learning. For example, Dyna-style algorithms (Sutton, 1990; Kurutach et al., 2018; Luo
et al., 2019) perform policy optimization on simulated experiences, and model-augmented value
expansion algorithms (Feinberg et al., 2018; Oh et al., 2017; Buckman et al., 2018) use model-based
rollouts to improve the update targets. In decision-time planning (Chua et al., 2018), the agent could
use the model to rollout the optimal action at a given state by looking forward during execution, e.g.,
model predictive control.

The model-based MARL methods could be divided into two classes: centralized model and decen-
tralized model. AMLAPN (Park et al., 2019) builds a centralized auxiliary prediction network to
model the environment dynamics and the opponent actions to alleviate the non-stationary dynam-
ics. A centralized multi-step generative model (Krupnik et al., 2020) with a disentangled variational
auto-encoder has been proposed for performing trajectory planning. For decentralized model, IS
(Kim et al., 2021b) uses the model to generate imagined trajectories for multi-agent communication
to share intention. HPP (Wang et al., 2020) uses the models to propose and evaluate navigation
subgoals for the rendezvous task.

Our method relaxes the limitations on opponent modeling. We make no assumptions about the
variation of opponents’ policies. They could be fixed, randomly sampled from an unknowable policy
set, or continuously learning using an unknowable and changeable RL algorithm, both in training
and execution. We learn an environment model that allows the agent to perform recursive reasoning
against opponents who may also have the same reasoning ability.

3 PRELIMINARIES

We consider an n-agent stochastic game (S,A1, . . . ,An,P,R1, . . . ,Rn, γ), where S is the state
space, Ai is the action space of agent i ∈ [1, . . . , n], A =

∏n
i=1Ai is the joint action space of

agents, P : S ×A×S → [0, 1] is a transition function,Ri : S ×A×S → R is the reward function
of agent i , and γ is the discount factor. The policy of agent i is πi, and the joint policy of other
agents is π−i(a−i|s) =

∏
j 6=i π

j(aj |s), where a−i is the joint action except agent i. All agents
interact with the environment simultaneously without communication. The historical trajectory is
available, i.e., for agent i at timestep t, {s0, ai0, a−i0 , . . . , st−1, a

i
t−1, a

−i
t−1} is observable. The goal

of the agent i is to maximize its expected cumulative discount rewards

E
st+1∼P(·|st,ait,a

−i
t ),

ai∼πi(·|st),a−i
t ∼π

−i(·|st)

[ ∞∑
t=0

γtRi(st, ait, a−it , st+1)

]
. (1)

For convenience, the learning agent treats all other agents as a joint opponent with the joint action
ao ∼ πo(·|s) and reward ro. The action and reward of the learning agent are denoted as a ∼ π(·|s)
and r, respectively.

3



Under review as a conference paper at ICLR 2022

𝜙𝑚

𝜑0 𝜑1 𝜑𝑛

Mixer

……

𝜑𝑚𝑖𝑥

𝑎𝑖

𝑎−𝑖

𝑎𝑖

Agent

𝜋
𝑎𝑜~𝜋𝑚𝑖𝑥

𝑜 (∙|𝑠)
(∙ |𝑠, 𝑎𝑜; 𝜃)

Bayesian Mixing

𝜙0 𝜙1 𝜙𝑀−1… …

Opponent
model dataset

Opponent
model

Recursive Imagination

𝜋𝑚𝑖𝑥
𝑜 (∙ |𝑠)

𝑎𝑜

s

𝑎

𝜙0 𝜙1 𝜙𝑀

Ψ𝑖

𝑎−𝑖

𝜓0

𝜙𝑚𝑖𝑥

… …

𝑀𝐿𝑃

𝜓𝑖

… …

(3)

(5)

… …

𝜶

(4)

for m=0 to M-1

𝜙𝑚+1

𝜙𝑚

Rollout K steps

𝜋𝑖 ⋅ 𝑠, 𝜙𝑚; 𝜃

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡
𝑚𝑜𝑑𝑒𝑙

𝑎−𝑖

Recursive Imagination

𝜙𝑚s

𝑎−𝑖∗

for m=0 to M-2

𝜙𝑚+1𝜙𝑚

𝑎𝑜∗
Rollout

𝜋
𝑎𝑜~𝜋𝑜(∙|𝑠;𝜙𝑚)

