
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVA: EVOLUTIONARY ATTACKS ON GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Even a slight perturbation in the graph structure can cause a significant drop in the
accuracy of graph neural networks (GNNs). Most existing attacks leverage gradient
information to perturb edges. This relaxes the attack’s optimization problem from
a discrete to a continuous space, resulting in solutions far from optimal. It also
restricts the adaptability of the attack to non-differentiable objectives. Instead,
we propose an evolutionary-based algorithm to solve the discrete optimization
problem directly. Our Evolutionary Attack (EvA) works with any black-box
model and objective, eliminating the need for a differentiable proxy loss. This
permits us to design two novel attacks that: reduce the effectiveness of robustness
certificates and break conformal sets. We introduce a sparse encoding that results
in memory complexity that is linear in the attack budget. EvA reduces the accuracy
by an additional ∼11% on average compared to the best previous attack, revealing
significant untapped potential in designing attacks.

1 INTRODUCTION

Given the widespread applications of graph neural networks (GNNs), studying their robustness to
natural and adversarial noise is of great importance. In node classification, GNNs leverage the edge
structure between data points to improve their performance. However, a small perturbation in the
graph structure (adding or removing a few edges) can significantly reduce GNNs’ accuracy, even
below the performance of an MLP (which completely discards the structure). Similar to images
and continuous data, most of the proposed (structure) attacks are gradient-based. They compute the
gradients of a loss w.r.t. the adjacency matrix and apply a perturbation according to that. Gradient-
based attacks face several challenges. They solve a relaxation of the original combinatorial (discrete)
optimization problem – the entries of the adjacency matrix are relaxed from {0, 1} to [0, 1]. They
need a differentiable proxy loss function since the actual objective of the attacker (e.g. accuracy) is
often not differentiable, and the usual proxy such cross-entropy is suboptimal (Geisler et al., 2023).
They assume white-box access to the model, including the structure and the weights. This limits the
applicability or requires surrogate models. They can provide a false sense of security since defenses
may be obfuscating gradients (Athalye et al., 2018; Geisler et al., 2023) and can get stuck in local
minima. Their memory complexity grows quadratically w.r.t the number of nodes. Although the
adjacency matrix is often sparse, the gradients w.r.t. it are not. As a result, tricks like block coordinate
descent are needed (Geisler et al., 2021). We propose a model-agnostic evolutionary attack (EvA)
that fixes all five of the above issues.

EvA explores the space of possible perturbations with a genetic algorithm (GA). Our approach
operates in the discrete space of potential perturbations without information from gradients – avoiding
relaxation. It directly optimizes the objective (like accuracy) as long as it provides a meaningful
signal. In addition to eliminating the need for a differentiable proxy, this black-box access to the
objective enables us to define a broader class of attacks. In fact, it allowed us to easily design two
novel attacks on graphs that aim at decreasing the effectiveness of robustness certificates or that break
conformal guarantees. EvA shows outstanding effectiveness on vanilla and adversarially trained
models compared to SOTA attacks. Unlike the gradient-based attacks, our attack has a O(ϵ · E)
memory complexity where ϵ is the perturbation budget, and E is the number of edges. This is because
instead of storing a squared block of gradients, which scales with the size of the adjacency matrix,
we only store the edge perturbations as an index. During the evaluation, we also maintain the same
sparsity in representation as the graph itself. To take advantage of the available free memory, we
employ a batch evaluation approach that speeds up the optimization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Clea
n

DIC
E

FGSM
PGD

PRBCD EvA

Attack

0.6

0.7

0.8

R
ep

or
te

d
Pe

rt
ur

be
d

A
cc

ϵ = 0.05

ϵ = 0.1

Figure 1: Reported performance of vari-
ous attacks for transductive setting

Adversarial attacks are supposed to be imperceptible. In
images, this is modeled by a Lp-ball of a small radius.
Similarly, for the graph structure, a commonly used metric
is the L0 ball, which allows changing of the node de-
gree significantly. Since this may be perceptible, we can
incorporate constraints in our attack that limit the num-
ber of perturbations per node, in addition to the global
budget. Similar to gradient-based attacks (Geisler et al.,
2021), we set this so-called local budget to a fraction of the
node’s original degree. Interestingly, in some cases, our
constrained attack can even beat the best unconstrained
gradient-based attack. Overall, EvA finds significantly
better solutions compared to the previous state-of-the-art
methods (Geisler et al., 2021; Gosch et al., 2024), which
highlight the sub-optimality of gradient-based methods.

Given the black-box nature of EvA, we were easily able
to introduce the first graph certificate attack. One defense
against adversarial attacks is to certify the prediction of a
(smoothed) classifier (Bojchevski et al., 2020).

Certificates provide a robustness guarantee that the prediction will not change given a limited set of
possible perturbations (e.g., at most ra additions and rd deletions). The certified ratio is the fraction
of nodes for which the guarantee holds. Here, we define the attacker’s objective as decreasing the
certified ratio. EvA can decrease the ratio below the MLP level (which is by definition robust to any
perturbation in structure), while also preserving the clean accuracy – making it less noticable to a
defender. We also introduce the first conformal attack on graphs. Conformal prediction (CP) converts
any model’s output to prediction sets with a guarantee to cover the true label with (adjustable) high
probability. With EvA we can attack these conformal sets to either break the guarantee of increase
the sets size (making them useless). While in principle one can design gradient-based attacks for
these two new objectives, the amount of work is nontrivial since there are many non-differentiable
components that would need to be relaxed. In contrast, for EvA, designing a new attack is simply a
matter of changing the fitness function of the GA.

Importantly, perhaps the main contributions of this work is to highlight a scarcely explored research
direction for attacks. Even off-the-shelf genetic algorithms significantly outperform gradient-based
attacks. Fig. 1 compares EvA to the other attacks proposed over time. Our custom adaptive mutation
further improves performance, but we argue that the space of evolutionary (and more broadly search-
based) attacks has a lot of untapped potential.

2 BACKGROUND AND RELATED WORK

Problem setup. We focus on attacking the semi-supervised node classification task on graphs via
perturbing a small number of edges. Formally, we are given a graph G = (X,A,y) in which X is
the features matrix assigning a feature vector xi to each node vi in the graph, A is the adjacency
matrix (often sparse) that represents the set of edges E , and y is the partially observable vector of
labels. Nodes are partitioned into labeled and unlabeled sets V = Vl ∪ Vu. The GNN is trained on an
observed subgraph Gtr that includes the labeled nodes. Gosch et al. (2024) argue that the transductive
setup, where Gtr = G is unrealistic since perfect robustness can be achieved by memorizing the
training graph. Therefore, we mainly focus on the inductive setting where a model f is trained on an
induced subgraph Gtr ⊆ G, validated on Gval ⊆ G and tested on Gtest where Gtr ⊂ Gval ⊂ Gtest = G.

Threat model. Our goal is to find a perturbation matrix P ∈ {0, 1}n×n that flips entities of the
adjacency matrix Ã = A⊕ P to decrease the accuracy as much as possible. Here n = |V|, and ⊕ is
the element-wise XOR operator. For a given function f as the GNN model, the accuracy is defined
as

∑
vi∈Vatt

(1/|Vatt|) · 1[f(G)vi = yi] where Vatt is the set of nodes that we attack. In global
attacks this is usually the test nodes, while in targeted attacks the target is a single node. To keep the
perturbations imperceptible, we assume that the adversary can only perturb up to δ := ϵ · |E [Vatt : V]|
edges where E [A : B] is the subset of edges between nodes in A and B. Formally, for any generic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

loss function L,

P = argmax
P

L(f(G(X,A⊕ P))att,yatt)

s.t. 1NP1⊤
N ≤ ϵ · |E [Vatt : V]|

(1)

Here f(·)att returns the vector of predictions for the nodes in Vatt. In an evasion attack, L is the
accuracy. Eq. 1 can include additional constraints like the local constraint from Gosch et al. (2023)
that restrict the number of perturbation per node to some fraction (e.g., half) of its degree.

Gradient-based attacks. A common approach to attack the graph structure is to compute the gradient
of the loss function w.r.t. the adjacency matrix. This requires a relaxation on the domain of A from
{0, 1}n×n to [0, 1]n×n. If the loss function is not differentiable (e.g., accuracy), then a differentiable
surrogate like the categorical cross entropy or tanh-margin (Geisler et al., 2023) is used instead.
We compute the derivatives of the loss w.r.t. A and update the perturbation matrix. Finally, the
edges are either sampled or rounded from the perturbation matrix, which returns the solution to the
binary domain. There are various tricks to improve gradient-based attacks, but most follow a similar
high-level procedure.

