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ABSTRACT

Although trust region policy optimization methods have achieved a lot of success
in cooperative multi-agent tasks, most of them face a non-stationarity problem
during the learning process. Recently, sequential trust region methods that up-
date policies agent-by-agent have shed light on alleviating the non-stationarity
problem. However, these methods are still less sample-efficient when compared
to their counterparts (i.e., PPO) in a single-agent setting. To narrow this effi-
ciency gap, we propose the Off-Policyness-aware Sequential Policy Optimization
(OPSPO) method, which explicitly manages the off-policyness that arises from
the sequential policy update process among multiple agents. We prove that our
OPSPO has the tightness of the monotonic improvement bound compared with
other trust region multi-agent learning methods. Finally, we demonstrate that our
OPSPO consistently outperforms strong baselines under challenging multi-agent
benchmarks, including StarCraftIl micromanagement tasks, Multi-agent MuJoCo,
and Google Research Football full game scenarios.

1 INTRODUCTION

Trust region learning (Kakade & Langford, 2002)), as a class of policy gradient methods (Sutton
et al.,|[1999; Silver et al.| 2014), have played an important role in recent advances in sinelg-agent re-
inforcement learning (Schulman et al.| |2015; Haarnoja et al.,2018]). Trust Region Policy Optimiza-
tion (TRPO) (Schulman et al.,2015) and its variant Proximal Policy Optimization (PPO) (Schulman
et al.l [2017) have been widely used in many fields (Mahmood et al., [2018} Baker et al., 2019;
Todorov et al.,2012) and achieved impressive experimental performance (Duan et al., 2016} Kurach
et al.| [2020). The effectiveness of trust region methods mainly stems from their theoretically guar-
anteed policy optimization process. Specifically, by restricting the policy optimization to a smaller
neighborhood of the current policy, trust region learning obtains a guarantee of monotonic perfor-
mance improvement at every iteration.

Recently, many works that adopt trust region learning to multi-agent reinforcement learning
(MARL) have been proposed, such as methods that use trust region learning to update each agent’s
policy independently (De Witt et al.| |2020; Yu et al.,[2022)), as well as methods that coordinate policy
updates between agents using trust region learning (Wu et al.,2021). However, these methods update
the agents simultaneously, that is, all agents perform policy optimization at the same time and can
not observe the change of other agents, which leads to the non-stationarity problem (Hernandez-Leal
et al., |2017) during training and hurts performance. To this end, recent works (Kuba et al., 2021}
‘Wang et al.,|2023) have proposed sequential trust region learning, which uses trust region learning to
sequentially execute agent-by-agent policy optimization. Sequential updates allow the later updated
agents to use changes made by preceding agents to optimize their own policies (Bertsekas, [2019)),
thus stabilizing training.

However, the joint monotonic bounds of these trust region learning methods in MARL, both for
simultaneous and sequential updates, are much looser than that of their counterpart (i.e., PPO) in
the single agent setting, which leads to sample inefficiency (Li et al.| 2022 [Wang et al., [2023).
In this paper, we take a step toward narrowing this gap. We propose the Off-Policyness-aware
Sequential Policy Optimization (OPSPO) method, which enjoys the tightness of the joint mono-
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tonic improvement bound compared with other trust region learning methods in MARL (see Tab. I]
and Theorem [2). Our key idea is to explicitly handle the off-policyness introduced by the sequen-
tial policy update process among multiple agents. Specifically, we start with a vanilla extension of
TRPO in MARL, and then significantly improve the joint monotonic improvement bound by per-
forming off-policy corrections on the state distribution and advantage estimation, respectively (see
Sec.[3.2). Moreover, we also propose clip range correction which corrects the clip range in clipping-
based surrogate objective according to the degree of off-policy (see Sec. [3.3), which further im-
proves the performance of our practical algorithm. We test our OPSPO on three popular cooperative
multi-agent benchmarks: StarCraftll (SMAC) (Samvelyan et al.,[2019), multi-agent MuJoCo (MA-
MuJoCo) (de Witt et al.| 2020), and Google Research Football (GRF) full game scenarios (Kurach
et al.l2020). On all benchmark tasks, our OPSPO consistently outperforms strong baselines with a
large margin in both performance and sample efficiency.

In summary, we make three contributions: (i) We propose a novel sequential trust region learning
method in MARL, which explicitly handles the off-policyness caused by the sequential policy update
process among multiple agents. We further prove that our method enjoys the tightness of the joint
monotonic improvement bound compared with other trust region learning methods in MARL; (ii)
We propose a practical clipping-based algorithm with clip-range off-policy correction that can fur-
ther improve performance; and (iii) Our method significantly outperforms the previous trust region
learning methods on three challenging multi-agent benchmarks, including SMAC, MA-MuJoCo,
and GRF.

The paper is organized as follows: Sec. [J] provides a background. Sec. [3]introduces the derivation
process of our OPSPO. Sec. 4] presents the experimental studies, and Sec. [5| reviews some related
works. Finally, Sec. [f]concludes the paper.

2 BACKGROUND

In this section, we first introduce the problem formulation and notations for MARL, and then briefly
review trust region learning in MARL.

2.1 MARL PROBLEM FORMULATION AND NOTATIONS

We consider formulating a cooperative multi-agent task as a decentralized Markov decision pro-
cess (DEC-MDP) (Bernstein et al. 2002). An n-agent DEC-MDP can be defined by a tuple
(S, AN, P, R,v), where N' = {1,...,n} is the set of agents. S is the state space. A =

Al x .-+ x A™ is the joint action, where A° is the action space of agent i. The transition func-
tion P : § x A" — A(S) maps the state s; and the joint action a; € A at time step ¢ to
a distribution over the next state s;;;. All agents receive a collective reward r, = R(s¢, a)

according to the reward function R : S x A — R. 7 € [0,1] is a discount factor. At
each time step ¢, each agent i takes individual action from its policy 7*(-|s;) according to the
state s;, forming the joint action a; = {a},---,a?}. All agent’s policy ¢ form a joint policy
7(-|s;) = 7! x .-+ x 7. The joint policy 7 induces a normalized discounted state visitation dis-
tribution d™(s) = (1 — ) Yooy v' Pr(sy = s|m), where Pr(-|w) : S — A(S) is the probability
function under a joint policy 7. We then define the value function:
V™ (s) = Eraem > V'7rels0 = s, (1
t=0
and the advantage function:
A’r<87 a) =Tt + ’y]ESlNIP(~|S,II) [Vﬂ(8/>] — Vﬂ(S), (2)

where 7 denotes one sampled trajectory. The agents’ objective is to find a optimal joint policy 7*
that can maximize their expected return, denoted as:

" = argmax, J () = argmax, B, (p x [Z vy, (3)
t=0
where J () is the performance of joint policy 7r. In this paper, we follow the standard centralized
training with decentralized execution paradigm (Rashid et al., 2018).
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Table 1: Comparing the joint monotonic improvement bounds of trust region MARL algorithms.
The proofs of the monotonic bounds can be found in Appendix [A.3]and [A.4] We sort these al-
gorithms by the tightness of their bounds. MAPPO has the loosest bound and our method has the
tightest bound.

Algorithm Update Scheme  Joint Monotonic Improvement Bound ({.)

