EVA: EVOLUTIONARY ATTACKS ON GRAPHS

Anonymous authors

000

001 002 003

004

006

008 009

010

011

012

013

014

015

016

017

018

019

021

023

024

Paper under double-blind review

ABSTRACT

Even a slight perturbation in the graph structure can cause a significant drop in the accuracy of graph neural networks (GNNs). Most existing attacks leverage gradient information to perturb edges. This relaxes the attack's optimization problem from a discrete to a continuous space, resulting in solutions far from optimal. It also restricts the adaptability of the attack to non-differentiable objectives. Instead, we propose an evolutionary-based algorithm to solve the discrete optimization problem directly. Our Evolutionary Attack (EvA) works with any black-box model and objective, eliminating the need for a differentiable proxy loss. This permits us to design two novel attacks that: reduce the effectiveness of robustness certificates and break conformal sets. We introduce a sparse encoding that results in memory complexity that is linear in the attack budget. EvA reduces the accuracy by an additional $\sim 11\%$ on average compared to the best previous attack, revealing significant untapped potential in designing attacks.

1 INTRODUCTION

025 Given the widespread applications of graph neural networks (GNNs), studying their robustness to 026 natural and adversarial noise is of great importance. In node classification, GNNs leverage the edge 027 structure between data points to improve their performance. However, a small perturbation in the 028 graph structure (adding or removing a few edges) can significantly reduce GNNs' accuracy, even 029 below the performance of an MLP (which completely discards the structure). Similar to images and continuous data, most of the proposed (structure) attacks are gradient-based. They compute the 031 gradients of a loss w.r.t. the adjacency matrix and apply a perturbation according to that. Gradientbased attacks face several challenges. They solve a relaxation of the original combinatorial (discrete) optimization problem – the entries of the adjacency matrix are relaxed from $\{0,1\}$ to [0,1]. They 033 need a differentiable proxy loss function since the actual objective of the attacker (e.g. accuracy) is 034 often not differentiable, and the usual proxy such cross-entropy is suboptimal (Geisler et al., 2023). They assume white-box access to the model, including the structure and the weights. This limits the applicability or requires surrogate models. They can provide a false sense of security since defenses 037 may be obfuscating gradients (Athalye et al., 2018; Geisler et al., 2023) and can get stuck in local minima. Their memory complexity grows quadratically w.r.t the number of nodes. Although the adjacency matrix is often sparse, the gradients w.r.t. it are not. As a result, tricks like block coordinate 040 descent are needed (Geisler et al., 2021). We propose a model-agnostic evolutionary attack (EvA) 041 that fixes all five of the above issues.

042 EvA explores the space of possible perturbations with a genetic algorithm (GA). Our approach 043 operates in the discrete space of potential perturbations without information from gradients – avoiding 044 relaxation. It directly optimizes the objective (like accuracy) as long as it provides a meaningful signal. In addition to eliminating the need for a differentiable proxy, this black-box access to the 046 objective enables us to define a broader class of attacks. In fact, it allowed us to easily design two 047 novel attacks on graphs that aim at decreasing the effectiveness of robustness certificates or that break 048 conformal guarantees. EvA shows outstanding effectiveness on vanilla and adversarially trained models compared to SOTA attacks. Unlike the gradient-based attacks, our attack has a $\mathcal{O}(\epsilon \cdot E)$ memory complexity where ϵ is the perturbation budget, and E is the number of edges. This is because instead of storing a squared block of gradients, which scales with the size of the adjacency matrix, 051 we only store the edge perturbations as an index. During the evaluation, we also maintain the same 052 sparsity in representation as the graph itself. To take advantage of the available free memory, we employ a batch evaluation approach that speeds up the optimization.

054 Adversarial attacks are supposed to be imperceptible. In images, this is modeled by a L_p -ball of a small radius. Similarly, for the graph structure, a commonly used metric is the L_0 ball, which allows changing of the node degree significantly. Since this may be perceptible, we can incorporate constraints in our attack that limit the number of perturbations per node, in addition to the global 060 budget. Similar to gradient-based attacks (Geisler et al., 061 2021), we set this so-called local budget to a fraction of the 062 node's original degree. Interestingly, in some cases, our 063 constrained attack can even beat the best unconstrained 064 gradient-based attack. Overall, EvA finds significantly 065 better solutions compared to the previous state-of-the-art 066 methods (Geisler et al., 2021; Gosch et al., 2024), which 067 highlight the sub-optimality of gradient-based methods.

Figure 1: Reported performance of various attacks for transductive setting

Certificates provide a robustness guarantee that the prediction will not change given a limited set of 073 possible perturbations (e.g., at most r_a additions and r_d deletions). The certified ratio is the fraction 074 of nodes for which the guarantee holds. Here, we define the attacker's objective as decreasing the 075 certified ratio. EvA can decrease the ratio below the MLP level (which is by definition robust to any 076 perturbation in structure), while also preserving the clean accuracy – making it less noticable to a 077 defender. We also introduce the first conformal attack on graphs. Conformal prediction (CP) converts 078 any model's output to prediction sets with a guarantee to cover the true label with (adjustable) high 079 probability. With EvA we can attack these conformal sets to either break the guarantee of increase 080 the sets size (making them useless). While in principle one can design gradient-based attacks for 081 these two new objectives, the amount of work is nontrivial since there are many non-differentiable components that would need to be relaxed. In contrast, for EvA, designing a new attack is simply a 082 083 matter of changing the fitness function of the GA.

Importantly, perhaps the main contributions of this work is to highlight a scarcely explored research direction for attacks. Even off-the-shelf genetic algorithms significantly outperform gradient-based attacks. Fig. 1 compares EvA to the other attacks proposed over time. Our custom adaptive mutation further improves performance, but we argue that the space of evolutionary (and more broadly search-based) attacks has a lot of untapped potential.

089 090 091

092

2 BACKGROUND AND RELATED WORK

Problem setup. We focus on attacking the semi-supervised node classification task on graphs via 094 perturbing a small number of edges. Formally, we are given a graph $\mathcal{G} = (\mathbf{X}, \mathbf{A}, \mathbf{y})$ in which \mathbf{X} is 095 the features matrix assigning a feature vector x_i to each node v_i in the graph, A is the adjacency 096 matrix (often sparse) that represents the set of edges \mathcal{E} , and y is the partially observable vector of labels. Nodes are partitioned into labeled and unlabeled sets $\mathcal{V} = \mathcal{V}_l \cup \mathcal{V}_u$. The GNN is trained on an observed subgraph \mathcal{G}_{tr} that includes the labeled nodes. Gosch et al. (2024) argue that the transductive 098 setup, where $\mathcal{G}_{tr} = \mathcal{G}$ is unrealistic since perfect robustness can be achieved by memorizing the 099 training graph. Therefore, we mainly focus on the inductive setting where a model f is trained on an 100 induced subgraph $\mathcal{G}_{\mathrm{tr}} \subseteq \mathcal{G}$, validated on $\mathcal{G}_{\mathrm{val}} \subseteq \mathcal{G}$ and tested on $\mathcal{G}_{\mathrm{test}}$ where $\mathcal{G}_{\mathrm{tr}} \subset \mathcal{G}_{\mathrm{val}} \subset \mathcal{G}_{\mathrm{test}} = \mathcal{G}$. 101

102 Threat model. Our goal is to find a perturbation matrix $P \in \{0, 1\}^{n \times n}$ that flips entities of the **103** adjacency matrix $\tilde{A} = A \oplus P$ to decrease the accuracy as much as possible. Here $n = |\mathcal{V}|$, and \oplus is **104** the element-wise XOR operator. For a given function f as the GNN model, the accuracy is defined **105** as $\sum_{v_i \in \mathcal{V}_{att}} (1/|\mathcal{V}_{att}|) \cdot \mathbf{1}[f(\mathcal{G})_{v_i} = y_i]$ where \mathcal{V}_{att} is the set of nodes that we attack. In global **106** attacks this is usually the test nodes, while in targeted attacks the target is a single node. To keep the **107** perturbations imperceptible, we assume that the adversary can only perturb up to $\delta := \epsilon \cdot |\mathcal{E}[\mathcal{V}_{att} : \mathcal{V}]|$ edges where $\mathcal{E}[\mathcal{A} : \mathcal{B}]$ is the subset of edges between nodes in \mathcal{A} and \mathcal{B} . Formally, for any generic 108 loss function \mathcal{L} , 109

110 111

> 112 113

114

115

 $egin{aligned} m{P} = rgmax_{m{P}} & \mathcal{L}(f(\mathcal{G}(m{X},m{A}\oplusm{P}))_{ ext{att}},m{y}_{ ext{att}})\ s.t. & \mathbf{1}_Nm{P}\mathbf{1}_N^{ op} \leq \epsilon \cdot |\mathcal{E}[\mathcal{V}_{ ext{att}}:\mathcal{V}]| \end{aligned}$ Here $f(\cdot)_{\text{att}}$ returns the vector of predictions for the nodes in \mathcal{V}_{att} . In an evasion attack, \mathcal{L} is the accuracy. Eq. 1 can include additional constraints like the local constraint from Gosch et al. (2023) that restrict the number of perturbation per node to some fraction (e.g., half) of its degree.

(1)

116 Gradient-based attacks. A common approach to attack the graph structure is to compute the gradient 117 of the loss function w.r.t. the adjacency matrix. This requires a relaxation on the domain of A from 118 $\{0,1\}^{n \times n}$ to $[0,1]^{n \times n}$. If the loss function is not differentiable (e.g., accuracy), then a differentiable 119 surrogate like the categorical cross entropy or tanh-margin (Geisler et al., 2023) is used instead. 120 We compute the derivatives of the loss w.r.t. A and update the perturbation matrix. Finally, the 121 edges are either sampled or rounded from the perturbation matrix, which returns the solution to the 122 binary domain. There are various tricks to improve gradient-based attacks, but most follow a similar 123 high-level procedure.

124 Related Work. Adversarial attacks on graphs are generally divided into two main categories: evasion 125 attacks Xu et al. (2019); Zügner et al. (2018); Geisler et al. (2023); Gosch et al. (2024), where the 126 attacker perturbs the graph after the model has been trained, and poisoning attacks Zügner et al. 127 (2020); Lingam et al. (2023); Zügner et al. (2018), where the attacker modifies the graph prior to 128 training. These attacks can be further classified into global attacks (e.g., Geisler et al. (2023); Zhu 129 et al. (2023)), which target multiple node predictions simultaneously, and targeted attacks, which 130 focus on a single node or a subset of nodes. The manipulations can involve altering node attributes, 131 modifying edge structures, or introducing malicious nodes. The earliest adversarial attacks on graphs were inspired by techniques used on continuous data, utilizing gradients to approximate perturbations 132 on inherently discrete edges Xu et al. (2019); Zügner et al. (2018); Geisler et al. (2023). Additionally, 133 reinforcement learning has been employed as an alternative approach to execute adversarial attacks 134 Dai et al. (2018). Attackers leverage reinforcement learning algorithms to refine their attack strategies 135 and disrupt the learning process of GNNs Sun et al. (2023). Although some new attacks have been 136 proposed in recent years (e.g., by Zhang et al. (2024; 2023); Wang et al. (2023)), they are all based 137 on some traditional algorithms (like gradient-based methods). 138

139 140

141

3 **EVA: EVOLUTIONARY ATTACK**

Our evolutionary-based attack (EvA) uses a genetic algorithm (Holland, 1984) as a heuristic to directly 142 optimize Eq. 1. We define an initial set of possible (candidate) perturbations – called "population" – 143 and iteratively improve this population. In each iteration, the individuals in the population are ordered 144 based on their fitness, specifically in terms of how much each individual decreases the accuracy. We 145 draft the next population by keeping the best individuals and producing new ones as a function of 146 them. Our population for the next iteration is finalized after a mutation which introduces additional 147 randomness that helps with exploration. Each element in the population is a possible perturbation, 148 which is encoded as a vector of indices where an edge is flipped.