(∙ |𝑠, 𝑎𝑜; 𝜃)

Environment model

𝑎

Recursive Imagination

𝑠, 𝜙𝑚

Mixer

𝜙0 𝜙1 𝜙𝑀

Ψ𝑖

𝑎−𝑖

𝜙𝑚𝑖𝑥

… …

𝑀𝐿𝑃

𝜓𝑖

… …

(3)

(5)

… …

𝜶

(4)

𝜋
𝑎−𝑖~𝜌(∙|𝑠;𝜙𝑚)

(∙ |𝑠, 𝑎−𝑖; 𝜃)

𝜋
𝑎−𝑖~𝜌(∙|𝑠;𝜙𝑚𝑖𝑥)

(∙ |𝑠, 𝑎−𝑖; 𝜃)

𝜙𝑚

𝑀𝐿𝑃

Ψ
ψ

𝜓0 𝜓1

𝜓𝑀

Bayesian Mixing

𝜙0 Ψ0 𝛼0

so
ft

er
-s

o
ft

m
ax

𝜙1 Ψ1 𝛼1

𝜙𝑀−1 Ψ𝑀−1 𝛼𝑀−1

… … … …

𝑎𝑜𝑠

𝜋𝑚𝑖𝑥
𝑜 (∙ |𝑠)

𝜋𝑜(∙ |𝑠; 𝜙𝑀−1)

𝜋𝑜(∙ |𝑠; 𝜙1)

𝜋𝑜(∙ |𝑠; 𝜙0)

Figure 1: Architectures of MBOM

4 MODEL-BASED OPPONENT MODELING

MBOM employs the environment model to predict and capture the learning of opponent policy.
By simulating recursive reasoning via the environment model, MBOM imagines the learning and
reasoning of the opponent and generates a set of opponent models. To obtain stronger representation
ability and accurately capture the adaptation of the opponent, MBOM mixes the imagined opponent
policies according to the similarity with the real behaviors of opponent.

4.1 RECURSIVE IMAGINATION

If the opponent is also learning during interaction, the opponent model fitted with historical experi-
ences always lag behind, making the agent hard to adapt to the opponent. Moreover, if the opponent
could adjust its policy according to the actions, intentions, or goals of the agent, then recursive rea-
soning may occur between agent and opponent. However, based on the lagged opponent model,
the agent would struggle to keep up with the learning of opponent. To adapt to the learning and
reasoning opponent, the agent should predict the current opponent policy and reason more deeply
than the opponent.

MBOM explicitly simulates the recursive reasoning process utilizing the environment model, called
recursive imagination, to generate a series of opponent models, called Imagined Opponent Poli-
cies (IOPs). Initially, the agent interacts with η different opponents which are learning with PPO
(Schulman et al., 2017), and collect a buffer D which contains the experience 〈s, a, ao, s′, r〉, where
r = 〈r, ro〉. For zero-sum game (r + ro = 0) and fully cooperative game (r = ro), ro can be easily
obtained, while for general-sum game we make a mild assumption that ro can be accessed dur-
ing experience collection. Using the experience buffer D, we can train the the environment model
Γ(s′, r|s, a, ao; ζ) by minimizing the mean square error

E
s,a,ao,s′,r∼D

1

2
‖s′ − ŝ′‖2 +

1

2
‖r − r̂‖2, (2)

where ŝ′, r̂ = Γ(s, a, ao; ζ), obtain the level-0 IOP π̃o(·|s;φ0) by maximum-likelihood estimation

E
s,ao∼D

log π̃o(ao|s;φ0), (3)

and learn the policy of the agent π(·|s, ao; θ) using PPO. By running PPO, we could also get the
value function V (s) of the agent. To imagine the learning of the opponent, as shown in Figure 1, we
use the rollout algorithm (Tesauro & Galperin, 1996) to get the best response of the opponent under
the agent policy π. For each opponent action aot at timestep t, we uniformly sample the opponent
action sequences in the next k timesteps, simulate the trajectories using the learned environment

4



Under review as a conference paper at ICLR 2022

Algorithm 1 MBOM
1: Pretraining:
2: Initialize the recursive imagination layer M .
3: Initialize the weights α with (1, 0, . . . , 0).
4: Interact with η learning opponents and collect the experience buffer D.
5: Train the level-0 IOP φ0, the environment model Γζ , and the agent policy θ using the experience

buffer D.
6: Interaction:
7: for t = 1, . . . , max_epoch do
8: Interact with the opponent to observe the real opponent actions.

