
Under review as a conference paper at ICLR 2023

LATENT-SPACE DISENTANGLEMENT WITH UNTRAINED
GENERATOR NETWORKS ALLOWS TO ISOLATE DIFFER-
ENT MOTION TYPES IN VIDEO DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Isolating different types of motion in video data is a highly relevant problem in
video analysis. Applications can be found, for example, in dynamic medical or
biological imaging, where the analysis and further processing of the dynamics of
interest is often complicated by additional, unwanted dynamics, such as motion
of the measurement subject. In this work, it is shown that a representation of
video data via untrained generator networks, together with a specific technique
for latent space disentanglement that uses minimal, one-dimensional information
on some of the underlying dynamics, allows to efficiently isolate different, highly
non-linear motion types. In particular, such a representation allows to freeze any
selection of motion types, and to obtain accurate independent representations of
other dynamics of interest. Obtaining such a representation does not require any
pre-training on a training data set, i.e., all parameters of the generator network are
learned directly from a single video.

1 INTRODUCTION

Processing motion information in a time series of images is a classical but still very active research
topic in computer vision and computational imaging, with a plethora of applications ranging from
autonomous driving to biological and medical imaging. In this context, one can separate three
(strongly interconnected) directions of research: i) Motion reconstruction, which aims at recon-
structing dynamic image data from incomplete or indirect measurements, with applications for in-
stance in dynamic magnetic resonance (MR) imaging or dynamic positron-emission tomography
(PET), see Otazo et al. (2015); Bustin et al. (2020); Rahmim et al. (2009) for examples. ii) Motion
estimation, which aims to estimate and represent motion between different frames. This is one of
the most classical problems in computer vision and often addressed, for instance, via optical flow
estimation, see for instance Fortun et al. (2015) for a review. iii) Motion correction, which aims to
correct for motion, typically via registration techniques. The latter are again a well-established but
still very active research topic, in particular in the context of medical imaging such as MR imaging,
PET, computed tomography (CT) Oliveira & Tavares (2014); Kyme & Fulton (2021) but also in
applications like dynamic fluorescence microscopy Kumar et al. (2013).

Of course, this separation into three direction of research is somewhat artificial and close connections
between them exist: Having estimated motion fields available is crucial for motion correction, mo-
tion correction is strongly interconnected with image reconstruction, and adequately reconstructed
time series data is the basis of classical motion estimate techniques.

In the past years, deep learning based methods have enabled a significant progress in all of the above
research direction connected to motion in time series of images, see Bustin et al. (2020), Tu et al.
(2019) and Fu et al. (2020) for recent review papers on deep learning techniques for reconstruction,
motion estimation and motion correction, respectively.

A task that is related but still different to the above-described research directions in time series
analysis is the isolation of different types of motion. By this, we mean the following general problem
setting: Given a video with different types of motion, synthesize a new video that does not show
all types of motion, but only a subset of motion-types that is relevant for further processing. A
generic area of applications where this problem is relevant is medical imaging, e.g., MR imaging or
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PET. Here, a concrete example is a video showing cardiac motion together with additional motion
resulting from breathing or patient movement, and the goal is to obtain a video showing only the
isolated cardiac motion for further analysis.

While, at first glance, the task of isolating motion is strongly related to image registration techniques,
the latter do not apply here since, even in the case where motion fields that register each frame of
the time series to a representative template are available, it is still a highly non-trivial problem to
decompose such motion fields into different components corresponding to different types of motion.
As consequence, to the best knowledge of the authors, a generic method capable of isolating different
types of motion in video data does not exist so far.

The goal of this paper is to show that untrained generator networks, together with a specific tech-
nique for latent space disentanglement, can fill this gap. More specifically, we consider the optimiza-
tion of a generator network to represent a given time series of images, where different latent space
variables are forced to independently explain the different types of motion. The latter is achieved by
incorporating one-dimensional information on all but one of the different motion types present in the
video. As we show in our numerical experiments, obtaining such a representation of a time series
of images allows, in a second step, to freeze any selection of motion types, and to obtain accurate
independent representations of the other dynamics of interest.

