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ABSTRACT

Although trust region policy optimization methods have achieved a lot of success
in cooperative multi-agent tasks, most of them face a non-stationarity problem
during the learning process. Recently, sequential trust region methods that up-
date policies agent-by-agent have shed light on alleviating the non-stationarity
problem. However, these methods are still less sample-efficient when compared
to their counterparts (i.e., PPO) in a single-agent setting. To narrow this effi-
ciency gap, we propose the Off-Policyness-aware Sequential Policy Optimization
(OPSPO) method, which explicitly manages the off-policyness that arises from
the sequential policy update process among multiple agents. We prove that our
OPSPO has the tightness of the monotonic improvement bound compared with
other trust region multi-agent learning methods. Finally, we demonstrate that our
OPSPO consistently outperforms strong baselines under challenging multi-agent
benchmarks, including StarCraftII micromanagement tasks, Multi-agent MuJoCo,
and Google Research Football full game scenarios.

1 INTRODUCTION

Trust region learning (Kakade & Langford, 2002), as a class of policy gradient methods (Sutton
et al., 1999; Silver et al., 2014), have played an important role in recent advances in sinelg-agent re-
inforcement learning (Schulman et al., 2015; Haarnoja et al., 2018). Trust Region Policy Optimiza-
tion (TRPO) (Schulman et al., 2015) and its variant Proximal Policy Optimization (PPO) (Schulman
et al., 2017) have been widely used in many fields (Mahmood et al., 2018; Baker et al., 2019;
Todorov et al., 2012) and achieved impressive experimental performance (Duan et al., 2016; Kurach
et al., 2020). The effectiveness of trust region methods mainly stems from their theoretically guar-
anteed policy optimization process. Specifically, by restricting the policy optimization to a smaller
neighborhood of the current policy, trust region learning obtains a guarantee of monotonic perfor-
mance improvement at every iteration.

Recently, many works that adopt trust region learning to multi-agent reinforcement learning
(MARL) have been proposed, such as methods that use trust region learning to update each agent’s
policy independently (De Witt et al., 2020; Yu et al., 2022), as well as methods that coordinate policy
updates between agents using trust region learning (Wu et al., 2021). However, these methods update
the agents simultaneously, that is, all agents perform policy optimization at the same time and can
not observe the change of other agents, which leads to the non-stationarity problem (Hernandez-Leal
et al., 2017) during training and hurts performance. To this end, recent works (Kuba et al., 2021;
Wang et al., 2023) have proposed sequential trust region learning, which uses trust region learning to
sequentially execute agent-by-agent policy optimization. Sequential updates allow the later updated
agents to use changes made by preceding agents to optimize their own policies (Bertsekas, 2019),
thus stabilizing training.

However, the joint monotonic bounds of these trust region learning methods in MARL, both for
simultaneous and sequential updates, are much looser than that of their counterpart (i.e., PPO) in
the single agent setting, which leads to sample inefficiency (Li et al., 2022; Wang et al., 2023).
In this paper, we take a step toward narrowing this gap. We propose the Off-Policyness-aware
Sequential Policy Optimization (OPSPO) method, which enjoys the tightness of the joint mono-
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tonic improvement bound compared with other trust region learning methods in MARL (see Tab. 1
and Theorem 2). Our key idea is to explicitly handle the off-policyness introduced by the sequen-
tial policy update process among multiple agents. Specifically, we start with a vanilla extension of
TRPO in MARL, and then significantly improve the joint monotonic improvement bound by per-
forming off-policy corrections on the state distribution and advantage estimation, respectively (see
Sec. 3.2). Moreover, we also propose clip range correction which corrects the clip range in clipping-
based surrogate objective according to the degree of off-policy (see Sec. 3.3), which further im-
proves the performance of our practical algorithm. We test our OPSPO on three popular cooperative
multi-agent benchmarks: StarCraftII (SMAC) (Samvelyan et al., 2019), multi-agent MuJoCo (MA-
MuJoCo) (de Witt et al., 2020), and Google Research Football (GRF) full game scenarios (Kurach
et al., 2020). On all benchmark tasks, our OPSPO consistently outperforms strong baselines with a
large margin in both performance and sample efficiency.

In summary, we make three contributions: (i) We propose a novel sequential trust region learning
method in MARL, which explicitly handles the off-policyness caused by the sequential policy update
process among multiple agents. We further prove that our method enjoys the tightness of the joint
monotonic improvement bound compared with other trust region learning methods in MARL; (ii)
We propose a practical clipping-based algorithm with clip-range off-policy correction that can fur-
ther improve performance; and (iii) Our method significantly outperforms the previous trust region
learning methods on three challenging multi-agent benchmarks, including SMAC, MA-MuJoCo,
and GRF.

The paper is organized as follows: Sec. 2 provides a background. Sec. 3 introduces the derivation
process of our OPSPO. Sec. 4 presents the experimental studies, and Sec. 5 reviews some related
works. Finally, Sec. 6 concludes the paper.

2 BACKGROUND

In this section, we first introduce the problem formulation and notations for MARL, and then briefly
review trust region learning in MARL.

2.1 MARL PROBLEM FORMULATION AND NOTATIONS

We consider formulating a cooperative multi-agent task as a decentralized Markov decision pro-
cess (DEC-MDP) (Bernstein et al., 2002). An n-agent DEC-MDP can be defined by a tuple
(S,A,N ,P,R, γ), where N = {1, . . . , n} is the set of agents. S is the state space. A =
A1 × · · · × An is the joint action, where Ai is the action space of agent i. The transition func-
tion P : S × An → ∆(S) maps the state st and the joint action at ∈ A at time step t to
a distribution over the next state st+1. All agents receive a collective reward rt = R(st,at)
according to the reward function R : S × A → R. γ ∈ [0, 1] is a discount factor. At
each time step t, each agent i takes individual action from its policy πi(·|st) according to the
state st, forming the joint action at = {a1

t , · · · , ant }. All agent’s policy πi form a joint policy
π(·|st) = π1 × · · · × πn. The joint policy π induces a normalized discounted state visitation dis-
tribution dπ(s) = (1 − γ)

∑∞
t=0 γ

tPr(st = s|π), where Pr(·|π) : S → ∆(S) is the probability
function under a joint policy π. We then define the value function:

V π(s) = Eτ∼(P,π)[

∞∑
t=0

γtrt|s0 = s], (1)

and the advantage function:

Aπ(s,a) = rt + γEs′∼P(·|s,a)[V
π(s′)]− V π(s), (2)

where τ denotes one sampled trajectory. The agents’ objective is to find a optimal joint policy π∗
that can maximize their expected return, denoted as:

π∗ = arg maxπJ (π) = arg maxπEτ∼(P,π)

[ ∞∑
t=0

γtrt
]
, (3)

where J (π) is the performance of joint policy π. In this paper, we follow the standard centralized
training with decentralized execution paradigm (Rashid et al., 2018).
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Table 1: Comparing the joint monotonic improvement bounds of trust region MARL algorithms.
The proofs of the monotonic bounds can be found in Appendix A.3 and A.4. We sort these al-
gorithms by the tightness of their bounds. MAPPO has the loosest bound and our method has the
tightest bound.

Algorithm Update Scheme Joint Monotonic Improvement Bound (↓)

MAPPO Simultaneous 4ε
∑n
i=1 α

i αi

1−γ

CoPPO Simultaneous 4ε
∑n
i=1 α

i( 1
1−γ −

1
1−γ(1−

∑n
j=1 α

j)
)

HAPPO Sequential 4ε
∑n
i=1 α

i( 1
1−γ −

1
1−γ(1−

∑n
j=1 α

j)
)

A2PPO Sequential 4ε
∑n
i=1 α

i( 1
1−γ −

1
1−γ(1−

∑i
j=1 α

j)
) +

∑n
i=1 ξ

i

1−γ

OPSPO (Ours) Sequential 4ε
∑n
i=1 α

i( 1
1−γ −

1
1−γ(1−αi) ) +

∑n
i α

iδiξi

1−γ +
∑n
i=1 ξ

i

1−γ

2.2 TRUST REGION POLICY OPTIMIZATION

Trust Region Methods in RL As a popular trust region policy optimization method, Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015) were proposed in single-agent RL and has the
guarantee of monotonic performance improvement of J (π) at every iteration. If we define the
surrogate objective:

Lπold(πnew) = J (πold) +
1

1− γ
E(s,a)∼(dπold ,πnew)[A

πold(s, a)], (4)

and let α = Dmax
TV (πold, πnew) = maxsDTV

(
πold(·|s), πnew(·|s)

)
where DTV is the total variation

distance, TRPO has the following policy monotonic improvement bound:

|J (πnew)− Lπold(πnew)| ≤ 4αmax
s,a
|Aπold(s, a)|

( 1

1− γ
− 1

1− γ(1− α)

)
≤ 4γmaxs,a |Aπold(s, a)|

(1− γ)2
α2.