Related Work. Adversarial attacks on graphs are generally divided into two main categories: evasion
attacks Xu et al. (2019); Zügner et al. (2018); Geisler et al. (2023); Gosch et al. (2024), where the
attacker perturbs the graph after the model has been trained, and poisoning attacks Zügner et al.
(2020); Lingam et al. (2023); Zügner et al. (2018), where the attacker modifies the graph prior to
training. These attacks can be further classified into global attacks (e.g., Geisler et al. (2023); Zhu
et al. (2023)), which target multiple node predictions simultaneously, and targeted attacks, which
focus on a single node or a subset of nodes. The manipulations can involve altering node attributes,
modifying edge structures, or introducing malicious nodes. The earliest adversarial attacks on graphs
were inspired by techniques used on continuous data, utilizing gradients to approximate perturbations
on inherently discrete edges Xu et al. (2019); Zügner et al. (2018); Geisler et al. (2023). Additionally,
reinforcement learning has been employed as an alternative approach to execute adversarial attacks
Dai et al. (2018). Attackers leverage reinforcement learning algorithms to refine their attack strategies
and disrupt the learning process of GNNs Sun et al. (2023). Although some new attacks have been
proposed in recent years (e.g., by Zhang et al. (2024; 2023); Wang et al. (2023)), they are all based
on some traditional algorithms (like gradient-based methods).

3 EVA: EVOLUTIONARY ATTACK

Our evolutionary-based attack (EvA) uses a genetic algorithm (Holland, 1984) as a heuristic to directly
optimize Eq. 1. We define an initial set of possible (candidate) perturbations – called “population” –
and iteratively improve this population. In each iteration, the individuals in the population are ordered
based on their fitness, specifically in terms of how much each individual decreases the accuracy. We
draft the next population by keeping the best individuals and producing new ones as a function of
them. Our population for the next iteration is finalized after a mutation which introduces additional
randomness that helps with exploration. Each element in the population is a possible perturbation,
which is encoded as a vector of indices where an edge is flipped.

Genetic algorithm (GA) in EvA. We can define a genetic solver through the definition of four
main components. (i) Population: It is a set of feasible answers to the problem which gradually
improve over iterations. In our case each population element is one potential perturbation on the
adjacency matrix. We define mapping Π : xi,t ∈ [n2 (n − 1)]δ 7→ [n]2 which is an enumeration
on the upper triangle of the n × n adjacency matrix. With that, we define each candidate as set
si,t ∈ [n2 (n − 1)]δ which refers to a perturbation. The corresponding perturbation matrix Pi,t is
simply defined as Pi,t[p, q] = Pi,t[q, p] = 1 ⇔ ∃j : si,t[j] = Π−1(p, q) for p < q. (ii) Fitness:
Is a notion of how close to optimal each population element is. Given any loss function L we
define the fitness function fit : [n2 (n − 1)]δ 7→ R, as fit(s) = L(X,A ⊕ Ps,y). Note that this
objective can be non-differentiable, such as accuracy. As long as the loss function has enough
sensitivity to differentiate between various individuals, we use it directly as the fitness (see § 4 for
extended discussion). (iii) Crossover: Is an operation that defines a new population element by
combining two existing ones. The crossover operation at point j defines a new candidate vector
snew = crossj(s1, s2) := s1[: j] • s[j + 1 :] where • is the concatenation of two vectors. Crossover

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

operation with more than one point is defined recursively in the order of joints. The number of
crossovers kcross is a hyperparameter (see § C), and their location is chosen randomly in the range
of the perturbation size. (iv) Mutation: Is a random operation that allows further exploration. The
function mutate : [n2 (n − 1)]δ 7→ [n2 (n − 1)]δ is a random mapping of a candidate to another.
One simple mutation function changes each index with some mutation probability p to some other
index in the range (uniformly at random). In § 4 we discuss more advanced mutation strategies that
significantly improve performance.

Given all the ingredients above, GA operates by iteratively evolving the population toward a good
solution. The algorithm begins with an initial random population. In EvA, this population is a
set of vectors S0 = {si,0}

np

i=1 with random elements, where np is the number of candidates in the
population. By definition, our candidates always encode a valid perturbation—the budget of the
perturbation is enforced by the length of each candidate vector.

In each iteration, candidates are evaluated using the fitness function. Based on the fitness scores, an
elite sub-population of parents and new children is selected to proceed to the next iteration, while the
rest of the population is removed. To create a new child, parents are selected through a tournament
selection process: in each tournament, ntour random parents are chosen, and the best among them is
selected for crossover and subsequent mutation. This process repeats for t generations.

Sparse encoding of the attack. The population in our framework is an encoding of the perturbation
matrix. The naive way for encoding this problem is to create a boolean vector of size N2 encoding
which entries are flipped, which results in memory complexity of O(|S|N2) where |S| is the
population size. Instead, we introduce an approach that leverages the sparse nature of the solution
and reduces the complexity to O(|S| · ϵ · |E [Vatt : V]|). In this encoding, instead of retaining all
possible edges, we only keep the indices of the edges we want to flip. Therefore, any element in
the population z ∈ S is a vector of p = ⌊ϵ · |E [Vatt : V]|⌋ dimensions where each entity of it is an
index in adjacency matrix z[i] ∈ {1, · · ·n(n− 1)/2} with n = |V|. We use diagonal enumeration
of an upper triangular n× n matrix as the encoding (see § B). The perturbation vector can contain
repeated elements. During the evaluation of the vector, we transform it to a perturbation matrix Pz ,
and we compute the perturbed adjacency Ã = A⊕Pz . All the mentioned computations are in sparse
representation, and each individual of the population takes O(δ) space. Moreover, with this encoding,
we directly enforce the global budget since the size of each individual in the population is by design
the number of allowed perturbations.

Acceptable fitness functions. The fitness function in GA is accessed in a black-box manner.
Therefore, properties like differentiability are not a requirement, which allows us to use the accuracy
directly. However, for scenarios like targeted attacks, where the objective is to only misclassify a
single node, the 0-1 loss function is not a suitable fitness function. In other words, with the 0-1 loss,
random search and GA are practically equivalent. Ideally, small changes in the solution should be
reflected in the fitness function as well. This sensitivity to various individuals prevents GA from
remaining in local optima. In § 5, we discuss the choice of fitness in targeted attacks.

Drawbacks. The aforementioned setup is the very baseline variant of EvA. While already effective
(outperforming SOTA), in Fig. 2, we resolve several drawbacks by changing the definition of the
initial population and the mutation function. In the baseline variant, a population is allowed to contain
perturbations that are outside of the receptive field of the GNN for Vatt. This means that (at least for
initial generations) a proportion of the attacking budget is wasted on ineffective perturbations. Even
for perturbations connecting nodes with both ends outside of Vatt, the defender can easily revert them
by memorizing the training subgraph. In § 4, we discuss further improvements.

4 ENHANCING THE SEARCH

In § 3 we defined the baseline evolutionary attack and discussed the possible drawbacks. As shown in
Fig. 2 the baseline EvA already outperforms the SOTA. Additionally, with the following modifications
we increase its effectiveness by a notable margin. The key insight is that the baseline attack, same as
many gradient-based attacks defined their target space as the entire graph – entire space of n

2 (n− 1)
possible edges. As mentioned in § 2, perturbations that do have both endpoints in the training subgraph
can be easily reverted just by memorizing the training subgraph. Additionally, perturbations outside of
the receptive field of Vatt are a waste of budget as they do not affect the prediction of the target nodes.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Initial population. Our baseline initial population consists of random perturbations in the entire
space of A. This is a naive approach that disregards closeness to Vatt. Instead, we restrict the initial
population to have at least one endpoint in Vatt. This can easily done by randomly sampling both
endpoints, one inside Vatt and one in V , and then mapping the edges back to the indices via Π.

Targeted and adaptive mutation. After initialization, another way to balance the exploration and
exploitation power of the algorithm is by introducing diversity in the population. In the baseline
uniform mutation function, we change each edge to another random edge in V with some mutation
probability p. Same as in initialization, we define the “targeted mutation (TM)” by restricting the
new mutated edge to have at least one end-point in Vatt. Remarkably, this modification shows a
significant improvement as shown in Fig. 2. Furthermore, when the attack succeeds in altering
a node’s prediction, additional perturbations connected to it do not gain any more performance.
Therefore, we exclude them from the endpoint that was restricted to Vatt. Notably, we still allow
those nodes to connect to other nodes in Vatt as they can also increase the misclassification risk for
other nodes. We call the latter approach “adaptive targeted mutation” (ATM).

Stacking perturbations. Each population (at each iteration of EvA) needs to evaluate every individ-
ual. This means that each individual requires a forward pass on the perturbed graph. As mentioned
before, our population takes O(δ) memory, and during the evaluation, we still maintain the sparse
representation of the graph. Therefore, if the memory budget allows, we can evaluate several per-
turbations at once by combining perturbed graphs into one large (disconnected) graph and running
only one forward pass. In practice, for small datasets like CoraML, we only run one forward pass per
iteration, as the entire population of 1024 individuals can be evaluated once.