149 Genetic algorithm (GA) in EvA. We can define a genetic solver through the definition of four 150 main components. (i) Population: It is a set of feasible answers to the problem which gradually 151 improve over iterations. In our case each population element is one potential perturbation on the 152 adjacency matrix. We define mapping $\Pi : \mathbf{x}_{i,t} \in [\frac{n}{2}(n-1)]^{\delta} \mapsto [n]^2$ which is an enumeration on the upper triangle of the $n \times n$ adjacency matrix. With that, we define each candidate as set 153 154 $s_{i,t} \in [\frac{n}{2}(n-1)]^{\delta}$ which refers to a perturbation. The corresponding perturbation matrix $P_{i,t}$ is 155 simply defined as $P_{i,t}[p,q] = P_{i,t}[q,p] = 1 \Leftrightarrow \exists j : s_{i,t}[j] = \Pi^{-1}(p,q)$ for p < q. (ii) Fitness: 156 Is a notion of how close to optimal each population element is. Given any loss function \mathcal{L} we 157 define the fitness function fit $\left[\frac{n}{2}(n-1)\right]^{\delta} \mapsto \mathbb{R}$, as fit $(s) = \mathcal{L}(X, A \oplus P_s, y)$. Note that this 158 objective can be non-differentiable, such as accuracy. As long as the loss function has enough 159 sensitivity to differentiate between various individuals, we use it directly as the fitness (see § 4 for extended discussion). (iii) Crossover: Is an operation that defines a new population element by 160 combining two existing ones. The crossover operation at point j defines a new candidate vector 161 $s_{\text{new}} = \text{cross}_i(s_1, s_2) := s_1[:j] \bullet s[j+1:]$ where \bullet is the concatenation of two vectors. Crossover 162 operation with more than one point is defined recursively in the order of joints. The number of 163 crossovers k_{cross} is a hyperparameter (see § C), and their location is chosen randomly in the range 164 of the perturbation size. (iv) Mutation: Is a random operation that allows further exploration. The 165 function mutate : $[\frac{n}{2}(n-1)]^{\delta} \mapsto [\frac{n}{2}(n-1)]^{\delta}$ is a random mapping of a candidate to another. 166 One simple mutation function changes each index with some mutation probability p to some other 167 index in the range (uniformly at random). In § 4 we discuss more advanced mutation strategies that 168 significantly improve performance.

Given all the ingredients above, GA operates by iteratively evolving the population toward a good solution. The algorithm begins with an initial random population. In EvA, this population is a set of vectors $S_0 = \{s_{i,0}\}_{i=1}^{n_p}$ with random elements, where n_p is the number of candidates in the population. By definition, our candidates always encode a valid perturbation—the budget of the perturbation is enforced by the length of each candidate vector.

174 In each iteration, candidates are evaluated using the fitness function. Based on the fitness scores, an 175 elite sub-population of parents and new children is selected to proceed to the next iteration, while the 176 rest of the population is removed. To create a new child, parents are selected through a tournament 177 selection process: in each tournament, n_{tour} random parents are chosen, and the best among them is 178 selected for crossover and subsequent mutation. This process repeats for t generations.

179 **Sparse encoding of the attack.** The population in our framework is an encoding of the perturbation matrix. The naive way for encoding this problem is to create a boolean vector of size N^2 encoding 181 which entries are flipped, which results in memory complexity of $\mathcal{O}(|\mathcal{S}|N^2)$ where $|\mathcal{S}|$ is the 182 population size. Instead, we introduce an approach that leverages the sparse nature of the solution 183 and reduces the complexity to $\mathcal{O}(|\mathcal{S}| \cdot \epsilon \cdot |\mathcal{E}[\mathcal{V}_{att} : \mathcal{V}]|)$. In this encoding, instead of retaining all 184 possible edges, we only keep the indices of the edges we want to flip. Therefore, any element in 185 the population $z \in S$ is a vector of $p = \lfloor \epsilon \cdot |\mathcal{E}[\mathcal{V}_{att} : \mathcal{V}] \rfloor$ dimensions where each entity of it is an index in adjacency matrix $z[i] \in \{1, \dots, n(n-1)/2\}$ with $n = |\mathcal{V}|$. We use diagonal enumeration of an upper triangular $n \times n$ matrix as the encoding (see § B). The perturbation vector can contain 187 repeated elements. During the evaluation of the vector, we transform it to a perturbation matrix P_z , 188 and we compute the perturbed adjacency $A = A \oplus P_z$. All the mentioned computations are in sparse 189 representation, and each individual of the population takes $\mathcal{O}(\delta)$ space. Moreover, with this encoding, 190 we directly enforce the global budget since the size of each individual in the population is by design 191 the number of allowed perturbations. 192

Acceptable fitness functions. The fitness function in GA is accessed in a black-box manner. Therefore, properties like differentiability are not a requirement, which allows us to use the accuracy directly. However, for scenarios like targeted attacks, where the objective is to only misclassify a single node, the 0-1 loss function is not a suitable fitness function. In other words, with the 0-1 loss, random search and GA are practically equivalent. Ideally, small changes in the solution should be reflected in the fitness function as well. This sensitivity to various individuals prevents GA from remaining in local optima. In § 5, we discuss the choice of fitness in targeted attacks.

Drawbacks. The aforementioned setup is the very baseline variant of EvA. While already effective (outperforming SOTA), in Fig. 2, we resolve several drawbacks by changing the definition of the initial population and the mutation function. In the baseline variant, a population is allowed to contain perturbations that are outside of the receptive field of the GNN for V_{att} . This means that (at least for initial generations) a proportion of the attacking budget is wasted on ineffective perturbations. Even for perturbations connecting nodes with both ends outside of V_{att} , the defender can easily revert them by memorizing the training subgraph. In § 4, we discuss further improvements.

207 208

4 ENHANCING THE SEARCH

209 210 In § 3 we defined the baseline evolutionary attack and discussed the possible drawbacks. As shown in 211 Fig. 2 the baseline EvA already outperforms the SOTA. Additionally, with the following modifications 212 we increase its effectiveness by a notable margin. The key insight is that the baseline attack, same as 213 many gradient-based attacks defined their target space as the entire graph – entire space of $\frac{n}{2}(n-1)$ 214 possible edges. As mentioned in § 2, perturbations that do have both endpoints in the training subgraph 215 can be easily reverted just by memorizing the training subgraph. Additionally, perturbations outside of the receptive field of V_{att} are a waste of budget as they do not affect the prediction of the target nodes. **Initial population.** Our baseline initial population consists of random perturbations in the entire space of A. This is a naive approach that disregards closeness to \mathcal{V}_{att} . Instead, we restrict the initial population to have at least one endpoint in \mathcal{V}_{att} . This can easily done by randomly sampling both endpoints, one inside \mathcal{V}_{att} and one in \mathcal{V} , and then mapping the edges back to the indices via Π .

220 Targeted and adaptive mutation. After initialization, another way to balance the exploration and 221 exploitation power of the algorithm is by introducing diversity in the population. In the baseline 222 uniform mutation function, we change each edge to another random edge in \mathcal{V} with some mutation 223 probability p. Same as in initialization, we define the "targeted mutation (TM)" by restricting the 224 new mutated edge to have at least one end-point in \mathcal{V}_{att} . Remarkably, this modification shows a 225 significant improvement as shown in Fig. 2. Furthermore, when the attack succeeds in altering 226 a node's prediction, additional perturbations connected to it do not gain any more performance. Therefore, we exclude them from the endpoint that was restricted to \mathcal{V}_{att} . Notably, we still allow 227 those nodes to connect to other nodes in \mathcal{V}_{att} as they can also increase the misclassification risk for 228 other nodes. We call the latter approach "adaptive targeted mutation" (ATM). 229

Stacking perturbations. Each population (at each iteration of EvA) needs to evaluate every individual. This means that each individual requires a forward pass on the perturbed graph. As mentioned before, our population takes $O(\delta)$ memory, and during the evaluation, we still maintain the sparse representation of the graph. Therefore, if the memory budget allows, we can evaluate several perturbations at once by combining perturbed graphs into one large (disconnected) graph and running only one forward pass. In practice, for small datasets like CoraML, we only run one forward pass per iteration, as the entire population of 1024 individuals can be evaluated once.

237 Fitness Function. As we men-

238 tioned in § 1, one of the prob-239 lems with gradient-based methods is finding a differentiable 240 proxy aligned with the main 241 objective. To further under-242 stand the effect of the loss func-243 tion on attacks, we conducted 244 an additional experiment where 245 we replaced the fitness func-246 tion of EvA with the cross-247 entropy and margin-based loss 248 functions, which have become 249 popular in adversarial attacks as 250 surrogates for accuracy. This experiment seeks to evaluate the 251 effect of the fitness function on 252 attack performance. The results, 253

Figure 2: Effect of optimizing for different objective functions (left) and the influence of mutation type on EvA performance (right).

shown in Fig. 2, indicate that cross-entropy does not use the budget effectively. On the contrary, the
margin-based loss provides a well-correlated surrogate loss. Since PRBCD also uses the margin-based
loss, we see that the main reason for the large gap to EvA is not the loss function. We hypothesise
that EvA, leveraging the exploratory capabilities of genetic algorithms, can more effectively explore
the solution space and avoid bad local optima, while PRBCD gets stuck.

Sensitivity. The fitness landscape should be sensitive – small changes in the solution should ideally
 result in (at least some) changes in the fitness score. For EvA, higher sensitivity results in a better
 selection of the population for breeding and distinguishes even the smallest advantage of a specific
 individual. We empirically show that accuracy has enough sensitivity for the global attack and low
 to medium size budget. However, as we discuss in § 5 for targeted attacks, the variability of the
 fitness function decreases to two values {0, 1}. We discuss further in § D.1 why low sensitivity of the
 objective function makes GA-based methods close to random search.

Effect of scaling. A larger population provides greater diversity among solutions, which helps
 prevent early convergence to sub-optimal solutions, therefore the population size has a considerable
 impact on the performance of EvA. To observe this effect, we conducted experiments by changing the
 population size while keeping other parameters fixed on the PubMed dataset. For a fair comparison,
 we also attempted to scale PRBCD by increasing the number of steps and the size of the block

Figure 3: Effect of scaling on EvA and PRBCD performance (left, middle), the effect of mutation type and scaling on at 0.1% budget (right) on Pubmed dataset.

coordinate subspace. In this experiment, we exponentially increased the block size, starting from 500 up to 4 million. As shown in Fig. 3 (left), increasing the population size improves EvA's ability to find better solutions by exploring the search space more effectively. Increasing the number of steps also increases the success rate of the attack. In contrast, PRBCD does not achieve further improvement by increasing the block size or the number of training steps.