(5)

Eq. 5 states that as the distance between the old policy πold and a new policy πnew decreases, the
surrogate objective Lπold(πnew) becomes an increasingly accurate estimate of the actual performance
metric J (πnew). This also implies that a tighter bound improves expected performance by opti-
mizing the surrogate objective more effectively (Li et al., 2022). Proximal Policy Optimization
(PPO) (Schulman et al., 2017) uses a clipping-based surrogate objective to approximate TRPO,
which is defined as:

LCLIP
πold

(πnew) = E(s,a)∼(dπold ,πnew)

[
min

(πnew(a|s)
πold(a|s)

Aπold(s, a), clip(
πnew(a|s)
πold(a|s)

, 1± ε)Aπold(s, a)
)]
.

(6)

Trust Region Methods in MARL Next, we briefly review recent works that extend the trust
region method to the MARL setting. (Yu et al., 2022) proposes Multi-Agent PPO (MAPPO) which
is a variant of PPO with centralized critics. (Wu et al., 2021) proposes Coordinate PPO (CoPPO),
which obtains a tighter monotonic bound than MAPPO by considering the coordinated adaptation of
step size. As we mentioned earlier, a tighter bound means that CoPPO has theoretically better sample
efficiency than MAPPO (Li et al., 2022; Wang et al., 2023). Heterogeneous PPO (HAPPO) (Kuba
et al., 2021) is the first work to combine the sequential update scheme with trust region methods.
Although HAPPO does not achieve a tighter bound than COPPO, it is more stable in training than
the simultaneous trust region policy optimization methods, such as MAPPO and CoPPO. Agent-by-
agent Policy Optimization (A2PO) (Wang et al., 2023) further improves the sample efficiency by
considering the update orders of agents.

However, compared with the monotonic bound of TRPO in the single-agent setting, the monotonic
bounds of above multi-agent trust region methods are still loose, which lead to sample inefficiency.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

In this paper, we narrow this gap by carefully handling the off-policyness caused by the sequential
policy update process among multiple agents. As shown in Tab. 1, our OPSPO obtains the tightest
joint monotonic bound compared to previous multi-agent trust region methods. Moreover, compared
to TRPO, our single agent monotonic bound (see Theorem 1) only has two additional estimation
error terms, which can theoretically converge to zero under mild assumptions.

3 OFF-POLICYNESS-AWARE SEQUENTIAL POLICY OPTIMIZATION

We first give a native extension of TRPO in sequential updating in MARL in Sec. 3.1. Then, we
propose a novel method that greatly improves the monotonic bound by carefully handling the off-
policyness of this TRPO’s native extension, in Sec. 3.2. Finally, we give a practical algorithm in
Sec. 3.3.

3.1 SEQUENTIAL TRUST REGION POLICY OPTIMIZATION

Sequential Policy Optimization in MARL We now have an old joint policy π and some data
collected by the old policy π. Our goal is to get a new joint policy π̄ updated from the old joint
policy π by using the collected data. The general policy optimization process can be defined as:

π
maxπGπ(π̄)−−−−−−−→

Update π
π̄,

where Gπ(π̄) is the joint surrogate objective of updating all agents. Without loss of generality, we
assume agents are updated in the order 1, 2, · · · , n, and define π̄i as the updated policy of agent i.
We denote the joint policy after updated agent i as π̂i = π̄1×· · ·× π̄i×πi+1×· · ·×πn, and define
π̂0 = π and π̂n = π̄. A general sequential policy optimization process can be defined as:

π = π̂0 maxπ1Lπ(π̂1)
−−−−−−−−−→

Update π1
π̂1 → · · · → π̂n−1 maxπnLπ̂n−1 (π̂n)

−−−−−−−−−−−−→
Update πn

π̂n = π̄,

where Lπ̂i−1(π̂i) = J (π̂i−1) + C(π̂i,π) is the surrogate objective for agent i, and Gπ(π̄) =
J (π)+

∑n
i=1 C(π̂i,π). The main difference between sequential policy optimization methods (such

as HAPPO and A2PO) lies in the specific design of C(π̂i,π).

In this paper, we focus on how to design Lπ̂i−1(π̂i) for each agent, so that the monotonic improve-
ment bound |J (π̄) − Gπ(π̄)| ≤ B of the joint surrogate objective Gπ(π̄) is more tighter. That
is to make the bound B as small as possible. A tighter bound improves expected performance by
optimizing the surrogate objective more effectively (Li et al., 2022).

Moreover, we note that the following inequality holds:

|J (π̄)− Gπ(π̄)| = |J (π̂n)− J (π̂0)−
n∑
i=1

C(π̂i,π)| ≤
n∑
i

|J (π̂i)− Lπ̂i−1(π̂i)|, (7)

which means that the tighter single-agent monotonic bound can lead to the tighter joint monotonic
bound. Based on this observation, we mainly discuss the single-agent monotonic bound in the
following sections.

Vanilla Sinlge-Agent Surrogate Objective If we natively extend the objective of TRPO (i.e.,
Eq. 4) to the multi-agent sequential policy optimization, then a vanilla sinlge-agent surrogate objec-
tive LVAN

π̂i−1(π̂i) is obtained, which can be defined as:

LVAN
π̂i−1(π̂i) = J (π̂i−1) +

1

1− γ
E(s,a)∼(dπ,π̂i)[A

π(s,a)]. (8)

Similar to Eq. 5, we can give a single-agent policy monotonic improvement bound of the vanilla
surrogate objective LVAN

π̂i−1(π̂i), as elaborated in the following proposition.

Proposition 1. For agent i, let εi = maxs,a |Aπ̂
i−1

(s,a)|, ∆i = maxs,a |Aπ̂
i−1

(s,a)−Aπ(s,a)|,
αi = Dmax

TV (πi, π̄i), where DTV(p, q) is the total variation distance between distributions p and q
and we define Dmax

TV (π, π̄) = maxsDTV
(
π(·|s), π̄(·|s)

)
, then we have:

|J (π̂i)− LVAN
π̂i−1(π̂i)| ≤ 4αiεi

( 1

1− γ
− 1

1− γ(1− αi −
∑i−1
j=1 α

j)

)
+

1

1− γ
∆i. (9)
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For proof see Appendix A.2. Compared with the bound of TRPO (Eq. 5), the bound of the vanilla
single-agent objective LVAN

π̂i−1(π̂i) (Eq. 9) is too looser because there are two extra terms (the blue
term and the orange term). The extra terms appear because we do not strictly follow TRPO’s sur-
rogate objective (Eq. 4)to design LVAN

π̂i−1(π̂i) (Eq. 8). Specifically, we replace the normalized dis-
counted state visitation distribution dπ̂

i−1

induced by π̂i−1 with the distribution dπ induced by π,
and this substitution leads to the appearance of the blue term

∑i−1
j=1 α

j . We also replace the advan-

tage estimation Aπ̂
i−1

(s,a) under π̂i−1 with the advantage estimation Aπ(s,a) under π, and this
substitution leads to the appearance of the orange term ∆i. These substitutions are due to the fact
that we do not have the data under the joint policy π̂i−1, only the data collected by the old joint
policy π. Overall, the off-policyness of vanilla objective LVAN

π̂i−1(π̂i) leads to its looser monotonic
bound.

3.2 IMPROVING JOINT MONOTONIC BOUND BY OFF-POLICY CORRECTION

In this section, we introduce Off-Policyness-aware Sequential Policy Optimization (OPSPO), a
novel algorithm that greatly improves the single-agent monotonic bound by carefully handling the
off-policyness of TRPO’s native extension (i.e., Eq. 8). This tighter single-agent monotonic bound
naturally leads to a tighter joint monotonic bound, which is what we are looking for. To the best of
our knowledge, our OPSPO obtains by far the tightest joint bound compared to previous methods.

Our core idea is to perform off-policy corrections on the state distribution and advantage estimation,
respectively. A similar off-policy correction idea is also used to adjust the clip range of each agent
to stabilize training (Sec. 3.3).