{//Recursive Imagination}
9: Fine-tune φo with the real opponent actions

10: for i = 1, . . . ,M − 1 do
11: Rollout in Γζ with π(·|s, ao ∼ π̃o(·|s;φi−1); θ) to get the best responses of the opponent

ao∗ by equation 4 or equation 5.
12: Fine-tune φi−1 with the best responses to get the φi.
13: end for

{//Bayesian Mixing}
14: Update α by equation 7.
15: Mix the IOPs to get π̃omix by equation 6.
16: end for

model Γζ , and select the best response with the highest rollout value

ao∗t = argmax
aot

max
aot+1,··· ,a

o
t+k∼Unif

k∑
j=0

γt+jrot+j . (4)

During the simulation, the agent acts according to the policy conditioned on the modeled opponent
policy, at ∼ π(·|st, aot ∼ π̃o(·|st;φ0); θ), and the learned environment model provides the transition
st+1, rt = Γ(st, at, a

o
t ; ζ). With larger k, the rollout has longer planning horizon, and thus could

evaluate the action ao∗ more accurately, assuming a perfect environmental model. However, the
computation cost of rollout increases exponentially with the planning horizon to get an accurate
estimate of ao∗, while in practice the compounding error of the environmental model also increases
with the planning horizon. Therefore, the choice of k is a trade-off between accuracy and cost.
Specifically, for zero-sum game and fully cooperative game, we can approximately estimate the
opponent state value V o(s) as −V (s) and V (s), respectively, and modify the rollout value like
n-step return (Sutton & Barto, 2018) to obtain a longer horizon

ao∗t = argmax
aot

max
aot+1,··· ,a

o
t+k∼Unif

k∑
j=0

γt+jrot+j + γt+k+1V o(st+k+1). (5)

By imagination, we can obtain the best response of the opponent under the agent policy π and level-
0 IOP π̃o(·|s;φ0) and construct the simulated data {〈s, ao∗〉}. Then, we use the data to fine-tune the
level-0 IOP π̃o(·|s;φ0) by maximum-likelihood estimation, and obtain the level-1 IOP π̃o(·|s;φ1).
The level-1 IOP can be see as the best response of agent to the response of opponent to level-0 IOP.
In the imagination, it is the nested form as “the opponent believes [that the agent believes (that the
opponent believes ...)].” The existing imagined opponent policy is the innermost “(that the opponent
believes),” while the outermost “the opponent believes” is ao∗ which is obtained by rollout process.
Recursively repeating the rollout and fine-tuning, where the agent policy is conditioned on the IOP
π̃o(·|s;φm−1), we could derive the level-m IOP π̃o(·|s;φm). The higher-level IOP reasons more
deeply, and thus more competitive.

4.2 BAYESIAN MIXING

By recursive imagination, we get M IOPs with different reasoning levels. However, since the learn-
ing and reasoning of the opponent are unknown, a single IOP might overestimate or underestimate
the opponent. To obtain stronger representation ability and accurately capture the learning of the
opponent, as illustrated in Figure 1, we linearly combine the IOPs to get a mixed policy, similar idea

5



Under review as a conference paper at ICLR 2022

(a) Triangle Game (b) One-on-One

Figure 2: Illustrations of the scenarios.

was also present in (Wen et al., 2020)

π̃omix(·|s) =

M−1∑
i=0

αiπ̃
o(·|s;φi), (6)

where αi is the weight of level-i IOP, which is produced by the IOPs mixer,

α = (α0, . . . , αM−1) = softer-softmax(Ψ0, . . . ,ΨM−1). (7)

Softer-softmax (Hinton et al., 2015) is a variant of softmax, which uses higher temperature to control
a softy of the probability distribution over classes. Ψm is the decayed moving average of p(m|ao),
which is the probability of using the level-m IOP given the action of the opponent ao. By Bayesian
rule, we have

p(m|ao) =
p(ao|m)p(m)∑M−1
i=0 p(ao|i)p(i)