We further investigate the effects of scaling and mutation types together. Fig. 3 (right) shows that adaptive targeted mutation can consistently enhance performance across all population sizes and 292 outperform the uniform approach. This highlights the importance of selecting effective mutation 293 strategies. Moreover, further exploration and refinement of mutation techniques could reveal more effective mutations, which could be explored in future studies. 295

5 **OTHER OBJECTIVES**

299 Local attacks. Gosch et al. (2024) argue that the perturbations within a global budget can still cause 300 meaningful changes to the graph structure. For example, a perturbation might add edges to the node, 301 increasing its degree to more than twice its current level while staying within the global budget. This can drastically alter the graph structure locally around that node, making the attack noticeable or, at 302 the very least, impacting the graph's structural semantics. Therefore, they argue for a threat model 303 that, in addition to a global budget, has a local budget that limits the number of perturbations per 304 node to an ϵ_{loc} proportion of its degree. 305

306 Local constrained mutation. We enforce this constraint as a new mutation applied before finalizing 307 the population. In our mutation, we count the row (or column) summation of the perturbation matrix which quantifies the number of edges added to (or removed from) each node. Calling the nodes with 308 perturbation degree higher than $\epsilon_{\text{loc}} \cdot \deg(v_i)$ (the local perturbation budget) as "violating", we run 309 an iterative refinement procedure where at each step we remove one edge from violating nodes and 310 insert a non-violating edge instead. This refinement procedure continues until the local constraints 311 are satisfied. Additionally, we rewrite the adaptive targeted mutation to account for the local budget – 312 we restrict the mutation edges to those with remaining local budget for both end-points. 313

314 Targeted attacks. The targeted attack aims at one node to misclassify it with the least possible number of perturbations. With the discussion in § 4 the binary objective does not capture differences 315 between different solutions. Therefore we use a proxy tanh-margin loss as the fitness function. 316

317

319

281

282

283 284

287

288

289

290

291

296 297

298

318 5.1 ATTACKING NOVEL OBJECTIVES

320 In cases where the objective is not differentiable (e.g. accuracy), to apply gradient-based attacks, 321 we need to find a differentiable surrogate that approximates the original objective. This is already discussed in § 4. Using these attacks becomes even more challenging when the attack objective is 322 complicated and defined through several non-differentiable components (e.g., quantile computation 323 or majority voting). Since our method nullifies the need for information from gradients, we can easily

336

337 338

Figure 4: The conformal coverage (left) and conformal set size attack (middle) on Vanilla and adversarially trained GCN. The certificate attack (right) on GCN. All plots are for CoraML.

optimize for novel complex objectives. We define three new attacks on graphs: reducing the certifiedratio of a smoothing-based model, decreasing the coverage, and the set size of conformal sets.

341 Attacking randomized smoothing-based certificates. A robustness certificate guarantees that the 342 prediction of the classifier remains the same within the threat model. One way to obtain such a 343 guarantee (for a black-box model) is through randomized smoothing. A smoothing scheme ξ is a 344 random function mapping an input x to a nearby point x' (e.g. additive isotropic Gaussian noise 345 $x' = \xi(x) = x + \epsilon$, where $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$). The convolution of the smoothing scheme and the 346 classifier $\Pr[f(x + \epsilon) = y]$ changes slowly around x and this allows us to bound the worst-case minimum of the smooth prediction probability within \mathcal{B} . If this minimum is above 0.5, we can certify 347 that the smooth model returns the same label for any $\tilde{x} \in \mathcal{B}(x)$. A possible adversarial objective is to 348 reduce the number of nodes that are certified (a.k.a. certified ratio). 349

For certifying a prediction we compute the majority vote – the probability that the classifier predicts the top class for randomized $x' \sim \xi(x)$. Then, we find a lower bound for this probability within the perturbation ball (see § D). Exact computation of the majority vote is generally intractable. Instead, we use Monte-Carlo (MC) sampling. These operations are not directly differentiable.

354 A naive implementation of the certified ratio objective is to compute $n_{\rm mc}$ random samples for each 355 candidate perturbation A. This makes the attack extremely slow as in each iteration, we need $n_{\pi} \cdot n_{\rm mc}$ 356 samples, and for each Monte Carlo sample, we need n^2 samples from the Bernoulli distribution. 357 Since statistical rigor is not crucial during the attack, we employ an efficient sampling strategy where 358 we start with initial samples from clean A, and for each perturbation, we only resample for the edges 359 in $\hat{A} \triangle A$. We use the stacked inference technique (see § 4) on MC samples which ultimately reduces 360 the computation to one inference per each perturbation \mathbf{A} . Moreover, the certified radius is only a 361 function of the smooth classifier's probability and it is non-decreasing w.r.t. it. This allows us to 362 reduce all certificate computations to one binary search for the minimum required probability. Then 363 the objective is to minimize the number of nodes with probability above this threshold. We further discuss this attack in § D. 364

365 Attacking conformal prediction. Instead of label prediction, conformal prediction (CP) returns 366 prediction sets that are guaranteed to include the true label with $1 - \alpha$ probability. This post-hoc 367 statistical method treats the model as a black-box and requires only a calibration set of labeled points 368 whose labels were not used during model training. CP is applicable in both inductive and transductive 369 Graph Neural Networks (GNNs) under the assumption of node-exchangeability (Zargarbashi & Bojchevski, 2024). Adversarial attacks on conformal prediction aim to decrease the empirical 370 coverage by perturbing the input. In addition, we also define an attack that reduces the applicability 371 of the prediction sets by increasing the average set size. 372

To compute prediction sets we need to compute a quantile from the set of true calibration conformity scores and compare the scores of the test node to the quantile threshold. This operation is again not directly differentiable which is not a problem for EvA. In our experimental setup, the defender calibrates on a random subset of \mathcal{V}_u (besides the test, this is the only set with labels unseen by the model). Assuming that the unlabeled and test nodes are originally exchangeable (node-exchangeability), the conformal guarantee is valid in the inductive setup upon recalibration on the clean graph. By 378 perturbing the edge structure we can easily break this guarantee. Therefore our objective is to change 379 the edge structure such that the coverage is minimized. Intuitively, this requires maximizing the 380 distribution shift between the test and calibration scores. We can perform conformal prediction for 381 each individual in the population, and we set the coverage of \mathcal{V}_{att} as the objective function.

382 Since we don't know the exact subset of the unlabeled nodes taken as calibration, we can use the unlabeled set entirely as the calibration set. Given that the defender will randomly sample from 384 unlabeled nodes during the calibration, the coverage remains roughly the same for exchangeable 385 subsets of \mathcal{V}_{u} (Berti & Rigo, 1997). To the best of our knowledge, so far this is the only adversarial 386 attack on the graph structure to break conformal inductive GNNs. Similarly, by changing the objective 387 to the negative average set size, we can easily attack the usability of prediction sets (see Fig. 4).

388 389 390

EMPIRICAL RESULTS 6

391 With our empirical evaluations (i) we show that current gradient-based attacks are still very far from 392 optimal since EvA outperforms them by a notable margin. (ii) We show that EvA inherently results 393 in attacks that perturb each node with less change in nodes' degree. This is even without posing local 394 budget restrictions. (iii) We also show even by adding local restrictions EvA still outperforms other 395 gradient-based local attacks. (iv) The effectiveness of EvA is consistent across various models, and 396 vanilla or robust training setups. (v) With the black-box nature of the attack we introduce the first 397 attack that reduces the certified ratio and the first attack that breaks conformal sets on graphs.

398 Experimental setup. We evaluate EvA on common graph datasets: Cora-ML (McCallum et al., 399 2004), Citeseer (Sen et al., 2008), and PubMed (Namata et al., 2012). Shchur et al. (2018) show that 400 GNN evaluation is sensitive to the initial train/val/test split. Therefore, we averaged our results for 401 each dataset/model over five different data splits. In contrast with common GNN attacks, Gosch et al. 402 (2024) show that transductive setup carries a false sense of robustness. In other words, trivially one 403 can gain perfect robustness just by memorizing the clean data; models with robust and self-training also show to exploit this flaw. Following them, we report our results in an inductive setting. We 404 divide graph nodes into four subsets: training, validation, and testing, each with 10% of the nodes 405 and we leave the remaining 60% as unlabeled data. For completeness, in § A we compare attacks in 406 the transductive setting as well, where again EvA is more effective. 407

408 Following Lingam et al. (2023), we maintain the distribution of labels for sampling train, validation, and test nodes. This provides a more realistic scenario compared to commonly used methods, such as 409 sampling for training and validation with the same count probability for each class. For completeness 410 in § A we report various sampling setups. However the this does not change the order between 411 methods. Further information about the model and hyperparameters can be found in § C. 412

413 Attacking vanilla models. As shown in Fig. 5, EvA outperforms the SOTA attack PRBCD by a 414 significant margin. This comparison remains consistent across various datasets and models. We report 415 these results extensively in § A. Interestingly, we show that in many vanilla and robust models, a very small budget $\epsilon \sim 0.05$ EvA drops the accuracy below the level of the MLP model. This is a condition 416 where the model leveraging the structure works worse than a model that completely ignores edges. 417

429 430

431

419

421

423

424

426

Figure 5: Performance of EvA on CoraML. From left to right the results are on Vanila GCN, adversarially trained GCN using PRBCD, and Soft-Median-GDC model.

NA • 10 EvA PRBCD Count 20 5-7 +8 5-7 +8 Degree Degree Degree Violation

Figure 6: The number of perturbations (in different colors) that have been used by EvA (left) and PRBCD (middle) to target nodes with a specific degree. The right figures present the number of violations that EvA, PRBCD introduce (for $\epsilon_{loc} = 0.5$). NA (black) indicates a failed attack.

The SoftMedian model seems to show an inherent robustness to both EvA and PRBCD. Therefore, to break the model below the accuracy of MLP, we require ≥ 0.2 perturbation budget. Even in the SoftMedian model, our attack is significantly more effective in comparison to PRBCD.

Adversarially trained models. Similar to vanilla models, EvA outperforms other approaches for robust models by a notable margin. As expected, models trained with EvA were shown to be more robust, and other attacks were less effective to them. However, this additional robustness is not significant. Table 9 (§ A) compares attacks in models with different adversarial training.

Local attacks. Building upon the discussion in § 5, we enforce the local constraint by adding a mutation function that iteratively removes edges exceeding the local budget. The local variant of EvA also shows to be consistently better than the local LRBCD attack. For the PubMed dataset EvA's effectiveness has a slower trend by increasing the budget ϵ . On PubMed (see § A), when enforcing locally constrained mutation, the number of reconsidered edges increases due to the density of the graph. This makes the search significantly harder. On other datasets, though, EvA shows consistently better results and, more importantly, sharper decrease at lower ϵ .

Targeted attack. We perform attacks on each node separately, with varying budgets from one to a maximum of 10 edges, until the prediction changes. As we discussed in § 5, the accuracy on one node is non-expressive. Therefore we use the tanh-Margin proxy loss. Fig. 6 (left and middle) compares EvA and PRBCD in tagetted attack. Our results show that PRBCD performs better with a budget of one, but is outperformed by EvA for budgets of two and higher. For instance, on the CoraML dataset PRBCD fails to modify 16 nodes with a maximum of 10 changes (NA, black), whereas this number is reduced to only 2 nodes for EvA. This result is expected due to the combinatorial nature of the problem: for budgets up to two, a greedy approach can find the optimal solution, but as the budget increases beyond three, the problem becomes significantly more complex.