MAPPO Simultaneous  4eY"" | o' la_i{

CoPPO Simultaneous ded i, ai(ﬁ - m)

HAPPO Sequential 4¢3, @' (75 — T )

A2PPO Sequential e, ai(ﬁ - 17“17%:}:1 aj)) + Z%{/&L
OPSPO (Ours)  Sequential e 377, o (rhs — o dor) + 20008 | 2 €

2.2 TRUST REGION PoOLICY OPTIMIZATION

Trust Region Methods in RL  As a popular trust region policy optimization method, Trust Region
Policy Optimization (TRPO) (Schulman et al.| 2015) were proposed in single-agent RL and has the
guarantee of monotonic performance improvement of 7 (7) at every iteration. If we define the
surrogate objective:

1
Loy (Tnew) = T (Tola) + EE(S)a)N(dWOId)ﬂ-neW) [Am,m(& a)]7 4)
and let @« = DR (Toid, Tnew) = maxs Dy (Wold(~|s), wnew(~\s)) where Dry is the total variation
distance, TRPO has the following policy monotonic improvement bound:

1 1

1—v 1—-79(1-a)
4y max, o |A™(s,a)| o
- (1—79)?
Eq. E] states that as the distance between the old policy 7o and a new policy 7y, decreases, the
surrogate objective L, (Tnew) becomes an increasingly accurate estimate of the actual performance
metric J (Tnew). This also implies that a tighter bound improves expected performance by opti-
mizing the surrogate objective more effectively (Li et al) [2022). Proximal Policy Optimization
(PPO) (Schulman et al.l |2017) uses a clipping-based surrogate objective to approximate TRPO,
which is defined as:

| T (Thew) — Loy (Thew)| < 4a HSHZX | AT (s, a)\(

)
5)

Tnew (a$)
mowa(a]s)

Tnew (@)

£CLIP
mowa(als)

oy (Tnew) = (g 0y~ (d ot moen) [min ( A" (s, a),clip( , 14 e) AT (s, a))}.

(6)

Trust Region Methods in MARL Next, we briefly review recent works that extend the trust
region method to the MARL setting. (Yu et al.,[2022) proposes Multi-Agent PPO (MAPPO) which
is a variant of PPO with centralized critics. (Wu et alJ |2021) proposes Coordinate PPO (CoPPO),
which obtains a tighter monotonic bound than MAPPO by considering the coordinated adaptation of
step size. As we mentioned earlier, a tighter bound means that CoPPO has theoretically better sample
efficiency than MAPPO (Li et al.| [2022; Wang et al., [2023). Heterogeneous PPO (HAPPO) (Kuba
et al., 2021) is the first work to combine the sequential update scheme with trust region methods.
Although HAPPO does not achieve a tighter bound than COPPO, it is more stable in training than
the simultaneous trust region policy optimization methods, such as MAPPO and CoPPO. Agent-by-
agent Policy Optimization (A2PO) (Wang et al., 2023) further improves the sample efficiency by
considering the update orders of agents.

However, compared with the monotonic bound of TRPO in the single-agent setting, the monotonic
bounds of above multi-agent trust region methods are still loose, which lead to sample inefficiency.
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In this paper, we narrow this gap by carefully handling the off-policyness caused by the sequential
policy update process among multiple agents. As shown in Tab.|I} our OPSPO obtains the tightest
joint monotonic bound compared to previous multi-agent trust region methods. Moreover, compared
to TRPO, our single agent monotonic bound (see Theorem [I)) only has two additional estimation
error terms, which can theoretically converge to zero under mild assumptions.

3 OFF-POLICYNESS-AWARE SEQUENTIAL POLICY OPTIMIZATION

We first give a native extension of TRPO in sequential updating in MARL in Sec. Then, we
propose a novel method that greatly improves the monotonic bound by carefully handling the off-
policyness of this TRPO’s native extension, in Sec.[3.2] Finally, we give a practical algorithm in

Sec.3.3

3.1 SEQUENTIAL TRUST REGION POLICY OPTIMIZATION

Sequential Policy Optimization in MARL We now have an old joint policy 7 and some data
collected by the old policy 7. Our goal is to get a new joint policy 7 updated from the old joint
policy 7 by using the collected data. The general policy optimization process can be defined as:

maxXyx G (7)

Update 7 ’

where G (7) is the joint surrogate objective of updating all agents. Without loss of generality, we
assume agents are updated in the order 1,2, --- ,n, and define 7* as the updated policy of agent i.
We denote the joint policy after updated agent 7 as ° = 7! x --- x @' x 7! x ... x 7", and define

#9 = 7 and #™ = 7. A general sequential policy optimization process can be defined as:

Lo max 1Ll (') max,nL .pn_1(&F") _
r=f0 — T LRl gl R LA = R,
Update 7t Update 7™

where Lzi-1(#') = J(&'"') + C(&",7) is the surrogate objective for agent 4, and G () =
J(m)+>"", C(&", ). The main difference between sequential policy optimization methods (such
as HAPPO and A2PO) lies in the specific design of C (7, ).

In this paper, we focus on how to design Lz:-1(#*) for each agent, so that the monotonic improve-
ment bound |J (%) — G»(7)| < B of the joint surrogate objective G (7) is more tighter. That
is to make the bound B as small as possible. A tighter bound improves expected performance by
optimizing the surrogate objective more effectively (L1 et al., [2022).

Moreover, we note that the following inequality holds:
T (®) = Gu(®)| = |T(&") = T (&) = Y_C(&" m)| < Y |T (&) = Lara (B, ()
i=1 i

which means that the tighter single-agent monotonic bound can lead to the tighter joint monotonic
bound. Based on this observation, we mainly discuss the single-agent monotonic bound in the
following sections.

Vanilla Sinlge-Agent Surrogate Objective If we natively extend the objective of TRPO (i.e.,
Eq.[) to the multi-agent sequential policy optimization, then a vanilla sinlge-agent surrogate objec-
tive LY}N, (&%) is obtained, which can be defined as:

LN (&) =@+ TE(S,Q)N(d",fri)[AW(& a)l. (®)

Similar to Eq.[5} we can give a single-agent policy monotonic improvement bound of the vanilla

surrogate objective LX‘?NI (#"), as elaborated in the following proposition.

Proposition 1. For agent i, let ¢! = max; q |A% 7 (5,a)], AT = maxs q |A% 7 (s,a) — A™(s,a)|,
o' = DI (nt 7), where Dry(p, q) is the total variation distance between distributions p and q
and we define Dp*(m,7) = max,Dyy(w(-|s), T(-|s)), then we have:

1
I-—7 1-9(1-a' =37 a))

T (&%) = LZE (7] < da’e(

Fi—1

)+ O
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For proof see Appendix Egg} Compared with the bound of TRPO (Eq.[5)), the bound of the vanilla
single-agent objective L%, (# ) (Eq is too looser because there are two extra terms (the blue
term and the orange term) The extra terms appear because we do not strictly follow TRPO’s sur-
rogate objective (Eq. #)to design LYAN, (#%) (Eq.[8). Specifically, we replace the normalized dis-

i 1
counted state visitation distribution d*' ' induced by w1 with the distribution d™ induced by 7,
and this substitution leads to the appearance of the blue term Z -1 ! . We also replace the advan-

tage estimation A% ( s,a) under #*~1 with the advantage estimation A™ (s, a) under 7, and this
substitution leads to the appearance of the orange term A®. These substitutions are due to the fact
that we do not have the data under the joint policy #*~!, only the data collected by the old joint
policy 7r. Overall, the off-policyness of vanilla objective LVAN (7*) leads to its looser monotonic
bound.