Our Surrogate Objective Our single-agent surrogate objective LOur
π̂i−1(π̂i) is defined as:

LOur
π̂i−1(π̂i) = J (π̂i−1) +

1

1− γ
E(s,a)∼(dπ,πi−1 ,π̂i)[A

π,πi−1

(s,a)], (10)

where dπ,π
i−1

is an approximation of dπ
i−1

using data collected by π, and Aπ,π
i−1

(s,a) is also an
approximation of Aπ

i−1

(s,a) using data collected by π. Based on LOur
π̂i−1(π̂i), our joint surrogate

objective GOur
π (π̄) is defined as:

GOur
π (π̄) = J (π) +

1

1− γ

n∑
i=1

E(s,a)∼(dπ,πi−1 ,π̂i)[A
π,πi−1

(s,a)]. (11)

We first analysis the single-agent/joint monotonic bound of our LOur
π̂i−1(π̂i), and then discuss the

details of these approximations.
Theorem 1 (Corrected Single-Agent Monotonic Bound). For agent i, let εi =

maxs,a |Aπ̂
i−1

(s,a)|, ξi = maxs,a |Aπ,π̂
i−1

(s,a) − Aπ̂
i−1

(s,a)|, δi =
∑
s |dπ,π̂

i−1

(s) −
dπ̂

i−1

(s)| , αi = Dmax
TV (πi, π̄i), where DTV(p, q) is the total variation distance between distribu-

tions p and q and we define Dmax
TV (π, π̄) = maxsDTV

(
π(·|s), π̄(·|s)

)
, then we have:

|J (π̂i)− LOur
π̂i−1(π̂i)| ≤ 4αiεi

( 1

1− γ
− 1

1− γ(1− αi)
)

+
1

1− γ
αiδiξi +

1

1− γ
ξi

≤ 4γεi

(1− γ)2
(αi)

2
+

1

1− γ
αiδiξi +

1

1− γ
ξi.

(12)

For proof see Appendix A.3. Compared to the bound (Eq. 9) of the vanilla objective LVAN
π̂i−1(π̂i), al-

though the bound (Eq. 12) of our method also has two extra terms, it has better theoretical properties.
First, the first term in our bound is exactly the same as the first term of the original TRPO’s bound
(Eq. 5), which suggests that as long as the last two terms are small enough, our LOur

π̂i−1(π̂i) will get
a very tight bound. Second, in our last two terms, δi is the error of approximating dπ with dπ,π̂

i−1

,
and ξi is the error of approximating Aπ̂

i−1

with Aπ,π̂
i−1

. As the accuracy of these approximations
improve, δi and ξi become smaller and even converge to zero. In contrast, the extra terms in Eq. 12
do not go to zero. Third, our blue term is doubly robust, which is considered to be a good theoretical

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

property (Dudı́k et al., 2011; Tang et al., 2020; Jiang & Li, 2016). We can see that if Aπ,π̂
i−1

is
exact (i.e., Aπ,π̂

i−1

= Aπ̂
i−1

), we have ξi = 0; if dπ,π̂
i−1

is exact (i.e., dπ,π̂
i−1

= dπ̂
i−1

), we have
δi = 0. Therefore, our blue term goes to zero, if either Aπ,π̂

i−1

or dπ,π̂
i−1

are exact. The blue
term is thus doubly robust in this sense. Fourth, as we show later, using advanced approximation
methods, both δi and ξi can theoretically go to zero.

Given the such tight single-agent bound, we can prove that our joint objective has the tightest mono-
tonic improvement bound compared to previous methods, as elaborated in the following theorem.
We present the joint monotonic bounds of other algorithms in Tab. 1.
Theorem 2 (Corrected Joint Monotonic Bound). For each agent i ∈ N , let εi =

maxs,a |Aπ̂
i−1

(s,a)|, ε = maxi ε
i, ξi = maxs,a |Aπ,π̂

i−1

(s,a) − Aπ̂
i−1

(s,a)|, δi =∑
s |dπ,π̂

i−1

(s)− dπ̂i−1

(s)| , αi = Dmax
TV (πj , π̄j), then we have:

|J (π̄)− GOur
π (π̄)| ≤ 4ε

n∑
i=1

αi
( 1

1− γ
− 1

1− γ(1− αi)

)
+

∑n
i α

iδiξi

1− γ
+

∑n
i=1 ξ

i

1− γ

≤ 4γε

(1− γ)2

n∑
i

(αi)
2

+

∑n
i α

iδiξi

1− γ
+

∑n
i=1 ξ

i

1− γ
.

(13)

For proof see Appendix A.3. As shown in Eq. 13 and Tab. 1, since our first term (4ε
∑n
i=1 α

i( 1
1−γ −

1
1−γ(1−αi) )) is smallest compared to first terms of other methods, our method achieves the tightest
joint monotonic bound if δi and ξi, ∀i ∈ N are small enough. The assumption about δi and ξi is
valid, because both δi and ξi can theoretically go to zero, when advanced approximation methods
are used.

Advantage Estimation Correction Recall that we can use temporal difference error to approxi-
mate an advantage function (Sutton & Barto, 2018). That is Aπ̂

i−1

(st,at) ≈ r + γV π̂
i−1

(st+1)−
V π̂

i−1

(st). Thus, to approximate Aπ̂
i−1

(st,at) using data collected by π, we only need to use
V-trace operator (Espeholt et al., 2018) to approximate V π̂

i−1

(s). Given a trajectory (sk,ak, rk)Tk=t
collected by π, the V-trace target for our value approximation V (st+1) can be defined as:

V π,π̂
i−1

Target (st) = V (st) +

T−1∑
k=t

γk−t(

k∏
j=t

cj)
(
rt + γV (st+1)− V (st)

)
, (14)

where cj = λmin
(
1.0,

π̂i−1(aj |sj)
π(aj |sj)

)
and λ is a hyper-parameter. Based on Eq. 14, we can get

Aπ,π̂
i−1

(st,at) by:
Aπ,π̂

i−1

(st,at) = rt + γV (st+1)− V (st). (15)
Since V-trace operator (Espeholt et al., 2018) has been proven to be a γ-contraction mapping, the er-
ror between V π̂

i−1

(s) and V (s) theoretically converges to zero when using the target V π,π̂
i−1

Target (st) to

update value function V . Obviously, ξi = maxs,a |Aπ,π̂
i−1

(s,a)− Aπ̂i−1

(s,a)| also theoretically
goes to zero.

State Distribution Correction To approximate dπ̂
i−1

(s) using data collected by π, we use
BCH (Liu et al., 2018) to estimate stationary state density ratio ωi−1(s) = dπ

i−1

(s)/dπ(s). It has
been proved that ωi−1(s) can be approximated by finding a function ω over data which minimizes
maxfL(ω, f), defined as:

L(ω, f) = γE(s,a,s′)∼dπ
[
ω∆(s,a, s′)f(s′)

]
+ (1− γ)Es∼dπ0

[(
1− ω(s)

)
f(s)

]
, (16)

where ω∆(s,a, s′) =
(
ω(s′) − ω(s)π

i−1(a|s)
π(a|s)

)
, dπ0 is an initial state distribution under π. Then

ω(s) = ωi−1(s) = dπ
i−1

(s)/dπ(s) if and only if L(ω, f) = 0 for any measurable test function f .
The above equation can be solved by the following min-max problem (Liu et al., 2018):

min
ω

max
f∈F

γE(s,a,s′)∼dπ
[
ω∆(s,a, s′)f(s′)

]2
+ (1− γ)Es∼dπ0

[(
1− ω(s)

)
f(s)

]2
, (17)
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where F is a test function space. Based on the above discussion, if we define dπ̂,π̂
i−1

(s) by:

dπ̂,π̂
i−1

(s) = ω(s)dπ(s), (18)

then it has been proven that maxs|dπ
i−1

(s) − dπ̂,π̂i−1

(s)| ≤ maxf∈FL(ω, f) if the test function
space F is sufficiently rich (Liu et al., 2018). In other words, δi theoretically will become small
enough when using Eq. 18 to learn ω(s). Details of learning ω(s) can be found in Appendix B.2
and Alg. 2.

3.3 THE FINAL ALGORITHM

In this section, we give a practical implementation for optimizing our joint surrogate objective
GOur
π (π̄). We first give the native implementation L̃Native

π̂i−1 (π̂i), and then give our improved imple-
mentation L̃Our

π̂i−1(π̂i). We summarize our proposed Off-Policyness-aware Sequential Policy Opti-
mization (OPSPO) in Alg. 1.