1% 5% 10% 15% 20%

0.4

0.6

0.8

Pe
rt

ur
be

d
A

cc

PRBCD
EvA-Acc

EvA-MG
EvA-CE

1% 5% 10% 15% 20%

0.4

0.6

0.8

PRBCD
EvA-UM

EvA-TM
EvA-ATM

Figure 2: Effect of optimizing for different objective functions (left)
and the influence of mutation type on EvA performance (right).

Fitness Function. As we men-
tioned in § 1, one of the prob-
lems with gradient-based meth-
ods is finding a differentiable
proxy aligned with the main
objective. To further under-
stand the effect of the loss func-
tion on attacks, we conducted
an additional experiment where
we replaced the fitness func-
tion of EvA with the cross-
entropy and margin-based loss
functions, which have become
popular in adversarial attacks as
surrogates for accuracy. This ex-
periment seeks to evaluate the
effect of the fitness function on
attack performance. The results,
shown in Fig. 2, indicate that cross-entropy does not use the budget effectively. On the contrary, the
margin-based loss provides a well-correlated surrogate loss. Since PRBCD also uses the margin-based
loss, we see that the main reason for the large gap to EvA is not the loss function. We hypothesise
that EvA, leveraging the exploratory capabilities of genetic algorithms, can more effectively explore
the solution space and avoid bad local optima, while PRBCD gets stuck.

Sensitivity. The fitness landscape should be sensitive – small changes in the solution should ideally
result in (at least some) changes in the fitness score. For EvA, higher sensitivity results in a better
selection of the population for breeding and distinguishes even the smallest advantage of a specific
individual. We empirically show that accuracy has enough sensitivity for the global attack and low
to medium size budget. However, as we discuss in § 5 for targeted attacks, the variability of the
fitness function decreases to two values {0, 1}. We discuss further in § D.1 why low sensitivity of the
objective function makes GA-based methods close to random search.

Effect of scaling. A larger population provides greater diversity among solutions, which helps
prevent early convergence to sub-optimal solutions, therefore the population size has a considerable
impact on the performance of EvA. To observe this effect, we conducted experiments by changing the
population size while keeping other parameters fixed on the PubMed dataset. For a fair comparison,
we also attempted to scale PRBCD by increasing the number of steps and the size of the block

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1k

Steps

0.4

0.5

0.6

0.7
A

cc
ur

ac
y

0 200 400 600 800 1k

Steps

0.5M
1.0M
2.0M
4.0M

0 200 400 600 800 1k

Steps

Uniform
ATM

25

26
27

28
29

210
211

212

Figure 3: Effect of scaling on EvA and PRBCD performance (left, middle), the effect of mutation
type and scaling on at 0.1% budget (right) on Pubmed dataset.

coordinate subspace. In this experiment, we exponentially increased the block size, starting from
500 up to 4 million. As shown in Fig. 3 (left), increasing the population size improves EvA’s ability
to find better solutions by exploring the search space more effectively. Increasing the number of
steps also increases the success rate of the attack. In contrast, PRBCD does not achieve further
improvement by increasing the block size or the number of training steps.

We further investigate the effects of scaling and mutation types together. Fig. 3 (right) shows that
adaptive targeted mutation can consistently enhance performance across all population sizes and
outperform the uniform approach. This highlights the importance of selecting effective mutation
strategies. Moreover, further exploration and refinement of mutation techniques could reveal more
effective mutations, which could be explored in future studies.

5 OTHER OBJECTIVES

Local attacks. Gosch et al. (2024) argue that the perturbations within a global budget can still cause
meaningful changes to the graph structure. For example, a perturbation might add edges to the node,
increasing its degree to more than twice its current level while staying within the global budget. This
can drastically alter the graph structure locally around that node, making the attack noticeable or, at
the very least, impacting the graph’s structural semantics. Therefore, they argue for a threat model
that, in addition to a global budget, has a local budget that limits the number of perturbations per
node to an ϵloc proportion of its degree.

Local constrained mutation. We enforce this constraint as a new mutation applied before finalizing
the population. In our mutation, we count the row (or column) summation of the perturbation matrix
which quantifies the number of edges added to (or removed from) each node. Calling the nodes with
perturbation degree higher than ϵloc · deg(vi) (the local perturbation budget) as “violating”, we run
an iterative refinement procedure where at each step we remove one edge from violating nodes and
insert a non-violating edge instead. This refinement procedure continues until the local constraints
are satisfied. Additionally, we rewrite the adaptive targeted mutation to account for the local budget –
we restrict the mutation edges to those with remaining local budget for both end-points.

Targeted attacks. The targeted attack aims at one node to misclassify it with the least possible
number of perturbations. With the discussion in § 4 the binary objective does not capture differences
between different solutions. Therefore we use a proxy tanh-margin loss as the fitness function.

5.1 ATTACKING NOVEL OBJECTIVES

In cases where the objective is not differentiable (e.g. accuracy), to apply gradient-based attacks,
we need to find a differentiable surrogate that approximates the original objective. This is already
discussed in § 4. Using these attacks becomes even more challenging when the attack objective is
complicated and defined through several non-differentiable components (e.g., quantile computation
or majority voting). Since our method nullifies the need for information from gradients, we can easily

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1% 5% 10% 15% 20%

Epsilon

0.6

0.8

1.0

C
ov

er
ag

e

GCN
Adv-Trained GCN

1 − α

1% 5% 10% 15% 20%

Epsilon

1.5

2.0

2.5

3.0

Se
tS

iz
e

Perturbed Clean

1% 5% 10% 15%

Epsilon

0.6

0.8

C
er

tifi
ca

tio
n

MLP
Smooth Acc

Cert Ratio
Cert Acc

Figure 4: The conformal coverage (left) and conformal set size attack (middle) on Vanilla and
adversarially trained GCN. The certificate attack (right) on GCN. All plots are for CoraML.

optimize for novel complex objectives. We define three new attacks on graphs: reducing the certified
ratio of a smoothing-based model, decreasing the coverage, and the set size of conformal sets.

Attacking randomized smoothing-based certificates. A robustness certificate guarantees that the
prediction of the classifier remains the same within the threat model. One way to obtain such a
guarantee (for a black-box model) is through randomized smoothing. A smoothing scheme ξ is a
random function mapping an input x to a nearby point x′ (e.g. additive isotropic Gaussian noise
x′ = ξ(x) = x + ϵ, where ϵ ∼ N (0, σ2I)). The convolution of the smoothing scheme and the
classifier Pr[f(x + ϵ) = y] changes slowly around x and this allows us to bound the worst-case
minimum of the smooth prediction probability within B. If this minimum is above 0.5, we can certify
that the smooth model returns the same label for any x̃ ∈ B(x). A possible adversarial objective is to
reduce the number of nodes that are certified (a.k.a. certified ratio).

For certifying a prediction we compute the majority vote – the probability that the classifier predicts
the top class for randomized x′ ∼ ξ(x). Then, we find a lower bound for this probability within the
perturbation ball (see § D). Exact computation of the majority vote is generally intractable. Instead,
we use Monte-Carlo (MC) sampling. These operations are not directly differentiable.

A naive implementation of the certified ratio objective is to compute nmc random samples for each
candidate perturbation Ã. This makes the attack extremely slow as in each iteration, we need np ·nmc

samples, and for each Monte Carlo sample, we need n2 samples from the Bernoulli distribution.
Since statistical rigor is not crucial during the attack, we employ an efficient sampling strategy where
we start with initial samples from clean A, and for each perturbation, we only resample for the edges
in Ã△A. We use the stacked inference technique (see § 4) on MC samples which ultimately reduces
the computation to one inference per each perturbation Ã. Moreover, the certified radius is only a
function of the smooth classifier’s probability and it is non-decreasing w.r.t. it. This allows us to
reduce all certificate computations to one binary search for the minimum required probability. Then
the objective is to minimize the number of nodes with probability above this threshold. We further
discuss this attack in § D.

Attacking conformal prediction. Instead of label prediction, conformal prediction (CP) returns
prediction sets that are guaranteed to include the true label with 1 − α probability. This post-hoc
statistical method treats the model as a black-box and requires only a calibration set of labeled points
whose labels were not used during model training. CP is applicable in both inductive and transductive
Graph Neural Networks (GNNs) under the assumption of node-exchangeability (Zargarbashi &
Bojchevski, 2024). Adversarial attacks on conformal prediction aim to decrease the empirical
coverage by perturbing the input. In addition, we also define an attack that reduces the applicability
of the prediction sets by increasing the average set size.

To compute prediction sets we need to compute a quantile from the set of true calibration conformity
scores and compare the scores of the test node to the quantile threshold. This operation is again not
directly differentiable which is not a problem for EvA. In our experimental setup, the defender cali-
brates on a random subset of Vu (besides the test, this is the only set with labels unseen by the model).
Assuming that the unlabeled and test nodes are originally exchangeable (node-exchangeability),
the conformal guarantee is valid in the inductive setup upon recalibration on the clean graph. By

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

perturbing the edge structure we can easily break this guarantee. Therefore our objective is to change
the edge structure such that the coverage is minimized. Intuitively, this requires maximizing the
distribution shift between the test and calibration scores. We can perform conformal prediction for
each individual in the population, and we set the coverage of Vatt as the objective function.