3.2 IMPROVING JOINT MONOTONIC BOUND BY OFF-POLICY CORRECTION

In this section, we introduce Off-Policyness-aware Sequential Policy Optimization (OPSPO), a
novel algorithm that greatly improves the single-agent monotonic bound by carefully handling the
off-policyness of TRPO’s native extension (i.e., Eq.[8). This tighter single-agent monotonic bound
naturally leads to a tighter joint monotonic bound, which is what we are looking for. To the best of
our knowledge, our OPSPO obtains by far the tightest joint bound compared to previous methods.

Our core idea is to perform off-policy corrections on the state distribution and advantage estimation,
respectively. A similar off-policy correction idea is also used to adjust the clip range of each agent
to stabilize training (Sec. [3.3).

Our Surrogate Objective Our single-agent surrogate objective EQ‘:‘ L (/) is defined as:

. i 1 i—
Lo (&) = J(#") + EE(Sﬂ)N(dmﬂFlﬁi)[A”’" "(s,a)], (10)

where d™™' " is an approximation of = using data collected by 7, and AT (s,a) is also an

approximation of A™ ' (s, a) using data collected by 7. Based on L, (&%), our joint surrogate
objective GOUr(7) is defined as:

1 & i1
Gat'(7) = T (m) + T Y Bt 4 AT (s, a)]. (11
=1

We first analysis the single-agent/joint monotonic bound of our Eg‘}il (#%), and then discuss the
details of these approximations.

Theorem 1 (Corrected Single-Agent Monotonic Bound). For agent i, let € =
max,q |47 (s,a)], € = max,q|A™*(s,a) = AT (s,@)], &7 = XA (s) -

d*i_l(s) , b = DIrex(nt 1Y), where Dry(p,q) is the total variation distance between distribu-
tions p and q and we define D¢ (,7) = max,Dyy(m(-|s), 7(:|s)), then we have:
|j(7¢ri)_£0m (»i)|<4ai€i( 1 o 1 )+ 1 ai5i£i+
e - 1—v 1—~(1-a?) 1—7 (12)
4fy€i ) 1 R
a'l al(s’l/é'l +
- T

For proof see Appendi Compared to the bound (Eq. @) of the vanilla objective LYY, (7%), al-
though the bound (Eq. 12) of our method also has two extra terms, it has better theoretical properties.
First, the first term in our bound is exactly the same as the first term of the original TRPO’s bound
(Eq. [5), which suggests that as long as the last two terms are small enough, our £, (#%) will get

Fi— 1
a very tight bound. Second, in our last two terms, &° i is the error of approximating d™ with d™ *171,
and £ is the error of approximating AT~ " with A™% 7" As the accuracy of these appr0x1mat10ns
improve, 6% and £ become smaller and even converge to zero. In contrast, the extra terms in Eq. .
do not go to zero. Third, our blue term is doubly robust, which is considered to be a good theoretical
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property (Dudik et al., 2011 Tang et al., 2020; Jiang & L1 2016). We can see that 1f A’T AT
exact(le ATFT = ) we have ¢ = 0; if d™® 1sexact(1e a7 = ) we have
5% = 0. Therefore, our blue term goes to zero, if either A™ " or d™*' " are exact. The blue
term is thus doubly robust in this sense. Fourth, as we show later, using advanced approximation

methods, both §7 and &% can theoretically go to zero.

Given the such tight single-agent bound, we can prove that our joint objective has the tightest mono-
tonic improvement bound compared to previous methods, as elaborated in the following theorem.
We present the joint monotonic bounds of other algorithms in Tab.

Theorem 2 (Corrected Joint Monotonic Bound). For each agent i € N, let € =
max, q |A® (s,a), € = max;e, & = max,q AT '(s,a) — AT (s,a)|, & =
Yo ld™ F () —d® T (s)], o = DM (i %), then we have:

. 1 Z?azézgz
T (/) — G2 ( |<4€Z (_7 7(1—041’))Jr =

15151
i QZ 27+

For proof see Appendlx As shown in Eq.|1 and Tab l since our first term (4e Y i, o( T 17

) is smallest compared to first terms of other methods, our method achieves the tightest

13)

=a=an) : ‘ ‘ ‘
joint monotonic bound if §* and £*, Vi € N are small enough. The assumption about §* and & is
valid, because both §* and £* can theoretically go to zero, when advanced approximation methods
are used.

Advantage Estimation Correction Recall that we can use temporal difference error to approxi-
mate an advantage function (Sutton & Barto, [2018). That is A% (s;,a;) ~ 1+ YV (s341) —

~i—1

V™ " (s¢). Thus, to approximate AT (s¢, a;) using data collected by r, we only need to use

V-trace operator (Espeholt et al., 2018) to approximate V7'~ (s). Given a trajectory (s, @k, T)i_,
collected by 7r, the V-trace target for our value approximation V'(s;1) can be defined as:

T—1 k
VIR (s0) = Vis) + 37 ([ ei) (e + 1V (se1) — Vi(s), (14)
k=t j=t

7 aylsy)
m(a;ls;)

where ¢; = Amin (1.0, ) and A is a hyper-parameter. Based on Eq. we can get

A™F 7 (5, ay) by: B

A’T’ﬁ- (St, at) =7+ ’YV(St+1) — V(St) (15)
Since V-trace operator (Espeholt et al.,|2018) has been proven to be a y-contraction mapping, the er-

ror between V*' " (s) and V (s) theoretically converges to zero when usmg the target Vi (s¢) to

update value function V. Obviously, ¢! = max; , |[A™ o ( s,a) — AT ( s, a)| also theoretically
goes to zero.

State Distribution Correction To approximate d*i_l(s) using data collected by 7, we use

BCH (Liu et al., [2018) to estimate stationary state density ratio w’~!(s) = a" (s)/d™(s). It has
been proved that w'~'(s) can be approximated by finding a function w over data which minimizes
max s L(w, f), defined as:

L(w, f) = 1B sa)min [02 (5,0, V()| + (1 =) Bonag | (1 = () £()] . (16)

i—1 3 . . . . . . .
where wa (s,a,s’) = (w(s’ ) — w(s)”ﬂT(‘?)b)), ¥ is an initial state distribution under 7r. Then

w(s) = w=Y(s) = d™ ' (s)/d(s) if and only if L(w, f) = 0 for any measurable test function f.
The above equation can be solved by the following min-max problem (Liu et al., 2018)):

2 2
min max YE s, mam 985,080 1()] (L= 1) B [0 - w() f(5)] . A
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where F is a test function space. Based on the above discussion, if we define d* L (s) by:

i—1

d™F (s) = w(s)d™(s), (18)
then it has been proven that max,|d™ ' (s) — d**' ' (s)| < maxjcrL(w, f) if the test function
space F is sufficiently rich (Liu et al., 2018). In other words, 5t theoretically will become small
enough when using Eq. [18]to learn w(s). Details of learning w(s) can be found in Appendix
and Alg.

