EFFICIENT SEQUENTIAL POLICY OPTIMIZATION VIA OFF-POLICY CORRECTION IN MULTI-AGENT REIN FORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

Abstract

Although trust region policy optimization methods have achieved a lot of success in cooperative multi-agent tasks, most of them face a non-stationarity problem during the learning process. Recently, sequential trust region methods that update policies agent-by-agent have shed light on alleviating the non-stationarity problem. However, these methods are still less sample-efficient when compared to their counterparts (i.e., PPO) in a single-agent setting. To narrow this efficiency gap, we propose the Off-Policyness-aware Sequential Policy Optimization (OPSPO) method, which explicitly manages the off-policyness that arises from the sequential policy update process among multiple agents. We prove that our OPSPO has the tightness of the monotonic improvement bound compared with other trust region multi-agent learning methods. Finally, we demonstrate that our OPSPO consistently outperforms strong baselines under challenging multi-agent benchmarks, including StarCraftII micromanagement tasks, Multi-agent MuJoCo, and Google Research Football full game scenarios.

025 026 027

005 006

007

008 009 010

011

013

014

015

016

017

018

019

021

023

1 INTRODUCTION

028 029

Trust region learning (Kakade & Langford, 2002), as a class of policy gradient methods (Sutton 030 et al., 1999; Silver et al., 2014), have played an important role in recent advances in sinelg-agent re-031 inforcement learning (Schulman et al., 2015; Haarnoja et al., 2018). Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) and its variant Proximal Policy Optimization (PPO) (Schulman 033 et al., 2017) have been widely used in many fields (Mahmood et al., 2018; Baker et al., 2019; 034 Todorov et al., 2012) and achieved impressive experimental performance (Duan et al., 2016; Kurach 035 et al., 2020). The effectiveness of trust region methods mainly stems from their theoretically guaranteed policy optimization process. Specifically, by restricting the policy optimization to a smaller 037 neighborhood of the current policy, trust region learning obtains a guarantee of monotonic perfor-038 mance improvement at every iteration.

039 Recently, many works that adopt trust region learning to multi-agent reinforcement learning 040 (MARL) have been proposed, such as methods that use trust region learning to update each agent's 041 policy independently (De Witt et al., 2020; Yu et al., 2022), as well as methods that coordinate policy 042 updates between agents using trust region learning (Wu et al., 2021). However, these methods update 043 the agents simultaneously, that is, all agents perform policy optimization at the same time and can 044 not observe the change of other agents, which leads to the non-stationarity problem (Hernandez-Leal 045 et al., 2017) during training and hurts performance. To this end, recent works (Kuba et al., 2021; Wang et al., 2023) have proposed sequential trust region learning, which uses trust region learning to 046 sequentially execute agent-by-agent policy optimization. Sequential updates allow the later updated 047 agents to use changes made by preceding agents to optimize their own policies (Bertsekas, 2019), 048 thus stabilizing training. 049

However, the joint monotonic bounds of these trust region learning methods in MARL, both for
simultaneous and sequential updates, are much looser than that of their counterpart (i.e., PPO) in
the single agent setting, which leads to sample inefficiency (Li et al., 2022; Wang et al., 2023).
In this paper, we take a step toward narrowing this gap. We propose the Off-Policyness-aware
Sequential Policy Optimization (OPSPO) method, which enjoys the tightness of the joint mono-

tonic improvement bound compared with other trust region learning methods in MARL (see Tab. 1 055 and Theorem 2). Our key idea is to explicitly handle the off-policyness introduced by the sequen-056 tial policy update process among multiple agents. Specifically, we start with a vanilla extension of 057 TRPO in MARL, and then significantly improve the joint monotonic improvement bound by per-058 forming off-policy corrections on the state distribution and advantage estimation, respectively (see Sec. 3.2). Moreover, we also propose clip range correction which corrects the clip range in clippingbased surrogate objective according to the degree of off-policy (see Sec. 3.3), which further im-060 proves the performance of our practical algorithm. We test our OPSPO on three popular cooperative 061 multi-agent benchmarks: StarCraftII (SMAC) (Samvelyan et al., 2019), multi-agent MuJoCo (MA-062 MuJoCo) (de Witt et al., 2020), and Google Research Football (GRF) full game scenarios (Kurach 063 et al., 2020). On all benchmark tasks, our OPSPO consistently outperforms strong baselines with a 064 large margin in both performance and sample efficiency. 065

In summary, we make three contributions: (i) We propose a novel sequential trust region learning
 method in MARL, which explicitly handles the off-policyness caused by the sequential policy update
 process among multiple agents. We further prove that our method enjoys the tightness of the joint
 monotonic improvement bound compared with other trust region learning methods in MARL; (ii)
 We propose a practical clipping-based algorithm with clip-range off-policy correction that can further improve performance; and (iii) Our method significantly outperforms the previous trust region
 learning methods on three challenging multi-agent benchmarks, including SMAC, MA-MuJoCo, and GRF.

The paper is organized as follows: Sec. 2 provides a background. Sec. 3 introduces the derivation process of our OPSPO. Sec. 4 presents the experimental studies, and Sec. 5 reviews some related works. Finally, Sec. 6 concludes the paper.

077 078

079

081 082

083

096

098

100 101

2 BACKGROUND

In this section, we first introduce the problem formulation and notations for MARL, and then briefly review trust region learning in MARL.

2.1 MARL PROBLEM FORMULATION AND NOTATIONS

084 We consider formulating a cooperative multi-agent task as a decentralized Markov decision pro-085 cess (DEC-MDP) (Bernstein et al., 2002). An n-agent DEC-MDP can be defined by a tuple 086 $(\mathcal{S}, \mathcal{A}, \mathcal{N}, \mathbb{P}, \mathcal{R}, \gamma)$, where $\mathcal{N} = \{1, \ldots, n\}$ is the set of agents. \mathcal{S} is the state space. $\mathcal{A} = \{1, \ldots, n\}$ 087 $\mathcal{A}^1 \times \cdots \times \mathcal{A}^n$ is the joint action, where \mathcal{A}^i is the action space of agent *i*. The transition func-088 tion \mathbb{P} : $\mathcal{S} \times \mathcal{A}^n \to \Delta(\mathcal{S})$ maps the state s_t and the joint action $a_t \in \mathcal{A}$ at time step t to 089 a distribution over the next state s_{t+1} . All agents receive a collective reward $r_t = \mathcal{R}(s_t, a_t)$ according to the reward function $\mathcal{R} : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$. $\gamma \in [0,1]$ is a discount factor. At each time step t, each agent i takes individual action from its policy $\pi^i(\cdot|s_t)$ according to the 091 state s_t , forming the joint action $a_t = \{a_t^1, \dots, a_t^n\}$. All agent's policy π^i form a joint policy 092 $\pi(\cdot|s_t) = \pi^1 \times \cdots \times \pi^n$. The joint policy π induces a normalized discounted state visitation dis-093 tribution $d^{\pi}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t Pr(s_t = s | \pi)$, where $Pr(\cdot | \pi) : S \to \Delta(S)$ is the probability 094 function under a joint policy π . We then define the value function: 095

$$V^{\boldsymbol{\pi}}(s) = \mathbb{E}_{\tau \sim (\mathbb{P}, \boldsymbol{\pi})} [\sum_{t=0}^{\infty} \gamma^t r_t | s_0 = s], \tag{1}$$

and the advantage function:

$$A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) = r_t + \gamma \mathbb{E}_{s' \sim \mathbb{P}(\cdot|s,\boldsymbol{a})} [V^{\boldsymbol{\pi}}(s')] - V^{\boldsymbol{\pi}}(s),$$
(2)

where τ denotes one sampled trajectory. The agents' objective is to find a optimal joint policy π^* that can maximize their expected return, denoted as:

$$\boldsymbol{\pi}^* = \arg \max_{\boldsymbol{\pi}} \mathcal{J}(\boldsymbol{\pi}) = \arg \max_{\boldsymbol{\pi}} \mathbb{E}_{\tau \sim (\mathbb{P}, \boldsymbol{\pi})} \big[\sum_{t=0}^{\infty} \gamma^t r_t \big], \tag{3}$$

107 where $\mathcal{J}(\pi)$ is the performance of joint policy π . In this paper, we follow the standard centralized training with decentralized execution paradigm (Rashid et al., 2018).