The use of untrained generator networks for image representation was popularized by Ulyanov et al.
(2020), which also partially inspired our work. Since the appearance of Ulyanov et al. (2020), many
works employing the deep image prior for image reconstruction in various applications Gong et al.
(2018); Baguer et al. (2020) as well as works on the analysis of this type of approaches Heckel &
Soltanolkotabi (2019); Jagatap & Hegde (2019); Dittmer et al. (2020); Habring & Holler (2022)
have been published. More recently, also works that employ the deep image prior for representation
and reconstruction of dynamic MR data appeared, see for instance Hyder & Asif (2020); Yoo et al.
(2021). Existing works, however, focus on reconstruction and do not employ a specific latent-
space disentanglement as proposed here, which is main ingredient for not only representing but also
isolating different motion types.

Latent space disentanglement is in turn an active research topic in the context of GANs, see for
instance Chen et al. (2016) for a seminal work on using latent space disentanglement to learn in-
terpretable representations, Tulyakov et al. (2018) for a work on decomposing motion and content
in videos, and Liu et al. (2022) for a work that employs latent space disentanglement for semantic
face editing. But again, also in the context of GANs, to the best knowledge of the authors, a method
capable of isolating different motion types in video data as the one proposed here does not exist.

As prototypical application of the technique for unsupervised motion isolation introduced in this
paper, we provide experiments where we isolate cardiac motion from other motion types such as
respiratory motion or motion due patient movement, using both phantom and real MR image data
with partially simulated motion. The one dimensional information on some of the underlying motion
types in this case corresponds to a scalar describing the cardiac- or breathing state, a signal which
in practice can easily be obtained for instance by simultaneous electrocardiogram (ECG) or chest-
displacement measurements.

In addition to providing new possibilities for motion isolation, the advantage of the method presented
here is its general applicability in different medical imaging modalities an beyond, and the fact that,
contrary to classical registration techniques, the approach is rather generic and no explicit modeling
of motion types of any form is required. A disadvantage is that the motion isolation is only implicit
via latent-space variables, and that explicit motion information in the form of motion fields does not
become available with this technique.

2 METHOD

We introduce the proposed approach in a general setting (including possibly indirect observations
of the image data) first, and then specify its concrete application to isolating respiratory and cardiac
motion in dynamic images that were obtained with MR imaging.
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Consider a linear, discretized dynamic imaging inverse problem with data (yt)Tt=1 ⊂ RM and linear
operators At ∈ L(RN1×N2 ,RM ) of the form

yt = Atxt, t = 1, ..., T , (1)

where the unknown is a sequence of images (xt)
T
t=1 with xt ∈ RN1×N2 for each t. Following

the basic idea introduced in Ulyanov et al. (2020) for static images, we consider each frame xt ∈
RN1×N2 to be the output of a generator xt = Gθ(zt), whose parameters we want to learn only from
the given data. In particular, we consider generator networks Gθ : Rq → RN1×N2 of the form

Gθ(zt) = θ1L ∗ σL−1(θ
1
L−1 ∗ (...σ1(θ

1
1 ∗ zt + θ21)...) + θ2L−1) + θ2L, (2)

with time-independent parameters θij ∈ Θ, for 1 ≤ i ≤ 2 and 1 ≤ j ≤ L and pointwise nonlin-
earities σ1, . . . , σL−1. The generator network maps the latent space Rq to the image (frame) space
RN1×N2 . Assuming the dynamic image sequence (xt)

T
t=1 contains m ∈ {2, 3, . . .} independent

types of motion, we split the latent variable z ∈ Rq into a time-independent part z0 ∈ Rq−m and
m time-dependent variables (zit)

T
t=1 with zit ∈ R, i = 1, . . . ,m. We further assume that all the

time dependent variables (zit)
T
t=1 except (z1t )

T
t=1 are given as (ẑit)

T
t=1 from some one-dimensional

a-priori information on the state of the respective types of motion (e.g. from electrocardiograms or
chest-displacement measurements).