3.3 THE FINAL ALGORITHM

In this section, we give a practical implementation for optimizing our joint surrogate objective
GOur (7). We first give the native implementation EN““"Q( %), and then give our improved imple-

mentation Eg‘},{l (7). We summarize our proposed Off-Policyness-aware Sequential Policy Opti-
mization (OPSPO) in Alg.

If we directly follow the implementation of original PPO (Eq. M) for our surrogate objective, we can
get a native implementation L3317 (#7):

E(S,Q)N(dw,ﬁi){min (rlrl Lwi=1(s )A’”" - clip(riri_l,l,h)wi_l(s)A"’*i1)}, (19)

where ' = 7'(a'|s) /' (a'|s), 7~ = &7 (als)/m(als). ] = 1 — & h = 1 +c and AT s
short for A"v*hl(s,a).

Clip Range Correction The main issue w1th the native implementation Eq. [19]is that due to
the off-policyness, the joint policy ratio 7i¢~! is likely to be less than [ = 1 — ¢ or greater than
h = 1+ ¢, which results in some data being unable to provide gradients due to the clipped operation.
To more fully utilize the data, we scale the base clip range (I, h) by a correction factor 7~ that
represents the degree of off-policy between 7~ and 7r. The corrected clip range is (I7i =1, hri~1).
Note that when r*~! = 1, then 7'~ = r, the corrected clip range reduces to the base clip range.
It is important to highlight that, although we scale the clip range, training with the corrected range
does not cause instability, as shown in the following theorem.

Theorem 3 (Stability of Corrected Clip Range). Let Hf, ., as the optimal policy set maxi-
mizing EN””Ve(ﬂi) with corrected clip range (Ir*~" hr'="), & . € II), denotes the optimal
Jjoint pollcy, which achieves the minimum KL divergence over all optimal joint policies, i.e.,

D (71 (¢|s¢), AL Uﬁc( Ist)) < Drr(771(-|s¢), 7 ()pl( |s¢)) for # 71'0,,, € Hopf at any timestep t, and
let 7! on have the similar definition for PPO with data collected by #=1 and clip range (1, h), we

have max; D (7°1(+|s¢), ﬁiﬁoﬂ(-\st)) = max; Dir (' (+[s¢), &L, (- s¢)) for all timestep t.

For proof see Appendix Theorem |3 tells us that the degree of the policy update distance in
LNaive (77) with the corrected clip range (1=, hr?~1) is the same as that in PPO with the base clip
range (I, h). In summary, although we scale the clip range, new joint policy #¢ will not be far from
the old one 7?1, so the training is stable.

Although we scale the base clip range (I, k) by a correction factor, the base clip range should not
be the same for each agent, because each agent faces a different degree of off-policy. Intuitively,
when the off-policy degree is large, we should use a smaller step size to update the agent, that is,
reduce the clip range. Therefore, we dynamically adjust the base clip range of each agent by letting
I = min [ max(r*~1,1/7"71)-(1—€1), 1—€2] and h* = max [min(r*~*,1/r""1)-(1+€1), 1 +e],
where €2 < €;. After adjustment, the maximum base clip range is (1 & €;), and the minimum base
clip range is (1 & €3).

To avoid gradient expansion caused by off-policyness when AmET! (s,a) < 0, we use the clipped
joint policy ratio 7'~ = clip (ri_l, 1—e€,1+ 61) (Wu et al., 2021). To stabilize training, we also
use clip operation on w®~!(s) (Amortila et al.,[2024), and use @'~ (s) = min[w~*(s), 1.0].
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Figure 1: Comparison of our method against baselines over 9 maps of SMAC with various difficul-
ties.

Finally, our practical clipping-based objective ﬁg‘i‘[l (#%) for updating agent i is defined as:
E (o,a)~(d= #1) {min (W«i-lwi—l(s)m»*“ (elip (7L 1 hifi—l)wi—l(s)A"’*”ﬂ :

(20)

Compared to the native implementation (Eq. [I9), our Eq. 20| introduce a corrected clip range, in-
cluding a correction factor and a dynamic base clip range, as well as some tricks for stabilizing
training.

4 EXPERIMENTS

In this section, we empirically evaluate and analyze our OPSPO in the widely-adopted cooperative
multi agent benchmarks, including the StarCraftIl Multi-agent Challenge (SMAC) (Samvelyan et al.}
2019), Multi-agent MuJoCo (MA-MuJoCo) (de Witt et al.l 2020), and Google Research Football
(GRF) full game scenarios (Kurach et al., [2020).

We compare A2PO with advanced MARL trust-region methods. We first consider MAPPO (Yu
et al., 2022) and CoPPO (Wu et al., 2021), which are popular simultaneous trust region learning
methods. Then, we consider HAPPO (Kuba et al., [2021) and A2PO (Wang et al. [2023)), which
are advanced sequential trust region learning methods. Full experimental details can be found in

Appendix [B]
4.1 RESULTS ON CHALLENGING MULTI-AGENT BENCHMARKS

We evaluate our OPSPO in 9 maps of SMAC with various difficulties, 6 scenarios in MA-MuJoCo,
and the 5-vs-5 full game scenarios in GRF. As shown in Fig. [I] Fig. 2] and Fig. ] our method
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Figure 2: Comparison of our method against baselines over 6 tasks in MA-MuJoCo with different
number of robot joints.
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Figure 3: Left: Comparison of our method against baselines in 5-vs-5 full game scenarios in Google
Research Football. Right: Ablation studies for each component in our method on both discrete and
continuous action space tasks.

consistently outperforms the strong baselines and achieves better performance and higher sample
efficiency in all benchmarks. These experimental results strongly support the theoretical analysis in
Sec.

StarCraftIl Multi-agent Challenge (SMAC) We first evaluate our method on cooperative tasks
with discrete action spaces. As shown in Fig. |I} thanks to the better theoretical foundation, i.e.
tighter policy monotonic improvement bound, and more flexible policy update step-size adjusted by
clip range correction, our method still shows higher sample efficiency even compared with the strong
baselines. In addition, our method consistently outperforms other baselines on all tasks, which show
the stability of our method.

Multi-agent MuJoCo environment (MA-MuJoCo) We then evaluate our method on more com-
plex robotic control multi-agent tasks with continuous action spaces. The experimental results are
reported in Fig. 2} As we can see, our method significantly improves the final performance on al-
most all tasks compared to the baselines. Moreover, we observe that as the complexity of the task
increases, our method generally shows increasing advantages over the baselines.