Attacking certificates. As shown in Fig. 4 (right) we reduce the certified ratio - the number of nodes that the certificate can guarantee for the specified threat model - to a ratio below the accuracy of the MLP model. The MLP model here is a baseline as it is robust to any structure perturbation by trivially ignoring edges. We report the ratio certified by sparse smoothing (Bojchevski et al., 2020) with p=0.4, and $p_+ = 2 \times 10^{-5}$. Here p_+ , and p_- are Bernoulli parameters of flipping a zero or one. We reported the result for $\mathcal{B}_{0,3}$ which means 0 edge addition and 3 deletions. While we aim to decrease the certified ratio, a direct outcome is that the certified accuracy drops. For a 5% budget, the certified accuracy drops below MLP, which is resilient to any structural perturbation by definition. Notably, the clean (smooth) accuracy stays the same making this attack less noticable. For this experiment we used the GPRGNN model with robust training using PRBCD attack.

Attacking conformal prediction. We report the first structure attack to inductive conformal GNN (Zargarbashi & Bojchevski, 2024). As shown in Fig. 4 (right) the coverage drops quickly as we increase the perturbation budget. As expected, in an adversarially trained model, we observe a slower decrease in the empirical coverage. Another interesting objective to attack is increasing the set size since it affects the usability of the prediction set. In Fig. 4 (middle) we show that both vanilla and robust models are vulnerable to this attack.

Figure 7: The upper triangle of each heatmap represents the perturbation connections for PRBCD, the lower triangle corresponds to the same for EvA, and the diagonal is set to zero.

Local degree violation. In this experiment, we did not enforce the local degree constraint in both EvA
 and PRBCD. However, we compared the final solutions to assess how often the solutions violated
 this constraint. Fig. 6 (right) shows that EvA generally produces more diverse attacks, utilizing the
 global budget more efficiently, which leads to improved performance. Overall, EvA violates less for
 any degree number and therefore in total.

Label diversity. We further conduct an ablation study on the solutions found by EvA and PRBCD under a specific budget of 10%. In this experiment, we keep all hyperparameters of EvA and PRBCD fixed and run them across 10 different seeds. We then compare the average solutions generated by each adversary. The left figure in Fig. 7 shows the number of connections across different labels. In both cases, the methods focus more on label 5 than on the others, but EvA distributes the connections more uniformly compared to PRBCD. The middle figure illustrates the nodes with original degrees ranging from 1 to greater than 8. The results indicate that, in both attacks, most of the budget is spent connecting to low-degree nodes. However, compared to PRBCD, EvA allocates more of the budget to higher-degree nodes. Additionally, we calculate the margin loss for each node in the original graph and discretize them into eight levels. As shown in the right figure of Fig. 7, EvA allocates more of the budget to higher-margin nodes, resulting in a non-trivial solution that achieves a better optimum. Finally, it seems that EvA identifies solutions that differ from greedy-based heuristic, which usually only targets low-degree or low-margin nodes.

7 CONCLUSION

In contrast to gradient-based adversarial attacks on graph structure, we developed a new attack (EvA) based on a heuristic genetic algorithm. By eliminating differentiation, we can directly optimize for the objective of the adversary (e.g. the model's accuracy). This black-box nature enables us to define complex adversarial goals, including attacks on robustness certificates and conformal prediction. Our novel attacks decrease the certified ratio, and conformal coverage, and increase the conformal set size. We propose an encoding that reduces the memory complexity of the attack to the same order as the perturbation budget which allows us to adapt to various computational constraints. Given the drastic decrease in the model's accuracy by applying EvA, we highlight that even SOTA gradient-based attacks are far from optimal. Our main message is that search-based attacks are underexplored yet powerful as shown by our results.

Limitations. We use an off-the-shelf genetic algorithm. Surely, there is room for designing search algorithms specific to the domain of the problem or hybrids of gradient and evolutionary search. As the graph size increases, the search space expands exponentially which makes convergence harder. While we remove the white-box assumption, we still assume the adversary has full knowledge of the graph and labels (same as most other attacks). This limitation can be easily addressed in future work. EvA uses many forward passes through the model which can be unrealistic in some attack scenarios. We leave the design of a further query-efficient variant for the future.

540	ETHICS STATEMENT
541	
542	In this paper, we propose an adversarial attack without white-box access. However, our main focus is
543	to point out the vulnerability of GNN models, opening the discussion on the need for more robust
544	and reliable models, our results can be used to exploit the vulnerability of current GNNs.
545	
546	Reproducability
547	
548 549	For reproducibility, we have uploaded the complete anonymized codebase on OpenReview.
550 551	References
552	Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
553 554	security: Circumventing defenses to adversarial examples. In <i>International conference on machine learning</i> , pp. 274–283. PMLR, 2018.
555 556 557	Patrizia Berti and Pietro Rigo. A glivenko-cantelli theorem for exchangeable random variables. <i>Statistics & probability letters</i> , 32(4):385–391, 1997.
558 559 560	Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. Efficient robustness certifi- cates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more. In <i>International Conference on Machine Learning</i> , pp. 1003–1013. PMLR, 2020.
561 562 563	Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph neural network, 2021.
564 565 566	Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on graph structured data. In <i>International conference on machine learning</i> , pp. 1115–1124. PMLR, 2018.
567 568 569 570	Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann. Robustness of graph neural networks at scale. <i>Advances in Neural Information Processing Systems</i> , 34:7637–7649, 2021.
571 572 573	Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan Günnemann. Robustness of graph neural networks at scale, 2023. URL https://arxiv.org/abs/2110.14038.
574 575 576 577	Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Adversarial training for graph neural networks: Pitfalls, solutions, and new directions. In 37th Conference on Neural Information Processing Systems (Neurips), 2023.
578 579 580	Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Adversarial training for graph neural networks: Pitfalls, solutions, and new directions. <i>Advances in Neural Information Processing Systems</i> , 36, 2024.
581 582 583	John H Holland. Genetic algorithms and adaptation. <i>Adaptive control of ill-defined systems</i> , pp. 317–333, 1984.
584 585 586	Vijay Lingam, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Rethinking label poisoning for gnns: Pitfalls and attacks. In <i>The Twelfth International Conference on Learning Representations</i> , 2023.
587 588 589	Andrew McCallum, Kamal Nigam, Jason D. M. Rennie, and Kristie Seymore. Automating the construction of internet portals with machine learning. <i>Information Retrieval</i> , 3:127–163, 2004.
590 591 592	Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for collective classification. 2012.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
 Collective classification in network data. 2008.

- Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.
- Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, Philip S. Yu, Lifang He, and Bo Li.
 Adversarial attack and defense on graph data: A survey. *IEEE Transactions on Knowledge and Data Engineering*, 35(8):7693–7711, 2023. doi: 10.1109/TKDE.2022.3201243.
- Nihat Engin Toklu, Timothy Atkinson, Vojtěch Micka, Paweł Liskowski, and Rupesh Kumar Srivas tava. Evotorch: scalable evolutionary computation in python. *arXiv preprint arXiv:2302.12600*, 2023.
- Yexin Wang, Zhi Yang, Junqi Liu, Wentao Zhang, and Bin Cui. Scapin: Scalable graph structure perturbation by augmented influence maximization. *Proc. ACM Manag. Data*, 1(2), June 2023. doi: 10.1145/3589291. URL https://doi.org/10.1145/3589291.
- Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
 Topology attack and defense for graph neural networks: An optimization perspective. *arXiv preprint arXiv:1906.04214*, 2019.
- Soroush H Zargarbashi and Aleksandar Bojchevski. Conformal inductive graph neural networks. *arXiv preprint arXiv:2407.09173*, 2024.
- Chenhan Zhang, Shiyao Zhang, James J. Q. Yu, and Shui Yu. Sam: Query-efficient adversarial attacks against graph neural networks. *ACM Trans. Priv. Secur.*, 26(4), November 2023. ISSN 2471-2566. doi: 10.1145/3611307. URL https://doi.org/10.1145/3611307.
- Jianfu Zhang, Yan Hong, Dawei Cheng, Liqing Zhang, and Qibin Zhao. Hierarchical attacks on large-scale graph neural networks. In *ICASSP 2024 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 7635–7639, 2024. doi: 10.1109/ICASSP48485.2024. 10448076.
- Guanghui Zhu, Mengyu Chen, Chunfeng Yuan, and Yihua Huang. Simple and efficient partial
 graph adversarial attack: A new perspective, 2023. URL https://arxiv.org/abs/2308.
 07834.
- Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
 for graph data. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 2847–2856, 2018.
- Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on graph neural networks: Perturbations and their patterns. *ACM Transactions on Knowledge Discovery from Data (TKDD)*, 14(5):1–31, 2020.

A SUPPLEMENTARY EXPERIMENTS

Transductive Setting. In § 6, we discussed that evaluating robustness in transductive setup is flawed since trivial robustness can be gained just by memorization of the clean graph (Gosch et al., 2024). However, for completeness, Table 1 reports the attacks' effectiveness in this setup. Consistent with other experiments, here also EvA outperforms SOTA. We provide the result for EvA, PRBCD, and for completeness, we also provide the result for PGA, which is a more recent attack.

Table 1: Classification accuracy (%) on the CoraML dataset in the transductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations.

Model	Attack							
		0.01	0.02	0.05	0.10	0.15	0.20	
GCN	LRBCD PRBCD EvA	$\begin{array}{c} 80.0_{\pm 2.0} \\ 79.0_{\pm 2.0} \\ 77.0_{\pm 2.0} \end{array}$	$\begin{array}{c} 78.0_{\pm 2.0} \\ 77.0_{\pm 2.0} \\ 74.0_{\pm 2.0} \end{array}$	$\begin{array}{c} 73.0_{\pm 1.0} \\ 72.0_{\pm 2.0} \\ 66.0_{\pm 2.0} \end{array}$	$\begin{array}{c} 66.0_{\pm 1.0} \\ 65.0_{\pm 2.0} \\ 60.0_{\pm 2.0} \end{array}$	$\begin{array}{c} 61.0_{\pm 2.0} \\ 60.0_{\pm 2.0} \\ 59.0_{\pm 3.0} \end{array}$	$\begin{array}{c} 57.0_{\pm 2.0} \\ 56.0_{\pm 2.0} \\ 57.0_{\pm 3.0} \end{array}$	
GPRGNN	LRBCD PRBCD EvA	$\begin{array}{c} 79.0_{\pm 3.0} \\ 79.0_{\pm 3.0} \\ 77.0_{\pm 3.0} \end{array}$	$\begin{array}{c} 77.0_{\pm 3.0} \\ 76.0_{\pm 4.0} \\ 73.0_{\pm 5.0} \end{array}$	$\begin{array}{c} 72.0_{\pm 4.0} \\ 70.0_{\pm 5.0} \\ 64.0_{\pm 6.0} \end{array}$	$\begin{array}{c} 63.0_{\pm 7.0} \\ 62.0_{\pm 7.0} \\ 57.0_{\pm 10.0} \end{array}$	$\begin{array}{c} 55.0_{\pm 12.0} \\ 55.0_{\pm 10.0} \\ 53.0_{\pm 13.0} \end{array}$	$\begin{array}{c} 49.0_{\pm 16.0} \\ 50.0_{\pm 13.0} \\ 50.0_{\pm 16.0} \end{array}$	

Inductive Setting. Here, we present additional results specifically for the inductive setting. Unlike the transductive setup, where robustness can be misleadingly achieved through memorization of the clean graph, the inductive framework provides a more comprehensive assessment of model performance in real-world scenarios. In this section, we detail the effectiveness of our method compared to other approaches.