We then reconstruct the image sequence (xt)
T
t=1 together with the network parameters θ and the

time-dependent variable (z1t )
T
t=1 via solving

((ẑ1t )
T
t=1, θ̂) ∈ arg min

(z1
t )

T
t=1,θ

1

T

T∑
t=1

∥yt −AtGθ(ẑ
0, z1t , ẑ

2
t . . . , ẑ

m
t )∥22, (3)

where ∥ · ∥2 is the Euclidean norm (but can be a more general loss) and ẑ0 ∈ Rq−m is a randomly
initialized, fixed static latent variable. Once a solution is obtained, we do not only obtain the recon-
structed images sequence (x̂t)

T
t=1 via x̂t = Gθ̂(ẑ

0, ẑ1t , . . . , ẑ
m
t ), but, more importantly, can generate

image sequences (x̂i
t)

T
t=1 for i = 1, . . . ,m, which we expect to contain only the ith type of motion

with all others being fixed, via

x̂i
t = Gθ̂(ẑ

0, ẑ1h1
, . . . , ẑi−1

hi−1
, ẑit, ẑ

i+1
hi+1

, . . . , ẑmhm
), (4)

where h1, . . . , hi−1, hi+1, . . . , hm are fixed reference frames.

As a concrete example, in this paper we consider the application of this general approach to iso-
lating cardiac motion from respiratory motion in dynamic images obtained from MRI, where one-
dimensional information about the respiratory state (e.g. from measurements of the chest displace-
ment) is available. In this case, m = 2, and the latent variable zt ∈ Rq at time t is decomposed as
zt = (z0, z1t , z

2
t ) with z2t known (and given as (ẑ2t )

T
t=1). As our focus is on motion isolation rather

than reconstruction, we further assume the reconstructed dynamic image sequence to be available,
i.e., At is the identity, noting that a generalization of our approach to reconstruction does not pose
any conceptual difficulties. In summary, this yields the following optimization problem

((ẑ1t )
T
t=1, θ̂) ∈ arg min

(z1
t )

T
t=1,θ

1

T

T∑
t=1

∥yt −Gθ(ẑ
0, z1t , ẑ

2
t )∥22. (5)

Algorithmic strategy To solve the minimization problem (5), we use Pytorch Paszke et al. (2017)
and the ADAM optimizer Kingma & Ba (2014) with default settings. To achieve a good minimiza-
tion of the loss, and in particular stability w.r.t varying random initializations (see also Subsection
3.3 below), we iteratively reduce the learning rate after a fixed number of epochs, track the network
parameters and latent variables that achieve the minimal loss, and export those parameters and vari-
ables as the optimal solution (instead of the variables of the last iterate). Note that this does not cause
much computational overhead due to the rater small dimensionality of our network (see Section 3
for details).

3 NUMERICAL EXPERIMENTS

In this section the results of several experiments concerning dynamic images with respiratory and
cardiac motion are presented to illustrate the behavior of the new method. In particular, we present
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a synthetic phantom example and two semi-synthetic examples where real dynamic cardiac MR
images were enriched with synthetic respiratory motion. Note that a synthetization of some of the
motion types is necessary in order to have a ground-truth with isolated motion available.

Results for two additional real dynamic cardiac MR images are provided in the appendix. In ad-
dition, the supplementary material contains videos for all results. For all experiments, we assume
one-dimensional information, henceforth referred to as motion triggers, about the respiratory motion
to be given. For the phantom data, we include also experiments with given motion-triggers for both
motion types as reference scenario. For the MR images, we include additional experiments where
only a perturbed version of the breathing-motion trigger is available.

To assess the quality of the motion isolation, we compute the relative error norms (E1
h and E2

h) of
the dynamic images x̂1 = (x̂1

t )
T
t=1, x̂2 = (x̂2

t )
T
t=1 containing just one reconstructed kind of motion,

where
E1

h = ∥x̂1 − x1
true∥2/∥x1

true∥2, E2
h = ∥x̂2 − x2

true∥2/∥x2
true∥2, (6)

and xi
true is the ground truth showing only the ith type of motion, i.e., cardiac motion for i = 1 and

respiratory motion for i = 2. Here, the subscript h refers to the frame at which the other motion state
is fixed, see (4). Since we are not aware of any comparable method for isolating different motion
types in videos, we put the obtained error into context by providing also the idealized phantom
experiments with information on all motion triggers as reference.

In principle, as described in Section 2, our method allows to freeze one kind of motion at any
state, and generate images containing only the second kind of motion, as long as a sufficient mixing
of motions was observed. In practice, the choice of the freezing frame h has an impact on the
performance of the single motion reconstruction (though for the phantom at an overall rather low
error regime). Figure 6c provides an example for this by plotting the errors E1

h and E2
h as a function

of the frame h that is fixed for the other kind of motion. In our experiments, we always show results
for fixing the motion state that provides the best performance with respect to the ground truth.