=
π̃o(ao|s;φm)p(m)∑M−1
i=0 [π̃o(ao|s;φi)p(i)]

, (8)

where p(m) is the probability of using the level-m IOP, and we estimate it as the moving average
of p(m|ao). Ψm indicates the similarity between the level-m IOP and the opponent in the most
recent stage. Given the opponent actions, the higher Ψm means that the actions are more likely
to be generated from the level-m IOP, and thus the level-m IOP is more similar to the opponent.
Adjusting the weights α according to the similarity could obtain a more accurate estimate of the
improving opponent policy. Moreover, the IOPs mixer is non-parametric, which could be updated
quickly and efficiently without parameter training and too many interactions. Therefore, the IOPs
mixer could adapt to the fast-improving opponent.

For completeness, the whole procedure of MBOM in given in Algorithm 1.

5 EXPERIMENTS

5.1 SETTING UP

We evaluate MBOM in two competitive environments.

Triangle Game is an asymmetric zero-sum game on two-dimension with multi-step actions, imple-
mented on Multi-Agent Particle Environment (Mordatch & Abbeel, 2017; Lowe et al., 2017) (MIT
license). As shown in Figure 2(a), there are two moving players, P1 and P2, and three fixed land-
marks, L1-L3, in a square field. The landmarks are located at the three vertexes of an equilateral
triangle with the side length 0.6. When the distance between a player and a landmark is less than
0.15, the agent touches the landmark and has the state T. T1 indicates that the player touches the
landmark L1, and so on. If the player does not touch any landmark, the player state is F. The payoff
matrix of the two players is shown in Table 2(a). P2 has inherent disadvantages since the optimal
solution of P2 always strictly depends on the state of P1. When facing different policies of P1, P2
has to adjust its policy to adapt to P1 for higher reward. We control P2 as the agent and take P1 as
the opponent.

One-on-One is a two-player competitive game implemented on Google Research Football Envi-
ronment (Kurach et al., 2020) (Apache-2.0 License), a physics-based 3D simulator. As shown in

6



Under review as a conference paper at ICLR 2022

Table 1: Payoff matrix of Triangle Game.

Player 2

F T1 T2 T3

Player1

F 0/0 −0.5/+ 0.5 −0.5/+ 0.5 −0.5/+ 0.5
T1 +0.5/− 0.5 +1/− 1 +1/− 1 −1/+ 1
T2 +0.5/− 0.5 −1/+ 1 +1/− 1 +1/− 1
T3 +0.5/− 0.5 +1/− 1 −1/+ 1 +1/− 1

Figure 2(b), there are two players, the shooter, which could dribble and shoot the ball, and the goal-
keeper. The shooter controls the ball in the initial state. The episode ends after 30 timesteps or when
the shooter loses possession of the ball. At the end of an episode, if the shooter shoots the ball into
the goal, the shooter will get a reward +1, and the goalkeeper will get a reward −1. Otherwise, the
shooter will get a reward of −1, and the goalkeeper will get a reward of +1. The goalkeeper could
only passively react to the strategies of the shooter and makes policy adaptation when the shooter
strategy changes. We control the goalkeeper as the agent and take the shooter as the opponent.

Baselines. In the experiments, we compare MBOM with the following methods:

• LOLA-DiCE (Foerster et al., 2018b) is an expansion of the LOLA, which uses Differ-
entiable Monte-Carlo Estimator (DiCE) operation to considers how to shape the learning
dynamics of other agents.

• Meta-PG (Al-Shedivat et al., 2018) uses trajectories come from the current opponents to do
multiple meta-gradient steps and construct a policy that is good for the updated opponents.

• Meta-MAPG (Kim et al., 2021a) includes an additional term that accounts for the impact
of the agent’s current policy on the future policies of opponents, compared with Meta-PG.

• PPO (Schulman et al., 2017) is a classical single agent RL algorithm, without any other
modules.

• MBOM w/o IOPs always uses φ0 as the opponent model, without recursive imagination
and Bayesian mixing.