Table 2: Classification accuracy (%) on the CoraML dataset in the inductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations.

Model	Attack							
110000		0.01	0.02	0.05	0.10	0.15	0.20	
APPNP	EvA PRBCD	$\begin{array}{c} 76.65_{\pm 1.32} \\ 78.65_{\pm 0.99} \end{array}$	$\begin{array}{c} 71.03_{\pm 1.44} \\ 75.30_{\pm 1.27} \end{array}$	$\begin{array}{c} 56.51_{\pm 1.60} \\ 68.75_{\pm 1.22} \end{array}$	$\begin{array}{c} 49.32_{\pm 1.84} \\ 61.57_{\pm 1.65} \end{array}$	$\begin{array}{c} 44.77_{\pm 2.04} \\ 55.44_{\pm 1.58} \end{array}$	$\begin{array}{c} 41.42_{\pm 1.41} \\ 49.96_{\pm 2.42} \end{array}$	
GAT	EvA PRBCD	$\begin{array}{c} 64.20_{\pm 1.89} \\ 70.07_{\pm 2.82} \end{array}$	$\begin{array}{c} 58.51_{\pm 2.45} \\ 66.55_{\pm 2.21} \end{array}$	$\begin{array}{c} 40.99_{\pm 1.60} \\ 58.58_{\pm 3.33} \end{array}$	$\begin{array}{c} 15.30_{\pm 4.47} \\ 49.61_{\pm 6.55} \end{array}$	$\begin{array}{c} 9.40_{\pm 6.83} \\ 39.86_{\pm 6.78} \end{array}$	$\begin{array}{c} 8.11_{\pm 6.65} \\ 36.94_{\pm 7.09} \end{array}$	
GCN	EvA PRBCD	$\begin{array}{c} 74.80_{\pm 1.50} \\ 76.44_{\pm 1.64} \end{array}$	$\begin{array}{c} 68.97_{\pm 1.58} \\ 73.17_{\pm 1.39} \end{array}$	$\begin{array}{c} 52.95_{\pm 1.91} \\ 66.48_{\pm 2.13} \end{array}$	$\begin{array}{c} 41.99_{\pm 2.06} \\ 58.51_{\pm 1.77} \end{array}$	$\begin{array}{c} 37.65_{\pm 2.74} \\ 52.67_{\pm 2.09} \end{array}$	$\begin{array}{c} 35.37_{\pm 2.38} \\ 47.19_{\pm 2.02} \end{array}$	
GPRGNN	EvA PRBCD	$\begin{array}{c} 72.53_{\pm 4.11} \\ 74.95_{\pm 3.08} \end{array}$	$\begin{array}{c} 66.83_{\pm 4.54} \\ 71.67_{\pm 2.76} \end{array}$	$\begin{array}{c} 51.53_{\pm 5.57} \\ 64.84_{\pm 4.18} \end{array}$	$\begin{array}{c} 42.21_{\pm 8.52} \\ 57.94_{\pm 4.55} \end{array}$	$\begin{array}{c} 37.01_{\pm 9.83} \\ 53.24_{\pm 5.20} \end{array}$	$\begin{array}{c} 34.52_{\pm 9.83} \\ 48.68_{\pm 6.52} \end{array}$	

Stratified sampling. Although unrealistic, in Table 8 we compare attacks in case the models are trained train/val/test sampled with the same number of nodes across different classes. Consistent with other results, EvA shows to be better here as well.

Attacking accuracy of vanilla and robust models. Table 9 compares EvA with SOTA PRBCD, and LRBCD. We compare both three attacks on vanilla models or models trained with adversarial examples of either of the attacks. Across all setups, EvA shows a comparably better performance.

697 A.1 EXPERIMENTS

Vanilla Models Experients. For the experimental results, we mainly focus on the inductive setting introduced by (Lingam et al., 2023), where during training, we only use \mathcal{G}_{tr} , and during the attack, we target \mathcal{G}_{test} . We also provide results for the transductive setting, showcasing that our attack outperforms previous gradient-based methods, independent of the training setting. We conduct

	7	0	2
$= \circ \circ$	_		

Table 3: Classification accuracy (%) on the CoraML dataset in the inductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations.

Model	Attack							
	1 Ituen	0.01	0.02	0.05	0.10	0.15	0.20	
	EvA	$74.80_{\pm 1.50}$	$68.97_{\pm 1.58}$	$52.95_{\pm 1.91}$	$41.99_{\pm 2.06}$	$37.65_{\pm 2.74}$	$35.37_{\pm 2.3}$	
CON	EvaLocal	$75.09_{\pm 1.73}$	$69.82_{\pm 1.96}$	$60.21_{\pm 2.04}$	$56.09_{\pm 1.93}$	$54.16_{\pm 2.48}$	$52.88_{\pm 1.7}$	
GCN	LRBCD	$78.51_{\pm 1.56}$	$75.94_{\pm 1.54}$	$71.10_{\pm 1.16}$	$64.41_{\pm 1.65}$	$60.14_{\pm 1.73}$	$57.37_{\pm 1.4}^{-}$	
	PRBCD	$76.44_{\pm 1.64}$	$73.17_{\pm 1.39}$	$66.48_{\pm 2.13}$	$58.51_{\pm 1.77}$	$52.67_{\pm 2.09}$	$47.19_{\pm 2.0}^{-}$	
	PGA	$79.58_{\pm 1.61}$	$76.92_{\pm 1.73}$	$70.94_{\pm 1.89}$	$64.62_{\pm 1.92}$	$60.46_{\pm 2.25}$	$57.54_{\pm 2.4}$	
	EvA	$72.53_{\pm 4,11}$	$66.83_{\pm 4}{}_{54}$	$51.53_{\pm 5.57}$	$42.21_{\pm 8.52}$	$37.01_{\pm 9.83}$	$34.52_{\pm 9.8}$	
CDDCNN	EvaLocal	$73.31_{\pm 3.30}$	$67.26_{\pm 4.17}$	$58.29_{+7.96}$	$53.38_{\pm 11.42}$	$51.10_{\pm 12.66}$	$49.96_{\pm 13.0}$	
GPRGNN	LRBCD	$77.51_{\pm 1.81}$	$74.80_{\pm 1.41}$	$68.83_{\pm 1.90}$	$62.56_{\pm 1.71}$	$59.07_{\pm 1.53}$	$55.66_{\pm 1.7}$	
	PRBCD	$74.95_{\pm 3.08}$	$71.67_{\pm 2.76}^{-}$	$64.84_{\pm 4.18}$	$57.94_{\pm 4.55}$	$53.24_{\pm 5.20}$	$48.68_{\pm 6.5}$	
	PGA	$78.55_{\pm 3.03}$	$75.33_{\pm 3.69}$	$68.63_{\pm 5.11}$	$61.55_{\pm 6.97}$	$56.60_{\pm 8.52}$	$54.91_{\pm 7.4}$	

Table 4: Classification accuracy (%) on the Citeseer dataset in the inductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations.

Model	Attack		ε							
		0.01	0.02	0.05	0.10	0.15	0.20			
APPNP	EvA PRBCD	$-87.26_{\pm 0.90}$	$-85.48_{\pm 1.49}$	$\begin{array}{c} 74.29_{\pm 0.88} \\ 81.79_{\pm 1.08} \end{array}$	$\begin{array}{c} 65.00_{\pm 1.15} \\ 76.55_{\pm 0.68} \end{array}$	$\begin{array}{c} 59.76_{\pm 2.33} \\ 72.44_{\pm 1.66} \end{array}$	$\begin{array}{c} 54.76_{\pm 1.19} \\ 69.29_{\pm 1.69} \end{array}$			
GAT	EvA PRBCD	$-84.52_{\pm 2.27}$	$-82.62_{\pm 2.20}$	$\begin{array}{c} 67.14_{\pm 3.65} \\ 76.55_{\pm 5.59} \end{array}$	$\begin{array}{c} 51.19_{\pm 4.21} \\ 70.00_{\pm 6.09} \end{array}$	$\begin{array}{c} 37.74_{\pm 4.94} \\ 67.02_{\pm 4.27} \end{array}$	$\begin{array}{c} 27.62_{\pm 9.49} \\ 63.15_{\pm 4.19} \end{array}$			
GCN	EvA PRBCD	$\begin{array}{c} 86.67_{\pm 1.71} \\ 87.38_{\pm 1.81} \end{array}$	$\begin{array}{c} 82.86_{\pm 2.12} \\ 85.83_{\pm 2.43} \end{array}$	$\begin{array}{c} 72.74_{\pm 2.74} \\ 80.95_{\pm 2.06} \end{array}$	$\begin{array}{c} 58.33_{\pm 3.01} \\ 74.29_{\pm 4.22} \end{array}$	$\begin{array}{c} 49.76_{\pm 3.22} \\ 69.76_{\pm 4.34} \end{array}$	$\begin{array}{c} 44.29_{\pm 3.33} \\ 67.62_{\pm 4.96} \end{array}$			
GPRGNN	EvA PRBCD	$\begin{array}{c} 87.26_{\pm 2.75} \\ 88.45_{\pm 2.29} \end{array}$	$\begin{array}{c} 83.81_{\pm 2.50} \\ 86.31_{\pm 2.45} \end{array}$	$\begin{array}{c} 73.45_{\pm 3.17} \\ 82.02_{\pm 2.61} \end{array}$	$ \begin{array}{c} 61.43_{\pm 4.66} \\ 77.14_{\pm 2.84} \end{array} $	$\begin{array}{c} 55.48_{\pm 3.84} \\ 73.93_{\pm 3.89} \end{array}$	$\begin{array}{c} 50.12_{\pm 4.86} \\ 69.64_{\pm 3.47} \end{array}$			

experiments on the Cora-ML Citeseer, and Pubmed datasets, trained GCN, GPRGNN, APPNP and
GAT. We run the attack for six different budgets (0.01, 0.02, 0.05, 0.1, 0.15, 0.2). Further details on
training and attack hyperparameters are provided in C. We also use EvoTorch (Toklu et al., 2023) to
impelement EvA.

Robust Models. Similarly, we provide the results for the adversarially trained model. In this case, during training, we use an adversarial attack at each step to attack \mathcal{G}_{tr} , and then we retrain the model on the adversarially perturbed graph $\tilde{\mathcal{G}}_{tr}$. The robust budget (ϵ_{robust}) for adversarial attack during training was 0.02. This process repeats in each epoch of training until the model converges. We similarly use the inductive setting since, as Gosch et al. (2023) shows, in the transductive setup, the evaluation is flawed by a false sense of robustness. This originates from the fact that if, during the training process, the defender has access to perfect knowledge of all nodes in the graph, it can achieve perfect robustness by memorizing the clean structure of the graph in the model's weights. Table 9 presents our results in this setting. As the results indicate, EvA outperforms all previous attacks, even in adversarially trained models.

Attacking Certificate. As we discussed, EvA still be used in the case that we don't have access to a non-differentiable objective. In this experiment, we introduced a certificate attack which, to the best of our knowledge, is the first attack on certificates that reduces the certificate guarantees

Any possible appendices should be placed after bibliographies. If your paper has appendices, please submit the appendices together with the main body of the paper. There will be no separate supplementary material submission. The main text should be self-contained; reviewers are not obliged to look at the appendices when writing their review comments.