For all experiments shown in the paper, we repeated the experiment 20 times with 20 different
seeds, and show the result whose performance w.r.t. the error measure E1

h is closest to the median
performance. For a discussion on the stability of our method w.r.t varying seeds see Subsection
3.3. Quantitative error measures for all experiments are provided in Table 1. The supplementary
material further contains videos showing the best result that was achieved over the 20 seeds for
each experiment. The source code to reproduce all experiments is available in the supplementary
material. All our experiments were conduced on a workstation with an AMD Ryzen 7 3800X 8-
Core Processor and 32 GB of memory, using a Nvidia RTX 3090 GPU with 24 GB of memory.
The smallest largest experiment considered here (solving (5) with phantom and real cine MR data,
respectively) took around 19 seconds and 3.8 minutes, respectively.

3.1 SYNTHETIC DATA

The first test problem, consisting of 80 frames with 64×64 pixels, corresponds to a synthetic exam-
ple displaying two nested disks and is represented in Figure 1. A more compact representation of
this dynamic image can be observed in Figure 21a, where a vertical slice of the image (marked in
red on the left image), is displayed over time (and can be seen on the right image) clearly showing
temporal changes. This representation will be used throughout the paper.

In this example, three cardiac motion cycles are simulated by dilation of the internal disk while
two simulated breathing motion cycles are represented by shearing of the whole image. Note that
the size of the frames over time is maintained constant. The ground truth one-dimensional motion
information, i.e., the motion trigger, that was used to parametrize the different types of motions is
displayed in Figure 2b. Note that this is the information that defines one (or both in a reference
scenario) of the latent variables (z1(t))Tt=1 and (z2(t))Tt=1.

The generator modeling the solution for this example, as defined in Equation (2), corresponds
to a standard deep convolutional neural network (CNN) with 5 layers, where transpose two-
dimensional convolutions are used for all convolutions in (2) and no biases are used. The net-
work parameters are given as follows. Number of channels: [64, 128, 64, 32, 16, 1], (square)
kernel size: [4, 4, 4, 4, 4], stride: [1, 2, 2, 2, 2], padding: [0, 1, 1, 1, 1], activation functions:
[Tanh,LeakyReLU,Tanh,LeakyReLU,Tanh]. In total, the network has 3.03360 × 105 parameters.
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Figure 1: Selected phantom frames displaying different phases of respiratory and cardiac movement.
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(b) Ground truth motion triggers.
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Figure 2: Alternative representation of the time evolution for the synthetic data and loss function
plot.

The latent space Z ∈ R64 is split into 62 static components and 2 dynamic components. Blocks of
[4000, 4000] epochs with learning rates [0.01, 0.005] are used for the Adam optimizer. An example
plot of the loss value history throughout the iterations can be found in Figure 2c. The latent variables
are always initialized randomly from a uniform distribution on the interval [0, 1), and the network
weights are initialized orthogonally following Saxe et al. (2013).

The dynamic image reconstruction is performed in two different scenarios. First, as reference sce-
nario, we consider both motion triggers associated to the two types of movements (as displayed in
Figure 2b) to be known. In this case, we use them as the temporal-dependent latent variables (z1t )

T
t=1

and (z2t )
T
t=1, and optimize only the network weights θ. Second, we assume that one of the dynamic

components in the latent space, (z1t )
T
t=1 corresponding to the cardiac motion, is unknown. We then

use the framework defined in Equation (5), and we optimize the network over the network weights
θ and the components of the latent space (z1t )

T
t=1.

The reconstruction of the dynamic image in both cases is shown in Figure 3. Even though a represen-
tation of the given data with mixed motion is not our primary goal, it can still be observed that both
representations are visually very similar to the ground truth, giving evidence that one-dimensional
information on one of the movements is enough to disentangle the latent space without a significant
degradation in representing the data.

(a) Reconstruction for known (z1t )
T
t=1 (z2t )

T
t=1. (b) Reconstruction for known (z2t )

T
t=1.

Figure 3: Synthetic video reconstruction with full motion.