The baselines have the same neural network architectures as MBOM. All the models are trained for
five runs with different random seeds. All the curves are plotted using mean and standard deviation.
More details about experimental settings and hyperparameters are available in Appendix A.

Opponents. For the opponents, we run independent PPO (Schulman et al., 2017) algorithms for 10
times. During each running, we store 20 opponent policies in the training set, 3 opponent policies in
the validation set, and 3 opponent policies in the test set. So the sizes of the training set, validation
set, and test set are 200, 30, and 30. We pre-train the agent with the opponents in the training set and
make the agent interact with the opponents in the test set to evaluate the ability of generalization and
adaptation. The validation set is only required by Meta-PG and Meta-MAPG. We construct three
types of opponents:

• Fixed policy. The opponents in the test set will not update during the interaction.
• Naïve learner. The opponents in the test set will be updated with PPO during the interac-

tion.
• Reasoning learner. The opponents could model the behavior of the agent and will be

fine-tuned during the interaction.

To increase the diversity of the opponents, we adopt the reward shaping technique and add invisible
barriers in the environment during the training.

5.2 PERFORMANCE

The experimental results against test opponents are shown in Figure 3, and the mean performance
with standard deviation over all test opponents is summarized in Table 2 and 3. In Triangle Game,
the opponent could take different strategies, e.g., hovering around a landmark, commuting between
two landmarks, or rotating among three landmarks, whereas the agent has to anticipate and adapt
to the opponent strategies. The learning of LOLA-DiCE depends on the gradient of the opponent

7



Under review as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.8

0.6

0.4

0.2

0.0

0.2

sin
(s

um
_r

ew
ar

d*
pi

/1
00

)

(a) Triangle Game, versus fixed policy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.6

0.4

0.2

0.0

0.2

0.4

0.6

sin
(re

wa
rd

)

(b) One-on-One, versus fixed policy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.8

0.6

0.4

0.2

0.0

0.2

sin
(s

um
_r

ew
ar

d*
pi

/1
00

)

(c) Triangle Game, versus naïve learner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.6

0.4

0.2

0.0

0.2

sin
(re

wa
rd

)

(d) One-on-One, versus naïve learner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.6

0.4

0.2

0.0

sin
(s

um
_r

ew
ar

d*
pi

/1
00

)

(e) Triangle Game, versus reasoning learner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.6

0.4

0.2

0.0

0.2

0.4

sin
(re

wa
rd

)

(f) One-on-One, versus reasoning learner

• Meta-MAPG • Meta-PG • LOLA-DiCE • PPO • MBOM w/o IOPs • MBOM

Figure 3: Performance of adaptation against different types of opponents, i.e., fixed policy, naïve
learner, and reasoning learner. The results are plotted using mean and standard deviation with five
different random seeds (x-axis is opponent index). The results show that MBOM can outperform
other baselines, especially against naïve learner and reasoning learner.

model. However, the gradient information cannot clearly reflect the distinctions between diverse
opponents, which leads to that LOLA-DiCE cannot adapt to the unseen opponent quickly and effec-
tively. Meta-PG and Meta-MAPG show stronger adaptation abilities than LOLA-DiCE when facing
different opponents, but fail on some opponents (index 0, 1, and 2 in Figure 3(a), 3(c), and 3(e)).
By visualization, we find that those opponents are hovering around one landmark, which are out
of the training set. Since Meta-PG and Meta-MAPG assume that the test set follows the distribu-
tion of the training set, these two methods are unable to adapt to the out-of-distribution opponents.
MBOM w/o IOPs obtains similar results to MBOM when facing fixed policy opponents because φ0
could accurately predict the opponent behaviors if the opponent is fixed. However, if the opponent
is learning and reasoning, φ0 cannot accurately represent the opponent, and thus the performance of
MBOM w/o IOPs drops. By explicitly simulating the recursive reasoning process, MBOM shows
more obvious performance gain against naïve learner and reasoning learner, as in Table 2. In One-
on-One, the shooter has absolute dominance and more flexible strategy choices, including shooting
location, shooting angle, and shooting time. Due to the limitation of gradient information, LOLA-
DiCE still shows poor adaptability. Meta-PG and Meta-MAPG heavily rely on the reward signal,
and thus adaptation is difficult for the two methods in this sparse reward task. MBOM w/o IOPs and
MBOM achieve similar performance with fixed policy, but the performance of MBOM significantly
improves if the opponent is improving as shown in Table 3, which is contributed to the recursive
reasoning capability given by recursive imagination in the environment model and Bayesian mixing
that quickly captures the learning of opponent.