Table 1: Comparing the joint monotonic improvement bounds of trust region MARL algorithms. The proofs of the monotonic bounds can be found in Appendix A.3 and A.4. We sort these al-110 gorithms by the tightness of their bounds. MAPPO has the loosest bound and our method has the 111 tightest bound. 112

Algorithm	Update Scheme	Joint Monotonic Improvement Bound (\downarrow)
MAPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \frac{\alpha^{i}}{1-\gamma}$
CoPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
НАРРО	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{i=1}^{n} \alpha^{j})} \right)$
A2PPO	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{i} \alpha^{j})}\right) + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}$
OPSPO (Ours)	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})}\right) + \frac{\sum_{i=1}^{n} \alpha^{i} \delta^{i} \xi^{i}}{1-\gamma} + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}$
	Algorithm MAPPO CoPPO HAPPO A2PPO OPSPO (Ours)	AlgorithmUpdate SchemeMAPPOSimultaneousCoPPOSimultaneousHAPPOSequentialA2PPOSequentialOPSPO (Ours)Sequential

TRUST REGION POLICY OPTIMIZATION 2.2

126 **Trust Region Methods in RL** As a popular trust region policy optimization method, Trust Region Policy Optimization (TRPO) (Schulman et al., 2015) were proposed in single-agent RL and has the guarantee of monotonic performance improvement of $\mathcal{J}(\pi)$ at every iteration. If we define the surrogate objective:

 $\mathcal{L}_{\pi_{\text{old}}}(\pi_{\text{new}}) = \mathcal{J}(\pi_{\text{old}}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim (d^{\pi_{\text{old}}}, \pi_{\text{new}})}[A^{\pi_{\text{old}}}(s, a)],$

and let $\alpha = D_{\text{TV}}^{\text{max}}(\pi_{\text{old}}, \pi_{\text{new}}) = \max_{s} D_{\text{TV}}(\pi_{\text{old}}(\cdot|s), \pi_{\text{new}}(\cdot|s))$ where D_{TV} is the total variation

$$\begin{split} |\mathcal{J}(\pi_{\text{new}}) - \mathcal{L}_{\pi_{\text{old}}}(\pi_{\text{new}})| &\leq 4\alpha \max_{s,a} |A^{\pi_{\text{old}}}(s,a)| \big(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha)}\big) \\ &\leq \frac{4\gamma \max_{s,a} |A^{\pi_{\text{old}}}(s,a)|}{(1-\gamma)^2} \alpha^2. \end{split}$$

distance, TRPO has the following policy monotonic improvement bound:

(4)

(5)

123 124

125

127

128

108

132

133 134

135

136 137

138

139

140 Eq. 5 states that as the distance between the old policy π_{old} and a new policy π_{new} decreases, the 141 surrogate objective $\mathcal{L}_{\pi_{old}}(\pi_{new})$ becomes an increasingly accurate estimate of the actual performance 142 metric $\mathcal{J}(\pi_{\text{new}})$. This also implies that a tighter bound improves expected performance by opti-143 mizing the surrogate objective more effectively (Li et al., 2022). Proximal Policy Optimization (PPO) (Schulman et al., 2017) uses a clipping-based surrogate objective to approximate TRPO, 144 which is defined as: 145

$$\mathcal{L}_{\pi_{\text{old}}}^{\text{CLIP}}(\pi_{\text{new}}) = \mathbb{E}_{(s,a)\sim(d^{\pi_{\text{old}}},\pi_{\text{new}})} \Big[\min\big(\frac{\pi_{\text{new}}(a|s)}{\pi_{\text{old}}(a|s)} A^{\pi_{\text{old}}}(s,a), \text{clip}\big(\frac{\pi_{\text{new}}(a|s)}{\pi_{\text{old}}(a|s)}, 1 \pm \epsilon\big) A^{\pi_{\text{old}}}(s,a) \big) \Big].$$
(6)

148 149

146 147

150 Trust Region Methods in MARL Next, we briefly review recent works that extend the trust 151 region method to the MARL setting. (Yu et al., 2022) proposes Multi-Agent PPO (MAPPO) which 152 is a variant of PPO with centralized critics. (Wu et al., 2021) proposes Coordinate PPO (CoPPO), which obtains a tighter monotonic bound than MAPPO by considering the coordinated adaptation of 153 step size. As we mentioned earlier, a tighter bound means that CoPPO has theoretically better sample 154 efficiency than MAPPO (Li et al., 2022; Wang et al., 2023). Heterogeneous PPO (HAPPO) (Kuba 155 et al., 2021) is the first work to combine the sequential update scheme with trust region methods. 156 Although HAPPO does not achieve a tighter bound than COPPO, it is more stable in training than 157 the simultaneous trust region policy optimization methods, such as MAPPO and CoPPO. Agent-by-158 agent Policy Optimization (A2PO) (Wang et al., 2023) further improves the sample efficiency by 159 considering the update orders of agents. 160

However, compared with the monotonic bound of TRPO in the single-agent setting, the monotonic 161 bounds of above multi-agent trust region methods are still loose, which lead to sample inefficiency. In this paper, we narrow this gap by carefully handling the off-policyness caused by the sequential policy update process among multiple agents. As shown in Tab. 1, our OPSPO obtains the tightest joint monotonic bound compared to previous multi-agent trust region methods. Moreover, compared to TRPO, our single agent monotonic bound (see Theorem 1) only has two additional estimation error terms, which can theoretically converge to zero under mild assumptions.

3 OFF-POLICYNESS-AWARE SEQUENTIAL POLICY OPTIMIZATION

We first give a native extension of TRPO in sequential updating in MARL in Sec. 3.1. Then, we propose a novel method that greatly improves the monotonic bound by carefully handling the off-policyness of this TRPO's native extension, in Sec. 3.2. Finally, we give a practical algorithm in Sec. 3.3.

173 174 175

176

180 181

187

197

199

207 208

215

167 168

169 170

171

172

3.1 SEQUENTIAL TRUST REGION POLICY OPTIMIZATION

Sequential Policy Optimization in MARL We now have an old joint policy π and some data collected by the old policy π . Our goal is to get a new joint policy $\bar{\pi}$ updated from the old joint policy π by using the collected data. The general policy optimization process can be defined as:

$$\pi \xrightarrow[]{\operatorname{Max}_{\pi} \mathcal{G}_{\pi}(\bar{\pi})}{\operatorname{Update} \pi} \bar{\pi},$$

where $\mathcal{G}_{\pi}(\bar{\pi})$ is the joint surrogate objective of updating all agents. Without loss of generality, we assume agents are updated in the order $1, 2, \dots, n$, and define $\bar{\pi}^i$ as the updated policy of agent *i*. We denote the joint policy after updated agent *i* as $\hat{\pi}^i = \bar{\pi}^1 \times \dots \times \bar{\pi}^i \times \pi^{i+1} \times \dots \times \pi^n$, and define $\hat{\pi}^0 = \pi$ and $\hat{\pi}^n = \bar{\pi}$. A general sequential policy optimization process can be defined as:

$$\pi = \hat{\pi}^0 \xrightarrow[\text{Update } \pi^1]{\text{Update } \pi^1} \hat{\pi}^1 \to \dots \to \hat{\pi}^{n-1} \xrightarrow[\text{Update } \pi^n]{\text{Update } \pi^n} \hat{\pi}^n = \bar{\pi}$$

where $\mathcal{L}_{\hat{\pi}^{i-1}}(\hat{\pi}^i) = \mathcal{J}(\hat{\pi}^{i-1}) + \mathcal{C}(\hat{\pi}^i, \pi)$ is the surrogate objective for agent *i*, and $\mathcal{G}_{\pi}(\bar{\pi}) = \mathcal{J}(\pi) + \sum_{i=1}^{n} \mathcal{C}(\hat{\pi}^i, \pi)$. The main difference between sequential policy optimization methods (such as HAPPO and A2PO) lies in the specific design of $\mathcal{C}(\hat{\pi}^i, \pi)$.

In this paper, we focus on how to design $\mathcal{L}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$ for each agent, so that the monotonic improvement bound $|\mathcal{J}(\bar{\pi}) - \mathcal{G}_{\pi}(\bar{\pi})| \leq B$ of the joint surrogate objective $\mathcal{G}_{\pi}(\bar{\pi})$ is more tighter. That is to make the bound *B* as small as possible. A tighter bound improves expected performance by optimizing the surrogate objective more effectively (Li et al., 2022).

196 Moreover, we note that the following inequality holds:

$$|\mathcal{J}(\bar{\boldsymbol{\pi}}) - \mathcal{G}_{\boldsymbol{\pi}}(\bar{\boldsymbol{\pi}})| = |\mathcal{J}(\hat{\boldsymbol{\pi}}^n) - \mathcal{J}(\hat{\boldsymbol{\pi}}^0) - \sum_{i=1}^n \mathcal{C}(\hat{\boldsymbol{\pi}}^i, \boldsymbol{\pi})| \le \sum_i^n |\mathcal{J}(\hat{\boldsymbol{\pi}}^i) - \mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^i)|, \quad (7)$$

which means that the tighter single-agent monotonic bound can lead to the tighter joint monotonic
 bound. Based on this observation, we mainly discuss the single-agent monotonic bound in the
 following sections.