Table 5: Classification accuracy (%) on the Citeseer dataset in the inductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations.

	0.01	0.02	0.05			
			0.05	0.10	0.15	0.20
EVA EvaLocal LRBCD PRBCD	$\begin{array}{c} 86.67_{\pm 1.71} \\ 87.38_{\pm 1.65} \\ 88.45_{\pm 2.17} \\ 87.38_{\pm 1.81} \end{array}$	$\begin{array}{c} 82.86_{\pm 2.12} \\ 83.57_{\pm 2.17} \\ 86.43_{\pm 2.71} \\ 85.83_{\pm 2.43} \end{array}$	$\begin{array}{c} 72.74_{\pm 2.74} \\ 78.21_{\pm 3.17} \\ 83.69_{\pm 2.48} \\ 80.95_{\pm 2.06} \end{array}$	$\begin{array}{c} 58.33_{\pm 3.01} \\ 76.43_{\pm 2.62} \\ 80.12_{\pm 3.30} \\ 74.29_{\pm 4.22} \end{array}$	$\begin{array}{c} 49.76_{\pm 3.22} \\ 75.00_{\pm 3.23} \\ 78.45_{\pm 3.89} \\ 69.76_{\pm 4.34} \end{array}$	$\begin{array}{c} 44.29_{\pm 3.33} \\ 74.52_{\pm 3.16} \\ 75.36_{\pm 4.81} \\ 67.62_{\pm 4.96} \end{array}$
EvA EvaLocal LRBCD PRBCD	$\begin{array}{c} 87.26_{\pm 2.75} \\ 87.50_{\pm 2.27} \\ 89.76_{\pm 2.50} \\ 88.45_{\pm 2.29} \end{array}$	$\begin{array}{c} 83.81_{\pm 2.50} \\ 84.29_{\pm 2.04} \\ 87.98_{\pm 2.48} \\ 86.31_{\pm 2.45} \end{array}$	$\begin{array}{c} 73.45_{\pm 3.17} \\ 80.48_{\pm 3.96} \\ 85.12_{\pm 2.76} \\ 82.02_{\pm 2.61} \end{array}$	$\begin{array}{c} 61.43_{\pm 4.66} \\ 77.86_{\pm 4.56} \\ 81.90_{\pm 2.83} \\ 77.14_{\pm 2.84} \end{array}$	$\begin{array}{c} 55.48_{\pm 3.84} \\ 76.43_{\pm 5.06} \\ 79.64_{\pm 4.08} \\ 73.93_{\pm 3.89} \end{array}$	$\begin{array}{c} 50.12_{\pm 4.86} \\ 75.12_{\pm 6.57} \\ 78.45_{\pm 4.92} \\ 69.64_{\pm 3.47} \end{array}$
E L P	EvA EvaLocal LRBCD PRBCD		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Table 6: Classification accuracy (%) on the PubMed dataset in the inductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations.

Model	lel Attack	ε						
		0.01	0.02	0.05	0.10	0.15	0.20	
APPNP	EvA PRBCD	$\begin{array}{c} 73.85_{\pm 2.35} \\ 75.54_{\pm 2.34} \end{array}$	$\begin{array}{c} 69.64_{\pm 2.16} \\ 72.44_{\pm 2.28} \end{array}$	$\begin{array}{c} 57.07_{\pm 2.32} \\ 65.14_{\pm 2.26} \end{array}$	$\begin{array}{c} 47.03_{\pm 2.18} \\ 57.15_{\pm 2.59} \end{array}$	$\begin{array}{c} 43.94_{\pm 1.83} \\ 51.04_{\pm 2.79} \end{array}$	$\begin{array}{c} 41.93_{\pm 2.18} \\ 45.75_{\pm 2.60} \end{array}$	
GAT	EvA PRBCD	$\begin{array}{c} 69.15_{\pm 1.83} \\ 71.33_{\pm 1.53} \end{array}$	$\begin{array}{c} 64.62_{\pm 1.81} \\ 67.78_{\pm 1.79} \end{array}$	$\begin{array}{c} 52.17_{\pm 1.71} \\ 59.73_{\pm 2.10} \end{array}$	$\begin{array}{c} 33.62_{\pm 2.05} \\ 49.87_{\pm 1.36} \end{array}$	$\begin{array}{c} 26.62_{\pm 3.74} \\ 42.04_{\pm 1.57} \end{array}$	$\begin{array}{c} 24.21_{\pm 4.27} \\ 35.94_{\pm 1.66} \end{array}$	
GCN	EvA PRBCD	$\begin{array}{c} 72.60_{\pm 2.19} \\ 74.99_{\pm 1.99} \end{array}$	$\begin{array}{c} 68.35_{\pm 2.41} \\ 71.90_{\pm 2.03} \end{array}$	$\begin{array}{c} 56.15_{\pm 1.92} \\ 64.16_{\pm 2.32} \end{array}$	$\begin{array}{c} 42.93_{\pm 2.64} \\ 55.54_{\pm 2.79} \end{array}$	$\begin{array}{c} 40.46_{\pm 2.76} \\ 49.32_{\pm 2.66} \end{array}$	$\begin{array}{c} 39.11_{\pm 2.98} \\ 43.90_{\pm 3.09} \end{array}$	
GPRGNN	EvA PRBCD	$\begin{array}{c} 72.01_{\pm 4.18} \\ 74.37_{\pm 3.40} \end{array}$	$\begin{array}{c} 67.61_{\pm 4.28} \\ 71.66_{\pm 3.55} \end{array}$	$\begin{array}{c} 55.95_{\pm 4.32} \\ 64.51_{\pm 4.94} \end{array}$	$56.21_{\pm 6.46}$	$50.26_{\pm 7.41}$	$\begin{array}{c} 42.39_{\pm 9.63} \\ 45.81_{\pm 8.47} \end{array}$	

B TECHNICAL DETAILS OF EVA

Mapping function: enumeration over A For enumerating over A, instead of using the row and 789 column indices of the node to select, we introduced indexing. For a directed graph, the indexing 790 starts from 0 to $n^2 - 1$. However, in an undirected graph, we only need the upper triangular part of 791 the matrix A. To achieve this, we use the following algebraic solution to find the row and column of 792 the perturbation by referencing only the upper triangular indexing.

$$r = n - 2 - \left\lfloor \frac{\sqrt{-8l + 4n(n-1) - 7}}{2} - 0.5 \right\rfloor$$

$$c = 1 + l + r - \frac{n(n-1)}{2} + \left\lfloor \frac{(n-r)(n-r-1)}{2} \right\rfloor$$
(2)

The advantage of this solution is that it can also be implemented in a vectorized way, making everything parallelizable.

C DATASETS AND MODELS, AND HYPERPARAMETERS

C.1 STATISTICS OF DATASETS

In our experiments, we mainly conduct experiments on the commonly used graph datasets: Cora ML, Citeseer, and PubMed, which are all representative academic citation networks. Their specific characteristics are as follows:

Cora-ML. The Cora-ML dataset contains 2,810 papers as nodes, with citation relationships between them as edges, resulting in 7,981 edges. Each paper is categorized into one of 7 classes corresponding

Table 7: Classification accuracy (%) on the PubMed dataset in the inductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations.

Model	Attack	ε						
lilouer	1 Ittuen	0.01	0.02	0.05	0.10	0.15	0.20	
GCN	EvA EvaLocal LRBCD PRBCD	$\begin{array}{c} 72.60_{\pm 2.18} \\ 74.49_{\pm 2.05} \\ 74.89_{\pm 2.04} \\ 74.99_{\pm 1.99} \end{array}$	$\begin{array}{c} 68.35_{\pm 2.41} \\ 70.53_{\pm 2.10} \\ 71.48_{\pm 2.49} \\ 71.90_{\pm 2.03} \end{array}$	$\begin{array}{c} 56.15_{\pm 1.92} \\ 66.97_{\pm 2.86} \\ 65.68_{\pm 2.90} \\ 64.16_{\pm 2.32} \end{array}$	$\begin{array}{c} 42.93_{\pm 2.64} \\ 74.75_{\pm 3.14} \\ 60.24_{\pm 3.15} \\ 55.54_{\pm 2.79} \end{array}$	$\begin{array}{c} 40.46_{\pm 2.76} \\ 74.04_{\pm 2.09} \\ 56.81_{\pm 3.02} \\ 49.32_{\pm 2.66} \end{array}$	$\begin{array}{c} 39.11_{\pm 2.98} \\ 72.99_{\pm 2.09} \\ 54.07_{\pm 2.99} \\ 43.90_{\pm 3.09} \end{array}$	
GPRGNN	EvA EvaLocal LRBCD PRBCD	$\begin{array}{c} 72.01_{\pm 4.18} \\ 73.36_{\pm 3.71} \\ 74.50_{\pm 3.66} \\ 74.37_{\pm 3.40} \end{array}$	$\begin{array}{c} 67.61_{\pm 4.28} \\ 69.68_{\pm 3.93} \\ 71.57_{\pm 4.10} \\ 71.66_{\pm 3.55} \end{array}$	$\begin{array}{c} 55.95_{\pm 4.32} \\ 65.61_{\pm 6.75} \\ 65.88_{\pm 6.12} \\ 64.51_{\pm 4.94} \end{array}$	$- \\70.64_{\pm 2.85} \\60.33_{\pm 5.70} \\56.21_{\pm 6.46}$	$- \\72.27_{\pm 5.06} \\56.75_{\pm 7.74} \\50.26_{\pm 7.41}$	$\begin{array}{c} 42.39_{\pm 9.63} \\ 71.40_{\pm 5.41} \\ 53.75_{\pm 8.18} \\ 45.81_{\pm 8.47} \end{array}$	

Table 8: Classification accuracy (%) on the CoraML dataset in the inductive setting under different attacks and perturbation levels ϵ . Results are averaged over multiple runs with standard deviations. Training, validation, and test sets are stratified.

Model	Attack	ϵ						
		0.01	0.02	0.05	0.10	0.15	0.20	
GCN	LRBCD PRBCD EvA	$\begin{array}{c} 80.0_{\pm 2.7} \\ 78.7_{\pm 2.8} \\ 77.0_{\pm 2.9} \end{array}$	$77.4_{\pm 2.6} \\ 75.3_{\pm 3.4} \\ 71.4_{\pm 3.3}$	$\begin{array}{c} 71.4_{\pm 2.7} \\ 67.9_{\pm 3.4} \\ 54.4_{\pm 4.7} \end{array}$	$\begin{array}{c} 65.5_{\pm 3.9} \\ 59.5_{\pm 3.5} \\ 44.3_{\pm 3.3} \end{array}$	$\begin{array}{c} 61.2_{\pm 4.2} \\ 53.0_{\pm 4.1} \\ 40.9_{\pm 3.7} \end{array}$	$57.6_{\pm 4.5} \\ 48.4_{\pm 3.7} \\ 37.3_{\pm 3.7}$	
GPRGNN	LRBCD PRBCD EvA	$\begin{array}{c} 76.2_{\pm 7.9} \\ 74.4_{\pm 9.6} \\ 71.9_{\pm 10.4} \end{array}$	$\begin{array}{c} 73.1_{\pm 7.9} \\ 70.7_{\pm 10.0} \\ 65.0_{\pm 11.4} \end{array}$	$\begin{array}{c} 66.1_{\pm 11.5} \\ 63.8_{\pm 10.4} \\ 50.1_{\pm 11.4} \end{array}$	$\begin{array}{c} 60.5_{\pm 11.7} \\ 56.1_{\pm 11.1} \\ 41.8_{\pm 14.0} \end{array}$	$56.4_{\pm 12.4} \\ 49.3_{\pm 11.4} \\ 37.2_{\pm 14.6}$	$\begin{array}{c} 53.4_{\pm 12.9} \\ 45.1_{\pm 11.0} \\ 35.2_{\pm 15.7} \end{array}$	

to different subfields of machine learning. Each node is represented by a 1,433-dimensional bag-ofwords (BoW) feature vector derived from the words in the titles and abstracts of the papers.