5.3 COOPERATIVE TASK

MBOM could also be applied to cooperative tasks. We test the performance of MBOM on a coop-
erative scenario, Coin Game, which is a high-dimension expansion of the iterated prisoner dilemma

8



Under review as a conference paper at ICLR 2022

Table 2: Performance on Triangle Game

Fixed Policy Naïve Learner Reasoning Learner

LOLA-DiCE -22.513 (18.208) -20.477 (18.914) -21.554 (18.708)
Meta-PG -3.777(6.034) -6.718 (5.245) -8.350 (11.779)
Meta-MAPG -2.007 (5.639) -5.764 (5.180) -6.136 (9.911)
PPO -13.292 (8.223) -18.416 (8.084) -20.508 (12.335)
MBOM w/o IOPs -1.142 (3.895) -3.230 (2.583) -7.101 (16.985)
MBOM -1.188 (3.871) -1.659 (2.817) -2.746 (14.243)

Table 3: Performance on One-on-One

Fixed Policy Naïve Learner Reasoning Learner

LOLA-DiCE -0.339 (0.414) -0.496 (0.365) -0.632 (0.433)
Meta-PG -0.165 (0.417) -0.291( 0.371) -0.356 (0.439)
Meta-MAPG -0.112 (0.419) -0.268 (0.365) -0.378 (0.433)
PPO -0.188 (0.274) -0.569 (0.260) -0.483 (0.309)
MBOM w/o IOPs 0.188 (0.372) -0.023 (0.382) 0.113 (0.465)
MBOM 0.190 (0.378) 0.025 (0.377) 0.284 (0.403)

The numbers in table refer to mean and standard deviation of return over 30
opponents with 5 different random seeds.

(a) Coin Game

0 25 50 75 100 125 150 175 200
iterations

5

0

5

10

15

20

av
er

ag
e_

sc
or

e

LOLA-DiCE
Meta-PG & Meta-MAPG
MBOM w/o IOPs
MBOM

(b) Learning curves on Coin Game

Figure 4: (a) Illustration of Coin Game; (b) Learning curves in Coin Game, which are plotted using
mean and standard deviation with five runs with different random seeds.

with multi-step actions (Lerer & Peysakhovich, 2018; Foerster et al., 2018a). There are two players,
red and blue, moving on a 3× 3 grid field, and two types of coins, red and blue, randomly generated
on the grid field. If the player moves to the position of the coin, the player collects the coin and
receives a reward of +1. However, if the color of the collected coin is different from the player’s
color, the other player receives a reward of −2, as illustrated in Figure 4(a). The length of the game
is 150 timesteps. Both agents simultaneously update their policies using the same MBOM or other
baselines to maximize the sum of rewards.

The experiment results are shown in Figure 4(b). Meta-PG and Meta-MAPG degenerate to Policy
Gradient for this task as there is no training set. Both learn a greedy strategy that collecting any
color coin, which leads to total score of two players is zero. LOLA-DiCE learns too slow and does
not learn to cooperate within 300 iterations, indicating the inefficiency of estimating the opponent
gradients. MBOM w/o IOPs and MBOM learn to cooperate quickly and successfully, and MBOM
shows smaller standard deviation than MBOM w/o IOPs, indicating that MBOM can also be applied
to cooperative tasks without negative effect.

6 CONCLUSION AND FUTURE WORK

We have proposed model-based opponent modeling. MBOM employs recursive imagination and
Bayesian mixing to predict and capture the learning and improvement of opponents. Empirically,

9



Under review as a conference paper at ICLR 2022

we evaluated MBOM in two competitive environments, and demonstrated MBOM adapts to learning
and reasoning opponents much better than the baselines. These make MBOM a simple and effective
RL method whether opponents be fixed, continuously learning, or reasoning in competitive environ-
ments. Moreover, we also verified the adaptation ability of MBOM in cooperative environments.