If we directly follow the implementation of original PPO (Eq. 4) for our surrogate objective, we can
get a native implementation L̃Native

π̂i−1 (π̂i):

E(s,a)∼(dπ,π̂i)

[
min

(
riri−1ωi−1(s)Aπ,π̂

i−1

, clip
(
riri−1, l, h

)
ωi−1(s)Aπ,π̂

i−1

)]
, (19)

where ri = π̄i(ai|s)/πi(ai|s), ri−1 = π̂i−1(a|s)/π(a|s), l = 1 − ε, h = 1 + ε, and Aπ,π̂
i−1

is
short for Aπ,π̂

i−1

(s,a).

Clip Range Correction The main issue with the native implementation Eq. 19 is that due to
the off-policyness, the joint policy ratio riri−1 is likely to be less than l = 1 − ε or greater than
h = 1+ε, which results in some data being unable to provide gradients due to the clipped operation.
To more fully utilize the data, we scale the base clip range (l, h) by a correction factor ri−1 that
represents the degree of off-policy between π̂i−1 and π. The corrected clip range is (lri−1, hri−1).
Note that when ri−1 = 1, then π̂i−1 = π, the corrected clip range reduces to the base clip range.
It is important to highlight that, although we scale the clip range, training with the corrected range
does not cause instability, as shown in the following theorem.

Theorem 3 (Stability of Corrected Clip Range). Let Πi
opt as the optimal policy set maxi-

mizing L̃Native
π̂i−1 (π̂i) with corrected clip range (lri−1, hri−1), π̂i∗,off ∈ Πi

opt denotes the optimal
joint policy, which achieves the minimum KL divergence over all optimal joint policies, i.e.,
DKL(π̂i−1(·|st), π̂i∗,off(·|st)) ≤ DKL(π̂i−1(·|st), π̂iopt(·|st)) for π̂iopt ∈ Πi

opt at any timestep t, and
let π̂i∗,on have the similar definition for PPO with data collected by π̂i−1 and clip range (l, h), we
have maxtDKL(π̂i−1(·|st), π̂i∗,off(·|st)) = maxtDKL(π̂i−1(·|st), π̂i∗,on(·|st)) for all timestep t.

For proof see Appendix A.5. Theorem 3 tells us that the degree of the policy update distance in
L̃Native
π̂i−1 (π̂i) with the corrected clip range (lri−1, hri−1) is the same as that in PPO with the base clip

range (l, h). In summary, although we scale the clip range, new joint policy π̂i will not be far from
the old one π̂i−1, so the training is stable.

Although we scale the base clip range (l, h) by a correction factor, the base clip range should not
be the same for each agent, because each agent faces a different degree of off-policy. Intuitively,
when the off-policy degree is large, we should use a smaller step size to update the agent, that is,
reduce the clip range. Therefore, we dynamically adjust the base clip range of each agent by letting
li = min

[
max(ri−1, 1/ri−1)·(1−ε1), 1−ε2

]
and hi = max

[
min(ri−1, 1/ri−1)·(1+ε1), 1+ε2

]
,

where ε2 < ε1. After adjustment, the maximum base clip range is (1± ε1), and the minimum base
clip range is (1± ε2).

To avoid gradient expansion caused by off-policyness when Aπ,π̂
i−1

(s,a) < 0, we use the clipped
joint policy ratio r̃i−1 = clip

(
ri−1, 1− ε1, 1 + ε1

)
(Wu et al., 2021). To stabilize training, we also

use clip operation on ωi−1(s) (Amortila et al., 2024), and use ω̃i−1(s) = min[ωi−1(s), 1.0].

7
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Figure 1: Comparison of our method against baselines over 9 maps of SMAC with various difficul-
ties.

Finally, our practical clipping-based objective L̃Our
π̂i−1(π̂i) for updating agent i is defined as:

E(s,a)∼(dπ,π̂i)

[
min

(
rir̃i−1ω̃i−1(s)Aπ,π̂

i−1

, clip
(
rir̃i−1, lir̃i−1, hir̃i−1

)
ω̃i−1(s)Aπ,π̂

i−1

)]
.

(20)

Compared to the native implementation (Eq. 19), our Eq. 20 introduce a corrected clip range, in-
cluding a correction factor and a dynamic base clip range, as well as some tricks for stabilizing
training.

4 EXPERIMENTS

In this section, we empirically evaluate and analyze our OPSPO in the widely-adopted cooperative
multi agent benchmarks, including the StarCraftII Multi-agent Challenge (SMAC) (Samvelyan et al.,
2019), Multi-agent MuJoCo (MA-MuJoCo) (de Witt et al., 2020), and Google Research Football
(GRF) full game scenarios (Kurach et al., 2020).

We compare A2PO with advanced MARL trust-region methods. We first consider MAPPO (Yu
et al., 2022) and CoPPO (Wu et al., 2021), which are popular simultaneous trust region learning
methods. Then, we consider HAPPO (Kuba et al., 2021) and A2PO (Wang et al., 2023), which
are advanced sequential trust region learning methods. Full experimental details can be found in
Appendix B.

4.1 RESULTS ON CHALLENGING MULTI-AGENT BENCHMARKS

We evaluate our OPSPO in 9 maps of SMAC with various difficulties, 6 scenarios in MA-MuJoCo,
and the 5-vs-5 full game scenarios in GRF. As shown in Fig. 1, Fig. 2, and Fig. 3, our method

8
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Figure 2: Comparison of our method against baselines over 6 tasks in MA-MuJoCo with different
number of robot joints.

Figure 3: Left: Comparison of our method against baselines in 5-vs-5 full game scenarios in Google
Research Football. Right: Ablation studies for each component in our method on both discrete and
continuous action space tasks.

consistently outperforms the strong baselines and achieves better performance and higher sample
efficiency in all benchmarks. These experimental results strongly support the theoretical analysis in
Sec. 3.

StarCraftII Multi-agent Challenge (SMAC) We first evaluate our method on cooperative tasks
with discrete action spaces. As shown in Fig. 1, thanks to the better theoretical foundation, i.e.
tighter policy monotonic improvement bound, and more flexible policy update step-size adjusted by
clip range correction, our method still shows higher sample efficiency even compared with the strong
baselines. In addition, our method consistently outperforms other baselines on all tasks, which show
the stability of our method.

Multi-agent MuJoCo environment (MA-MuJoCo) We then evaluate our method on more com-
plex robotic control multi-agent tasks with continuous action spaces. The experimental results are
reported in Fig. 2. As we can see, our method significantly improves the final performance on al-
most all tasks compared to the baselines. Moreover, we observe that as the complexity of the task
increases, our method generally shows increasing advantages over the baselines.

Google Research Football (GRF) We also evaluate our method in a full-game GRF scenario
with high-dimensional observations, complex action spaces, and long timescales, all of which pose
difficulties for agents to discover complex coordination behaviors. As shown in Fig. 3 (left), our
method outperforms other methods by a large margin, which once again proves the superiority of
our method with a stronger theoretical basis.

9
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4.2 ABLATIONS

This section studies how the experimental performance is affected by our proposed components,
such as advantage estimation correction (AEC), state distribution correction (SDC), and clip range
correction (CRC). We train agents with different components on a super hard task MMM2 in SMAC,
which has a discrete action space, and a complex robotic control task Humanoid-v2 in MA-
MuJoCo, which has a continuous action space. Results are reported in Fig. 3 (right). We make three
observations. First, ignoring any component hurts the task performance, which confirms the impor-
tance of making off-policy corrections in different aspects. Second, advantage estimation correction
brings a very significant performance improvement, which is consistent with our theoretical analysis
that it affects both of the last two terms in our monotonic bound (Eq. 13). Third, although we scale
the clip range by clip range correction, it does not introduce instability in the training, which is also
consistent with the analysis in Sec. 3.3.