Vanilla Sinlge-Agent Surrogate Objective If we natively extend the objective of TRPO (i.e., Eq. 4) to the multi-agent sequential policy optimization, then a vanilla sinlge-agent surrogate objective $\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{VAN}}(\hat{\pi}^i)$ is obtained, which can be defined as:

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}^{\text{VAN}}(\hat{\boldsymbol{\pi}}^{i}) = \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}}, \hat{\boldsymbol{\pi}}^{i})} [A^{\boldsymbol{\pi}}(s, \boldsymbol{a})].$$
(8)

Similar to Eq. 5, we can give a single-agent policy monotonic improvement bound of the vanilla surrogate objective $\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{VAN}}(\hat{\pi}^i)$, as elaborated in the following proposition.

Proposition 1. For agent *i*, let $\epsilon^i = \max_{s,a} |A^{\hat{\pi}^{i-1}}(s,a)|$, $\Delta^i = \max_{s,a} |A^{\hat{\pi}^{i-1}}(s,a) - A^{\pi}(s,a)|$, $\alpha^i = D_{TV}^{max}(\pi^i, \bar{\pi}^i)$, where $D_{TV}(p,q)$ is the total variation distance between distributions *p* and *q* and we define $D_{TV}^{max}(\pi, \bar{\pi}) = \max_s D_{TV}(\pi(\cdot|s), \bar{\pi}(\cdot|s))$, then we have:

$$|\mathcal{J}(\hat{\pi}^{i}) - \mathcal{L}_{\hat{\pi}^{i-1}}^{V\!A\!N}(\hat{\pi}^{i})| \le 4\alpha^{i}\epsilon^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i}-\sum_{j=1}^{i-1}\alpha^{j})}\right) + \frac{1}{1-\gamma}\Delta^{i}.$$
 (9)

216 For proof see Appendix A.2. Compared with the bound of TRPO (Eq. 5), the bound of the vanilla For proof see Appendix A.2. Compared with the bound of TRUC (Eq. 5), the bound of the dama single-agent objective $\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{VAN}}(\hat{\pi}^i)$ (Eq. 9) is too looser because there are two extra terms (the blue term and the orange term). The extra terms appear because we do not strictly follow TRPO's sur-rogate objective (Eq. 4)to design $\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{VAN}}(\hat{\pi}^i)$ (Eq. 8). Specifically, we replace the normalized dis-counted state visitation distribution $d^{\hat{\pi}^{i-1}}$ induced by $\hat{\pi}^{i-1}$ with the distribution d^{π} induced by π , 217 218 219 220 221 and this substitution leads to the appearance of the blue term $\sum_{j=1}^{i-1} \alpha^j$. We also replace the advan-222 tage estimation $A^{\hat{\pi}^{i-1}}(s, a)$ under $\hat{\pi}^{i-1}$ with the advantage estimation $A^{\pi}(s, a)$ under π , and this 223 substitution leads to the appearance of the orange term Δ^i . These substitutions are due to the fact that we do not have the data under the joint policy $\hat{\pi}^{i-1}$, only the data collected by the old joint policy π . Overall, the off-policyness of vanilla objective $\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{VAN}}(\hat{\pi}^i)$ leads to its looser monotonic 224 225 226 bound. 227

3.2 IMPROVING JOINT MONOTONIC BOUND BY OFF-POLICY CORRECTION

In this section, we introduce Off-Policyness-aware Sequential Policy Optimization (OPSPO), a novel algorithm that greatly improves the single-agent monotonic bound by carefully handling the off-policyness of TRPO's native extension (i.e., Eq. 8). This tighter single-agent monotonic bound naturally leads to a tighter joint monotonic bound, which is what we are looking for. To the best of our knowledge, our OPSPO obtains by far the tightest joint bound compared to previous methods.

Our core idea is to perform off-policy corrections on the state distribution and advantage estimation, respectively. A similar off-policy correction idea is also used to adjust the clip range of each agent to stabilize training (Sec. 3.3).

Our Surrogate Objective Our single-agent surrogate objective $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$ is defined as:

$$\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}) = \mathcal{J}(\hat{\pi}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi,\pi^{i-1}},\hat{\pi}^{i})} [A^{\pi,\pi^{i-1}}(s,\boldsymbol{a})],$$
(10)

where $d^{\pi,\pi^{i-1}}$ is an approximation of $d^{\pi^{i-1}}$ using data collected by π , and $A^{\pi,\pi^{i-1}}(s,a)$ is also an approximation of $A^{\pi^{i-1}}(s,a)$ using data collected by π . Based on $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i})$, our joint surrogate objective $\mathcal{G}^{\text{Our}}_{\pi}(\pi)$ is defined as:

 $\mathcal{G}_{\pi}^{\text{Our}}(\bar{\pi}) = \mathcal{J}(\pi) + \frac{1}{1-\gamma} \sum_{i=1}^{n} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi,\pi^{i-1}}, \hat{\pi}^{i})} [A^{\pi,\pi^{i-1}}(s,\boldsymbol{a})].$ (11)

We first analysis the single-agent/joint monotonic bound of our $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$, and then discuss the details of these approximations.

Theorem 1 (Corrected Single-Agent Monotonic Bound). For agent *i*, let $\epsilon^{i} = \max_{s,a} |A^{\hat{\pi}^{i-1}}(s,a)|$, $\xi^{i} = \max_{s,a} |A^{\pi,\hat{\pi}^{i-1}}(s,a) - A^{\hat{\pi}^{i-1}}(s,a)|$, $\delta^{i} = \sum_{s} |d^{\pi,\hat{\pi}^{i-1}}(s) - d^{\hat{\pi}^{i-1}}(s)|$, $\alpha^{i} = D_{TV}^{max}(\pi^{i}, \bar{\pi}^{i})$, where $D_{TV}(p,q)$ is the total variation distance between distributions *p* and *q* and we define $D_{TV}^{max}(\pi, \bar{\pi}) = \max_{s} D_{TV}(\pi(\cdot|s), \bar{\pi}(\cdot|s))$, then we have:

$$\begin{aligned} |\mathcal{J}(\hat{\pi}^{i}) - \mathcal{L}^{Our}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i})| &\leq 4\alpha^{i}\epsilon^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})}\right) + \frac{1}{1-\gamma}\alpha^{i}\delta^{i}\xi^{i} + \frac{1}{1-\gamma}\xi^{i} \\ &\leq \frac{4\gamma\epsilon^{i}}{(1-\gamma)^{2}}(\alpha^{i})^{2} + \frac{1}{1-\gamma}\alpha^{i}\delta^{i}\xi^{i} + \frac{1}{1-\gamma}\xi^{i}. \end{aligned}$$
(12)

261 262

228

229

239

240 241 242

243 244

245

246

247

248 249 250

251

For proof see Appendix A.3. Compared to the bound (Eq. 9) of the vanilla objective $\mathcal{L}_{\hat{\pi}^{i-1}}^{VAN}(\hat{\pi}^{i})$, although the bound (Eq. 12) of our method also has two extra terms, it has better theoretical properties. First, the first term in our bound is exactly the same as the first term of the original TRPO's bound (Eq. 5), which suggests that as long as the last two terms are small enough, our $\mathcal{L}_{\hat{\pi}^{i-1}}^{Our}(\hat{\pi}^{i})$ will get a very tight bound. Second, in our last two terms, δ^{i} is the error of approximating d^{π} with $d^{\pi,\hat{\pi}^{i-1}}$, and ξ^{i} is the error of approximating $A^{\hat{\pi}^{i-1}}$ with $A^{\pi,\hat{\pi}^{i-1}}$. As the accuracy of these approximations improve, δ^{i} and ξ^{i} become smaller and even converge to zero. In contrast, the extra terms in Eq. 12 do not go to zero. Third, our blue term is doubly robust, which is considered to be a good theoretical property (Dudík et al., 2011; Tang et al., 2020; Jiang & Li, 2016). We can see that if $A^{\pi,\hat{\pi}^{i-1}}$ is exact (i.e., $A^{\pi,\hat{\pi}^{i-1}} = A^{\hat{\pi}^{i-1}}$), we have $\xi^i = 0$; if $d^{\pi,\hat{\pi}^{i-1}}$ is exact (i.e., $d^{\pi,\hat{\pi}^{i-1}} = d^{\hat{\pi}^{i-1}}$), we have $\delta^i = 0$. Therefore, our blue term goes to zero, if either $A^{\pi,\hat{\pi}^{i-1}}$ or $d^{\pi,\hat{\pi}^{i-1}}$ are exact. The blue term is thus doubly robust in this sense. Fourth, as we show later, using advanced approximation methods, both δ^i and ξ^i can theoretically go to zero.

Given the such tight single-agent bound, we can prove that our joint objective has the tightest mono-tonic improvement bound compared to previous methods, as elaborated in the following theorem.
We present the joint monotonic bounds of other algorithms in Tab. 1.