In MBOM, the learning agent treats all opponents as a joint opponent. If the size of the joint
opponent is large, the agent will need a lot of rollouts to get an accurate best response. The cost
increases dramatically with the size of the joint opponent. How to reduce the computation overhead
in such scenarios will be considered in future work. Moreover, MBOM implicitly assumes that the
relationship between opponents is fully cooperative. Dealing with the case where their relationship
is non-cooperative is also left as future work.

REFERENCES

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. In In-
ternational Conference on Learning Representations (ICLR), 2018.

Stefano V Albrecht and Peter Stone. Autonomous agents modelling other agents: A comprehensive
survey and open problems. Artificial Intelligence, 258:66–95, 2018.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and Sergey Levine.
Model-based value estimation for efficient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. In International Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), 2018a.

Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and Shimon
Whiteson. DiCE: The infinitely differentiable Monte Carlo estimator. In International Conference
on Machine Learning (ICML), 2018b.

Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yuri Burda, and Harrison Edwards. Learning
policy representations in multiagent systems. In International Conference on Machine Learning
(ICML), 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), 2018.

He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep rein-
forcement learning. In International Conference on Machine Learning (ICML), 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Zhang-Wei Hong, Shih-Yang Su, Tzu-Yun Shann, Yi-Hsiang Chang, and Chun-Yi Lee. A deep
policy inference q-network for multi-agent systems. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), 2018.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, and K. Kavukcuoglu. Reinforcement learn-
ing with unsupervised auxiliary tasks. In International Conference on Learning Representations
(ICLR), 2016.

10



Under review as a conference paper at ICLR 2022

Dong-Ki Kim, Miao Liu, Matthew Riemer, Chuangchuang Sun, Marwa Abdulhai, Golnaz Habibi,
Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan P. How. A policy gradient algorithm for
learning to learn in multiagent reinforcement learning, 2021a.

Woojun Kim, Jongeui Park, and Youngchul Sung. Communication in multi-agent reinforcement
learning: Intention sharing. In International Conference on Learning Representations (ICLR),
2021b.

Orr Krupnik, Igor Mordatch, and Aviv Tamar. Multi-agent reinforcement learning with multi-step
generative models. In Conference on Robot Learning (CoRL), 2020.

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt, Car-
los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research foot-
ball: A novel reinforcement learning environment. In AAAI Conference on Artificial Intelligence
(AAAI), 2020.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. In International Conference on Learning Representations
(ICLR), 2018.

Adam Lerer and Alexander Peysakhovich. Maintaining cooperation in complex social dilemmas
using deep reinforcement learning, 2018.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Advances in Neural Information Process-
ing Systems (NeurIPS), 2017.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. In Interna-
tional Conference on Learning Representations (ICLR), 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural
Information Processing Systems (NeurIPS), 2017.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

Georgios Papoudakis and Stefano V Albrecht. Variational autoencoders for opponent modeling in
multi-agent systems. arXiv preprint arXiv:2001.10829, 2020.

Young Joon Park, Yoon Sang Cho, and Seoung Bum Kim. Multi-agent reinforcement learning with
approximate model learning for competitive games. PloS one, 14(9):e0222215, 2019.

David Premack and Guy Woodruff. Does the chimpanzee have a theory of mind? Behavioral and
brain sciences, 1(4):515–526, 1978.

Neil Rabinowitz, Frank Perbet, Francis Song, Chiyuan Zhang, SM Ali Eslami, and Matthew
Botvinick. Machine theory of mind. In International Conference on Machine Learning (ICML),
2018.

Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. Modeling others using oneself in
multi-agent reinforcement learning. In International Conference on Machine Learning (ICML),
2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

11

https://blog.openai.com/openai-five/


Under review as a conference paper at ICLR 2022

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approx-
imating dynamic programming. In International Conference on Machine learning proceedings
(ICML), 1990.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

G. Tesauro and G. R. Galperin. On-line policy improvement using monte-carlo search. In Advances
in Neural Information Processing Systems (NeurIPS), 1996.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Rose E Wang, Chase Kew, Dennis Lee, Edward Lee, Brian Andrew Ichter, Tingnan Zhang, Jie
Tan, and Aleksandra Faust. Model-based reinforcement learning for decentralized multiagent
rendezvous. In Conference on Robot Learning (CoRL), 2020.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning for
multi-agent reinforcement learning. In International Conference on Learning Representations
(ICLR), 2019.