5 RELATED WORK

Trust Region Policy Optimization (Schulman et al., 2015) and Proximal Policy Optimization (Schul-
man et al., 2017) are popular trust region methods in the single-agent scenario, which have strong
performance mainly due to the guarantee of monotonic policy improvement (Kakade & Langford,
2002). In multi-agent scenarios, De Witt et al. (2020) and Papoudakis et al. (2020) empirically
study the performance of directly applying PPO to each agent in multi-agent tasks, and show the
inability of native extensions. Their work provides inspiration for subsequent research work. Yu
et al. (2022) propose Multi-agent PPO by introducing shared critics and many stable training tech-
niques, and demonstrate strong performance on a large number of multi-agent tasks. Furthermore,
Wu et al. (2021) propose Coordinated Proximal Policy Optimization by considering the value de-
composition (Sunehag et al., 2017) and coordinated adaptation of step size during the policy update
process among agents, and prove the monotonic improvement guarantee. In addition, there are many
other works (Wen et al., 2022; Li & He, 2023; Sun et al., 2022) that also discuss trust region methods
in MARL scenarios. However, these MARL algorithms suffer from non-stationarity issues due to
the simultaneous updating of agents. From the perspective of one agent, the environment dynamics
change because other agents also change their policies. As a result, the agent suffers from high
variance in gradients and requires more samples to converge (Hernandez-Leal et al., 2017). To this
end, sequential updating rather than simultaneous updating has received increasing attention from
researchers. Sequential update allows the later updated agents to use changes made by preceding
agents to optimize their own policies (Bertsekas, 2019), which makes the environment faced by later
agents more stable. Kuba et al. (2021) propose Heterogeneous PPO which combines the sequential
update scheme (Bertsekas, 2019) with trust region methods, and demonstrates experimentally and
theoretically the advantages offered by sequential updating. Wang et al. (2023) further propose
Agent-by-agent Policy Optimization (A2PO) which systematically studies the impact of agent up-
date order on performance and improves the theoretical basis of previous work (Kuba et al., 2021).

The most relevant work to ours is A2PO, which also improves TRPO under sequential policy op-
timization. A2PO mainly focuses on the impact of agent update order on policy optimization. In
contrast, our work is entirely from an off-policy perspective and achieves the tightest bound to date
by making off-policy corrections in three aspects: state distribution, advantage estimation, and clip
range.

6 CONCLUSION

In this paper, we focus on trust region learning in the sequential policy optimization for cooperative
multi-agent tasks. We introduce OPSPO, a sequential policy optimization method that explicitly
handles the off-policyness caused by the sequential policy update process among agents. We prove
that the joint monotonic bound achieved by our OPSPO is the tightest compared to existing trust
region MARL methods. Experiments in various benchmarks demonstrate that OPSPO consistently
outperforms several strong baselines in performance and sample efficiency in complex tasks. For
future work, we plan to continue along the key idea of off-policy correction to improve the broader
MARL methods.
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A PROOFS

A.1 USEFUL LEMMAS

Lemma 1 (Multi-agent Policy Performance Difference Lemma). Given any joint policies π̄ and π,
the difference between the performance of two joint policies can be expressed as:

J (π̄)− J (π) =
1

1− γ
E(s,a)∼(dπ̄,π̄)[A

π(s,a)]

where dπ = (1−γ)
∑∞
t=0 γ

tPr(st = s|π) is the normalized discounted state visitation distribution.

Proof. A corollary of the Policy Performance Difference Lemma, see Lemma 1.16 (Agarwal et al.,
2019).

Definition 1. A coupling of two probability distributions µ and ν is a pair of random variables
(X ,Y ) such that the marginal distribution of X is µ and the marginal distribution of Y is ν. A
coupling (X ,Y ) satisfies the following constraints: Pr(X = x) = µ(x) and Pr(Y = y) = ν(y).

Proposition 2. For any coupling (X,Y ) that DTV (µ, ν) ≤ Pr(X 6= Y ).

Proposition 3. There exists a coupling (X,Y ) that DTV (µ, ν) ≤ Pr(X 6= Y ).

Corollary 1. For all s, there exists a coupling (π(·|s), π̄(·|s)), that Pr(a = ā) ≥ 1−Dmax
TV (π, π̄),

for a ∼ π(·|s), ā ∼ π̄(·|s)
Corollary 2. For all s, Dmax

TV (π(·|s), π̄(·|s)) ≤
∑n
i=1DTV (πi(·|s), π̄i(·|s)).

Definition 2. If (π, π̄) is an α-coupled policy pair, then (a, ā|s) satisfies Pr(a 6= ā|s) ≤ α for all
s, and a ∼ π(·|s), ā ∼ π̄(·|s).

From Corollaries 1 and 2, we know that given any joint policy pair π and π̄, select α =
Dmax
TV (π(·|s), π̄(·|s)), then (π, π̄) is an α-coupled policy pair that for all s, Pr(a 6= ā|s) ≤

Dmax
TV (π(·|s), π̄(·|s)) ≤

∑n
i=1 α

i, where αi = Dmax
TV (πi, π̄i).

Lemma 2. Given any joint policies π1, π2, and π3, if π1,π2 is a coupled policy pair, the following
inequality holds:∣∣∣Ea1∼π1

[Aπ3(s,a1)]−Ea2∼π2
[Aπ3(s,a2)]

∣∣∣ ≤ 2επ3 ·Dmax
TV (π1,π2) ≤ 2επ3

n∑
i=1

αiπ1,π2
,

where αiπ1,π2
= Dmax

TV (π1
i,π2

i) and επ3 = maxs,a|Aπ3(s,a)|.
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Proof. ∣∣∣Ea1∼π1
[Aπ3(s,a1)]−Ea2∼π2

[Aπ3(s,a2)]
∣∣∣

=
∣∣∣Pr(a1 6= a2|s)E(a1,a2)∼(π1,π2)[A

π3(s,a1)−Aπ3(s,a2)]
∣∣∣

≤
n∑
i=1

αiπ1,π2
E(a1,a2)∼(π1,π2)[|Aπ3(s,a1)−Aπ3(s,a2)|]

≤
n∑
i=1

αiπ1,π2
· 2maxs,a|Aπ3(s,a)|

Lemma 3. Given any joint policies π1, π2, if π1,π2 is a coupled policy pair, the following in-
equality holds: ∣∣∣Ea1∼π1 [Aπ2(s,a1)]

∣∣∣ ≤ 2επ2 ·Dmax
TV (π1,π2) ≤ 2επ2

n∑
i=1

αiπ1,π2
,

Proof. By Lemma 2, the inequality clearly holds.

Lemma 4. Given any joint policies π1,π2 and π3, if (π1,π2) and (π2,π3) are coupled policy
pairs, the following inequality holds:∣∣∣E(st,at)∼(Prπ

2
,π2)

[
Aπ

1]
−E

(st,āt)∼(Prπ
3
,π2)

[
Aπ

1]∣∣∣
≤ 4επ

1

Dmax
TV (π1,π2)(1− (1−Dmax

TV (π2,π3))
t
)

where επ
1

= maxs,a|Aπ
1

(s,a)| and we denote A(s,a) as A for brevity.

Proof. Let nt represent the times a 6= ā (π2 disagrees with π3) before timestamp t.∣∣∣E(st,at)∼(Prπ
2
,π2)

[
Aπ

1]
−E

(st,āt)∼(Prπ
3
,π2)

[
Aπ

1]∣∣∣
= Pr(nt > 0) ·

∣∣∣E(st,at)∼(Prπ
2
,π2)|nt>0

[
Aπ

1]
−E

(st,āt)∼(Prπ
3
,π2)|nt>0

[
Aπ

1]∣∣∣
(1)
= (1− Pr(nt = 0)) · E

≤
(
1−

t∏
h=1

Pr(ah = āh)|ah ∼ π2(·|sh), āh ∼ π3(·|sh)
)
· E

(2)

≤
(
1−

t∏
h=1

(1−Dmax
TV (π2,π3))

)
· E

=
(
1− (1−Dmax

TV (π2,π3))t
)
· E

(3)

≤
(
1− (1−Dmax

TV (π2||π3))t
)
· 4 ·Dmax

TV (π1,π2) · επ
1

= 4επ
1

Dmax
TV (π1,π2)

(
1− (1−Dmax

TV (π2,π3))t
)

In (1), we denote E =
∣∣∣E(s,a)∼(dπ2 ,π2)|nt>0

[
Aπ

1]−E(s,ā)∼(dπ3 ,π2)|nt>0

[
Aπ

1]∣∣∣. (2) follows the
definition of α-coupled policy pair. (3) follows the Lemma 3.

