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Abstract

The cross-sectional area (CSA) of the spinal cord (SC) computed from its segmentation
is a relevant clinical biomarker for the diagnosis and monitoring of cord compression and
atrophy. One key limitation of existing automatic methods is that their SC segmentations
depend on the MRI contrast, resulting in different CSA across contrasts. Furthermore,
these methods rely on CNNs, leaving a gap in the literature for exploring the performance of
modern deep learning (DL) architectures. In this study, we extend our recent work (Bédard
et al., 2023) by evaluating the contrast-agnostic SC segmentation capabilities of different
classes of DL architectures, namely, ConvNeXt, vision transformers (ViTs), and hierarchical
ViTs. We compared 7 different DL models using the open-source Spine Generic Database of
healthy participants (n = 243) consisting of 6 MRI contrasts per participant. Given a fixed
dataset size, our results show that CNNs produce robust SC segmentations across contrasts,
followed by ConvNeXt, and hierarchical ViTs. This suggests that: (i) inductive biases such
as learning hierarchical feature reprensentations via pooling (common in CNNs) are crucial
for good performance on SC segmentation, and (ii) hierarchical ViTs that incorporate
several CNN-based priors can perform similarly to pure CNN-based models’.
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1. Introduction

The cross-sectional area (CSA) of the spinal cord (SC) is an important biomarker for assess-
ing cord compression and atrophy in neurological diseases such as multiple sclerosis (MS).
However, the existing methods for SC segmentation have a key limitation: the predicted
segmentation depends on the type of input MRI contrast and its acquisition parameters,
resulting in different SC CSA for different MRI contrasts (Gros et al., 2018). Furthermore,
such methods are dominated by CNN-based approaches (Gros et al., 2018; Bédard et al.,
2023), suggesting a gap in the literature to evaluate other deep learning (DL) architectures,
namely, ConvNeXt and ViT-based approaches for SC segmentation.

There exist several studies comparing the performance of vision transformers (ViTs) and
CNNs primarily focusing on classification tasks (Matsoukas et al., 2021; Deininger et al.,
2022; Fanizzi et al., 2023). However, the conclusions from these studies are not generalizable
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as they are heavily dependent on the: (i) type of task (classification/segmentation/detection),
(ii) input modality (i.e. digital pathology/natural/medical images), (iii) dataset sizes, and
(iv) initialization strategy (i.e. from scratch/pretrained). Therefore, in this work, given
a small dataset of SC MRIs with multiple contrasts, we compared the performance of the
modern DL architectures (namely, CNNs, ConvNeXT, and ViTs) for automatic SC seg-
mentation and evaluated their ability to achieve contrast-agnostic SC segmentation.

2. Materials and Methods

Dataset We used the open-access Spine Generic Public Database? consisting of healthy
participants scanned on 3T MRI scanners across 42 sites. It consists of 6 MRI contrasts
(Tlw, T2w, T2*w, MT-on, GRE-T1w, and DWI) with both isotropic ({0.8,1} mm?) and
anisotropic ({0.5,0.9} x {0.5,0.9} x {3,5} mm?) resolutions for each participant. This
dataset presents a diverse set of MRI contrasts per participant to evaluate the models’
contrast-agnostic segmentation capabilities. The final dataset (n = 243) was split accord-
ing to 60%,/20%/20% train/validation/test splits, resulting in 145/49/49 participants with
870/294/294 3D volumes, respectively.

Preprocessing To eliminate the differences in CSA within the ground truth (GT) SC
masks across contrasts, our preprocessing strategy produced a unique, soft GT mask aver-
aged across all MRI contrasts (please see Section 2.2 of Bédard et al. (2023) for details).

Training Protocol We followed the SoftSeg (Gros et al., 2021) training strategy, treating
the segmentation task as a regression problem, where, (i) we do not binarize the inputs fed
to the model after data-augmentation and, (ii) instead of DiceLoss (Milletari et al., 2016),
we use adaptive wing loss (Wang et al., 2019) which penalizes higher errors at the SC
boundary. For a given subject, each contrast is treated as an independent input during
training as opposed to concatenating all 6 contrasts as channels in a multi-modal input.
Extensive ablations comparing the effects of DiceLoss and adaptive wing loss towards the
SC CSA can be found in Section 3.2 of Bédard et al. (2023).

3. Experiments and Results

Models and Training Details We compared 7 models spanning 3 different classes of DL
architectures. For CNNs, we compared DeepSeg 2D (Gros et al., 2018), nnUNet (Isensee
et al., 2021), and our recently-introduced contrast-agnostic model (Bédard et al., 2023). The
DeepSeg 2D and contrast-agnostic models are both available in the open-source Spinal Cord
Toolbox (De Leener et al., 2017) under the commands sct_deepseg_sc and sct_deepseg
-task seg_sc_contrast_agnostic respectively. Then, we trained MedNeXt (Roy et al.,
2023), a state-of-the-art ConvNeXt model designed for 3D medical images. Lastly, among
ViTs, we compared UNETR (Hatamizadeh et al., 2021), SwinUNETR (Hatamizadeh et al.,
2022), and an open-source, pretrained SwinUNETR?. Except for the pretrained model which
we fine-tuned on our datasets, all other models were trained from scratch for 200 epochs
using Adam optimizer with a learning rate of 0.001 and a batch size of 2.

2. https://github.com/spine-generic/data-multi-subject/releases/tag/r20231212
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Evaluation For quantitative assessment of the variability of CSA across contrasts, we
used the CSA averaged across individual slices from the C2-C3 vertebral levels as the
primary metric. Specifically, we (i) obtained the model predictions for each contrast, (ii)
computed the absolute error between the CSA of the model prediction and the GT for
each contrast, and finally, (iii) averaged the CSA errors across 6 contrasts for each subject
(shown as one scatter point in the violin plot). The lower the absolute CSA error (in mm?),
the better, as, in theory, the spinal cord CSA value should not vary substantially across
MRI contrasts for a given participant.

Results Figure 3 shows the absolute CSA error across contrasts for each test partici-
pants across all models. Among the CNN-based models, the contrast-agnostic model
achieved the lowest CSA error, with MedNeXt following closely. Interestingly, among the
transformer models, UNETR showed the highest CSA error among all the models, while
the SwinUNETR models showed similar performance as the CNNs.

Absolute CSA error between GT and different DL models for contrast-agnostic SC segmentation
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Figure 1: Absolute CSA error between the GT and predictions averaged across all 6 MRI
contrasts for each model. Scatter plots within each violin show the CSA error
averaged across all contrasts for a given participant. White triangle marker shows
the mean CSA error across test participants.

4. Discussion and Conclusion

In this study, we performed a preliminary analysis of the performance of different classes of
DL architectures for the specific task of contrast-agnostic SC segmentation. Overall, given
a fixed dataset size, the CNN-based methods produce more robust SC segmentations across
MRI contrasts. UNETR, which processes fixed-resolution 3D patches of size 16 x 16 x 16
as 1D sequence of tokens performs the worst, suggesting that weak inductive biases in
pure transformer-based encoders can be a major limiting factor for segmentation tasks.
Hierarchical ViTs such as SwinUNETR that bring back CNN-based priors (e.g. learning
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hierarchical representations via pooling and window-based local receptive fields, etc.) while
using transformer blocks perform similar to CNNs. Future work aims at increasing the
dataset size to include more contrasts and pathological images (such as MS) and comparing
the performance of CNNs and SwinUNETR models at scale.
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