Citeseer. The CiteSeer dataset is also an academic citation network dataset consisting of 3,312 papers from 6 subfields of computer science and a total of 4,732 citation edges. Similar to Cora-ML, each paper as a node is represented by a BoW feature vector with a dimensionality of 3,703.

PubMed. The PubMed dataset is derived from a citation network of biomedical literature that contains 19,717 papers as nodes and 44,338 citation edges. Each paper is categorized into one of 3 classes based on its topic. The node features in PubMed are 500-dimensional vectors.

C.2 DETAILS OF MODELS

In the following sections, we detail the hyperparameters and architectural details for the models performed in this paper. The experimental configuration files, including all hyperparameters, will be made publicly available upon acceptance of the paper.

GCN. We utilize a two-layer GCN with 64 hidden units. A dropout rate of 0.5 is applied during training.

GAT. Our GAT model consists of two layers with 64 hidden units and a single attention head. During training, we apply a dropout rate of 0.5 to the hidden units, but no dropout is applied to the neighborhood.

APPNP. We use a two-layer MLP with 64 hidden units to encode the node attributes. We then apply generalized graph diffusion, using a transition matrix and coefficients $\gamma_K = (1 - \alpha)K$ and $\gamma_l = \alpha (1 - \alpha) l$ for l < K.

GPRGNN. Similar to APPNP, we employ a two-layer MLP with 64 hidden units for the predictive part. We use the symmetric normalized adjacency matrix with self-loops as the transition matrix and

Model	Adv. Tr.	Attack							
			0.01	0.02	0.05	0.10	0.15	0.20	
	None	LRBCD PRBCD EvA	$78.51_{\pm 1.56} \\ 76.44_{\pm 1.64} \\ 74.80_{\pm 1.50}$	$\begin{array}{c} 75.94_{\pm 1.54} \\ 73.17_{\pm 1.39} \\ 68.97_{\pm 1.58} \end{array}$	$\begin{array}{c} 71.10_{\pm 1.16} \\ 66.48_{\pm 2.13} \\ 52.95_{\pm 1.91} \end{array}$	$\begin{array}{c} 64.41_{\pm 1.65} \\ 58.51_{\pm 1.77} \\ 41.99_{\pm 2.06} \end{array}$	$\begin{array}{c} 60.14_{\pm 1.73} \\ 52.67_{\pm 2.09} \\ 37.65_{\pm 2.74} \end{array}$	$\begin{array}{c} 57.37_{\pm 1.45} \\ 47.19_{\pm 2.02} \\ 35.37_{\pm 2.38} \end{array}$	
BCN	LRBCD	LRBCD PRBCD EvA	$\begin{array}{c} 79.64_{\pm 1.77} \\ 78.79_{\pm 1.88} \\ 76.80_{\pm 1.29} \end{array}$	$\begin{array}{c} 77.51_{\pm 2.41} \\ 75.87_{\pm 1.41} \\ 71.10_{\pm 1.64} \end{array}$	$\begin{array}{c} 73.10_{\pm 1.54} \\ 69.75_{\pm 1.81} \\ 56.30_{\pm 1.66} \end{array}$	$\begin{array}{c} 68.19_{\pm 1.11} \\ 62.35_{\pm 2.70} \\ 48.40_{\pm 2.91} \end{array}$	$\begin{array}{c} 64.84_{\pm 1.92} \\ 56.80_{\pm 3.04} \\ 43.06_{\pm 2.43} \end{array}$	$\begin{array}{c} 62.35_{\pm 3.00} \\ 54.23_{\pm 4.71} \\ 40.85_{\pm 2.70} \end{array}$	
U	PRBCD	LRBCD PRBCD EvA	$\begin{array}{c} 80.71_{\pm 1.16} \\ 78.93_{\pm 1.27} \\ 76.80_{\pm 0.77} \end{array}$	$\begin{array}{c} 77.86_{\pm 0.81} \\ 76.30_{\pm 1.27} \\ 71.53_{\pm 1.65} \end{array}$	$\begin{array}{c} 73.81_{\pm 0.54} \\ 70.25_{\pm 1.74} \\ 57.44_{\pm 2.13} \end{array}$	$\begin{array}{c} 69.40_{\pm 0.91} \\ 64.06_{\pm 1.83} \\ 49.11_{\pm 3.05} \end{array}$	$\begin{array}{c} 66.48_{\pm 1.08} \\ 59.50_{\pm 2.84} \\ 44.70_{\pm 2.96} \end{array}$	$\begin{array}{c} 63.77_{\pm 1.73} \\ 56.58_{\pm 4.53} \\ 41.92_{\pm 3.32} \end{array}$	
	EvA	LRBCD PRBCD EvA	$\begin{array}{c} 80.85 \pm 1.36 \\ 79.79 \pm 1.80 \\ 77.22 \pm 1.87 \end{array}$	$\begin{array}{c} 78.58_{\pm 0.99} \\ 76.51_{\pm 1.31} \\ 71.96_{\pm 2.38} \end{array}$	$\begin{array}{c} 74.66_{\pm 1.11} \\ 71.25_{\pm 1.54} \\ 57.94_{\pm 3.08} \end{array}$	$\begin{array}{c} 69.89_{\pm 0.93} \\ 64.34_{\pm 1.97} \\ 50.04_{\pm 3.29} \end{array}$	$\begin{array}{c} 66.98_{\pm 0.92} \\ 60.43_{\pm 1.32} \\ 44.91_{\pm 3.44} \end{array}$	$\begin{array}{c} 65.05_{\pm 1.08} \\ 58.22_{\pm 2.26} \\ 42.63_{\pm 2.33} \end{array}$	
	None	LRBCD PRBCD EvA	$\begin{array}{c} 77.51_{\pm 2.81} \\ 74.95_{\pm 3.08} \\ 72.53_{\pm 4.11} \end{array}$	$\begin{array}{c} 74.80_{\pm 3.08} \\ 71.67_{\pm 2.76} \\ 66.83_{\pm 4.54} \end{array}$	$\begin{array}{c} 68.83_{\pm 4.20} \\ 64.84_{\pm 4.18} \\ 51.53_{\pm 5.57} \end{array}$	$\begin{array}{c} 62.56_{\pm 4.69} \\ 57.94_{\pm 4.55} \\ 42.21_{\pm 8.52} \end{array}$	$\begin{array}{c} 59.07_{\pm 5.98} \\ 53.24_{\pm 5.20} \\ 37.01_{\pm 9.84} \end{array}$	$\begin{array}{c} 55.66_{\pm 6.99} \\ 48.68_{\pm 6.52} \\ 34.52_{\pm 9.83} \end{array}$	
RGNN	LRBCD	LRBCD PRBCD EvA	$\begin{array}{c} 81.57_{\pm 2.58} \\ 80.71_{\pm 2.61} \\ 78.79_{\pm 2.69} \end{array}$	$\begin{array}{c} 79.72_{\pm 2.22} \\ 78.51_{\pm 2.29} \\ 72.95_{\pm 2.67} \end{array}$	$\begin{array}{c} 75.59_{\pm 2.31} \\ 72.88_{\pm 2.38} \\ 63.42_{\pm 3.15} \end{array}$	$\begin{array}{c} 71.32_{\pm 2.20} \\ 66.90_{\pm 1.95} \\ 56.58_{\pm 4.68} \end{array}$	$\begin{array}{c} 68.97_{\pm 2.10} \\ 61.78_{\pm 1.99} \\ 52.88_{\pm 5.61} \end{array}$	$\begin{array}{c} 66.69_{\pm 2.25} \\ 57.51_{\pm 3.72} \\ 49.96_{\pm 5.75} \end{array}$	
GP	PRBCD	LRBCD PRBCD EvA	$\begin{array}{c} 80.43_{\pm 2.01} \\ 80.21_{\pm 2.43} \\ 78.79_{\pm 2.45} \end{array}$	$\begin{array}{c} 78.01_{\pm 1.91} \\ 77.30_{\pm 2.63} \\ 73.10_{\pm 2.54} \end{array}$	$\begin{array}{c} 73.74_{\pm 1.66} \\ 71.53_{\pm 2.67} \\ 62.85_{\pm 4.93} \end{array}$	$\begin{array}{c} 69.96_{\pm 2.14} \\ 65.12_{\pm 3.21} \\ 56.94_{\pm 6.64} \end{array}$	$\begin{array}{c} 67.19_{\pm 2.51} \\ 60.07_{\pm 4.10} \\ 53.74_{\pm 7.65} \end{array}$	$\begin{array}{c} 64.84_{\pm 3.20} \\ 55.37_{\pm 3.85} \\ 51.60_{\pm 8.10} \end{array}$	
	EvA	LRBCD PRBCD EvA	$\begin{array}{c} 79.64_{\pm 0.89} \\ 78.51_{\pm 0.60} \\ 76.51_{\pm 0.44} \end{array}$	$\begin{array}{c} 76.44_{\pm 0.68} \\ 75.87_{\pm 1.32} \\ 70.96_{\pm 0.41} \end{array}$	$\begin{array}{c} 72.95_{\pm 1.04} \\ 70.32_{\pm 0.89} \\ 60.85_{\pm 3.07} \end{array}$	$\begin{array}{c} 69.04_{\pm 1.26} \\ 64.91_{\pm 1.14} \\ 54.73_{\pm 3.99} \end{array}$	$\begin{array}{c} 67.05_{\pm 1.46} \\ 59.57_{\pm 1.75} \\ 50.25_{\pm 5.57} \end{array}$	$\begin{array}{c} 65.48_{\pm 1.88} \\ 56.16_{\pm 1.62} \\ 48.83_{\pm 5.95} \end{array}$	

Table 9: Classification accuracy (%) on the CoraML dataset under different attacks and adversarial training methods. The results are averaged over multiple runs with standard deviations.

Table 10: Dataset Statistics											
Dataset	Nodes	Edges	Features	Classes							
Cora-ML	2,810	7,981	1,433	7							
Citeseer	3,312	4,732	3,703	6							
PubMed	19,717	44,338	500	3							

randomly initialize the diffusion coefficients. We consider a total of K = 10 diffusion steps, with α set to 0.1. During training, we apply a dropout rate of 0.2 to the MLP, while no dropout is applied to the adjacency matrix. Unlike the method in Chien et al. (2021), we always learn the diffusion coefficients with weight decay, which acts as a regularization mechanism to prevent the coefficients from growing indefinitely.