Using the strategy described in Section 2, motion isolation is performed in the case where both mo-
tion triggers, (z1t )

T
t=1 and (z2t )

T
t=1, are known, and in the case where just (z2t )

T
t=1 is known. Figure 4

shows the isolated cardiac motion reconstructions, while Figure 5 shows the isolated respiratory mo-
tion reconstructions. Similarly to Figure 3, it can also be observed that single-motion reconstructions
for either one or two known triggers are visually very close to the ground truth. This is especially
meaningful for the reconstruction of cardiac motion in Figure 4d, where no prior information on the
motion is used, supporting our hypothesis that latent space disentanglement is a meaningful tool for
motion isolation.
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(a) Ground truth. (b) Known z1t ,z2t . (c) Error in (b). (d) Known z1t . (e) Error in (d).

Figure 4: Compact representation of the synthetic video reconstructions with only cardiac motion.
Error images are upscaled by a factor of 10.

(a) Ground truth. (b) Known z1t ,z2t . (c) Error in (b). (d) Known z1t . (e) Error in (d).

Figure 5: Compact representation of the synthetic video reconstructions with only respiratory mo-
tion. Error images are upscaled by a factor of 10.

3.2 CARDIAC MR IMAGES

After exploring the potential of the method on synthetic data, we test it on cine MR images, compris-
ing images with a four-chamber view and datasets with a short-axis view. We provide results for two
datasets in this section, and results for two additional datasets in the supplementary material. Table 1
provides error measures for all experiments. All real data used in this work comes from the datasets
that were made available by the organizers of the ISMRM reconstruction challenge 20141. In all
experiments considered here, the original videos were obtained via a sum-of-squares reconstruc-
tion from fully sampled MR data, and contain a 2D slice of the entire thorax showing the beating
heart in one region. For our experiments, we simulated three heartbeats by concatenating the single-
heartbeat-videos three times, and simulated two respiratory cycles with vertical (resp. horizontal)
shearing motion for the four-chamber (resp. short-axis) view. After obtaining videos showing a
slice of the entire thorax with three heartbeats and two breaths, we cropped the videos to a region of
interest around the heart, see the top rows of Figures 12 and 14 for the original data that is used as
the input to our method. The final data consists of 99 frames with spatial resolution 100 × 100 for
the four-chamber view, and of 81 frames with spatial resolution 70× 70 for the short-axis view.

In all experiments with real data, the generator is a standard deep convolutional neural network
(CNN) with 7 layers, ReLU activation functions in the first and last layer, LeakyReLUs in the
middle layers and no biases. The latent space R100 is split into 98 static components and 2
dynamic components. Network parameters shared by all experiments are given as: Number of
channels: [100, 640, 320, 160, 80, 40, 20, 1], stride: [2, 2, 2, 2, 2, 2, 1]. To account for the different
image dimensions, the shape of the remaining parameters differs slightly: (Square) kernel size:
[4, 4, 4, 4, 4, 4, 3] (four-chamber), [4, 4, 4, 4, 4, 5, 4] (short-axis), padding: [0, 2, 0, 2, 2, 1, 1] (four-
chamber), [0, 2, 2, 2, 2, 1, 1] (short-axis). In total, the networks have 5.388980× 106 (four-chamber)
and 5.396320× 106 (short-axis) parameters.

The network is optimized according to Equation (5), where ẑ0 and (z1t )
T
t=1 are randomly initialized

from a uniform distribution on the interval [0, 1), and the network weights are initialized according
to the Pytorch self-initialization. For both experiments, blocks of [4000, 4000, 4000, 4000, 4000]
epochs with learning rates [0.01, 0.008, 0.005, 0.003, 0.001] are used for the Adam optimizer.

Motion isolation is performed on the MR images as explained in Section 2. The learned generator
and the reconstructed dynamic latent space variables are used to freeze one type of motion while
maintaining the dynamics of the other type of motion. The latent space variables associated to the
cardiac motion are shown in Figures 6a and 6b for the four-chamber and short-axis view, respec-

1challenge.ismrm.org. Permission to use the data in research was obtained from the organizers per mail.
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tively. Note that these plots have a physical interpretation associated to the heart’s activity, and were
completely unknown before performing the optimization.