Theorem 2 (Corrected Joint Monotonic Bound). For each agent $i \in \mathcal{N}$, let $\epsilon^i = \max_{s,a} |A^{\hat{\pi}^{i-1}}(s,a)|$, $\epsilon = \max_i \epsilon^i$, $\xi^i = \max_{s,a} |A^{\pi,\hat{\pi}^{i-1}}(s,a) - A^{\hat{\pi}^{i-1}}(s,a)|$, $\delta^i = \sum_s |d^{\pi,\hat{\pi}^{i-1}}(s) - d^{\hat{\pi}^{i-1}}(s)|$, $\alpha^i = D_{TV}^{max}(\pi^j, \bar{\pi}^j)$, then we have:

$$\begin{aligned} |\mathcal{J}(\bar{\pi}) - \mathcal{G}_{\pi}^{Our}(\bar{\pi})| &\leq 4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})} \right) + \frac{\sum_{i=1}^{n} \alpha^{i} \delta^{i} \xi^{i}}{1-\gamma} + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma} \\ &\leq \frac{4\gamma\epsilon}{(1-\gamma)^{2}} \sum_{i=1}^{n} (\alpha^{i})^{2} + \frac{\sum_{i=1}^{n} \alpha^{i} \delta^{i} \xi^{i}}{1-\gamma} + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}. \end{aligned}$$
(13)

285 286 287

288

289

290

291

292

293

300

301

302 303

304

305 306

279

For proof see Appendix A.3. As shown in Eq. 13 and Tab. 1, since our first term $(4\epsilon \sum_{i=1}^{n} \alpha^{i}(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})}))$ is smallest compared to first terms of other methods, our method achieves the tightest joint monotonic bound if δ^{i} and ξ^{i} , $\forall i \in \mathcal{N}$ are small enough. The assumption about δ^{i} and ξ^{i} is valid, because both δ^{i} and ξ^{i} can theoretically go to zero, when advanced approximation methods are used.

Advantage Estimation Correction Recall that we can use temporal difference error to approximate an advantage function (Sutton & Barto, 2018). That is $A^{\hat{\pi}^{i-1}}(s_t, a_t) \approx r + \gamma V^{\hat{\pi}^{i-1}}(s_{t+1}) - V^{\hat{\pi}^{i-1}}(s_t)$. Thus, to approximate $A^{\hat{\pi}^{i-1}}(s_t, a_t)$ using data collected by π , we only need to use V-trace operator (Espeholt et al., 2018) to approximate $V^{\hat{\pi}^{i-1}}(s)$. Given a trajectory $(s_k, a_k, r_k)_{k=t}^T$ collected by π , the V-trace target for our value approximation $V(s_{t+1})$ can be defined as:

 $V_{\text{Target}}^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s_t) = V(s_t) + \sum_{k=t}^{T-1} \gamma^{k-t} (\prod_{j=t}^k c_j) \big(r_t + \gamma V(s_{t+1}) - V(s_t) \big), \tag{14}$

where $c_j = \lambda \min\left(1.0, \frac{\hat{\pi}^{i-1}(\boldsymbol{a}_j|s_j)}{\pi(\boldsymbol{a}_j|s_j)}\right)$ and λ is a hyper-parameter. Based on Eq. 14, we can get $A^{\pi, \hat{\pi}^{i-1}}(s_t, \boldsymbol{a}_t)$ by:

$$A^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i^{-1}}}(s_t, \boldsymbol{a}_t) = r_t + \gamma V(s_{t+1}) - V(s_t).$$
(15)

Since V-trace operator (Espeholt et al., 2018) has been proven to be a γ -contraction mapping, the error between $V^{\hat{\pi}^{i-1}}(s)$ and V(s) theoretically converges to zero when using the target $V_{\text{Target}}^{\pi,\hat{\pi}^{i-1}}(s_t)$ to update value function V. Obviously, $\xi^i = \max_{s,a} |A^{\pi,\hat{\pi}^{i-1}}(s, a) - A^{\hat{\pi}^{i-1}}(s, a)|$ also theoretically goes to zero.

State Distribution Correction To approximate $d^{\hat{\pi}^{i-1}}(s)$ using data collected by π , we use BCH (Liu et al., 2018) to estimate stationary state density ratio $\omega^{i-1}(s) = d^{\pi^{i-1}}(s)/d^{\pi}(s)$. It has been proved that $\omega^{i-1}(s)$ can be approximated by finding a function ω over data which minimizes max_fL(ω , f), defined as:

$$L(\omega, f) = \gamma \mathbb{E}_{(s, \boldsymbol{a}, s') \sim d^{\pi}} \Big[\omega_{\Delta}(s, \boldsymbol{a}, s') f(s') \Big] + (1 - \gamma) \mathbb{E}_{s \sim d_0^{\pi}} \Big[\Big(1 - \omega(s) \Big) f(s) \Big],$$
(16)

317 318 319

323

where $\omega_{\Delta}(s, \boldsymbol{a}, s') = \left(\omega(s') - \omega(s) \frac{\pi^{i-1}(\boldsymbol{a}|s)}{\pi(\boldsymbol{a}|s)}\right), d_0^{\pi}$ is an initial state distribution under π . Then $\omega(s) = \omega^{i-1}(s) = d^{\pi^{i-1}}(s)/d^{\pi}(s)$ if and only if $L(\omega, f) = 0$ for any measurable test function f. The above equation can be solved by the following min-max problem (Liu et al., 2018):

$$\min_{\omega} \max_{f \in \mathcal{F}} \gamma \mathbb{E}_{(s,\boldsymbol{a},s') \sim d^{\pi}} \left[\omega_{\Delta}(s,\boldsymbol{a},s') f(s') \right]^2 + (1-\gamma) \mathbb{E}_{s \sim d_0^{\pi}} \left[\left(1 - \omega(s) \right) f(s) \right]^2, \tag{17}$$

where \mathcal{F} is a test function space. Based on the above discussion, if we define $d^{\hat{\pi}, \hat{\pi}^{i-1}}(s)$ by:

$$d^{\hat{\boldsymbol{\pi}},\hat{\boldsymbol{\pi}}^{i-1}}(s) = \omega(s)d^{\boldsymbol{\pi}}(s),\tag{18}$$

then it has been proven that $\max_s |d^{\pi^{i-1}}(s) - d^{\hat{\pi}, \hat{\pi}^{i-1}}(s)| \leq \max_{f \in \mathcal{F}} L(\omega, f)$ if the test function space \mathcal{F} is sufficiently rich (Liu et al., 2018). In other words, δ^i theoretically will become small enough when using Eq. 18 to learn $\omega(s)$. Details of learning $\omega(s)$ can be found in Appendix B.2 and Alg. 2.

3.3 THE FINAL ALGORITHM

326

327

328

330

331 332 333

334

342

343 344

345

346 347

356

In this section, we give a practical implementation for optimizing our joint surrogate objective $\mathcal{G}^{\text{Our}}_{\pi}(\bar{\pi})$. We first give the native implementation $\tilde{\mathcal{L}}^{\text{Native}}_{\bar{\pi}^{i-1}}(\hat{\pi}^{i})$, and then give our improved implementation $\tilde{\mathcal{L}}^{\text{Our}}_{\bar{\pi}^{i-1}}(\hat{\pi}^{i})$. We summarize our proposed Off-Policyness-aware Sequential Policy Optimization (OPSPO) in Alg. 1.

If we directly follow the implementation of original PPO (Eq. 4) for our surrogate objective, we can get a native implementation $\hat{\mathcal{L}}_{\hat{\pi}^{i-1}}^{\text{Native}}(\hat{\pi}^{i})$:

$$\mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\hat{\boldsymbol{\pi}}^{i})}\bigg[\min\bigg(r^{i}\boldsymbol{r}^{i-1}\omega^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}},\operatorname{clip}\bigg(r^{i}\boldsymbol{r}^{i-1},l,h\bigg)\omega^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}\bigg)\bigg],\qquad(19)$$

where $r^{i} = \bar{\pi}^{i}(a^{i}|s)/\pi^{i}(a^{i}|s)$, $r^{i-1} = \hat{\pi}^{i-1}(a|s)/\pi(a|s)$, $l = 1 - \epsilon$, $h = 1 + \epsilon$, and $A^{\pi, \hat{\pi}^{i-1}}$ is short for $A^{\pi, \hat{\pi}^{i-1}}(s, a)$.

Clip Range Correction The main issue with the native implementation Eq. 19 is that due to the off-policyness, the joint policy ratio $r^i r^{i-1}$ is likely to be less than $l = 1 - \epsilon$ or greater than $h = 1 + \epsilon$, which results in some data being unable to provide gradients due to the clipped operation. To more fully utilize the data, we scale the base clip range (l, h) by a correction factor r^{i-1} that represents the degree of off-policy between $\hat{\pi}^{i-1}$ and π . The corrected clip range is (lr^{i-1}, hr^{i-1}) . Note that when $r^{i-1} = 1$, then $\hat{\pi}^{i-1} = \pi$, the corrected clip range reduces to the base clip range. It is important to highlight that, although we scale the clip range, training with the corrected range does not cause instability, as shown in the following theorem.