SoftMedian GDC. We follow the default configuration from Geisler et al. (2023), using a temperature of T = 0.2 or the SoftMedian aggregation, with 64 hidden dimensions and a dropout rate of 0.5. We fix the Personalized PageRank diffusion coefficient to $\alpha = 0.15$ and apply a top k = 64sparsification. During the attacks, the model remains fully differentiable, except for the sparsification of the propagation matrix.

MLP. We design the MLP following the prediction module of GPRGNN and APPNP, incorporating
 two layers with 64 hidden units. During training, we apply a dropout rate of 0.2 to the hidden layer.

915 C.3 HYPERPARAMETER SETUP

917 In EvA we set the capacity of the computation to the same as the population, this means that all perturbations within a population are in one combined inference. However, in some cases where the

graph is large (e.g. PubMed), we reduce this number. Table 11 shows the hyper-parameter selection in almost all experiments. We only change the population number in some experiments, like certificate attacks, to reduce the computation. E.g., in the certificate attack, the population is reduced by a factor of 10.

922 923

924

C.4 ATTACK HYPERPARAMETERS

To assess the robustness of GNNs, we utilize the following attacks and hyperparameters. Based on Geisler et al. (2023), we also select the tanh-margin loss as the attack objective.

PRBCD. We closely adhere to the setup outlined by Geisler et al. (2023). A block size of 500,000 is used with 500 training epochs. Afterward, the model state from the best epoch is restored, followed by 100 additional epochs with a decaying learning rate and no block resampling. Additionally, the learning rate is scaled according to δ and the block size, as recommended by Geisler et al. (2023).

LRBCD. The same block size of 500,000 is used with 500 training epochs. The learning rate is scaled based on δ and the block size, following the same approach as PRBCD. The local budget is consistently set as 0.5.

EvA. We set the population size to 1024 in most cases. Our mutation rate is 0.01, and increasing this number breaks the balance between exploration and exploitation, leading to less effective attacks. We run each attack for 500 iterations in most cases. In cases like certificate attacks, which are time-consuming, we reduce this number to 100. The details are summarized in Table 11.

PGA. For the PGA, we adopt the same setting as in Zhu et al. (2023). We use GCN as the surrogate model and tanhMarginMCE-0.5 as the loss type. The attack is configured with 1 greedy step, a
pre-selection ratio of 0.1, and a selection ratio of 0.6. Additionally, the influence ratio is set to 0.8, with the selection policy based on node degree and margin.

Table 11: Hyper-parameters for PRBCD, LRBCD, and EvA

Hyper-parameter	PRBCD	LRBCD	Hyper-parameter	EvA
Epochs	500	500	No. Steps	500
Fine-tune Epochs	100	0	Mutation Rate	0.01
Keep Heuristic	WeightOnly	WeightOnly	Tournament Size	2
Search Space Size	500,000	500,000	Population Size	1,024
Loss Type	tanhMargin	tanh-Margin	No. Crossovers	30
Early Stopping	N/A	False	Mutation Method	Adaptive

953 954 955

956

957

958

959

960

961

962

963

943 944

D DETAILS ON NOVEL OBJECTIVES

Smoothing-based certificate. We define a randomized model as a convolution of the original model and a smoothing scheme. The smoothing scheme $\xi : \mathcal{X} \mapsto \mathcal{X}$ is a randomized function mapping the given input to a random nearby point. For graph structure, we use the sparse smoothing certificate (Bojchevski et al., 2020), which certifies whether within \mathcal{B}_{r_a,r_d} the prediction of the smooth model remains the same. Here r_a is the maximum number of possible additions, and r_d is the maximum number of edge deletions. The smoothing function is defined by two Bernoulli parameters p_+ , and p_- ; i.e. for each entity of \mathbf{A} , if it is zero, it will be toggled with p_+ probability and otherwise with p_- .

The robustness certificate also accesses the model f as a black box and defines a smooth model as $\bar{f}_y(x) = \mathbb{E}[\mathbb{I}[f(\xi(x)) = y]]$ - each random sample x' is one vote for class f(x') and \bar{f}_y is the proportion of votes for class y. Let $p = \bar{f}_y(x)$; the certificate finds a lower bound probability $p \ge \min_{\tilde{x} \in \mathcal{B}(x)} \bar{f}_y(\tilde{x})$ and acts as a decision function $\mathbb{I}[\underline{y} \ge 0.5]$. In other words, the certificate returns yes, in case it is guaranteed that the smooth model will not return any value lower than 0.5 for class y within $n\mathcal{B}(x)$. For further details about how to compute the certificate, see (Bojchevski et al., 2020).

Adaptive sampling for certificate attack. Statistical rigor is not a necessity while attacking the certificate. Therefore, while attacking, we can reduce the cost of resampling by only resampling the

972 subset of the graph that was perturbed. In other words, we initialize the search by computing samples 973 A_1, \ldots, A_m , and for each perturbation \hat{A} we only resample the edges in $A \triangle \hat{A}$. For each edge in 974 that set, if the edge was added via the perturbations, we resample m Bernoulli variable with p_{-} , and 975 otherwise p_+ . We substitute those samples in the same entry of A_1, \ldots, A_m , and by running this 976 process $|\delta|$ times, we assume that A_1, \dots, A_m are representative as a new set of m samples for A. 977 This adaptive sampling reduces the number of random computations from $m \cdot n^2$ to $m \cdot |\delta|$, which is 978 significantly lower. Surely, to evaluate the final perturbation (the reported effectiveness), we don't 979 use this approach, as it is statistically flawed and only applicable to reduce the computation during 980 the attack.

981 982

983

986

987

D.1 FITNESS FUNCTION

For a targeted attack, since the objective space is limited to the set $\{0,1\}$, the sensitivity is very 984 low. As a result, the method becomes equivalent to a random search. The zero-one fitness function 985 means that all individuals with different perturbations receive the same score, causing the algorithm to behave more like a random search, as ties in each tournament are broken randomly. Secondly, since only one individual with a score of one is sufficient to halt the algorithm, all elite populations 988 before success have scores of zero, which again results in random selection from them.

989 990 991

992

993

994

995

996

D.2 PERFORMANCE ON ARXIV

To demonstrate the scalability of our attack on larger datasets, we also present results for the Arxiv dataset. For this, we consider two realistic scenarios. In the first scenario, similar to the previous one, the attacker has access to modify a limited number of edges. We provide results for three values of epsilon: 0.1%, 0.5%, 1.0%. Table 12 summarizes the results for this scenario. EvA outperforms PRBCD for smaller budgets and achieves comparable performance with a 1% budget, which could be further improved by scaling and increasing computational resources.

997 998 999

Table 12: Comparison of PRBCD and EvA performance for varying ϵ values

	1				
Clean	0.1%	0.5%	1%		
70.53	69.83	68.64	66.27		
70.53	69.21	67.59	66.86		
	Clean 70.53 70.53	Clean0.1%70.5369.8370.5369.21	Clean0.1%0.5%70.5369.8368.6470.5369.2167.59		

1005 Alternatively, in a more practical scenario, the attacker compromise a subset of nodes (e.g., 1,000 nodes) and get access to them, referred to as control nodes, and strategically target a specific 1007 group within the network (the target group). For example, in a social network, an attacker could purchase 1,000 user accounts and use them to influence the performance of other subgroups. For this 1008 experiment, we randomly sampled 1,000 nodes five times and also randomly selected 1,500 nodes 1009 5 time s as target group nodes. We then ran EvA and PRBCD and reported the average results in 1010 Table 13. Our method outperforms PRBCD in this scenario as well. 1011

1012 In summary, we demonstrate that our attack can be effectively applied and that it outperforms previous 1013 state-of-the-art methods.

1014 1015 1016

Table 13: Comparison of PRBCD and EvA performance for varying ϵ values using contorl nodes

Method	Clean	1%	5%
PRBCD		64.89	54.7
EvA		59.3	53.92

1021

D.3 TIME ANALYSIS 1023

We also present an ablation study to compare the time analysis by evaluating the memory and wall 1024 clock time between EvA and the PRBCD method. In this experiment, we evaluate EvA with different 1025 numbers of steps, population sizes, and parallel evaluations, while PRBCD is run with varying

Figure 8: Comparing the memory usage between EvA and PRBCD

numbers of epochs and block sizes on the PubMed dataset. Fig. 8 (left) shows the results for EvA 1044 and PRBCD in terms of memory usage, wall clock time and method performance. Our method 1045 demonstrates comparable performance within the same level of wall clock time (less than a minute). 1046 Moreover, by increasing the wall clock time—through and memory either by a larger population 1047 size or more steps— EvA achieves additional benefits. Additionally, in Fig. 8 (right), we highlight 1048 how our framework provides a trade-off between time and memory for achieving the same level of 1049 accuracy by varying the number of parallel evaluations. For each point in the figure, we observe 1050 identical performance; however, the methods differ in memory usage due to different number of 1051 parallel evaluation, leading to variations in wall clock time.

1053 COMPARISON WITH (DAI ET AL., 2018) D.4 1054

(Dai et al., 2018) proposed a practical black-box attack (PBA), dividing it into PBA-C (with access 1055 to logits - continuous) and PBA-D (access only to the labels - discrete). As stated in (Dai et al., 1056 2018), a genetic algorithm for global attacks requires PBA-C because it relies on logits, with the 1057 fitness function being the negative log-likelihood. We demonstrate that EvA not only eliminates 1058 the need for logits but also performs even better by directly optimizing for accuracy rather than 1059 using log-likelihood. To compare our method with (Dai et al., 2018), we modified the algorithm's 1060 fitness function and mutation mechanism to replicate the results reported in (Dai et al., 2018). This 1061 implementation retains scalability benefits, as it is also built upon our sparse encoded representation. 1062 Note here we re-implement Dai et al. (2018) in our sparse and parallelized framework. Their 1063 original implementation uses dense adjacency matrices and sequential evaluation and would achieve 1064 a significantly worse result within the same memory/run-time constraint. Even with our efficient 1065 re-implementation Dai et al. (2018) is significantly worse than ours. Table 14 provides the results for the CoraML dataset using the GCN architecture. EvA also significantly outperforms (Dai et al., 2018). Additionally, since our method is independent of gradients, we established the first attack 1067 on conformal prediction and certification. For conformal prediction, we attack coverage and set 1068 size where the latter criteria are not yet explored (to the best of our knowledge). Attacks tending to 1069 decrease certificate effectiveness are also under-explored in GNNs. In this work, we aim to achieve 1070 both attack on certified accuracy and certified ratio. 1071

Attack N	ame	Clean	0.01	0.02	0.05	0.1	0.15	0.2
(Dai et al	., 2018)	$81.07_{\pm 2.07}$	$78.50_{\pm 1.66}$	$76.66_{\pm 2.22}$	$72.53_{\pm 1.91}$	$68.75_{\pm 1.45}$	$65.34_{\pm 1.20}$	$63.27_{\pm 2.4}$
EvA		$81.07_{\pm 2.07}$	$\textbf{74.80}_{\pm 1.50}$	$\textbf{68.97}_{\pm 1.58}$	$\textbf{52.95}_{\pm 1.91}$	$\textbf{41.99}_{\pm 2.06}$	$\textbf{37.65}_{\pm 2.74}$	35.37 _{±2.3}
	Table 14	4: Accuracy	results of d	ifferent atta	ck methods	under varvir	ng ϵ values.	
							-6	

1079

1026 1027

1028

1029

1030

1031

1032

1033

1034

1035

1039 1040 1041

1042 1043