Since we don’t know the exact subset of the unlabeled nodes taken as calibration, we can use the
unlabeled set entirely as the calibration set. Given that the defender will randomly sample from
unlabeled nodes during the calibration, the coverage remains roughly the same for exchangeable
subsets of Vu (Berti & Rigo, 1997). To the best of our knowledge, so far this is the only adversarial
attack on the graph structure to break conformal inductive GNNs. Similarly, by changing the objective
to the negative average set size, we can easily attack the usability of prediction sets (see Fig. 4).

6 EMPIRICAL RESULTS

With our empirical evaluations (i) we show that current gradient-based attacks are still very far from
optimal since EvA outperforms them by a notable margin. (ii) We show that EvA inherently results
in attacks that perturb each node with less change in nodes’ degree. This is even without posing local
budget restrictions. (iii) We also show even by adding local restrictions EvA still outperforms other
gradient-based local attacks. (iv) The effectiveness of EvA is consistent across various models, and
vanilla or robust training setups. (v) With the black-box nature of the attack we introduce the first
attack that reduces the certified ratio and the first attack that breaks conformal sets on graphs.

Experimental setup. We evaluate EvA on common graph datasets: Cora-ML (McCallum et al.,
2004), Citeseer (Sen et al., 2008), and PubMed (Namata et al., 2012). Shchur et al. (2018) show that
GNN evaluation is sensitive to the initial train/val/test split. Therefore, we averaged our results for
each dataset/model over five different data splits. In contrast with common GNN attacks, Gosch et al.
(2024) show that transductive setup carries a false sense of robustness. In other words, trivially one
can gain perfect robustness just by memorizing the clean data; models with robust and self-training
also show to exploit this flaw. Following them, we report our results in an inductive setting. We
divide graph nodes into four subsets: training, validation, and testing, each with 10% of the nodes
and we leave the remaining 60% as unlabeled data. For completeness, in § A we compare attacks in
the transductive setting as well, where again EvA is more effective.

Following Lingam et al. (2023), we maintain the distribution of labels for sampling train, validation,
and test nodes. This provides a more realistic scenario compared to commonly used methods, such as
sampling for training and validation with the same count probability for each class. For completeness
in § A we report various sampling setups. However the this does not change the order between
methods. Further information about the model and hyperparameters can be found in § C.

Attacking vanilla models. As shown in Fig. 5, EvA outperforms the SOTA attack PRBCD by a
significant margin. This comparison remains consistent across various datasets and models. We report
these results extensively in § A. Interestingly, we show that in many vanilla and robust models, a very
small budget ϵ ∼ 0.05 EvA drops the accuracy below the level of the MLP model. This is a condition
where the model leveraging the structure works worse than a model that completely ignores edges.

1% 5% 10% 15% 20%

0.4

0.6

0.8

Pe
rt

A
cc

ϵ : 1% 5% 10% 15% 20%

0.4

0.5

0.6

0.7

0.8

1% 5% 10% 15% 20%

0.6

0.7

0.8

MLP PRBCD LRBCD EvA EvALocal

Figure 5: Performance of EvA on CoraML. From left to right the results are on Vanila GCN,
adversarially trained GCN using PRBCD, and Soft-Median-GDC model.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4 5-7 +8

Degree

0

20

40

C
ou

nt

1 2 3 4 5-7 +8

Degree

0

20

40

1 2 3 4 5

Degree Violation

0

20

40

60

NA 1 2 3 4 5 6 7 8 9 10

EvA
PRBCD

Figure 6: The number of perturbations (in different colors) that have been used by EvA (left) and
PRBCD (middle) to target nodes with a specific degree. The right figures present the number of
violations that EvA, PRBCD introduce (for ϵloc = 0.5). NA (black) indicates a failed attack.

The SoftMedian model seems to show an inherent robustness to both EvA and PRBCD. Therefore,
to break the model below the accuracy of MLP, we require ≥ 0.2 perturbation budget. Even in the
SoftMedian model, our attack is significantly more effective in comparison to PRBCD.

Adversarially trained models. Similar to vanilla models, EvA outperforms other approaches for
robust models by a notable margin. As expected, models trained with EvA were shown to be more
robust, and other attacks were less effective to them. However, this additional robustness is not
significant. Table 9 (§ A) compares attacks in models with different adversarial training.

Local attacks. Building upon the discussion in § 5, we enforce the local constraint by adding a
mutation function that iteratively removes edges exceeding the local budget. The local variant of EvA
also shows to be consistently better than the local LRBCD attack. For the PubMed dataset EvA’s
effectiveness has a slower trend by increasing the budget ϵ. On PubMed (see § A), when enforcing
locally constrained mutation, the number of reconsidered edges increases due to the density of the
graph. This makes the search significantly harder. On other datasets, though, EvA shows consistently
better results and, more importantly, sharper decrease at lower ϵ.

Targeted attack. We perform attacks on each node separately, with varying budgets from one to a
maximum of 10 edges, until the prediction changes. As we discussed in § 5, the accuracy on one node
is non-expressive. Therefore we use the tanh-Margin proxy loss. Fig. 6 (left and middle) compares
EvA and PRBCD in tagetted attack. Our results show that PRBCD performs better with a budget of
one, but is outperformed by EvA for budgets of two and higher. For instance, on the CoraML dataset
PRBCD fails to modify 16 nodes with a maximum of 10 changes (NA, black), whereas this number
is reduced to only 2 nodes for EvA. This result is expected due to the combinatorial nature of the
problem: for budgets up to two, a greedy approach can find the optimal solution, but as the budget
increases beyond three, the problem becomes significantly more complex.

Attacking certificates. As shown in Fig. 4 (right) we reduce the certified ratio - the number of nodes
that the certificate can guarantee for the specified threat model - to a ratio below the accuracy of the
MLP model. The MLP model here is a baseline as it is robust to any structure perturbation by trivially
ignoring edges. We report the ratio certified by sparse smoothing (Bojchevski et al., 2020) with
p=0.4, and p+ = 2× 10−5. Here p+, and p− are Bernoulli parameters of flipping a zero or one. We
reported the result for B0,3 which means 0 edge addition and 3 deletions. While we aim to decrease
the certified ratio, a direct outcome is that the certified accuracy drops. For a 5% budget, the certified
accuracy drops below MLP, which is resilient to any structural perturbation by definition. Notably,
the clean (smooth) accuracy stays the same making this attack less noticable. For this experiment we
used the GPRGNN model with robust training using PRBCD attack.

Attacking conformal prediction. We report the first structure attack to inductive conformal GNN
(Zargarbashi & Bojchevski, 2024). As shown in Fig. 4 (right) the coverage drops quickly as we
increase the perturbation budget. As expected, in an adversarially trained model, we observe a slower
decrease in the empirical coverage. Another interesting objective to attack is increasing the set size
since it affects the usability of the prediction set. In Fig. 4 (middle) we show that both vanilla and
robust models are vulnerable to this attack.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

Pert Connection Label

0 2 4 6 8

0
1

2
3

4
5

6
7

8

Pert Connection Degree

0 2 4 6 8

0
1

2
3

4
5

6
7

8

Pert Connection Margin

0

10

20

30

40

0

5

10

15

0

10

20

30

Figure 7: The upper triangle of each heatmap represents the perturbation connections for PRBCD,
the lower triangle corresponds to the same for EvA, and the diagonal is set to zero.

Local degree violation. In this experiment, we did not enforce the local degree constraint in both EvA
and PRBCD. However, we compared the final solutions to assess how often the solutions violated
this constraint. Fig. 6 (right) shows that EvA generally produces more diverse attacks, utilizing the
global budget more efficiently, which leads to improved performance. Overall, EvA violates less for
any degree number and therefore in total.

Label diversity. We further conduct an ablation study on the solutions found by EvA and PRBCD
under a specific budget of 10%. In this experiment, we keep all hyperparameters of EvA and PRBCD
fixed and run them across 10 different seeds. We then compare the average solutions generated by
each adversary. The left figure in Fig. 7 shows the number of connections across different labels. In
both cases, the methods focus more on label 5 than on the others, but EvA distributes the connections
more uniformly compared to PRBCD. The middle figure illustrates the nodes with original degrees
ranging from 1 to greater than 8. The results indicate that, in both attacks, most of the budget is spent
connecting to low-degree nodes. However, compared to PRBCD, EvA allocates more of the budget
to higher-degree nodes. Additionally, we calculate the margin loss for each node in the original graph
and discretize them into eight levels. As shown in the right figure of Fig. 7, EvA allocates more of
the budget to higher-margin nodes, resulting in a non-trivial solution that achieves a better optimum.
Finally, it seems that EvA identifies solutions that differ from greedy-based heuristic, which usually
only targets low-degree or low-margin nodes.