Theorem 3 (Stability of Corrected Clip Range). Let Π_{opt}^{i} as the optimal policy set maximizing $\tilde{\mathcal{L}}_{\hat{\pi}^{i-1}}^{Native}(\hat{\pi}^{i})$ with corrected clip range (lr^{i-1}, hr^{i-1}) , $\hat{\pi}_{*,off}^{i} \in \Pi_{opt}^{i}$ denotes the optimal joint policy, which achieves the minimum KL divergence over all optimal joint policies, i.e., $D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{*,off}^{i}(\cdot|s_t)) \leq D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{opt}^{i}(\cdot|s_t))$ for $\hat{\pi}_{opt}^{i} \in \Pi_{opt}^{i}$ at any timestep t, and let $\hat{\pi}_{*,on}^{i}$ have the similar definition for PPO with data collected by $\hat{\pi}^{i-1}$ and clip range (l,h), we have $\max_t D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{*,off}^{i}(\cdot|s_t)) = \max_t D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{*,on}^{i}(\cdot|s_t))$ for all timestep t.

For proof see Appendix A.5. Theorem 3 tells us that the degree of the policy update distance in $\tilde{\mathcal{L}}_{\hat{\pi}^{i-1}}^{\text{Native}}(\hat{\pi}^i)$ with the corrected clip range (lr^{i-1}, hr^{i-1}) is the same as that in PPO with the base clip range (l, h). In summary, although we scale the clip range, new joint policy $\hat{\pi}^i$ will not be far from the old one $\hat{\pi}^{i-1}$, so the training is stable.

Although we scale the base clip range (l, h) by a correction factor, the base clip range should not be the same for each agent, because each agent faces a different degree of off-policy. Intuitively, when the off-policy degree is large, we should use a smaller step size to update the agent, that is, reduce the clip range. Therefore, we dynamically adjust the base clip range of each agent by letting $l^i = \min \left[\max(r^{i-1}, 1/r^{i-1}) \cdot (1-\epsilon_1), 1-\epsilon_2 \right]$ and $h^i = \max \left[\min(r^{i-1}, 1/r^{i-1}) \cdot (1+\epsilon_1), 1+\epsilon_2 \right]$, where $\epsilon_2 < \epsilon_1$. After adjustment, the maximum *base* clip range is $(1 \pm \epsilon_1)$, and the minimum *base* clip range is $(1 \pm \epsilon_2)$.

To avoid gradient expansion caused by off-policyness when $A^{\pi,\hat{\pi}^{i-1}}(s, a) < 0$, we use the clipped joint policy ratio $\tilde{r}^{i-1} = \operatorname{clip}(r^{i-1}, 1 - \epsilon_1, 1 + \epsilon_1)$ (Wu et al., 2021). To stabilize training, we also use clip operation on $\omega^{i-1}(s)$ (Amortila et al., 2024), and use $\tilde{\omega}^{i-1}(s) = \min[\omega^{i-1}(s), 1.0]$.

Figure 1: Comparison of our method against baselines over 9 maps of SMAC with various difficulties.

Finally, our practical clipping-based objective $\tilde{\mathcal{L}}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$ for updating agent *i* is defined as:

$$\mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\hat{\boldsymbol{\pi}}^{i})}\left[\min\left(r^{i}\tilde{\boldsymbol{r}}^{i-1}\tilde{\omega}^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}},\operatorname{clip}\left(r^{i}\tilde{\boldsymbol{r}}^{i-1},l^{i}\tilde{\boldsymbol{r}}^{i-1},h^{i}\tilde{\boldsymbol{r}}^{i-1}\right)\tilde{\omega}^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}\right)\right].$$
(20)

Compared to the native implementation (Eq. 19), our Eq. 20 introduce a corrected clip range, including a correction factor and a dynamic base clip range, as well as some tricks for stabilizing
training.

4 EXPERIMENTS

In this section, we empirically evaluate and analyze our OPSPO in the widely-adopted cooperative multi agent benchmarks, including the StarCraftII Multi-agent Challenge (SMAC) (Samvelyan et al., 2019), Multi-agent MuJoCo (MA-MuJoCo) (de Witt et al., 2020), and Google Research Football (GRF) full game scenarios (Kurach et al., 2020).

We compare A2PO with advanced MARL trust-region methods. We first consider MAPPO (Yu et al., 2022) and CoPPO (Wu et al., 2021), which are popular simultaneous trust region learning methods. Then, we consider HAPPO (Kuba et al., 2021) and A2PO (Wang et al., 2023), which are advanced sequential trust region learning methods. Full experimental details can be found in Appendix B.

4.1 RESULTS ON CHALLENGING MULTI-AGENT BENCHMARKS

431 We evaluate our OPSPO in 9 maps of SMAC with various difficulties, 6 scenarios in MA-MuJoCo, and the 5-vs-5 full game scenarios in GRF. As shown in Fig. 1, Fig. 2, and Fig. 3, our method

450

451 452

454

458

461

462

463

464 465 466

467

468 469

481

Figure 2: Comparison of our method against baselines over 6 tasks in MA-MuJoCo with different number of robot joints.

Figure 3: Left: Comparison of our method against baselines in 5-vs-5 full game scenarios in Google Research Football. Right: Ablation studies for each component in our method on both discrete and continuous action space tasks.

consistently outperforms the strong baselines and achieves better performance and higher sample efficiency in all benchmarks. These experimental results strongly support the theoretical analysis in Sec. 3.

StarCraftII Multi-agent Challenge (SMAC) We first evaluate our method on cooperative tasks 470 with discrete action spaces. As shown in Fig. 1, thanks to the better theoretical foundation, i.e. 471 tighter policy monotonic improvement bound, and more flexible policy update step-size adjusted by 472 clip range correction, our method still shows higher sample efficiency even compared with the strong 473 baselines. In addition, our method consistently outperforms other baselines on all tasks, which show 474 the stability of our method. 475

476 Multi-agent MuJoCo environment (MA-MuJoCo) We then evaluate our method on more com-477 plex robotic control multi-agent tasks with continuous action spaces. The experimental results are 478 reported in Fig. 2. As we can see, our method significantly improves the final performance on al-479 most all tasks compared to the baselines. Moreover, we observe that as the complexity of the task 480 increases, our method generally shows increasing advantages over the baselines.

482 Google Research Football (GRF) We also evaluate our method in a full-game GRF scenario 483 with high-dimensional observations, complex action spaces, and long timescales, all of which pose difficulties for agents to discover complex coordination behaviors. As shown in Fig. 3 (left), our 484 method outperforms other methods by a large margin, which once again proves the superiority of 485 our method with a stronger theoretical basis.

486 4.2 ABLATIONS

488 This section studies how the experimental performance is affected by our proposed components, 489 such as advantage estimation correction (AEC), state distribution correction (SDC), and clip range 490 correction (CRC). We train agents with different components on a super hard task MMM2 in SMAC, which has a discrete action space, and a complex robotic control task Humanoid-v2 in MA-491 MuJoCo, which has a continuous action space. Results are reported in Fig. 3 (right). We make three 492 observations. First, ignoring any component hurts the task performance, which confirms the impor-493 tance of making off-policy corrections in different aspects. Second, advantage estimation correction 494 brings a very significant performance improvement, which is consistent with our theoretical analysis 495 that it affects both of the last two terms in our monotonic bound (Eq. 13). Third, although we scale 496 the clip range by clip range correction, it does not introduce instability in the training, which is also 497 consistent with the analysis in Sec. 3.3. 498

499

5 RELATED WORK

500 501

502 Trust Region Policy Optimization (Schulman et al., 2015) and Proximal Policy Optimization (Schul-503 man et al., 2017) are popular trust region methods in the single-agent scenario, which have strong 504 performance mainly due to the guarantee of monotonic policy improvement (Kakade & Langford, 505 2002). In multi-agent scenarios, De Witt et al. (2020) and Papoudakis et al. (2020) empirically study the performance of directly applying PPO to each agent in multi-agent tasks, and show the 506 inability of native extensions. Their work provides inspiration for subsequent research work. Yu 507 et al. (2022) propose Multi-agent PPO by introducing shared critics and many stable training tech-508 niques, and demonstrate strong performance on a large number of multi-agent tasks. Furthermore, 509 Wu et al. (2021) propose Coordinated Proximal Policy Optimization by considering the value de-510 composition (Sunehag et al., 2017) and coordinated adaptation of step size during the policy update 511 process among agents, and prove the monotonic improvement guarantee. In addition, there are many 512 other works (Wen et al., 2022; Li & He, 2023; Sun et al., 2022) that also discuss trust region methods 513 in MARL scenarios. However, these MARL algorithms suffer from non-stationarity issues due to 514 the simultaneous updating of agents. From the perspective of one agent, the environment dynamics 515 change because other agents also change their policies. As a result, the agent suffers from high 516 variance in gradients and requires more samples to converge (Hernandez-Leal et al., 2017). To this end, sequential updating rather than simultaneous updating has received increasing attention from 517 researchers. Sequential update allows the later updated agents to use changes made by preceding 518 agents to optimize their own policies (Bertsekas, 2019), which makes the environment faced by later 519 agents more stable. Kuba et al. (2021) propose Heterogeneous PPO which combines the sequential 520 update scheme (Bertsekas, 2019) with trust region methods, and demonstrates experimentally and 521 theoretically the advantages offered by sequential updating. Wang et al. (2023) further propose 522 Agent-by-agent Policy Optimization (A2PO) which systematically studies the impact of agent up-523 date order on performance and improves the theoretical basis of previous work (Kuba et al., 2021). 524

The most relevant work to ours is A2PO, which also improves TRPO under sequential policy optimization. A2PO mainly focuses on the impact of agent update order on policy optimization. In contrast, our work is entirely from an off-policy perspective and achieves the tightest bound to date by making off-policy corrections in three aspects: state distribution, advantage estimation, and clip range.