Google Research Football (GRF) We also evaluate our method in a full-game GRF scenario
with high-dimensional observations, complex action spaces, and long timescales, all of which pose
difficulties for agents to discover complex coordination behaviors. As shown in Fig. [3] (left), our
method outperforms other methods by a large margin, which once again proves the superiority of
our method with a stronger theoretical basis.
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4.2 ABLATIONS

This section studies how the experimental performance is affected by our proposed components,
such as advantage estimation correction (AEC), state distribution correction (SDC), and clip range
correction (CRC). We train agents with different components on a super hard task MMM2 in SMAC,
which has a discrete action space, and a complex robotic control task Humanoid-v2 in MA-
MuJoCo, which has a continuous action space. Results are reported in Fig. [3] (right). We make three
observations. First, ignoring any component hurts the task performance, which confirms the impor-
tance of making off-policy corrections in different aspects. Second, advantage estimation correction
brings a very significant performance improvement, which is consistent with our theoretical analysis
that it affects both of the last two terms in our monotonic bound (Eq. [I3). Third, although we scale
the clip range by clip range correction, it does not introduce instability in the training, which is also
consistent with the analysis in Sec. [3.3]

5 RELATED WORK

Trust Region Policy Optimization (Schulman et al.|2015)) and Proximal Policy Optimization (Schul-
man et al.,|2017) are popular trust region methods in the single-agent scenario, which have strong
performance mainly due to the guarantee of monotonic policy improvement (Kakade & Langford,
2002). In multi-agent scenarios, [De Witt et al.| (2020) and [Papoudakis et al.| (2020) empirically
study the performance of directly applying PPO to each agent in multi-agent tasks, and show the
inability of native extensions. Their work provides inspiration for subsequent research work. |Yu
et al|(2022) propose Multi-agent PPO by introducing shared critics and many stable training tech-
niques, and demonstrate strong performance on a large number of multi-agent tasks. Furthermore,
Wu et al.| (2021) propose Coordinated Proximal Policy Optimization by considering the value de-
composition (Sunehag et al.,|2017) and coordinated adaptation of step size during the policy update
process among agents, and prove the monotonic improvement guarantee. In addition, there are many
other works (Wen et al.|[2022;|Li & He}[2023;|Sun et al.||2022) that also discuss trust region methods
in MARL scenarios. However, these MARL algorithms suffer from non-stationarity issues due to
the simultaneous updating of agents. From the perspective of one agent, the environment dynamics
change because other agents also change their policies. As a result, the agent suffers from high
variance in gradients and requires more samples to converge (Hernandez-Leal et al., 2017). To this
end, sequential updating rather than simultaneous updating has received increasing attention from
researchers. Sequential update allows the later updated agents to use changes made by preceding
agents to optimize their own policies (Bertsekas, |2019), which makes the environment faced by later
agents more stable. |Kuba et al.|(2021) propose Heterogeneous PPO which combines the sequential
update scheme (Bertsekas, 2019) with trust region methods, and demonstrates experimentally and
theoretically the advantages offered by sequential updating. |Wang et al.| (2023)) further propose
Agent-by-agent Policy Optimization (A2PO) which systematically studies the impact of agent up-
date order on performance and improves the theoretical basis of previous work (Kuba et al.| [2021).

The most relevant work to ours is A2PO, which also improves TRPO under sequential policy op-
timization. A2PO mainly focuses on the impact of agent update order on policy optimization. In
contrast, our work is entirely from an off-policy perspective and achieves the tightest bound to date
by making off-policy corrections in three aspects: state distribution, advantage estimation, and clip
range.

6 CONCLUSION

In this paper, we focus on trust region learning in the sequential policy optimization for cooperative
multi-agent tasks. We introduce OPSPO, a sequential policy optimization method that explicitly
handles the off-policyness caused by the sequential policy update process among agents. We prove
that the joint monotonic bound achieved by our OPSPO is the tightest compared to existing trust
region MARL methods. Experiments in various benchmarks demonstrate that OPSPO consistently
outperforms several strong baselines in performance and sample efficiency in complex tasks. For
future work, we plan to continue along the key idea of off-policy correction to improve the broader
MARL methods.

10
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A  PROOFS

A.1 USEFUL LEMMAS

Lemma 1 (Multi-agent Policy Performance Difference Lemma). Given any joint policies 7 and T,
the difference between the performance of two joint policies can be expressed as:

1
J(x®) - J(m) = EE(s,a)rv(d*j)[A"(Sv a)l

where d™ = (1—7) Y72 7' Pr(s; = s|m) is the normalized discounted state visitation distribution.

Proof. A corollary of the Policy Performance Difference Lemma, see Lemma 1.16 (Agarwal et al.|
2019). ]

Definition 1. A coupling of two probability distributions 11 and v is a pair of random variables
(X,Y) such that the marginal distribution of X is p and the marginal distribution of Y is v. A
coupling (X,Y') satisfies the following constraints: Pr(X = z) = p(x) and Pr(Y =y) = v(y).
Proposition 2. For any coupling (X,Y) that Dpy (u,v) < Pr(X #Y).

Proposition 3. There exists a coupling (X,Y) that Dy (p,v) < Pr(X #£Y).

Corollary 1. For all s, there exists a coupling (7 (-|s), ®(-|s)), that Pr(a = @) > 1 — D" (w, ),
Jora~mx(|s),a~7m(|s)

Corollary 2. Forall s, D (w(+|s), ®(+|s)) < Yoi, Dry (7i(:|s), 7(-|s)).

Definition 2. If (7, 7) is an a-coupled policy pair, then (a, @|s) satisfies Pr(a # als) < « for all
s, and a ~ w(-|s),a ~ w(:|s).

From Corollaries [I] and [2] we know that given any joint policy pair 7 and 7, select «
Dipg*(m(+|s), w(-[s)), then (m,7) is an a-coupled policy pair that for all s, Pr(a # als)
Dipa= (w(-]s), ®(|s)) < Doi, o, where o' = DJa(x", 7).

Lemma 2. Given any joint policies w1, T3, and T3, if 1, 5 is a coupled policy pair, the following
inequality holds:

IN I

Eq,~m [Am (s, al)] — Eayom, [Aﬂg (s, a2)] < 2™ - Dyt (o, o) < 2™ Za;hﬂ'27
i=1

where ol . = D" (m1", wo') and €7 = max, o| A™ (s, a)].

13
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Proof.
[Eaimm, [A™ (5,01)] — Eaym, [A™ (5, a2)]

= |Pr(ar # a2]9)F ey ay)m, ) [A™ (5, @1) — A™ (5, 2)]

IN

Z airl,ﬂ'gE(al,GQ)N(‘l\'lyﬂé) [|A7r3 (57 al) — AT (57 a2)H

-
Il
-

IA
e

«
I
A

‘ - - 2max; o| A™ (s, a)|

O

Lemma 3. Given any joint policies 71, s, if w1, 72 is a coupled policy pair, the following in-
equality holds:

n

‘anm [AT2(s,a1)]| < 2™ - DIGE (71, w2) < 2€™2 Zammz,
i=1

Proof. By Lemma[2] the inequality clearly holds. O

Lemma 4. Given any joint policies w',w? and w3, if (w!,w?) and (w?, %) are coupled policy
pairs, the following inequality holds:

‘E(shat) (Pr~> m [A” ] [A” }
< 4™ DT (ml 72)(1 — (1 — Dpe (w2, 7))

where €™ = mowcs,a|A7r (s,a)| and we denote A(s, a) as A for brevity.

(5t ai)~(Pr™ 712)

Proof. Let n; represent the times a # @ (w2 disagrees with 7w%) before timestamp .