7 CONCLUSION

In contrast to gradient-based adversarial attacks on graph structure, we developed a new attack (EvA)
based on a heuristic genetic algorithm. By eliminating differentiation, we can directly optimize for
the objective of the adversary (e.g. the model’s accuracy). This black-box nature enables us to define
complex adversarial goals, including attacks on robustness certificates and conformal prediction. Our
novel attacks decrease the certified ratio, and conformal coverage, and increase the conformal set size.
We propose an encoding that reduces the memory complexity of the attack to the same order as the
perturbation budget which allows us to adapt to various computational constraints. Given the drastic
decrease in the model’s accuracy by applying EvA, we highlight that even SOTA gradient-based
attacks are far from optimal. Our main message is that search-based attacks are underexplored yet
powerful as shown by our results.

Limitations. We use an off-the-shelf genetic algorithm. Surely, there is room for designing search
algorithms specific to the domain of the problem or hybrids of gradient and evolutionary search. As
the graph size increases, the search space expands exponentially which makes convergence harder.
While we remove the white-box assumption, we still assume the adversary has full knowledge of the
graph and labels (same as most other attacks). This limitation can be easily addressed in future work.
EvA uses many forward passes through the model which can be unrealistic in some attack scenarios.
We leave the design of a further query-efficient variant for the future.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this paper, we propose an adversarial attack without white-box access. However, our main focus is
to point out the vulnerability of GNN models, opening the discussion on the need for more robust
and reliable models, our results can be used to exploit the vulnerability of current GNNs.

REPRODUCABILITY

For reproducibility, we have uploaded the complete anonymized codebase on OpenReview.

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. In International conference on machine
learning, pp. 274–283. PMLR, 2018.

Patrizia Berti and Pietro Rigo. A glivenko-cantelli theorem for exchangeable random variables.
Statistics & probability letters, 32(4):385–391, 1997.

Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. Efficient robustness certifi-
cates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more. In
International Conference on Machine Learning, pp. 1003–1013. PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network, 2021.

Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In International conference on machine learning, pp. 1115–1124. PMLR,
2018.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale. Advances in Neural Information
Processing Systems, 34:7637–7649, 2021.

Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan
Günnemann. Robustness of graph neural networks at scale, 2023. URL https://arxiv.org/
abs/2110.14038.

Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan
Günnemann. Adversarial training for graph neural networks: Pitfalls, solutions, and new directions.
In 37th Conference on Neural Information Processing Systems (Neurips), 2023.

Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan
Günnemann. Adversarial training for graph neural networks: Pitfalls, solutions, and new directions.
Advances in Neural Information Processing Systems, 36, 2024.

John H Holland. Genetic algorithms and adaptation. Adaptive control of ill-defined systems, pp.
317–333, 1984.

Vijay Lingam, Mohammad Sadegh Akhondzadeh, and Aleksandar Bojchevski. Rethinking label
poisoning for gnns: Pitfalls and attacks. In The Twelfth International Conference on Learning
Representations, 2023.

Andrew McCallum, Kamal Nigam, Jason D. M. Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2004.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. 2012.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classifcation in network data. 2008.

11

https://arxiv.org/abs/2110.14038
https://arxiv.org/abs/2110.14038

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Lichao Sun, Yingtong Dou, Carl Yang, Kai Zhang, Ji Wang, Philip S. Yu, Lifang He, and Bo Li.
Adversarial attack and defense on graph data: A survey. IEEE Transactions on Knowledge and
Data Engineering, 35(8):7693–7711, 2023. doi: 10.1109/TKDE.2022.3201243.

Nihat Engin Toklu, Timothy Atkinson, Vojtěch Micka, Paweł Liskowski, and Rupesh Kumar Srivas-
tava. Evotorch: scalable evolutionary computation in python. arXiv preprint arXiv:2302.12600,
2023.

Yexin Wang, Zhi Yang, Junqi Liu, Wentao Zhang, and Bin Cui. Scapin: Scalable graph structure
perturbation by augmented influence maximization. Proc. ACM Manag. Data, 1(2), June 2023.
doi: 10.1145/3589291. URL https://doi.org/10.1145/3589291.

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.
Topology attack and defense for graph neural networks: An optimization perspective. arXiv
preprint arXiv:1906.04214, 2019.

Soroush H Zargarbashi and Aleksandar Bojchevski. Conformal inductive graph neural networks.
arXiv preprint arXiv:2407.09173, 2024.

Chenhan Zhang, Shiyao Zhang, James J. Q. Yu, and Shui Yu. Sam: Query-efficient adversarial
attacks against graph neural networks. ACM Trans. Priv. Secur., 26(4), November 2023. ISSN
2471-2566. doi: 10.1145/3611307. URL https://doi.org/10.1145/3611307.

Jianfu Zhang, Yan Hong, Dawei Cheng, Liqing Zhang, and Qibin Zhao. Hierarchical attacks on large-
scale graph neural networks. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 7635–7639, 2024. doi: 10.1109/ICASSP48485.2024.
10448076.

Guanghui Zhu, Mengyu Chen, Chunfeng Yuan, and Yihua Huang. Simple and efficient partial
graph adversarial attack: A new perspective, 2023. URL https://arxiv.org/abs/2308.
07834.

Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks
for graph data. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 2847–2856, 2018.

Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks
on graph neural networks: Perturbations and their patterns. ACM Transactions on Knowledge
Discovery from Data (TKDD), 14(5):1–31, 2020.

12

https://doi.org/10.1145/3589291
https://doi.org/10.1145/3611307
https://arxiv.org/abs/2308.07834
https://arxiv.org/abs/2308.07834

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY EXPERIMENTS

Transductive Setting. In § 6, we discussed that evaluating robustness in transductive setup is flawed
since trivial robustness can be gained just by memorization of the clean graph (Gosch et al., 2024).
However, for completeness, Table 1 reports the attacks’ effectiveness in this setup. Consistent with
other experiments, here also EvA outperforms SOTA. We provide the result for EvA, PRBCD, and
for completeness, we also provide the result for PGA, which is a more recent attack.

Table 1: Classification accuracy (%) on the CoraML dataset in the transductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN
LRBCD 80.0±2.0 78.0±2.0 73.0±1.0 66.0±1.0 61.0±2.0 57.0±2.0

PRBCD 79.0±2.0 77.0±2.0 72.0±2.0 65.0±2.0 60.0±2.0 56.0±2.0

EvA 77.0±2.0 74.0±2.0 66.0±2.0 60.0±2.0 59.0±3.0 57.0±3.0

GPRGNN
LRBCD 79.0±3.0 77.0±3.0 72.0±4.0 63.0±7.0 55.0±12.0 49.0±16.0

PRBCD 79.0±3.0 76.0±4.0 70.0±5.0 62.0±7.0 55.0±10.0 50.0±13.0

EvA 77.0±3.0 73.0±5.0 64.0±6.0 57.0±10.0 53.0±13.0 50.0±16.0

Inductive Setting. Here, we present additional results specifically for the inductive setting. Unlike the
transductive setup, where robustness can be misleadingly achieved through memorization of the clean
graph, the inductive framework provides a more comprehensive assessment of model performance in
real-world scenarios. In this section, we detail the effectiveness of our method compared to other
approaches.

Table 2: Classification accuracy (%) on the CoraML dataset in the inductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

APPNP EvA 76.65±1.32 71.03±1.44 56.51±1.60 49.32±1.84 44.77±2.04 41.42±1.41

PRBCD 78.65±0.99 75.30±1.27 68.75±1.22 61.57±1.65 55.44±1.58 49.96±2.42

GAT EvA 64.20±1.89 58.51±2.45 40.99±1.60 15.30±4.47 9.40±6.83 8.11±6.65

PRBCD 70.07±2.82 66.55±2.21 58.58±3.33 49.61±6.55 39.86±6.78 36.94±7.09

GCN EvA 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

PRBCD 76.44±1.64 73.17±1.39 66.48±2.13 58.51±1.77 52.67±2.09 47.19±2.02

GPRGNN EvA 72.53±4.11 66.83±4.54 51.53±5.57 42.21±8.52 37.01±9.83 34.52±9.83

PRBCD 74.95±3.08 71.67±2.76 64.84±4.18 57.94±4.55 53.24±5.20 48.68±6.52

Stratified sampling. Although unrealistic, in Table 8 we compare attacks in case the models are
trained train/val/test sampled with the same number of nodes across different classes. Consistent with
other results, EvA shows to be better here as well.

Attacking accuracy of vanilla and robust models. Table 9 compares EvA with SOTA PRBCD,
and LRBCD. We compare both three attacks on vanilla models or models trained with adversarial
examples of either of the attacks. Across all setups, EvA shows a comparably better performance.