530

531 6 CONCLUSION

In this paper, we focus on trust region learning in the sequential policy optimization for cooperative multi-agent tasks. We introduce OPSPO, a sequential policy optimization method that explicitly handles the off-policyness caused by the sequential policy update process among agents. We prove that the joint monotonic bound achieved by our OPSPO is the tightest compared to existing trust region MARL methods. Experiments in various benchmarks demonstrate that OPSPO consistently outperforms several strong baselines in performance and sample efficiency in complex tasks. For future work, we plan to continue along the key idea of off-policy correction to improve the broader MARL methods.

540 REFERENCES

553

554

555

558

569

570

571

576

- Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and algorithms. *CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep*, 32:96, 2019.
- Philip Amortila, Dylan J Foster, Nan Jiang, Ayush Sekhari, and Tengyang Xie. Harnessing density ratios for online reinforcement learning. *arXiv preprint arXiv:2401.09681*, 2024.
- Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
 Mordatch. Emergent tool use from multi-agent autocurricula. *arXiv preprint arXiv:1909.07528*, 2019.
- Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized control of markov decision processes. *Mathematics of operations research*, 27(4): 819–840, 2002.
 - Dimitri Bertsekas. Multiagent rollout algorithms and reinforcement learning. *arXiv preprint arXiv:1910.00120*, 2019.
- Xinyun Chen, Lu Wang, Yizhe Hang, Heng Ge, and Hongyuan Zha. Infinite-horizon off-policy
 policy evaluation with multiple behavior policies. *arXiv preprint arXiv:1910.04849*, 2019.
- Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
 Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft multi-agent challenge? *arXiv preprint arXiv:2011.09533*, 2020.
- 562 Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer,
 563 and Shimon Whiteson. Deep multi-agent reinforcement learning for decentralized continuous
 564 cooperative control. *arXiv preprint arXiv:2003.06709*, 19, 2020.
- Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement learning for continuous control. In *International conference on machine learning*, pp. 1329–1338. PMLR, 2016.
 - Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. In Proceedings of the 28th International Conference on International Conference on Machine Learning, pp. 1097–1104, 2011.
- Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. In *International conference on machine learning*, pp. 1407–1416. PMLR, 2018.
- Geoff Gordon and Ryan Tibshirani. Karush-kuhn-tucker conditions. *Optimization*, 10(725/36):725, 2012.
- Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer ence on machine learning*, pp. 1861–1870. PMLR, 2018.
- Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz De Cote. A survey of learning in multiagent environments: Dealing with non-stationarity. *arXiv preprint arXiv:1707.09183*, 2017.
- Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
 International conference on machine learning, pp. 652–661. PMLR, 2016.
- Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In *Proceedings of the Nineteenth International Conference on Machine Learning*, pp. 267–274, 2002.
- Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
 Yang. Trust region policy optimisation in multi-agent reinforcement learning. *arXiv preprint* arXiv:2109.11251, 2021.

594 595 596 597	Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajac, Olivier Bachem, Lasse Espeholt, Car- los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel reinforcement learning environment. In <i>Proceedings of the AAAI Conference</i> on Artificial Intelligence, volume 34, pp. 4501–4510, 2020.
598 599 600	Hepeng Li and Haibo He. Multiagent trust region policy optimization. <i>IEEE Transactions on Neural Networks and Learning Systems</i> , 2023.
601 602	Hepeng Li, Nicholas Clavette, and Haibo He. An analytical update rule for general policy optimiza- tion. In <i>International Conference on Machine Learning</i> , pp. 12696–12716. PMLR, 2022.
603 604 605	Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite- horizon off-policy estimation. <i>Advances in neural information processing systems</i> , 31, 2018.
606 607 608	A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and James Bergstra. Benchmarking reinforcement learning algorithms on real-world robots. In <i>Conference on robot learning</i> , pp. 561–591. PMLR, 2018.
609 610 611 612	Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V Albrecht. Comparative evaluation of cooperative multi-agent deep reinforcement learning algorithms. <i>arXiv preprint arXiv:2006.07869</i> , 2020.
613 614 615	Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce- ment learning. In <i>International Conference on Machine Learning</i> , pp. 4295–4304. PMLR, 2018.
616 617 618	Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The starcraft multi-agent challenge. <i>arXiv preprint arXiv:1902.04043</i> , 2019.
620 621 622	John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In <i>International conference on machine learning</i> , pp. 1889–1897. PMLR, 2015.
623 624	John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. <i>arXiv preprint arXiv:1707.06347</i> , 2017.
625 626 627 628	David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deterministic policy gradient algorithms. In <i>International conference on machine learning</i> , pp. 387–395. Pmlr, 2014.
629 630	Mingfei Sun, Sam Devlin, Jacob Austin Beck, Katja Hofmann, and Shimon Whiteson. Monotonic improvement guarantees under non-stationarity for decentralized ppo. 2022.
631 632 633 634	Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-agent learning. <i>arXiv preprint arXiv:1706.05296</i> , 2017.
635	Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
636 637 638 639	Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth- ods for reinforcement learning with function approximation. <i>Advances in neural information</i> <i>processing systems</i> , 12, 1999.
640 641 642	Ziyang Tang, Yihao Feng, Lihong Li, Dengyong Zhou, and Qiang Liu. Doubly robust bias reduction in infinite horizon off-policy estimation. In <i>International Conference on Learning Representations</i> , 2020.
643 644 645 646	Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.
647	Xihuai Wang, Zheng Tian, Ziyu Wan, Ying Wen, Jun Wang, and Weinan Zhang. Order matters: Agent-by-agent policy optimization. <i>arXiv preprint arXiv:2302.06205</i> , 2023.

- Yuhui Wang, Hao He, Xiaoyang Tan, and Yaozhong Gan. Trust region-guided proximal policy optimization. *Advances in Neural Information Processing Systems*, 32, 2019.
- Ying Wen, Hui Chen, Yaodong Yang, Minne Li, Zheng Tian, Xu Chen, and Jun Wang. A game-theoretic approach to multi-agent trust region optimization. In *International Conference on Distributed Artificial Intelligence*, pp. 74–87. Springer, 2022.
 - Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Hankz Hankui Zhuo, et al. Coordinated proximal policy optimization. *Advances in Neural Information Processing Systems*, 34:26437–26448, 2021.
 - Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness of ppo in cooperative multi-agent games. *Advances in Neural Information Processing Systems*, 35:24611–24624, 2022.

A PROOFS

655

656

657

658 659

660

661

662 663 664

665 666

667 668

669

674 675 676

677

678 679 A.1 USEFUL LEMMAS

Lemma 1 (Multi-agent Policy Performance Difference Lemma). Given any joint policies $\bar{\pi}$ and π , the difference between the performance of two joint policies can be expressed as:

$$\mathcal{J}(\bar{\boldsymbol{\pi}}) - \mathcal{J}(\boldsymbol{\pi}) = \frac{1}{1 - \gamma} \mathbb{E}_{(s, \boldsymbol{a}) \sim (d^{\bar{\boldsymbol{\pi}}}, \bar{\boldsymbol{\pi}})} [A^{\boldsymbol{\pi}}(s, \boldsymbol{a})]$$

where $d^{\pi} = (1-\gamma) \sum_{t=0}^{\infty} \gamma^t Pr(s_t = s | \pi)$ is the normalized discounted state visitation distribution.

Proof. A corollary of the Policy Performance Difference Lemma, see Lemma 1.16 (Agarwal et al., 2019). \Box

Definition 1. A coupling of two probability distributions μ and ν is a pair of random variables (X,Y) such that the marginal distribution of X is μ and the marginal distribution of Y is ν . A coupling (X,Y) satisfies the following constraints: $Pr(X = x) = \mu(x)$ and $Pr(Y = y) = \nu(y)$.

Proposition 2. For any coupling (X, Y) that $D_{TV}(\mu, \nu) \leq Pr(X \neq Y)$.