Lemma 5. Given any joint policies π1, π2, π3, and π4, if π1,π2 is a coupled policy pair, the
following inequality holds:∣∣∣Ea1∼π1

[Aπ3(s,a1)]−Ea2∼π2
[Aπ4(s,a2)]

∣∣∣ ≤ επ3,π4 ·Dmax
TV (π1,π2) ≤ επ3,π4

n∑
i=1

αiπ1,π2
,

where αiπ1,π2
= Dmax

TV (π1
i,π2

i) and επ3,π4 = maxs,a|Aπ3(s,a)−Aπ4(s,a)|.

14
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Proof. ∣∣∣Ea1∼π1
[Aπ3(s,a1)]−Ea2∼π2

[Aπ4(s,a2)]
∣∣∣

=
∣∣∣Pr(a1 6= a2|s)E(a1,a2)∼(π1,π2)[A

π3(s,a1)−Aπ4(s,a2)]
∣∣∣

≤
n∑
i=1

αiπ1,π2
E(a1,a2)∼(π1,π2)[|Aπ3(s,a1)−Aπ4(s,a2)|]

≤
n∑
i=1

αiπ1,π2
·maxs,a|Aπ3(s,a)−Aπ4(s,a)|

Lemma 6. Given any joint policies π1, π2, π3, π4, π5 and π6, if π1,π2 is a coupled policy pair,
the following inequality holds:∣∣∣E(s,a1)∼(dπ5−dπ6 ,π1)[A

π3(s,a1)]−E(s,a2)∼(dπ5−dπ6 ,π2
)[Aπ4(s,a2)]

∣∣∣ ≤ επ3,π4 ·δπ5,π6

n∑
i=1

αiπ1,π2

where δπ5,π6 =
∑
s |dπ5(s)− dπ6(s)|.

Proof.∣∣∣E(s,a1)∼(dπ5−dπ6 ,π1)[A
π3(s,a1)]−E(s,a2)∼(dπ5−dπ6 ,π2

)[Aπ4(s,a2)]
∣∣∣

=
∣∣∣∑
s

[
dπ5(s)− dπ6(s)

]
Ea1∼π1

[Aπ3(s,a1)]−
∑
s

[
dπ5(s)− dπ6(s)

]
Ea2∼π2

[Aπ4(s,a2)]
∣∣∣

=
∣∣∣∑
s

[
dπ5(s)− dπ6(s)

][
Ea1∼π1 [Aπ3(s,a1)]−Ea2∼π2 [Aπ4(s,a2)]

]∣∣∣
≤
∑
s

∣∣∣dπ5(s)− dπ6(s)
∣∣∣∣∣∣Ea1∼π1

[Aπ3(s,a1)]−Ea2∼π2
[Aπ4(s,a2)]

∣∣∣
(1)

≤ επ3,π4

n∑
i=1

αiπ1,π2

∑
s

∣∣∣dπ5(s)− dπ6(s)
∣∣∣

= επ3,π4 · δπ5,π6

n∑
i=1

αiπ1,π2

where (1) follows Lemma 5.

A.2 PROOFS OF VANILLA SURROGATE OBJECTIVE

Recall that LVAN
π̂i−1(π̂i) = J (π̂i−1) + 1

1−γE(s,a)∼(dπ,π̂i)[A
π(s,a)].

Proof.

|J (π̂i)− J (π̂i−1)− 1

1− γ
E(s,a)∼(dπ,π̂i)[A

π(s,a)]|

≤ 1

1− γ

∣∣∣E(s,a)∼(dπ̂i ,π̂i)[A
πi−1

(s,a)]−E(s,a)∼(dπ,π̂i)[A
π(s,a)]

∣∣∣
≤ 1

1− γ

∣∣∣E(s,a)∼(dπ̂i ,π̂i)[A
πi−1

(s,a)]−E(s,a)∼(dπ,π̂i)[A
πi−1

(s,a)]
∣∣∣

+
1

1− γ

∣∣∣E(s,a)∼(dπ,π̂i)[A
πi−1

(s,a)]−E(s,a)∼(dπ,π̂i)[A
π(s,a)]

∣∣∣
(1)

≤ 4αiεi
∞∑
t=0

γt(1− (1−
i−1∑
j=1

αj)t) +
1

1− γ
∆i

≤ 4αiεi
( 1

1− γ
− 1

1− γ(1− αi −
∑i−1
j=1 α

j)

)
+

1

1− γ
∆i
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where (1) follows Lemma 4, εi = επ̂
i−1

= maxs,a |Aπ̂
i−1 |, ∆i = maxs,a |Aπ̂

i−1 − Aπ|, αi =
αiπ̂i−1,π̂i = Dmax

TV (πi, π̄i), where DTV(p, q) is the total variation distance between distributions p
and q and we define Dmax

TV (π, π̄) = maxsDTV
(
π(·|s), π̄(·|s)

)
.

A.3 PROOFS OF MONOTONIC POLICY IMPROVEMENT OF OUR OPSPO

Theorem 1 (Corrected Single-Agent Monotonic Bound). For agent i, let εi =

maxs,a |Aπ̂
i−1

(s,a)|, ξi = maxs,a |Aπ,π̂
i−1

(s,a) − Aπ̂
i−1

(s,a)|, δi =
∑
s |dπ,π̂

i−1

(s) −
dπ̂

i−1

(s)| , αi = Dmax
TV (πi, π̄i), where DTV(p, q) is the total variation distance between distribu-

tions p and q and we define Dmax
TV (π, π̄) = maxsDTV

(
π(·|s), π̄(·|s)

)
, then we have:

|J (π̂i)− LOur
π̂i−1(π̂i)| ≤ 4αiεi

( 1

1− γ
− 1

1− γ(1− αi)
)

+
1

1− γ
αiδiξi +

1

1− γ
ξi

≤ 4γεi

(1− γ)2
(αi)

2
+

1

1− γ
αiδiξi +

1

1− γ
ξi.

(21)

Proof. Recall that LOur
π̂i−1(π̂i) = J (π̂i−1) + 1

1−γE(s,a)∼(dπ,πi−1 ,π̂i)[A
π,πi−1

(s,a)].

∣∣∣J (π̂i)− J (π̂i−1)− 1

1− γ
E(s,a)∼(dπ,π̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
≤ 1

1− γ

∣∣∣E(s,a)∼(dπ̂i ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]∣∣∣
+

1

1− γ

∣∣∣E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ,π̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
≤ 1

1− γ

∣∣∣E(s,a)∼(dπ̂i ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]∣∣∣
+

1

1− γ

∣∣∣E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ,π̂

i−1]
−E(s,a)∼(dπ,π̂i−1−dπ̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
≤ 1

1− γ

∣∣∣E(s,a)∼(dπ̂i ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]∣∣∣
+

1

1− γ

∣∣∣E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
+

1

1− γ

∣∣∣−E(s,a)∼(dπ,π̂i−1−dπ̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
(1)

≤ 1

1− γ

∣∣∣E(s,a)∼(dπ̂i ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]∣∣∣
+

1

1− γ

∣∣∣E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ̂

i−1]
−E(s,a)∼(dπ̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
+

1

1− γ

∣∣∣E(s,a)∼(dπ,π̂i−1−dπ̂i−1 ,π̂i−1)

[
Aπ̂

i−1]
−E(s,a)∼(dπ,π̂i−1−dπ̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
(2)

≤ 4εiαi
( 1

1− γ
− 1

1− γ(1− αi)

)
+

1

1− γ
ξi +

1

1− γ
αiδiξi

(1) uses E(s,a)∼(dπ,π̂i−1−dπ̂i−1 ,π̂i−1)

[
Aπ̂

i−1]
= 0. (2) uses Lemma 4 and Lemma 6.

Theorem 2 (Corrected Joint Monotonic Bound). For each agent i ∈ N , let εi =

maxs,a |Aπ̂
i−1

(s,a)|, ε = maxi ε
i, ξi = maxs,a |Aπ,π̂

i−1

(s,a) − Aπ̂
i−1

(s,a)|, δi =
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∑
s |dπ,π̂

i−1

(s)− dπ̂i−1

(s)| , αi = Dmax
TV (πi, π̄i), then we have:

|J (π̄)− GOur
π (π̄)| ≤ 4ε

n∑
i=1

αi
( 1

1− γ
− 1

1− γ(1− αi)

)
+

∑n
i α

iδiξi

1− γ
+

∑n
i=1 ξ

i

1− γ

≤ 4γε

(1− γ)2

n∑
i

(αi)
2

+

∑n
i α

iδiξi

1− γ
+

∑n
i=1 ξ

i

1− γ
.