A - A

(st ,&t)N(Pr"S w2) [

[A™] -

‘E(st 7at)N(Pr"2 ,7v2) [

= Pr(n; >0) - ’E [Aﬂ.l]

(st,at)N(P'r""'z ,72)|ne >0 (at,at) (Pr""3 72)|ne>0

—
—

=(1-Pr(ne=0))-E
< (1- H Pr(ay = ap)|ap ~ ©(:|sp),an ~ 7 (-|sp)) - E

h=1

(%) (1- ﬁ(1 — Dy (w? 7)) - E
h=1

= (1 — (1 — Dpe= (w2 7r3))t) )

%) (1 o (1 7Dmax( 2Hﬂ_3)) ) 4. Dmaz(ﬂ_ 7|-2) ol

= 4™ Dmam( 2)( (1 _ Dmar(ﬁ 773))26)
In (1), we denote F = ‘IE(S a)~(d"2 72) e >0 [Aﬂl] = B ) (@ m2) e >0 [Anl} ‘ (2) follows the
definition of a-coupled policy pair. (3) follows the Lemma
O

Lemma 5. Given any joint policies w1, T2, T3, and Ty, if 71,7y is a coupled policy pair, the
following inequality holds:

1,702

Ea,om [A™(8,a1)] — Eggymom, [A™ (s, ag)]‘ < €M DIV (1, Tg) < €737 Za
i=1
where ol . = DG (1", w5 ) and €75 ™ = max o| AT (s, @) — A™ (s, a)l.
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Proof.
[Eaimm, [A™ (5,01)] — Eaym, [A™ (5, a2)]

= |Pr(ar # a2(8)E(a, as)~ (1,70 [A™ (5, @1) = A™ (5, @2))]

IN

Z airl,ﬂ'gE(al,GQ)N(‘l\'lyﬂé) [|A7r3 (57 al) —A™ (57 a2)H

@
Il
-

IN
ﬂg“'

«
I
A

Lo maXSya|Aﬂ-3 (87 a) —A™ (57 a)'

O
Lemma 6. Given any joint policies 1, T2, T3, T4, 5 and g, if 71, W is a coupled policy pair,
the following inequality holds:

‘E(s,anwd“s—dﬂsm)[A"3 (8, 81)]=E(s,a)~ (ams —ams ., )[A™ (s, az)]‘ < TGS N Al o
=1
where 67576 =" |d™(s) — d™¢(s)].

Proof.

E(s,a1)~(dms —d=e,m) [A™ (5, @1)] = E(s az)~(ams —dame,m )[A™ (s, az)]’
S [d75(s) — d™ ()] By, [A™ (5, 01)] = 3 [ (5) — 4™ (5)] Eayomy [A™ (s, @)

S

= [ (a7 (s) = d7()] [Bayoms [A™ (5, 01)] ~ Bayroms [A™ (5, 02)]|

< Z |47 (5) = a7 (5) | [ By, [47 (5, @1)] — Eayoms [A™ (5, 02)]
= 6"3’”4204,,1,7,2 Z a7 (5) — d™(s)

_ T3,y  ST5,T6 i
=€ g aﬂ'lﬂfz

i=1
where (1) follows Lemma [3] O

A.2 PROOFS OF VANILLA SURROGATE OBJECTIVE

Recall that £X‘§§1 (fl‘l) = j('fl’z_l) + ﬁE(S7a)N(d7r7ﬁ-i) [A"(s, a)]

Proof.
~ i 1 ™
|T (7)) = T (&) - mm(s,a)N(d",fri)[A (s,a)]l
1 7‘_7571 P
< T Bwmart 4 (A7 (5 )) ~ Byt 2947 (5,0)]|
1 i—1 i1
< m ‘E(S@)N(dﬁi ) [Aﬂ. (S» a)] - E(s,a)w(d‘",ﬁ'i) [Aﬂ. (S, a)]’
1 i—1
+ f ‘E(S,Q)N(dwﬂ’-‘ri) [Aﬂ (87 a)] - E(s7a),\,(d7r7ﬁ-i) [Aﬂ- (8, a)]‘
< 4a'e (1 -(1- o)) + 7AZ
DR S
o 1 1 .
< 40(261( ) + A’

1—7_1—7(1—ai—Z; Loy 1y
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where (1) follows LemmaEL €= = max, o |AT |, AT = max, o AT — A7, of =
Wgio1 i = DN (', 7), where Drv(p, q) is the total variation distance between distributions p

and ¢ and we define DI (7, 7) = max,Dry (7(-]s), 7(-]s)). O

A.3 PROOFS OF MONOTONIC PoLICY IMPROVEMENT OF OUR OPSPO

Theorem 1 (Corrected Single-Agent Monotonic Bound). For agent i, let € =

& = max,q|A™" (s,a) — AT (s,0)| 81 = 2| (s) -
dF 1( )|, o = Diex(nt, 1Y), where Dry(p,q) is the total variation distance between distribu-
tions p and q and we define D¢ (m,7) = max,Dyy(m(-|s), 7(:|s)), then we have:

max, q \A"A"Fl (s,a)l,

. . 1
T — £33 < da'el (1=

)

—¢

1 1 o
+ alélé—l_"_
ol 1

. Y ) _
7 1 3(1 at) 1 o
< W(al) + T— 1+ 75

Proof. Recall that £, (7%) = J (71 1) + ﬁ]E(S @)~ (dmmi=l i) [A™™ " (s, a)].

Fi—1

i i ~i—1
‘«7(7"2) - J& - fE(s,a)N(dmfr“l,fri) (AT ]

S %’]E ‘7 ~ A.7 [A*I 1] E i it [Aﬁl 1]

(s,a)~(dF* ™1 71

~i—1

4‘7y‘IE(s,a)N(dﬁrl'*l7*r)[‘47r ] IE(s,a)N(dlw-fri*l,frz‘)[A7r’7r ]

1 ~i—1 Fi—1
T Bamart w47 = B a9 (47

~i—1 ~i—1 T ~1—1
+ 7‘1]5(s,a)~(d7‘ri*1 ) [Aﬂ ] _lE(s,a)N(dfri*l,fri)[‘47”r } _E(s,a)N(dw‘rH—d*“l,ﬁi)[A . ]

I—»
1 ﬁ_i*l ﬁ_L 1
< E’E(s,a)w(d*i,fri) [A ] - E(s,a)N(d*H #i) [A ]
1
Tz 5 ‘E(s,a)N(d*ifl,fri)
1 P
+ ﬁ‘ B, gy oamni-t_grict i) [ATT ]
(1) 1 Fim1 i1
< ﬁ’E(s,a)qd*",ﬁi)[A ] - E(s,a)w(d*i_l,f‘r")[A ]
]. ﬁ_i—l
+ T—5 E(y a)m(arit 40 [4

1 Fi-1
+ 7/}/ E(S’G)N(dw,v’il_l7d7‘r7"_1’7?ri—1) [A

(A7) - [Am*]

(s,@)~(dF* 71 i)

|- E 4™

(Sva)'\‘(d*i_lvﬁ'i)
~1—1
] _E(s,a)w(d"v*i_lfd*i_l,7‘\'77)[Aﬂ)ﬂ- ]