Ying Wen, Yaodong Yang, Rui Luo, and Jun Wang. Modelling bounded rationality in multi-agent
interactions by generalized recursive reasoning. In International Joint Conference on Artificial
Intelligence (IJCAI), 2020.

Tianpei Yang, Jianye Hao, Zhaopeng Meng, Chongjie Zhang, Yan Zheng, and Ze Zheng. Towards
efficient detection and optimal response against sophisticated opponents. In International Joint
Conference on Artificial Intelligence (IJCAI), 2019.

Luyao Yuan, Zipeng Fu, Jingyue Shen, Lu Xu, Junhong Shen, and Song-Chun Zhu. Emer-
gence of pragmatics from referential game between theory of mind agents. arXiv preprint
arXiv:2001.07752, 2020.

Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and Changjie Fan.
A deep bayesian policy reuse approach against non-stationary agents. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

12



Under review as a conference paper at ICLR 2022

A HYPERPARAMETERS

The hyperparameters of MBOM are summarized in Table 4.

Table 4: Hyper-parameters

Triangle Game One-on-One Coin Game

PPO

policy hidden units MLP[64,32] LSTM[64,32] MLP[64,32]
value hidden units MLP[64,32] MLP[64,32] MLP[64,32]
activation function ReLU ReLU ReLU
optimezer Adam Adam Adam
learning rate 0.001 0.001 0.001
num. of updates 10 10 10
value discount factor 0.99 0.99 0
GAE parameter 0.99 0.99 0
clip parameter 0.115 0.115 0.115

Opponent model

hidden units MLP[64,32] MLP[64,32] MLP[64,32]
learning rate 0.001 0.001 0.001
batch size 64 64 64
num. of updates 10 10 10

IOPs

num. of levels M 3 3 2
learning rate 0.005 0.005 0.005
update times 3 3 3
rollout horizon 2 5 1
decayed factor of Ψ 0.9 0.9 0.9
horizon of Ψ 10 10 10
s-softmax parameter 1 1.1/e 1

13



Under review as a conference paper at ICLR 2022

B ALPHA WEIGHTS ANALYSIS

Figure 5 visualizes α of IOPs when the agent against different types of opponents, i.e., fixed policy,
naïve learner, and reasoning learner in Triangle Game and One-on-One. With the three opponent
types, α2 (the weight of level-2 IOP) is remarkably higher than others, which indicates that recursive
imagination of MBOM does learn a pervasive policy of the opponent by the environmental model.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.0

0.2

0.4

0.6

0.8

1.0

al
ph

a 
we

ig
ht

s

(a) Triangle Game, versus fixed policy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index
0.0

0.2

0.4

0.6

0.8

al
ph

a 
we

ig
ht

s

(b) One-on-One, versus fixed policy

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index

0.0

0.2

0.4

0.6

0.8

1.0

al
ph

a 
we

ig
ht

s

(c) Triangle Game, versus naïve learner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index
0.0

0.2

0.4

0.6

0.8

al
ph

a 
we

ig
ht

s

(d) One-on-One, versus naïve learner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index
0.0

0.2

0.4

0.6

0.8

1.0

al
ph

a 
we

ig
ht

s

(e) Triangle Game, versus reasoning learner

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

opponent index
0.0

0.2

0.4

0.6

0.8

al
ph

a 
we

ig
ht

s

(f) One-on-One, versus reasoning learner
—•— α0 —•— α1 —•— α2

Figure 5: Visualization of α0, α1, α2 of MBOM, where αi is the weight of level-i IOP. The results
are plotted using mean and standard deviation with five different random seeds (x-axis is opponent
index).

14


	Introduction
	Related Work
	Opponent Modeling
	Model-based RL and MARL

	Preliminaries
	Model-Based Opponent Modeling
	Recursive Imagination
	Bayesian Mixing

	Experiments
	Setting up
	Performance
	Cooperative Task

	Conclusion and Future Work
	Hyperparameters
	Alpha Weights Analysis