The results of the motion isolation experiments are shown in Figures 7 and 8 for the four-chamber
view experiment and in Figures 9 and 10 for the short-axis view experiment. In Figures 7 and 9, the
top row shows selected frames of the given image sequence, containing both cardiac and respiratory
motion. The bottom row shows a generated image sequence with only cardiac motion. Figures 8
and 10 show a reference frame with a marked slice (first column), the dynamics of the slice over
time for the ground truth (second and fifth column) and for the generated image sequence (third and
sixth column), and a difference image (third and seventh column). Columns two to four show the
isolated cardiac motion, columns five to seven show the isolated breathing motion.

It can be observed that in both cases and for both types of motion, the isolation of motion works
well, and the different structures of the motion are clearly visible in the slice-based visualization of
the generated images. This is also confirmed by the quantitative values provided in Table 1. We
should note that some artifacts are visible in the breathing motion isolation. In our experience, those
are mostly related to having obtained a sub-optimal solution of the minimization problem (recall that
we provide results corresponding to the median of the performance of our method). In cases where
a favorable random initialization leads to an improved convergence of the methods these artifacts
are reduced, see for instance the videos showing the best result that was achieved over the 20 seeds
as provided in the supplementary material.
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(a) Four-chamber view.
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(b) Short-axis view.
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h and E2
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Figure 6: (a),(b) Motion triggers for the two real MRI reconstructed videos with only cardiac motion.
(c) Error w.r.t. fixing different frames for the second phantom experiment.

Figure 7: Four-chamber view. First row: Representative frames of the original video. Second row:
Reconstructed video with only cardiac motion.

3.3 STABILITY AND EXTENSIONS

To study the stability of the method with respect to the initialization of the parameters, the solution
of the optimization problem and the subsequent motion isolation are repeated for 20 different seeds
for each of the experiments in this paper, see Table 1 for an evaluation. It can be observed that the
method is rather stable on average, with few (in practice 1-2 per 20 seeds) negative outliers. In our
experiments, negative outliers were always connected to the loss of the final result still being com-
paratively high. Consequently, in application, these outliers can be detected by a high value of the
loss (without knowing the ground truth), and the method can be re-run with a different initialization
in such cases.
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Figure 8: Four-chamber view. First image: Reference frame with marked slice, second (resp. fifth)
image: slice over time for ground truth with only cardiac (resp. respiratory) motion, third (resp.
sixth) image: slice over time for reconstructed images with only cardiac (resp. respiratory) motion,
fourth and seventh image: difference between ground truth and reconstructed (upscaled by a factor
of two).

Figure 9: Short-axis view. First row: Representative frames of the original video. Second row:
Reconstructed video with only cardiac motion.

Figure 10: Short-axis view. First image: Reference frame with marked slice, second (resp. fifth)
image: slice over time for ground truth with only cardiac (resp. respiratory) motion, third (resp.
sixth) image: slice over time for reconstructed images with only cardiac (resp. respiratory) motion,
fourth and seventh image: difference between ground truth and reconstructed (upscaled by a factor
of two).
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To further evaluate stability of the method with respect to errors in the provided motion triggers,
we repeated the two real data experiments shown in the paper with perturbed motion triggers (the
time-position where the motion trigger is sampled being perturbed by additive Gaussian noise with
a standard deviation of 50% of the length of one timestep). While details and qualitative results
are provided in the appendix, a quantitative evaluation of this experiment is provided in the last
four lines of Table 1, showing that allowing for perturbation in the motion trigger does not degrade
reconstruction performance.

In addition, we also refer to the appendix for an extension of the phantom experiment with tree types
of motion (cardiac, respiratory and motion due to body movement), with the results provided there
confirming that such an extension is possible in principle.

Table 1: Error in isolating of different kinds of motion for the experiments considered in this paper,
repeating them for 20 different seeds. MAD denotes the median absolute deviation.

Median MAD Mean Std. dev.