@ . /1 1 1 . 1 .
<4Z Z( _ ) 3 257,7/
= ned 1—v 1—~(1-a? +1—7£+1—70 ¢

~i—1

(1) uses B, aym(dm il _gri=t zio1) [A%] =0. (2) uses Lemmaand Lemma@ O

Theorem 2 (Corrected Joint Monotonic Bound). For each agent i € N, let ¢ =
€ = max;e, & = max,,|A™F (s,a) — A% (s,a)|, O

maxs q \A*%l (s,a)l,
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~i—1

S d™F T () — dF(s)], of = Dipex(xt, 71, then we have:

Our <4 ot _ 0 i=1
19(m) - G2() < 43 (1 tsa—ay) P Ty -
dye N~ a2, e Y€
< K3 1= .
S (- >2;(“) B T
Proof. Recall that GQ(7) = T (7) + 12 YL, By, o igmmimt 20 [A™™ (s,@)].
_ 1 ¢ il
T = T() = 1= DB ayanas oy [A7F]
i=1
An An— = = 1 - &
< ‘j(ﬂ ) =T @& ) 4+ T (R = T(7°) - SZE(S@MM*H,M [Am7 ]
=1
n 1 S i1
~1 ~1—1 X T, 7T
< ; ‘j(ﬂ' )= J( ) — 1—5 (s,@)~(dm 1 i) [A ]
§46 al( 1 _ 1 ')_"_21:15 +Zla E
—~ -7 1-1901-4a)) 1—~ 1—v
O

A.4 MONOTONIC PoLICY IMPROVEMENT OF MAPPO, CoPPO, HAPPO AND A2PO

We use the formats of the monotonic bounds of MAPPO, CoPPO, HAPPO and A2PO given
in (Wang et al., 2023).

A.5 PROOFS OF STABILITY OF CORRECTED CLIP RANGE

Recall that £330 (77):

E(s,a)~(d 7% | Min (rzrl Lyi=l(5)A™"" clip(ririfl,l, h)wi1(5)14’“*1'1”7 (23)
where 7* = 7*(a’|s) /7" (a’|s), 7 = &' Hals)/mw(als),l =1 — € h=1+¢ and AR g
short for A™ %"~ (s,a).

If we use corrected clip range (Ir*~!, hri~1), then we have L, (/7):

E(S’a)w(dwﬁi){min <rl'rl Lwi=1(s )A’”r o clip(ririfl,lrifl,hri*)wi*l(s)A"’ﬁ

(24
we denote TI},, as the optimal policy set maximizing £24", (7") (Eq. .
Lemma 7. 1II, = {#&‘| for all state and action pair (s,a) that AmAETE

0,7 (als) < (a| Vri=1; for all state and action pair (s,a) that A™F ' > 0,#(a|s) >
min (7w(als)hr'™+,1)}.

Proof. Firstly, we prove that a policy wopt meeting the conditions in IT¢ opt 18 the optimal solution
maximizing the objective in L, (7*).

17
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Given any (s, a), if AT (s a) < 0,L£9, (&, s,a) could be written as:

) Ipi—1,i—1 Aw,fri*1 ipi—1 < [pi-1
Lo (#is,a) =4 Y (5)A™? (s,@), rirtT < (25)
" rirt o) AT (s,a), rirttl > ptt
Eg?r 1(Aopt,s a) falls in the first case, because 7 ropt meeting the condition in IT? opt Satisfies ;"(‘((:IZS) <
Iri=1 when A™*' 1(s,a) < 0.
Thus, if A™%" ' (s,a) < 0, thenlQ¥ , (7%, 5,a) < LY, (7 oo 5, @) for any 7.
Given any (s, a), if A™% ' (s,a) > 0, L9, (7, s, a) could be written as:
=101 Aﬂ,ﬁi_l ipi=l > ppi—l
E?rlflrl(ﬁ-l s a) T I 1( ) Ai_1(s’a)’ 7“‘7" ) = 7" ) (26)
ripi= (s)A™™ (s,a), r'r*Tt < hr'T

£ (7 f,pt, a) also falls in the first case, because 7

A1 meeting the condition in Hf,Pt satisfies
> hri=! when A™%' ' (s,a) > 0.

opt
Ao (@ls)
w(als)

Thus, if A™% (s,a) > 0,thenfQ, (7', s,a) < LY, (&L, s, a) for any 7.

Based on such fact, we have proven that a policy 7’

meeting the conditions in IT¢ opt 18 the optimal
solution.

opt
Secondly, we prove that a policy 71'0 not meeting conditions in IT¢ opt 18 not the optimal solution of
maximizing the objective in Eq. [24] In order to prove this, we construct a policy ﬂ'(;p[ satisfying
conditions in TT},. Then, £ 1(71’0, s,a) < LN, (fly, s, a) for any state and action pair (s, a).

Based on such fact, we have proven that a policy not meeting the conditions in IT? ot 18 not the optimal
solution of maximizing the objective in Eq. 24}

Finally, combining the above results, we prove that II¢

opt
optimal solutions of maximizing Eq. 24}

described in Lemma |7| contains all the

O

Theorem 3 (Stability of Corrected Clip Range). Let Hf,pt as the optimal policy set maxi-

mizing L, (7Y), & oo € IT.,, denotes the optimal joint policy, which achieves the min-

imum KL divergence over all optimal joint policies, i.e., Dg (77 (-|ss), 7 Aioﬁ(-|st)) <

Fi—1

D (7" (c|se), ®pi(|50)) for &L, € I, at any timestep t, and let #.,, have the
similar definition for PPO with data collected by #«'~' and clip range (l,h), we have

max; Diz (71 (+|s¢), 7L (:151)) = maxy D (7 (-|s¢), &L ,,(¢|50)) for all timestep t.

Proof. we denote Dy (7 (- |51), 7L o[ 5¢)) as Dy (771 7L o) and
D (R se), ®E on(lse)) as Dy (&1 fri,on). In the proof, we need to prove that

Dgt (1 7L o) = DE ¢ (&1 &L ) for any timestep ¢. Specifically, we prove this in two

cases: A"7’A"i71(st, a;) <0and A% (s, a;) > 0.

If A=® " (s¢, at) < 0, the optimal policy ﬁi’off can be derived by solving the following constraint
optimization problem according to Lemma 7}

7'~ (alst)

mmZﬂ' (alst) log F(als))

st wl(agls) < IriT i (ag|sy),

#'(als;) > 0, (27)
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where a; denotes the action at timestep ¢. By using the Karush-Kuhn-Tucker conditions (Gordon &
Tibshirani, 2012), we get:

7?171(a\st)(lf‘rr(at\st)lTi’I)
L or(@lse) = 1-~ (alse) , afa (28)
’ 7 (ay|sy)lrit, a=a;

The corresponding KL divergence is:

st (mi—l ai 1 —#""Y(als:) i
DKL(ﬂ- 1 Ty off) (1 — & (a|5t)) 10g 1— ﬁifl(a\st) iy -7 1(a|8t) IOg (l) (29)

For Dyt (=1 &t .on)> We can directly applying Eq. (26) of appendix in (Wang et al.,|2019) in our
setting. Then we can get Dgf (7°~', &% ) equals Dt (&1, 4L ), when A™F " (s, a,) < 0.