(22)

Proof. Recall that GOur
π (π̄) = J (π) + 1

1−γ
∑n
i=1E(s,a)∼(dπ,πi−1 ,π̂i)[A

π,πi−1

(s,a)].

∣∣∣J (π̄)− J (π)− 1

1− γ

n∑
i=1

E(s,a)∼(dπ,π̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
≤
∣∣∣J (π̂n)− J (π̂n−1) + · · ·+ J (π̂1)− J (π̂0)− 1

1− γ

n∑
i=1

E(s,a)∼(dπ,π̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
≤

n∑
i=1

∣∣∣J (π̂i)− J (π̂i−1)− 1

1− γ
E(s,a)∼(dπ,π̂i−1 ,π̂i)

[
Aπ,π̂

i−1]∣∣∣
≤ 4ε

n∑
i=1

αi
( 1

1− γ
− 1

1− γ(1− αi)

)
+

∑n
i=1 ξ

i

1− γ
+

∑n
i α

iδiξi

1− γ

A.4 MONOTONIC POLICY IMPROVEMENT OF MAPPO, COPPO, HAPPO AND A2PO

We use the formats of the monotonic bounds of MAPPO, CoPPO, HAPPO and A2PO given
in (Wang et al., 2023).

A.5 PROOFS OF STABILITY OF CORRECTED CLIP RANGE

Recall that L̃Native
π̂i−1 (π̂i):

E(s,a)∼(dπ,π̂i)

[
min

(
riri−1ωi−1(s)Aπ,π̂

i−1

, clip
(
riri−1, l, h

)
ωi−1(s)Aπ,π̂

i−1

)]
, (23)

where ri = π̄i(ai|s)/πi(ai|s), ri−1 = π̂i−1(a|s)/π(a|s), l = 1 − ε, h = 1 + ε, and Aπ,π̂
i−1

is
short for Aπ,π̂

i−1

(s,a).

If we use corrected clip range (lri−1, hri−1), then we have LOur
π̂i−1(π̂i):

E(s,a)∼(dπ,π̂i)

[
min

(
riri−1ωi−1(s)Aπ,π̂

i−1

, clip
(
riri−1, lri−1, hri−1

)
ωi−1(s)Aπ,π̂

i−1

)]
,

(24)

we denote Πi
opt as the optimal policy set maximizing LOur

π̂i−1(π̂i) (Eq. 24).

Lemma 7. Πi
opt = {π̂i| for all state and action pair (s,a) that Aπ,π̂

i−1

<

0, π̂i(a|s) ≤ π(a|s)lri−1; for all state and action pair (s,a) that Aπ,π̂
i−1

> 0, π̂i(a|s) ≥
min (π(a|s)hri−1, 1)}.

Proof. Firstly, we prove that a policy π̂iopt meeting the conditions in Πi
opt is the optimal solution

maximizing the objective in LOur
π̂i−1(π̂i).
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Given any (s,a), if Aπ,π̂
i−1

(s,a) < 0,LOur
π̂i−1(π̂i, s,a) could be written as:

LOur
π̂i−1(π̂i, s,a) =

{
lri−1ωi−1(s)Aπ,π̂

i−1

(s,a), riri−1 ≤ lri−1

riri−1ωi−1(s)Aπ,π̂
i−1

(s,a), riri−1 > lri−1
(25)

LOur
π̂i−1(π̂iopt, s,a) falls in the first case, because π̂iopt meeting the condition in Πi

opt satisfies
π̂iopt(a|s)
π(a|s) ≤

lri−1 when Aπ,π̂
i−1

(s,a) < 0.

Thus, if Aπ,π̂
i−1

(s,a) < 0, thenLOur
π̂i−1(π̂i, s,a) ≤ LOur

π̂i−1(π̂iopt, s,a) for any π̂i.

Given any (s,a), if Aπ,π̂
i−1

(s,a) > 0,LOur
π̂i−1(π̂i, s,a) could be written as:

LOur
π̂i−1(π̂i, s,a) =

{
hri−1ωi−1(s)Aπ,π̂

i−1

(s,a), riri−1 ≥ hri−1

riri−1ωi−1(s)Aπ,π̂
i−1

(s,a), riri−1 < hri−1
(26)

LOur
π̂i−1(π̂iopt, s,a) also falls in the first case, because π̂iopt meeting the condition in Πi

opt satisfies
π̂iopt(a|s)
π(a|s) ≥ hr

i−1 when Aπ,π̂
i−1

(s,a) > 0.

Thus, if Aπ,π̂
i−1

(s,a) > 0, thenLOur
π̂i−1(π̂i, s,a) ≤ LOur

π̂i−1(π̂iopt, s,a) for any π̂i.

Based on such fact, we have proven that a policy π̂iopt meeting the conditions in Πi
opt is the optimal

solution.

Secondly, we prove that a policy π̂i0 not meeting conditions in Πi
opt is not the optimal solution of

maximizing the objective in Eq. 24. In order to prove this, we construct a policy π̂iopt satisfying
conditions in Πi

opt. Then, LOur
π̂i−1(π̂i0, s,a) ≤ LOur

π̂i−1(π̂iopt, s,a) for any state and action pair (s,a).
Based on such fact, we have proven that a policy not meeting the conditions in Πi

opt is not the optimal
solution of maximizing the objective in Eq. 24.

Finally, combining the above results, we prove that Πi
opt described in Lemma 7 contains all the

optimal solutions of maximizing Eq. 24.

Theorem 3 (Stability of Corrected Clip Range). Let Πi
opt as the optimal policy set maxi-

mizing LOur
π̂i−1(π̂i), π̂i∗,off ∈ Πi

opt denotes the optimal joint policy, which achieves the min-
imum KL divergence over all optimal joint policies, i.e., DKL(π̂i−1(·|st), π̂i∗,off(·|st)) ≤
DKL(π̂i−1(·|st), π̂iopt(·|st)) for π̂iopt ∈ Πi

opt at any timestep t, and let π̂i∗,on have the
similar definition for PPO with data collected by π̂i−1 and clip range (l, h), we have
maxtDKL(π̂i−1(·|st), π̂i∗,off(·|st)) = maxtDKL(π̂i−1(·|st), π̂i∗,on(·|st)) for all timestep t.

Proof. we denote DKL(π̂i−1(·|st), π̂i∗,off(·|st)) as Dst
KL(π̂i−1, π̂i∗,off) and

DKL(π̂i−1(·|st), π̂i∗,on(·|st)) as Dst
KL(π̂i−1, π̂i∗,on). In the proof, we need to prove that

Dst
KL(π̂i−1, π̂i∗,off) = Dst

KL(π̂i−1, π̂i∗,on) for any timestep t. Specifically, we prove this in two

cases: Aπ,π̂
i−1

(st,at) ≤ 0 and Aπ,π̂
i−1

(st,at) > 0.

If Aπ,π̂
i−1

(st,at) ≤ 0, the optimal policy π̂i∗,off can be derived by solving the following constraint
optimization problem according to Lemma 7:

min
π̂i

∑
a

π̂i−1(a|st) log
π̂i−1(a|st)
π̂i(a|st)

s.t. π̂i(at|st) ≤ lri−1π(at|st),∑
a

π̂i(a|st) = 1,

π̂i(a|st) > 0, (27)
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where at denotes the action at timestep t. By using the Karush-Kuhn-Tucker conditions (Gordon &
Tibshirani, 2012), we get:

π̂i∗,off(a|st) =

{
π̂i−1(a|st)(1−π(at|st)lri−1)

1−π̂i−1(a|st) , a 6= at

π(at|st)lri−1, a = at
(28)

The corresponding KL divergence is:

Dst
KL(π̂i−1, π̂i∗,off) = (1− π̂i−1(a|st)) log

1− π̂i−1(a|st)
1− π̂i−1(a|st) · l

− π̂i−1(a|st) log (l) (29)

For Dst
KL(π̂i−1, π̂i∗,on), we can directly applying Eq. (26) of appendix in (Wang et al., 2019) in our

setting. Then we can get Dst
KL(π̂i−1, π̂i∗,off) equals Dst

KL(π̂i−1, π̂i∗,on), when Aπ,π̂
i−1

(st,at) ≤ 0.