Phantom example, z1, z2 known - E1
h (car-

diac)
4.86e-03 2.40e-04 4.89e-03 4.58e-04

Phantom example, z1, z2 known - E2
h (resp.) 6.65e-03 3.83e-04 6.51e-03 8.81e-04

Phantom example, z2 known - E1
h (cardiac) 9.93e-03 1.05e-03 1.03e-02 1.97e-03

Phantom example, z2 known - E2
h (respira-

tory)
1.20e-02 1.09e-03 1.22e-02 1.39e-03

Four-chamber view - E1
h (cardiac) 1.01e-01 2.25e-02 1.21e-01 4.84e-02

Four-chamber view - E2
h (respiratory) 8.29e-02 1.94e-02 9.34e-02 3.88e-02

Short-axis view - E1
h (cardiac) 8.07e-02 1.21e-02 9.21e-02 2.83e-02

Short-axis view - E2
h (respiratory) 7.21e-02 1.41e-02 8.29e-02 3.20e-02

Four-chamber view, example 2 - E1
h (cardiac) 9.02e-02 7.55e-03 1.07e-01 4.84e-02

Four-chamber view, example 2 - E2
h (resp.) 7.52e-02 1.14e-02 9.24e-02 5.90e-02

Short-axis view, example 2 - E1
h (cardiac) 1.36e-01 3.41e-02 1.42e-01 3.84e-02

Short-axis view, example 2 - E2
h (respiratory) 1.05e-01 2.50e-02 1.14e-01 3.27e-02

Four-chamber view (perturbed) - E1
h (cardiac) 9.87e-02 1.55e-02 1.20e-01 4.08e-02

Four-chamber view (perturbed) - E2
h (resp.) 8.06e-02 1.04e-02 9.85e-02 3.25e-02

Short-axis view (perturbed) - E1
h (cardiac) 7.78e-02 5.32e-03 7.89e-02 1.30e-02

Short-axis view (perturbed) - E2
h (respiratory) 6.58e-02 4.67e-03 6.88e-02 1.27e-02

CONCLUSIONS AND OUTLOOK

This paper introduces a new method for motion isolation based on the joint optimization of an
untrained generator network over both the network parameters and the latent codes. Assuming
one-dimensional information on all but one of the motions is known, motion isolation is achieved
through latent space disentanglement. Feasibility of this method was shown for isolating respiratory
and cardiac motion in dynamic MR images, but the proposed method is general and can conceptually
be used in many applications, e.g., in bio-medical imaging, biology, bio-mechanics or physics.

A limitation of the method, resulting from non-convexity, is its dependence on initializations, which
is counteracted here via loss-based restarting strategies. Further, no explicit motion information is
made available by our methods. While this might be considered as limitation, it also comes with the
advantage that no explicit modeling of the underlying motion types is necessary.

Our work shows a great potential of latent space disentanglement on untrained generators for video
data. It opens the door to more advanced disentanglement schemes (e.g., based on modifications
of the loss function or additional constraints on the latent space variables). Moreover, we expect
the proposed method to be very well suited as image prior for dynamic inverse problems (e.g., in
tomography, super-resolution) where the reconstructed solution displays different kinds of indepen-
dent motion.
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4 REPRODUCIBILITY STATEMENT

The source code and data to reproduce all experiments of the main part of the paper are available
in the supplementary material. Further, after acceptance of the paper, all data and source code
necessary to reproduce the experiments of the paper will be published as GIT repository.
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A APPENDIX

A.1 RESULTS ON TWO ADDITIONAL DATASETS

In this section of the appendix, we present results as shown in the paper for two additional MR
images, one with a four-chamber view (Figures 12 and 13) and one with a short-axis view (Figures
14 and 15). The estimated latent space variables associated to the cardiac motion are shown in
Figure 11.

It can be observed that, again, in both cases the isolation of cardiac and respiratory motion works
well with the proposed method. In particular for the short-axis view, as can be seen in Figure 15,
the isolation of respiratory motion is even better than with the short-axis example shown in the
paper. In this case, however, the reconstructed motion trigger for the cardiac motion is inaccurately
reconstructed for the second heartbeat. Again, note that we present result corresponding to the
median performance of the methods over repeating each experiment 20 times with 20 different
seeds for the random initialization. In case of a favorable random initialization, convergence of the
method and, consequently, also the corresponding results are improved, see for instance the videos
provided in the supplementary material.
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(a) Four-chamber view.
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(b) Short-axis view.

Figure 11: Motion triggers for the two real MRI reconstructed videos with only cardiac motion.
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Figure 12: Four-chamber view. First row: Representative frames of the original video. Second row:
Reconstructed video with only cardiac motion.