If A77 (st, at) > 0, the optimal policy ﬁi@ff can be derived by solving the following constraint
optimization problem according to Lemma 7}

7'~ !(alsy)

manﬂ' (als:) log F(alsy)

s.t. w'(ag|ss) > min (hr' "t (ayse), 1),

Y #(als) = 1,

7A"i(a|5t) > 0, 30)
By using the KKT conditions, we get:
i & (as)(1—min (hr'~ ' mw(as]s:),1))
wloplals) =4 Tow al ., ata 31)
. min (b7 (ays,), 1), a=a

When A% (54, a;) > 0 and hr'~L7r(ay|s;) < 1, the KL divergence is:

D (1 o) = (1 — % (a]s,)) log = ) _ ziciqioyiog (). (32)
KL 7o 1—#i"1(alsy) - h

For D¢t (7%, 7! on) we can directly applying Eq. (28) of appendix in (Wang et al 2019) in our
setting. Then we can get D} (7471, /¢ Off) equals Dg (&1, &L ), when A™ 7 (s, a0) > 0
and hri~lm(asls;) < 1. when A™% '(s;,a;) > 0 and hr'~'m(as|s;) > 1, we have
Daz (*z 1 Ai,of‘f) = 400 = DisgL(ﬁ.zfljﬁ.z

*,0n/"

Combining above results on two cases (A™F (s, a;) < 0 and A™%" (s, a;) > 0.), we have

proven Dgi (771, &L ) = Dst L (&R, &L ,) for any timestep ¢. Based on such fact, we can
conclude that max; DKL(TKJ_ 7L o) = max; Dy (R /L ). O

B EXPERIMENTAL DETAILS

B.1 PSEuUDO CODE

The pseudo code for our OPSPO is given in Alg.[I] The pseudo code for learning state density ratio
wi(s) is given in Alg.[2

B.2 IMPLEMENTATION OF STATE DISTRIBUTION CORRECTION
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Algorithm 1: Off-Policyness-aware Sequential Policy Optimization (OPSPO)

Initial the joint policy 7o = {n¢,..., 7} }, and the global value function V.
for iteration m = 1,2, ... do
Collect data using 7,1 = {7}, _{,..., 7% }.
for Orderi=1,...,ndo
Joint policy % = {ng, ..., @b 7wt oown )

Compute state density ratio w’~! via Alg.
Compute the advantage estimation as A™*' ' (s, a) via Eq.

Compute the value target VT:;;: o (s¢) via Eq.

Compute the clip range (I'ri=1, hiri=t),
for P epochs do }
mi = argmax,; LM, (#*) asin Eq.[20
(L (A1) as in Bq
V = argminy Eggr ||[Vir  (s) — V(s)|*

Target

Algorithm 2: Optimization of state density ratio w'(s)

Input: Transition data D from w,, behavior joint policies, 7x_., 41, - , T; a target policy
fr}c Discount factor v € (0, 1), starting state Dy from initial distribution, 7' = we, K = fe,
1 k
Tmix = - Zj:k—wn-l,-l mi(als). )
Initial the density ratio w(s) = wyi(s) to be a neural network parameterized by 6,
f(s) = fyi(s) to be a neural network parameterized by "

Wi (s, a,s’) = (w(s’) —w(s) :m’ix(gfs)))
for iteration 1,2,...,T do

Randomly choose a batch M uniformly from the transition data D and a batch M,
uniformly from start states Dy.

for iteration = 1,2,..., K do
Update the parameter ¢ by 1" < 9" + €, V i L(wgi, fyi ), Where
7 1 mix 1
Llwys, foi) =70 D>, wR(s,a,8) f(s))—(1—) > (1-w(9)) f(s)
M| , Mol
(s,a,s")EM sEMo

| Update the parameter 67 by 07 < 67 — €4: Vs L(wpr, fyi).

Output: the density ratio w’ = wp:.

For the training of state density ratio w’(s), we adapt the algorithm 2 in (Tang et al., [2020) to per-
form minimax optimization to train a neural network parameterized w’(s; #*) and a neural network
parameterized test function f?(s;1*%). Moreover, to alleviate the partial coverage issue and bet-
ter predict wi(s), we use a multi-behavior policies version (Chen et al.,|2019) of BCH. Compared
with the original BCH, this variant allows us to use data collected by previous w,, policies, i.e.,
Th—w,+1," ' » Tk. The corresponding min-max problem formation is:

. 2 2
min max VB, a0, (@8 (50807 ()] "+ (1= ) Bavag, , [(L-w() f(0)] . 33)

where Ty = wi Z?Zkﬂ)nﬂ mj(als), 7 is the lastest behavior policy, wy, is the number of
behavior policies, d7, is state distribution under 7ryix, WR* (s, @, s') = (w(s’) —w(s) :n(ﬁlllsg) ) ,dl

is an initial state distribution under 7r,ix. A detail description can be found in Alg.

Following the suggestion of previous work (Wang et al.,2023)), we adopt a parameter sharing setting
in SMAC. This makes the sequential updating corrupted, making it very difficult to learn the exact
state density ratio w*(s) by solving Eq. To this end, we use step-wise weighted importance
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sampling to approximate w'~'(s;). Given m observed trajectories 77, for the j-th trajectory
i—1 Lyt # T Nakls
we define w; (st) = 7 T #

w(anlss) (ak, Sk) ~ Tj, where Zt = Z;ﬂzl wifl(st).

J

B.3 HYPER-PARAMETERS

We list the hyper-parameters used for each task of SMAC in Tab[2] Other parameters use the default
settings in A2PO (Wang et al., [2023)).

Table 2: Hyper-parameters in SMAC.

Tasks ppo epoch ¥ €1 €2
8m vs 9m 15 095 0.2 0.05
Sm vs 6m 10 093 0.1 0.05
3s5z 10 095 0.2 0.05
10m vs 11m 10 095 0.2 0.05
MMM?2 10 095 0.2 0.05
355z vs 3s6z 8 090 0.2 0.1
27m vs 30m 8 095 0.2 0.05
6h vs 8z 8 095 02 0.1
corridor 8 095 02 0.1

For MA-MuJoCo, the output from the last layer is processed by a Tanh layer and the action dis-
tribution is modeled as a Gaussian distribution initialized with mean as 0 and log std as -0.5. The
probability output of different actions are averaged when computing the policy ratio. We list the
hyper-parameters used for each task of MA-MuJoCo in Tab[3] The parameters not mentioned are
consistent with A2PO.

Table 3: Hyper-parameters in MA-MuJoCo.

Tasks ppo epoch 0 €1 €2 We fe wn
Ant-v2 8x1 8 093 02 0.1 10 5 20
Walker2d-v2 6x1 8 093 02 0.1 10 5 20
Hopper-v2 3x1 8 095 0.1 005 10 5 20
HalfCheetah-v2 6x1 8 093 02 0.1 10 5 20
Humanoid-v2 9|8 8 090 02 005 10 5 20
HumanoidStandup-v2 98 8 093 02 005 10 5 20

For GRF, We list the hyper-parameters used in the 5-vs-5 scenario in Tab. 4 The parameters not
mentioned are consistent with A2PO.

Table 4: Hyper-parameters in GRF.

Hyperparameters  Values

ppo epoch 15
0 0.95
€1 0.2
€2 0.1
We 5
Wy 5
Wn 10
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