If Aπ,π̂
i−1

(st,at) > 0, the optimal policy π̂i∗,off can be derived by solving the following constraint
optimization problem according to Lemma 7:

min
π̂i

∑
a

π̂i−1(a|st) log
π̂i−1(a|st)
π̂i(a|st)

s.t. π̂i(at|st) ≥ min (hri−1π(at|st), 1),∑
a

π̂i(a|st) = 1,

π̂i(a|st) > 0, (30)

By using the KKT conditions, we get:

π̂i∗,off(a|st) =

{
π̂i−1(a|st)(1−min (hri−1π(at|st),1))

1−π̂i−1(a|st) , a 6= at

min (hri−1π(at|st), 1), a = at
(31)

When Aπ,π̂
i−1

(st,at) > 0 and hri−1π(at|st) ≤ 1, the KL divergence is:

Dst
KL(π̂i−1, π̂i∗,off) = (1− π̂i−1(a|st)) log

1− π̂i−1(a|st)
1− π̂i−1(a|st) · h

− π̂i−1(a|st) log (h). (32)

For Dst
KL(π̂i−1, π̂i∗,on), we can directly applying Eq. (28) of appendix in (Wang et al., 2019) in our

setting. Then we can get Dst
KL(π̂i−1, π̂i∗,off) equals Dst

KL(π̂i−1, π̂i∗,on), when Aπ,π̂
i−1

(st,at) > 0

and hri−1π(at|st) ≤ 1. when Aπ,π̂
i−1

(st,at) > 0 and hri−1π(at|st) > 1, we have
Dst

KL(π̂i−1, π̂i∗,off) = +∞ = Dst
KL(π̂i−1, π̂i∗,on).

Combining above results on two cases (Aπ,π̂
i−1

(st,at) ≤ 0 and Aπ,π̂
i−1

(st,at) > 0.), we have
proven Dst

KL(π̂i−1, π̂i∗,off) = Dst
KL(π̂i−1, π̂i∗,on) for any timestep t. Based on such fact, we can

conclude that maxtD
st
KL(π̂i−1, π̂i∗,off) = maxtD

st
KL(π̂i−1, π̂i∗,on).

B EXPERIMENTAL DETAILS

B.1 PSEUDO CODE

The pseudo code for our OPSPO is given in Alg. 1. The pseudo code for learning state density ratio
ωi(s) is given in Alg. 2.

B.2 IMPLEMENTATION OF STATE DISTRIBUTION CORRECTION
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Algorithm 1: Off-Policyness-aware Sequential Policy Optimization (OPSPO)

1 Initial the joint policy π0 = {π1
0 , . . . , π

n
0 }, and the global value function V .

2 for iteration m = 1, 2, . . . do
3 Collect data using πm−1 = {π1

m−1, . . . , π
n
m−1}.

4 for Order i = 1, . . . , n do
5 Joint policy π̂i = {π1

0 , . . . , π
i
m, π

i+1
m−1, . . . , π

n
m−1}.

6 Compute state density ratio ωi−1 via Alg. 2.
7 Compute the advantage estimation as Aπ,π̂

i−1

(s,a) via Eq. 15.

8 Compute the value target V π,π̂
i−1

Target (st) via Eq. 14.
9 Compute the clip range

(
liri−1, hiri−1

)
.

10 for P epochs do
11 πim = arg maxπim L̃

Our
π̂i−1(π̂i) as in Eq. 20.

12 V = arg minV Es∼dπ‖V π,π̂
i−1

Target (s)− V (s)‖2.

Algorithm 2: Optimization of state density ratio ωi(s)
1 Input: Transition data D from ωn behavior joint policies, πk−ωn+1, · · · ,πk; a target policy
π̂ik. Discount factor γ ∈ (0, 1), starting state D0 from initial distribution, T = ωe,K = fe,
πmix = 1

ωn

∑k
j=k−ωn+1 πj(a|s).

2 Initial the density ratio ω(s) = ωθi(s) to be a neural network parameterized by θi,
f(s) = fψi(s) to be a neural network parameterized by ψi.

ωmix
∆ (s,a, s′) =

(
ω(s′)− ω(s)

π̂ik(a|s)
πmix(a|s)

)
.

3 for iteration 1, 2, . . . , T do
4 Randomly choose a batchM uniformly from the transition data D and a batchM0

uniformly from start states D0.
5 for iteration = 1, 2, . . . ,K do
6 Update the parameter ψi by ψi ← ψi + εψi∇ψiL̂(ωθi , fψi), where

L̂(ωθi , fψi) = γ
1

|M|
∑

(s,a,s′)∈M

ωmix
∆ (s,a, s′)f(s′)−(1−γ)

1

|M0|
∑
s∈M0

(
1−ω(s)

)
f(s)

7 Update the parameter θi by θi ← θi − εθi∇θiL̂(ωθi , fψi).

8 Output: the density ratio ωi = ωθi .

For the training of state density ratio ωi(s), we adapt the algorithm 2 in (Tang et al., 2020) to per-
form minimax optimization to train a neural network parameterized ωi(s; θi) and a neural network
parameterized test function f i(s;ψi). Moreover, to alleviate the partial coverage issue and bet-
ter predict ωi(s), we use a multi-behavior policies version (Chen et al., 2019) of BCH. Compared
with the original BCH, this variant allows us to use data collected by previous ωn policies, i.e.,
πk−ωn+1, · · · ,πk. The corresponding min-max problem formation is:

min
ω

max
f∈F

γE(s,a,s′)∼dπmix

[
ωmix

∆ (s,a, s′)f(s′)
]2

+ (1− γ)Es∼dπmix,0

[(
1− ω(s)

)
f(s)

]2
. (33)

where πmix = 1
ωn

∑k
j=k−ωn+1 πj(a|s), πk is the lastest behavior policy, ωn is the number of

behavior policies, dπmix is state distribution under πmix, ωmix
∆ (s,a, s′) =

(
ω(s′)−ω(s) π

i(a|s)
πmix(a|s)

)
, dπ0

is an initial state distribution under πmix. A detail description can be found in Alg. 2.

Following the suggestion of previous work (Wang et al., 2023), we adopt a parameter sharing setting
in SMAC. This makes the sequential updating corrupted, making it very difficult to learn the exact
state density ratio ωi(s) by solving Eq. 17. To this end, we use step-wise weighted importance
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sampling to approximate ωi−1(st). Given m observed trajectories τmj=1, for the j-th trajectory τj
we define ωi−1

j (st) = 1
Zt

∏t
k=0

π̂i−1(ak|sk)
π(ak|sk) , (ak, sk) ∼ τj , where Zt =

∑m
j=1 ω

i−1
j (st).

B.3 HYPER-PARAMETERS

We list the hyper-parameters used for each task of SMAC in Tab 2. Other parameters use the default
settings in A2PO (Wang et al., 2023).

Table 2: Hyper-parameters in SMAC.
Tasks ppo epoch γ ε1 ε2
8m vs 9m 15 0.95 0.2 0.05
5m vs 6m 10 0.93 0.1 0.05
3s5z 10 0.95 0.2 0.05
10m vs 11m 10 0.95 0.2 0.05
MMM2 10 0.95 0.2 0.05
3s5z vs 3s6z 8 0.90 0.2 0.1
27m vs 30m 8 0.95 0.2 0.05
6h vs 8z 8 0.95 0.2 0.1
corridor 8 0.95 0.2 0.1

For MA-MuJoCo, the output from the last layer is processed by a Tanh layer and the action dis-
tribution is modeled as a Gaussian distribution initialized with mean as 0 and log std as -0.5. The
probability output of different actions are averaged when computing the policy ratio. We list the
hyper-parameters used for each task of MA-MuJoCo in Tab 3. The parameters not mentioned are
consistent with A2PO.

Table 3: Hyper-parameters in MA-MuJoCo.
Tasks ppo epoch γ ε1 ε2 ωe fe ωn
Ant-v2 8x1 8 0.93 0.2 0.1 10 5 20
Walker2d-v2 6x1 8 0.93 0.2 0.1 10 5 20
Hopper-v2 3x1 8 0.95 0.1 0.05 10 5 20
HalfCheetah-v2 6x1 8 0.93 0.2 0.1 10 5 20
Humanoid-v2 9|8 8 0.90 0.2 0.05 10 5 20
HumanoidStandup-v2 9|8 8 0.93 0.2 0.05 10 5 20

For GRF, We list the hyper-parameters used in the 5-vs-5 scenario in Tab. 4. The parameters not
mentioned are consistent with A2PO.

Table 4: Hyper-parameters in GRF.
Hyperparameters Values
ppo epoch 15
γ 0.95
ε1 0.2
ε2 0.1
ωe 5
ωf 5
ωn 10
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