Figure 13: Four-chamber view. First image: Reference frame with marked slice, second (resp.
fifth) image: slice over time for ground truth with only cardiac (resp. respiratory) motion, third
(resp. sixth) image: slice over time for reconstructed images with only cardiac (resp. respiratory)
motion, fourth and seventh image: difference between ground truth and reconstructed (upscaled by
a factor of two).

Figure 14: Short-axis view. First row: Representative frames of the original video. Second row:
Reconstructed video with only cardiac motion.

Figure 15: Short-axis view. First image: Reference frame with marked slice, second (resp. fifth)
image: slice over time for ground truth with only cardiac (resp. respiratory) motion, third (resp.
sixth) image: slice over time for reconstructed images with only cardiac (resp. respiratory) motion,
fourth and seventh image: difference between ground truth and reconstructed (upscaled by a factor
of two).
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A.2 RESULTS OBTAINED WITH PERTURBED MOTION TRIGGERS

In this section, we repeat the two experiments of Section 3.2 of the paper, but instead of taking the
true breathing motion trigger that created the data as given, we consider a perturbed version with
the time-position where the motion trigger is sampled being perturbed by additive Gaussian noise
with a standard deviation of 50% of the length of one timestep. Then we use this motion trigger
(instead of the ground truth one) as input for our method, allowing deviations from the perturbed
trigger that are penalized with an L2 discrepancy. Quantitative results for this experiment can be
found in the last four lines of Table 1 of the paper. Qualitative results can be found in Figures 16
to 20. In particular, Figure 16 shows the initially provided trigger for breathing motion in orange,
and the reconstructed triggers in blue. As can be seen, the method is able so successfully remove
perturbations in the trigger initially provided.

Figures 16 to 20 visualize the resulting image sequences. Comparing to the corresponding results
of the paper, it can be observed that the reconstruction quality has not become worse due to this
perturbation (only the initial frame 0 in Figure 17 (left frame in bottom line) suffers from artifacts).
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Figure 16: Motion triggers for the two real MRI reconstructed videos with only cardiac motion.

Figure 17: Four-chamber view, reconstructed using a perturbed respiratory motion trigger. First
row: Representative frames of the original video. Second row: Reconstructed video with only
cardiac motion.

A.3 EXPERIMENTS WITH A THIRD TYPE OF MOTION

In this section of the appendix, we provide results of an phantom experiment with three different
simulated types of motion: Respiratory motion, cardiac motion and motion due to body movement.
To this aim, we use the same data, network parameters and algorithmic setup as in the phantom
experiment of the paper, assuming the motion triggers for respiratory and cardiac motion to be
known, and the motion due to body movement to be completely unknown.
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Figure 18: Four-chamber view, reconstructed using a perturbed respiratory motion trigger. First
image: Reference frame with marked slice, second (resp. fifth) image: slice over time for ground
truth with only cardiac (resp. respiratory) motion, third (resp. sixth) image: slice over time for
reconstructed images with only cardiac (resp. respiratory) motion, fourth and seventh image: differ-
ence between ground truth and reconstructed (upscaled by a factor of two).

Figure 19: Short-axis view, reconstructed using a perturbed respiratory motion trigger. First row:
Representative frames of the original video. Second row: Reconstructed video with only cardiac
motion.

Figure 20: Short-axis view, reconstructed using a perturbed respiratory motion trigger. First image:
Reference frame with marked slice, second (resp. fifth) image: slice over time for ground truth with
only cardiac (resp. respiratory) motion, third (resp. sixth) image: slice over time for reconstructed
images with only cardiac (resp. respiratory) motion, fourth and seventh image: difference between
ground truth and reconstructed (upscaled by a factor of two).
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Results are provided in Figure 21. As can be seen there, the proposed method is capable of isolating
all three types of motion successfully, providing results for all the types that are visually rather close
to the ground truth.

time

(a) Selected slice and slice representation of data.

time

(b) Only cardiac motion.

time

(c) Only respiratory motion.

time

(d) Only body motion.

Figure 21: Results for isolating three types of motion with phantom data. In subfigures (b),(c),(d),
the left images shows the ground truth and the right image shows the reconstructed motion.
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