A.1 EXPERIMENTS

Vanilla Models Experients. For the experimental results, we mainly focus on the inductive setting
introduced by (Lingam et al., 2023), where during training, we only use Gtr, and during the attack,
we target Gtest. We also provide results for the transductive setting, showcasing that our attack
outperforms previous gradient-based methods, independent of the training setting. We conduct

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 3: Classification accuracy (%) on the CoraML dataset in the inductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN

EvA 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

EvaLocal 75.09±1.73 69.82±1.96 60.21±2.04 56.09±1.93 54.16±2.48 52.88±1.79

LRBCD 78.51±1.56 75.94±1.54 71.10±1.16 64.41±1.65 60.14±1.73 57.37±1.45

PRBCD 76.44±1.64 73.17±1.39 66.48±2.13 58.51±1.77 52.67±2.09 47.19±2.02

PGA 79.58±1.61 76.92±1.73 70.94±1.89 64.62±1.92 60.46±2.25 57.54±2.46

GPRGNN

EvA 72.53±4.11 66.83±4.54 51.53±5.57 42.21±8.52 37.01±9.83 34.52±9.83

EvaLocal 73.31±3.30 67.26±4.17 58.29±7.96 53.38±11.42 51.10±12.66 49.96±13.63

LRBCD 77.51±1.81 74.80±1.41 68.83±1.90 62.56±1.71 59.07±1.53 55.66±1.71

PRBCD 74.95±3.08 71.67±2.76 64.84±4.18 57.94±4.55 53.24±5.20 48.68±6.52

PGA 78.55±3.03 75.33±3.69 68.63±5.11 61.55±6.97 56.60±8.52 54.91±7.46

Table 4: Classification accuracy (%) on the Citeseer dataset in the inductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

APPNP EvA - - 74.29±0.88 65.00±1.15 59.76±2.33 54.76±1.19

PRBCD 87.26±0.90 85.48±1.49 81.79±1.08 76.55±0.68 72.44±1.66 69.29±1.69

GAT EvA - - 67.14±3.65 51.19±4.21 37.74±4.94 27.62±9.49

PRBCD 84.52±2.27 82.62±2.20 76.55±5.59 70.00±6.09 67.02±4.27 63.15±4.19

GCN EvA 86.67±1.71 82.86±2.12 72.74±2.74 58.33±3.01 49.76±3.22 44.29±3.33

PRBCD 87.38±1.81 85.83±2.43 80.95±2.06 74.29±4.22 69.76±4.34 67.62±4.96

GPRGNN EvA 87.26±2.75 83.81±2.50 73.45±3.17 61.43±4.66 55.48±3.84 50.12±4.86

PRBCD 88.45±2.29 86.31±2.45 82.02±2.61 77.14±2.84 73.93±3.89 69.64±3.47

experiments on the Cora-ML Citeseer, and Pubmed datasets, trained GCN, GPRGNN, APPNP and
GAT. We run the attack for six different budgets (0.01, 0.02, 0.05, 0.1, 0.15, 0.2). Further details on
training and attack hyperparameters are provided in C. We also use EvoTorch (Toklu et al., 2023) to
impelement EvA.

Robust Models. Similarly, we provide the results for the adversarially trained model. In this case,
during training, we use an adversarial attack at each step to attack Gtr, and then we retrain the model
on the adversarially perturbed graph G̃tr. The robust budget (ϵrobust) for adversarial attack during
training was 0.02. This process repeats in each epoch of training until the model converges. We
similarly use the inductive setting since, as Gosch et al. (2023) shows, in the transductive setup, the
evaluation is flawed by a false sense of robustness. This originates from the fact that if, during the
training process, the defender has access to perfect knowledge of all nodes in the graph, it can achieve
perfect robustness by memorizing the clean structure of the graph in the model’s weights. Table 9
presents our results in this setting. As the results indicate, EvA outperforms all previous attacks, even
in adversarially trained models.

Attacking Certificate. As we discussed, EvA still be used in the case that we don’t have access to a
non-differentiable objective. In this experiment, we introduced a certificate attack which, to the best
of our knowledge, is the first attack on certificates that reduces the certificate guarantees

Any possible appendices should be placed after bibliographies. If your paper has appendices,
please submit the appendices together with the main body of the paper. There will be no separate
supplementary material submission. The main text should be self-contained; reviewers are not obliged
to look at the appendices when writing their review comments.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: Classification accuracy (%) on the Citeseer dataset in the inductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN

EvA 86.67±1.71 82.86±2.12 72.74±2.74 58.33±3.01 49.76±3.22 44.29±3.33

EvaLocal 87.38±1.65 83.57±2.17 78.21±3.17 76.43±2.62 75.00±3.23 74.52±3.16

LRBCD 88.45±2.17 86.43±2.71 83.69±2.48 80.12±3.30 78.45±3.89 75.36±4.81

PRBCD 87.38±1.81 85.83±2.43 80.95±2.06 74.29±4.22 69.76±4.34 67.62±4.96

GPRGNN

EvA 87.26±2.75 83.81±2.50 73.45±3.17 61.43±4.66 55.48±3.84 50.12±4.86

EvaLocal 87.50±2.27 84.29±2.04 80.48±3.96 77.86±4.56 76.43±5.06 75.12±6.57

LRBCD 89.76±2.50 87.98±2.48 85.12±2.76 81.90±2.83 79.64±4.08 78.45±4.92

PRBCD 88.45±2.29 86.31±2.45 82.02±2.61 77.14±2.84 73.93±3.89 69.64±3.47

Table 6: Classification accuracy (%) on the PubMed dataset in the inductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

APPNP EvA 73.85±2.35 69.64±2.16 57.07±2.32 47.03±2.18 43.94±1.83 41.93±2.18

PRBCD 75.54±2.34 72.44±2.28 65.14±2.26 57.15±2.59 51.04±2.79 45.75±2.60

GAT EvA 69.15±1.83 64.62±1.81 52.17±1.71 33.62±2.05 26.62±3.74 24.21±4.27

PRBCD 71.33±1.53 67.78±1.79 59.73±2.10 49.87±1.36 42.04±1.57 35.94±1.66

GCN EvA 72.60±2.19 68.35±2.41 56.15±1.92 42.93±2.64 40.46±2.76 39.11±2.98

PRBCD 74.99±1.99 71.90±2.03 64.16±2.32 55.54±2.79 49.32±2.66 43.90±3.09

GPRGNN EvA 72.01±4.18 67.61±4.28 55.95±4.32 − − 42.39±9.63

PRBCD 74.37±3.40 71.66±3.55 64.51±4.94 56.21±6.46 50.26±7.41 45.81±8.47

B TECHNICAL DETAILS OF EVA

Mapping function: enumeration over A For enumerating over A, instead of using the row and
column indices of the node to select, we introduced indexing. For a directed graph, the indexing
starts from 0 to n2 − 1. However, in an undirected graph, we only need the upper triangular part of
the matrix A. To achieve this, we use the following algebraic solution to find the row and column of
the perturbation by referencing only the upper triangular indexing.

r = n− 2−

⌊√
−8l + 4n(n− 1)− 7

2
− 0.5

⌋

c = 1 + l + r − n(n− 1)

2
+

⌊
(n− r)(n− r − 1)

2

⌋ (2)

The advantage of this solution is that it can also be implemented in a vectorized way, making
everything parallelizable.

C DATASETS AND MODELS, AND HYPERPARAMETERS

C.1 STATISTICS OF DATASETS

In our experiments, we mainly conduct experiments on the commonly used graph datasets: Cora-
ML, Citeseer, and PubMed, which are all representative academic citation networks. Their specific
characteristics are as follows:

Cora-ML. The Cora-ML dataset contains 2,810 papers as nodes, with citation relationships between
them as edges, resulting in 7,981 edges. Each paper is categorized into one of 7 classes corresponding

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: Classification accuracy (%) on the PubMed dataset in the inductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN

EvA 72.60±2.18 68.35±2.41 56.15±1.92 42.93±2.64 40.46±2.76 39.11±2.98

EvaLocal 74.49±2.05 70.53±2.10 66.97±2.86 74.75±3.14 74.04±2.09 72.99±2.09

LRBCD 74.89±2.04 71.48±2.49 65.68±2.90 60.24±3.15 56.81±3.02 54.07±2.99

PRBCD 74.99±1.99 71.90±2.03 64.16±2.32 55.54±2.79 49.32±2.66 43.90±3.09

GPRGNN

EvA 72.01±4.18 67.61±4.28 55.95±4.32 − − 42.39±9.63

EvaLocal 73.36±3.71 69.68±3.93 65.61±6.75 70.64±2.85 72.27±5.06 71.40±5.41

LRBCD 74.50±3.66 71.57±4.10 65.88±6.12 60.33±5.70 56.75±7.74 53.75±8.18

PRBCD 74.37±3.40 71.66±3.55 64.51±4.94 56.21±6.46 50.26±7.41 45.81±8.47

Table 8: Classification accuracy (%) on the CoraML dataset in the inductive setting under different
attacks and perturbation levels ϵ. Results are averaged over multiple runs with standard deviations.
Training, validation, and test sets are stratified.