Proposition 3. There exists a coupling (X, Y) that $D_{TV}(\mu, \nu) \leq Pr(X \neq Y)$.

686 **Corollary 1.** For all s, there exists a coupling $(\pi(\cdot|s), \bar{\pi}(\cdot|s))$, that $Pr(a = \bar{a}) \ge 1 - D_{TV}^{max}(\pi, \bar{\pi})$, 687 for $a \sim \pi(\cdot|s), \bar{a} \sim \bar{\pi}(\cdot|s)$

688 Corollary 2. For all s, $D_{TV}^{max}(\pi(\cdot|s), \bar{\pi}(\cdot|s)) \leq \sum_{i=1}^{n} D_{TV}(\pi^{i}(\cdot|s), \bar{\pi}^{i}(\cdot|s)).$

Definition 2. If $(\pi, \bar{\pi})$ is an α -coupled policy pair, then $(a, \bar{a}|s)$ satisfies $Pr(a \neq \bar{a}|s) \leq \alpha$ for all s, and $a \sim \pi(\cdot|s), \bar{a} \sim \bar{\pi}(\cdot|s)$.

From Corollaries 1 and 2, we know that given any joint policy pair π and $\bar{\pi}$, select $\alpha = D_{TV}^{max}(\pi(\cdot|s), \bar{\pi}(\cdot|s))$, then $(\pi, \bar{\pi})$ is an α -coupled policy pair that for all s, $\Pr(a \neq \bar{a}|s) \leq D_{TV}^{max}(\pi(\cdot|s), \bar{\pi}(\cdot|s)) \leq \sum_{i=1}^{n} \alpha^{i}$, where $\alpha^{i} = D_{TV}^{max}(\pi^{i}, \bar{\pi}^{i})$.

Lemma 2. Given any joint policies π_1 , π_2 , and π_3 , if π_1 , π_2 is a coupled policy pair, the following inequality holds:

$$\left| \mathbb{E}_{\boldsymbol{a}_{1} \sim \boldsymbol{\pi}_{1}} [A^{\boldsymbol{\pi}_{3}}(s, \boldsymbol{a}_{1})] - \mathbb{E}_{\boldsymbol{a}_{2} \sim \boldsymbol{\pi}_{2}} [A^{\boldsymbol{\pi}_{3}}(s, \boldsymbol{a}_{2})] \right| \leq 2\epsilon^{\boldsymbol{\pi}_{3}} \cdot D_{TV}^{max}(\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}) \leq 2\epsilon^{\boldsymbol{\pi}_{3}} \sum_{i=1}^{n} \alpha_{\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}}^{i}$$

700 701

698 699

where $\alpha_{\pi_1,\pi_2}^i = D_{TV}^{max}(\pi_1^{i_1},\pi_2^{i_1})$ and $\epsilon^{\pi_3} = \max_{s,a} |A^{\pi_3}(s,a)|$.

Proof.

Lemma 3. Given any joint policies π_1 , π_2 , if π_1 , π_2 is a coupled policy pair, the following in-equality holds:

 $\left| \mathbb{E}_{\boldsymbol{a}_1 \sim \boldsymbol{\pi}_1} [A^{\boldsymbol{\pi}_3}(s, \boldsymbol{a}_1)] - \mathbb{E}_{\boldsymbol{a}_2 \sim \boldsymbol{\pi}_2} [A^{\boldsymbol{\pi}_3}(s, \boldsymbol{a}_2)] \right|$

 $\leq \sum_{i=1}^{n} \alpha^{i}_{\boldsymbol{\pi}_{1},\boldsymbol{\pi}_{2}} \cdot 2 \max_{s,\boldsymbol{a}} |A^{\boldsymbol{\pi}_{3}}(s,\boldsymbol{a})|$

$$\left| \mathbb{E}_{\boldsymbol{a}_1 \sim \boldsymbol{\pi}_1} [A^{\boldsymbol{\pi}_2}(s, \boldsymbol{a}_1)] \right| \le 2\epsilon^{\boldsymbol{\pi}_2} \cdot D_{TV}^{max}(\boldsymbol{\pi}_1, \boldsymbol{\pi}_2) \le 2\epsilon^{\boldsymbol{\pi}_2} \sum_{i=1}^n \alpha_{\boldsymbol{\pi}_1, \boldsymbol{\pi}_2}^i,$$

 $= \left| Pr(\boldsymbol{a}_1 \neq \boldsymbol{a}_2 | s) \mathbb{E}_{(\boldsymbol{a}_1, \boldsymbol{a}_2) \sim (\boldsymbol{\pi}_1, \boldsymbol{\pi}_2)} [A^{\boldsymbol{\pi}_3}(s, \boldsymbol{a}_1) - A^{\boldsymbol{\pi}_3}(s, \boldsymbol{a}_2)] \right|$

 $\leq \sum_{i=1}^{n} \alpha^{i}_{\pi_{1},\pi_{2}} \mathbb{E}_{(\boldsymbol{a}_{1},\boldsymbol{a}_{2})\sim(\pi_{1},\pi_{2})}[|A^{\pi_{3}}(s,\boldsymbol{a}_{1}) - A^{\pi_{3}}(s,\boldsymbol{a}_{2})|]$

Proof. By Lemma 2, the inequality clearly holds.

Lemma 4. Given any joint policies π^1, π^2 and π^3 , if (π^1, π^2) and (π^2, π^3) are coupled policy pairs, the following inequality holds:

$$\left| \mathbb{E}_{(s_t, \boldsymbol{a}_t) \sim (Pr^{\boldsymbol{\pi}^2}, \boldsymbol{\pi}^2)} [A^{\boldsymbol{\pi}^1}] - \mathbb{E}_{(s_t, \bar{\boldsymbol{a}}_t) \sim (Pr^{\boldsymbol{\pi}^3}, \boldsymbol{\pi}^2)} [A^{\boldsymbol{\pi}^1}] \right|$$

$$\leq 4\epsilon^{\boldsymbol{\pi}^1} D_{TV}^{max}(\boldsymbol{\pi}^1, \boldsymbol{\pi}^2) (1 - (1 - D_{TV}^{max}(\boldsymbol{\pi}^2, \boldsymbol{\pi}^3))^t)$$

where $\epsilon^{\pi^1} = \max_{s,a} |A^{\pi^1}(s, a)|$ and we denote A(s, a) as A for brevity.

Proof. Let n_t represent the times $a \neq \bar{a}$ (π^2 disagrees with π^3) before timestamp t.

$$\begin{aligned} \left| \mathbb{E}_{(s_{t},\boldsymbol{a}_{t})\sim(Pr^{\pi^{2}},\pi^{2})} \left[A^{\pi^{1}} \right] - \mathbb{E}_{(s_{t},\bar{\boldsymbol{a}}_{t})\sim(Pr^{\pi^{3}},\pi^{2})} \left[A^{\pi^{1}} \right] \right| \\ &= Pr(n_{t} > 0) \cdot \left| \mathbb{E}_{(s_{t},\boldsymbol{a}_{t})\sim(Pr^{\pi^{2}},\pi^{2})|n_{t} > 0} \left[A^{\pi^{1}} \right] - \mathbb{E}_{(s_{t},\bar{\boldsymbol{a}}_{t})\sim(Pr^{\pi^{3}},\pi^{2})|n_{t} > 0} \left[A^{\pi^{1}} \right] \right| \\ &\stackrel{(1)}{=} (1 - Pr(n_{t} = 0)) \cdot E \\ &\leq \left(1 - \prod_{h=1}^{t} Pr(\boldsymbol{a}_{h} = \bar{\boldsymbol{a}}_{h}) | \boldsymbol{a}_{h} \sim \pi^{2}(\cdot|s_{h}), \bar{\boldsymbol{a}}_{h} \sim \pi^{3}(\cdot|s_{h}) \right) \cdot E \\ &\stackrel{(2)}{\leq} \left(1 - \prod_{h=1}^{t} (1 - D_{TV}^{max}(\pi^{2},\pi^{3}))) \right) \cdot E \\ &= \left(1 - (1 - D_{TV}^{max}(\pi^{2},\pi^{3}))^{t} \right) \cdot E \\ &\stackrel{(3)}{\leq} \left(1 - (1 - D_{TV}^{max}(\pi^{2},\pi^{3}))^{t} \right) \cdot 4 \cdot D_{TV}^{max}(\pi^{1},\pi^{2}) \cdot \epsilon^{\pi^{1}} \\ &= 4\epsilon^{\pi^{1}} D_{TV}^{max}(\pi^{1},\pi^{2}) \left(1 - (1 - D_{TV}^{max}(\pi^{2},\pi^{3}))^{t} \right) \end{aligned}$$
In (1) we denote $E = \left| \mathbb{E}$

In (1), we denote $E = \left| \mathbb{E}_{(s, \boldsymbol{a}) \sim (d^{\pi^2}, \pi^2) | n_t > 0} \left[A^{\pi^2} \right] - \mathbb{E}_{(s, \bar{\boldsymbol{a}}) \sim (d^{\pi^3}, \pi^2) | n_t > 0} \left[A^{\pi^2} \right] \right|.$ (2) follows the definition of α -coupled policy pair. (3) follows the Lemma 3.