Model Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

GCN
LRBCD 80.0±2.7 77.4±2.6 71.4±2.7 65.5±3.9 61.2±4.2 57.6±4.5

PRBCD 78.7±2.8 75.3±3.4 67.9±3.4 59.5±3.5 53.0±4.1 48.4±3.7

EvA 77.0±2.9 71.4±3.3 54.4±4.7 44.3±3.3 40.9±3.7 37.3±3.7

GPRGNN
LRBCD 76.2±7.9 73.1±7.9 66.1±11.5 60.5±11.7 56.4±12.4 53.4±12.9

PRBCD 74.4±9.6 70.7±10.0 63.8±10.4 56.1±11.1 49.3±11.4 45.1±11.0

EvA 71.9±10.4 65.0±11.4 50.1±11.4 41.8±14.0 37.2±14.6 35.2±15.7

to different subfields of machine learning. Each node is represented by a 1,433-dimensional bag-of-
words (BoW) feature vector derived from the words in the titles and abstracts of the papers.

Citeseer. The CiteSeer dataset is also an academic citation network dataset consisting of 3,312 papers
from 6 subfields of computer science and a total of 4,732 citation edges. Similar to Cora-ML, each
paper as a node is represented by a BoW feature vector with a dimensionality of 3,703.

PubMed. The PubMed dataset is derived from a citation network of biomedical literature that
contains 19,717 papers as nodes and 44,338 citation edges. Each paper is categorized into one of 3
classes based on its topic. The node features in PubMed are 500-dimensional vectors.

C.2 DETAILS OF MODELS

In the following sections, we detail the hyperparameters and architectural details for the models
performed in this paper. The experimental configuration files, including all hyperparameters, will be
made publicly available upon acceptance of the paper.

GCN. We utilize a two-layer GCN with 64 hidden units. A dropout rate of 0.5 is applied during
training.

GAT. Our GAT model consists of two layers with 64 hidden units and a single attention head.
During training, we apply a dropout rate of 0.5 to the hidden units, but no dropout is applied to the
neighborhood.

APPNP. We use a two-layer MLP with 64 hidden units to encode the node attributes. We then
apply generalized graph diffusion, using a transition matrix and coefficients γK = (1 − α)K and
γl = α(1− α)l for l < K.

GPRGNN. Similar to APPNP, we employ a two-layer MLP with 64 hidden units for the predictive
part. We use the symmetric normalized adjacency matrix with self-loops as the transition matrix and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 9: Classification accuracy (%) on the CoraML dataset under different attacks and adversarial
training methods. The results are averaged over multiple runs with standard deviations.

Model Adv. Tr. Attack ϵ

0.01 0.02 0.05 0.10 0.15 0.20

G
C

N

None
LRBCD 78.51±1.56 75.94±1.54 71.10±1.16 64.41±1.65 60.14±1.73 57.37±1.45

PRBCD 76.44±1.64 73.17±1.39 66.48±2.13 58.51±1.77 52.67±2.09 47.19±2.02

EvA 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

LRBCD
LRBCD 79.64±1.77 77.51±2.41 73.10±1.54 68.19±1.11 64.84±1.92 62.35±3.00

PRBCD 78.79±1.88 75.87±1.41 69.75±1.81 62.35±2.70 56.80±3.04 54.23±4.71

EvA 76.80±1.29 71.10±1.64 56.30±1.66 48.40±2.91 43.06±2.43 40.85±2.70

PRBCD
LRBCD 80.71±1.16 77.86±0.81 73.81±0.54 69.40±0.91 66.48±1.08 63.77±1.73

PRBCD 78.93±1.27 76.30±1.27 70.25±1.74 64.06±1.83 59.50±2.84 56.58±4.53

EvA 76.80±0.77 71.53±1.65 57.44±2.13 49.11±3.05 44.70±2.96 41.92±3.32

EvA
LRBCD 80.85±1.36 78.58±0.99 74.66±1.11 69.89±0.93 66.98±0.92 65.05±1.08

PRBCD 79.79±1.80 76.51±1.31 71.25±1.54 64.34±1.97 60.43±1.32 58.22±2.26

EvA 77.22±1.87 71.96±2.38 57.94±3.08 50.04±3.29 44.91±3.44 42.63±2.33

G
PR

G
N

N

None
LRBCD 77.51±2.81 74.80±3.08 68.83±4.20 62.56±4.69 59.07±5.98 55.66±6.99

PRBCD 74.95±3.08 71.67±2.76 64.84±4.18 57.94±4.55 53.24±5.20 48.68±6.52

EvA 72.53±4.11 66.83±4.54 51.53±5.57 42.21±8.52 37.01±9.84 34.52±9.83

LRBCD
LRBCD 81.57±2.58 79.72±2.22 75.59±2.31 71.32±2.20 68.97±2.10 66.69±2.25

PRBCD 80.71±2.61 78.51±2.29 72.88±2.38 66.90±1.95 61.78±1.99 57.51±3.72

EvA 78.79±2.69 72.95±2.67 63.42±3.15 56.58±4.68 52.88±5.61 49.96±5.75

PRBCD
LRBCD 80.43±2.01 78.01±1.91 73.74±1.66 69.96±2.14 67.19±2.51 64.84±3.20

PRBCD 80.21±2.43 77.30±2.63 71.53±2.67 65.12±3.21 60.07±4.10 55.37±3.85

EvA 78.79±2.45 73.10±2.54 62.85±4.93 56.94±6.64 53.74±7.65 51.60±8.10

EvA
LRBCD 79.64±0.89 76.44±0.68 72.95±1.04 69.04±1.26 67.05±1.46 65.48±1.88

PRBCD 78.51±0.60 75.87±1.32 70.32±0.89 64.91±1.14 59.57±1.75 56.16±1.62

EvA 76.51±0.44 70.96±0.41 60.85±3.07 54.73±3.99 50.25±5.57 48.83±5.95

Table 10: Dataset Statistics
Dataset Nodes Edges Features Classes
Cora-ML 2,810 7,981 1,433 7
Citeseer 3,312 4,732 3,703 6
PubMed 19,717 44,338 500 3

randomly initialize the diffusion coefficients. We consider a total of K = 10 diffusion steps, with α
set to 0.1. During training, we apply a dropout rate of 0.2 to the MLP, while no dropout is applied
to the adjacency matrix. Unlike the method in Chien et al. (2021), we always learn the diffusion
coefficients with weight decay, which acts as a regularization mechanism to prevent the coefficients
from growing indefinitely.

SoftMedian GDC. We follow the default configuration from Geisler et al. (2023), using a temperature
of T = 0.2 or the SoftMedian aggregation, with 64 hidden dimensions and a dropout rate of 0.5.
We fix the Personalized PageRank diffusion coefficient to α = 0.15 and apply a top k = 64
sparsification. During the attacks, the model remains fully differentiable, except for the sparsification
of the propagation matrix.

MLP. We design the MLP following the prediction module of GPRGNN and APPNP, incorporating
two layers with 64 hidden units. During training, we apply a dropout rate of 0.2 to the hidden layer.

C.3 HYPERPARAMETER SETUP

In EvA we set the capacity of the computation to the same as the population, this means that all
perturbations within a population are in one combined inference. However, in some cases where the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

graph is large (e.g. PubMed), we reduce this number. Table 11 shows the hyper-parameter selection in
almost all experiments. We only change the population number in some experiments, like certificate
attacks, to reduce the computation. E.g., in the certificate attack, the population is reduced by a factor
of 10.

C.4 ATTACK HYPERPARAMETERS

To assess the robustness of GNNs, we utilize the following attacks and hyperparameters. Based on
Geisler et al. (2023), we also select the tanh-margin loss as the attack objective.

PRBCD. We closely adhere to the setup outlined by Geisler et al. (2023). A block size of 500,000 is
used with 500 training epochs. Afterward, the model state from the best epoch is restored, followed
by 100 additional epochs with a decaying learning rate and no block resampling. Additionally, the
learning rate is scaled according to δ and the block size, as recommended by Geisler et al. (2023).

LRBCD. The same block size of 500,000 is used with 500 training epochs. The learning rate is
scaled based on δ and the block size, following the same approach as PRBCD. The local budget is
consistently set as 0.5.

EvA. We set the population size to 1024 in most cases. Our mutation rate is 0.01, and increasing this
number breaks the balance between exploration and exploitation, leading to less effective attacks.
We run each attack for 500 iterations in most cases. In cases like certificate attacks, which are
time-consuming, we reduce this number to 100. The details are summarized in Table 11.

PGA. For the PGA, we adopt the same setting as in Zhu et al. (2023). We use GCN as the surrogate
model and tanhMarginMCE-0.5 as the loss type. The attack is configured with 1 greedy step, a
pre-selection ratio of 0.1, and a selection ratio of 0.6. Additionally, the influence ratio is set to 0.8,
with the selection policy based on node degree and margin.

Table 11: Hyper-parameters for PRBCD, LRBCD, and EvA
Hyper-parameter PRBCD LRBCD Hyper-parameter EvA
Epochs 500 500 No. Steps 500
Fine-tune Epochs 100 0 Mutation Rate 0.01
Keep Heuristic WeightOnly WeightOnly Tournament Size 2
Search Space Size 500,000 500,000 Population Size 1,024
Loss Type tanhMargin tanh-Margin No. Crossovers 30
Early Stopping N/A False Mutation Method Adaptive

D DETAILS ON NOVEL OBJECTIVES

Smoothing-based certificate. We define a randomized model as a convolution of the original model
and a smoothing scheme. The smoothing scheme ξ : X 7→ X is a randomized function mapping the
given input to a random nearby point. For graph structure, we use the sparse smoothing certificate
(Bojchevski et al., 2020), which certifies whether within Bra,rd the prediction of the smooth model
remains the same. Here ra is the maximum number of possible additions, and rd is the maximum
number of edge deletions. The smoothing function is defined by two Bernoulli parameters p+, and
p−; i.e. for each entity of A, if it is zero, it will be toggled with p+ probability and otherwise with p−.

The robustness certificate also accesses the model f as a black box and defines a smooth model
as f̄y(x) = E[I[f(ξ(x)) = y]] - each random sample x′ is one vote for class f(x′) and f̄y is the
proportion of votes for class y. Let p = f̄y(x); the certificate finds a lower bound probability
p ≥ minx̃∈B(x) f̄y(x̃) and acts as a decision function I[y ≥ 0.5]. In other words, the certificate
returns yes, in case it is guaranteed that the smooth model will not return any value lower than 0.5 for
class y within nB(x). For further details about how to compute the certificate, see (Bojchevski et al.,
2020).

Adaptive sampling for certificate attack. Statistical rigor is not a necessity while attacking the
certificate. Therefore, while attacking, we can reduce the cost of resampling by only resampling the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

subset of the graph that was perturbed. In other words, we initialize the search by computing samples
A1, . . . ,Am, and for each perturbation Ã we only resample the edges in A△Ã. For each edge in
that set, if the edge was added via the perturbations, we resample m Bernoulli variable with p−, and
otherwise p+. We substitute those samples in the same entry of A1, . . . ,Am, and by running this
process |δ| times, we assume that Ã1, · · · Ãm are representative as a new set of m samples for Ã.
This adaptive sampling reduces the number of random computations from m · n2 to m · |δ|, which is
significantly lower. Surely, to evaluate the final perturbation (the reported effectiveness), we don’t
use this approach, as it is statistically flawed and only applicable to reduce the computation during
the attack.

D.1 FITNESS FUNCTION

For a targeted attack, since the objective space is limited to the set {0, 1} , the sensitivity is very
low. As a result, the method becomes equivalent to a random search. The zero-one fitness function
means that all individuals with different perturbations receive the same score, causing the algorithm
to behave more like a random search, as ties in each tournament are broken randomly. Secondly,
since only one individual with a score of one is sufficient to halt the algorithm, all elite populations
before success have scores of zero, which again results in random selection from them.

D.2 PERFORMANCE ON ARXIV

To demonstrate the scalability of our attack on larger datasets, we also present results for the Arxiv
dataset. For this, we consider two realistic scenarios. In the first scenario, similar to the previous
one, the attacker has access to modify a limited number of edges. We provide results for three values
of epsilon: 0.1%, 0.5%, 1.0%. Table 12 summarizes the results for this scenario. EvA outperforms
PRBCD for smaller budgets and achieves comparable performance with a 1% budget, which could
be further improved by scaling and increasing computational resources.

Table 12: Comparison of PRBCD and EvA performance for varying ϵ values
Method Clean 0.1% 0.5% 1%
PRBCD 70.53 69.83 68.64 66.27
EvA 70.53 69.21 67.59 66.86

Alternatively, in a more practical scenario, the attacker compromise a subset of nodes (e.g., 1,000
nodes) and get access to them, referred to as control nodes, and strategically target a specific
group within the network (the target group). For example, in a social network, an attacker could
purchase 1,000 user accounts and use them to influence the performance of other subgroups. For this
experiment, we randomly sampled 1,000 nodes five times and also randomly selected 1,500 nodes
5 time s as target group nodes. We then ran EvA and PRBCD and reported the average results in
Table 13. Our method outperforms PRBCD in this scenario as well.

In summary, we demonstrate that our attack can be effectively applied and that it outperforms previous
state-of-the-art methods.

Table 13: Comparison of PRBCD and EvA performance for varying ϵ values using contorl nodes
Method Clean 1% 5%
PRBCD 64.89 54.7
EvA 59.3 53.92

D.3 TIME ANALYSIS

We also present an ablation study to compare the time analysis by evaluating the memory and wall
clock time between EvA and the PRBCD method. In this experiment, we evaluate EvA with different
numbers of steps, population sizes, and parallel evaluations, while PRBCD is run with varying

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0
10

20
30Max Memory(GB)

0
1

2
3

W
all

Cloc
k Tim

e(m
in)

0.05
0.10
0.15

0.20

(C
le
a
n
−

P
er
t)

A
ccPRBCD EvA

3.0 3.5 4.0

Wall Clock Time

5

10

15

20

25

30

M
ax

M
em

(G
B

)

Parallel Eval
16.0
32.0
64.0

128.0
256.0
512.0

Figure 8: Comparing the memory usage between EvA and PRBCD

numbers of epochs and block sizes on the PubMed dataset. Fig. 8 (left) shows the results for EvA
and PRBCD in terms of memory usage, wall clock time and method performance. Our method
demonstrates comparable performance within the same level of wall clock time (less than a minute).
Moreover, by increasing the wall clock time—through and memory either by a larger population
size or more steps— EvA achieves additional benefits. Additionally, in Fig. 8 (right), we highlight
how our framework provides a trade-off between time and memory for achieving the same level of
accuracy by varying the number of parallel evaluations. For each point in the figure, we observe
identical performance; however, the methods differ in memory usage due to different number of
parallel evaluation, leading to variations in wall clock time.

D.4 COMPARISON WITH (DAI ET AL., 2018)

(Dai et al., 2018) proposed a practical black-box attack (PBA), dividing it into PBA-C (with access
to logits - continuous) and PBA-D (access only to the labels - discrete). As stated in (Dai et al.,
2018), a genetic algorithm for global attacks requires PBA-C because it relies on logits, with the
fitness function being the negative log-likelihood. We demonstrate that EvA not only eliminates
the need for logits but also performs even better by directly optimizing for accuracy rather than
using log-likelihood. To compare our method with (Dai et al., 2018), we modified the algorithm’s
fitness function and mutation mechanism to replicate the results reported in (Dai et al., 2018). This
implementation retains scalability benefits, as it is also built upon our sparse encoded representation.
Note here we re-implement Dai et al. (2018) in our sparse and parallelized framework. Their
original implementation uses dense adjacency matrices and sequential evaluation and would achieve
a significantly worse result within the same memory/run-time constraint. Even with our efficient
re-implementation Dai et al. (2018) is significantly worse than ours. Table 14 provides the results
for the CoraML dataset using the GCN architecture. EvA also significantly outperforms (Dai et al.,
2018). Additionally, since our method is independent of gradients, we established the first attack
on conformal prediction and certification. For conformal prediction, we attack coverage and set
size where the latter criteria are not yet explored (to the best of our knowledge). Attacks tending to
decrease certificate effectiveness are also under-explored in GNNs. In this work, we aim to achieve
both attack on certified accuracy and certified ratio.

Attack Name Clean 0.01 0.02 0.05 0.1 0.15 0.2

(Dai et al., 2018) 81.07±2.07 78.50±1.66 76.66±2.22 72.53±1.91 68.75±1.45 65.34±1.20 63.27±2.47

EvA 81.07±2.07 74.80±1.50 68.97±1.58 52.95±1.91 41.99±2.06 37.65±2.74 35.37±2.38

Table 14: Accuracy results of different attack methods under varying ϵ values.

20

https://github.com/Hanjun-Dai/graph_adversarial_attack/tree/master

	Introduction
	Background and Related Work
	EvA: Evolutionary Attack
	Enhancing the Search
	Other Objectives
	Attacking Novel Objectives

	Empirical Results
	Conclusion
	Supplementary Experiments
	Experiments

	Technical Details of EvA
	Datasets and Models, and Hyperparameters
	Statistics of Datasets
	Details of models
	Hyperparameter setup
	Attack Hyperparameters

	Details on Novel Objectives
	Fitness Function
	Performance on Arxiv
	Time Analysis
	Comparison with rlattack