Lemma 5. Given any joint policies π_1 , π_2 , π_3 , and π_4 , if π_1 , π_2 is a coupled policy pair, the following inequality holds:

$$\left| \mathbb{E}_{\boldsymbol{a}_{1} \sim \boldsymbol{\pi}_{1}} [A^{\boldsymbol{\pi}_{3}}(s, \boldsymbol{a}_{1})] - \mathbb{E}_{\boldsymbol{a}_{2} \sim \boldsymbol{\pi}_{2}} [A^{\boldsymbol{\pi}_{4}}(s, \boldsymbol{a}_{2})] \right| \leq \epsilon^{\boldsymbol{\pi}_{3}, \boldsymbol{\pi}_{4}} \cdot D_{TV}^{max}(\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}) \leq \epsilon^{\boldsymbol{\pi}_{3}, \boldsymbol{\pi}_{4}} \sum_{i=1}^{n} \alpha_{\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}}^{i},$$

where $\alpha_{\boldsymbol{\pi}_{1}, \boldsymbol{\pi}_{2}}^{i} = D_{TV}^{max}(\boldsymbol{\pi}_{1}^{i}, \boldsymbol{\pi}_{2}^{i})$ and $\epsilon^{\boldsymbol{\pi}_{3}, \boldsymbol{\pi}_{4}} = \max_{s, \boldsymbol{a}} |A^{\boldsymbol{\pi}_{3}}(s, \boldsymbol{a}) - A^{\boldsymbol{\pi}_{4}}(s, \boldsymbol{a})|.$

Proof.

Lemma 6. Given any joint policies π_1 , π_2 , π_3 , π_4 , π_5 and π_6 , if π_1 , π_2 is a coupled policy pair, the following inequality holds:

 $= \left| Pr(\boldsymbol{a}_1 \neq \boldsymbol{a}_2 | s) \mathbb{E}_{(\boldsymbol{a}_1, \boldsymbol{a}_2) \sim (\boldsymbol{\pi}_1, \boldsymbol{\pi}_2)} [A^{\boldsymbol{\pi}_3}(s, \boldsymbol{a}_1) - A^{\boldsymbol{\pi}_4}(s, \boldsymbol{a}_2)] \right|$

 $\leq \sum_{i=1}^{n} \alpha^{i}_{\pi_{1},\pi_{2}} \mathbb{E}_{(\boldsymbol{a}_{1},\boldsymbol{a}_{2})\sim(\pi_{1},\pi_{2})}[|A^{\pi_{3}}(s,\boldsymbol{a}_{1}) - A^{\pi_{4}}(s,\boldsymbol{a}_{2})|]$

 $\left| \mathbb{E}_{\boldsymbol{a}_1 \sim \boldsymbol{\pi}_1} [A^{\boldsymbol{\pi}_3}(s, \boldsymbol{a}_1)] - \mathbb{E}_{\boldsymbol{a}_2 \sim \boldsymbol{\pi}_2} [A^{\boldsymbol{\pi}_4}(s, \boldsymbol{a}_2)] \right|$

 $\leq \sum_{i=1}^{n} \alpha_{\boldsymbol{\pi}_1, \boldsymbol{\pi}_2}^{i} \cdot \max_{s, \boldsymbol{a}} |A^{\boldsymbol{\pi}_3}(s, \boldsymbol{a}) - A^{\boldsymbol{\pi}_4}(s, \boldsymbol{a})|$

$$\left| \mathbb{E}_{(s,\boldsymbol{a}_{1})\sim(d^{\pi_{5}}-d^{\pi_{6}},\boldsymbol{\pi}_{1})} [A^{\pi_{3}}(s,\boldsymbol{a}_{1})] - \mathbb{E}_{(s,\boldsymbol{a}_{2})\sim(d^{\pi_{5}}-d^{\pi_{6}},\boldsymbol{\pi}_{2})} [A^{\pi_{4}}(s,\boldsymbol{a}_{2})] \right| \leq \epsilon^{\pi_{3},\pi_{4}} \cdot \delta^{\pi_{5},\pi_{6}} \sum_{i=1}^{n} \alpha^{i}_{\pi_{1},\pi_{2}}$$

where $\delta^{\pi_5,\pi_6} = \sum_s |d^{\pi_5}(s) - d^{\pi_6}(s)|$.

Proof.

$$\begin{aligned} \left| \mathbb{E}_{(s,a_{1})\sim(d^{\pi_{5}}-d^{\pi_{6}},\pi_{1})} [A^{\pi_{3}}(s,a_{1})] - \mathbb{E}_{(s,a_{2})\sim(d^{\pi_{5}}-d^{\pi_{6}},\pi_{2})} [A^{\pi_{4}}(s,a_{2})] \right| \\ &= \left| \sum_{s} \left[d^{\pi_{5}}(s) - d^{\pi_{6}}(s) \right] \mathbb{E}_{a_{1}\sim\pi_{1}} [A^{\pi_{3}}(s,a_{1})] - \sum_{s} \left[d^{\pi_{5}}(s) - d^{\pi_{6}}(s) \right] \mathbb{E}_{a_{2}\sim\pi_{2}} [A^{\pi_{4}}(s,a_{2})] \right| \\ &= \left| \sum_{s} \left[d^{\pi_{5}}(s) - d^{\pi_{6}}(s) \right] \left[\mathbb{E}_{a_{1}\sim\pi_{1}} [A^{\pi_{3}}(s,a_{1})] - \mathbb{E}_{a_{2}\sim\pi_{2}} [A^{\pi_{4}}(s,a_{2})] \right] \right| \\ &\leq \sum_{s} \left| d^{\pi_{5}}(s) - d^{\pi_{6}}(s) \right| \left| \mathbb{E}_{a_{1}\sim\pi_{1}} [A^{\pi_{3}}(s,a_{1})] - \mathbb{E}_{a_{2}\sim\pi_{2}} [A^{\pi_{4}}(s,a_{2})] \right| \\ &\leq \sum_{s} \left| d^{\pi_{5}}(s) - d^{\pi_{6}}(s) \right| \left| \mathbb{E}_{a_{1}\sim\pi_{1}} [A^{\pi_{3}}(s,a_{1})] - \mathbb{E}_{a_{2}\sim\pi_{2}} [A^{\pi_{4}}(s,a_{2})] \right| \\ &\leq \sum_{s} \left| d^{\pi_{5}}(s) - d^{\pi_{6}}(s) \right| \left| \mathbb{E}_{a_{1}\sim\pi_{1}} [A^{\pi_{3}}(s,a_{1})] - \mathbb{E}_{a_{2}\sim\pi_{2}} [A^{\pi_{4}}(s,a_{2})] \right| \\ &= \epsilon^{\pi_{3},\pi_{4}} \sum_{i=1}^{n} \alpha_{\pi_{1},\pi_{2}}^{i} \sum_{i=1}^{n} \alpha_{\pi_{1},\pi_{2}}^{i} \\ &\text{where (1) follows Lemma 5.} \end{aligned}$$

where (1) follows Lemma 5.

A.2 PROOFS OF VANILLA SURROGATE OBJECTIVE

Recall that
$$\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{VAN}}(\hat{\pi}^i) = \mathcal{J}(\hat{\pi}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s, \boldsymbol{a}) \sim (d^{\pi}, \hat{\pi}^i)}[A^{\pi}(s, \boldsymbol{a})].$$

Proof.

$$\begin{aligned} \left| \mathcal{J}(\hat{\pi}^{i}) - \mathcal{J}(\hat{\pi}^{i-1}) - \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi}(s,\boldsymbol{a})] \right| \\ &\leq \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\hat{\pi}^{i}},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi}(s,\boldsymbol{a})] \Big| \\ &\leq \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\hat{\pi}^{i}},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] \\ &+ \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] - \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] \Big| \\ &\quad + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} [A^{\pi^{i-1}}(s,\boldsymbol{a})] + \frac{1}{1-\gamma} \Big| \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi},\hat{\pi}^{i})} \Big| \frac{1}{1-\gamma} \Big| \frac{1}{1-\gamma}$$

A.3 PROOFS OF MONOTONIC POLICY IMPROVEMENT OF OUR OPSPO

Theorem 1 (Corrected Single-Agent Monotonic Bound). For agent *i*, let $\epsilon^{i} = \max_{s,a} |A^{\hat{\pi}^{i-1}}(s,a)|$, $\xi^{i} = \max_{s,a} |A^{\pi,\hat{\pi}^{i-1}}(s,a) - A^{\hat{\pi}^{i-1}}(s,a)|$, $\delta^{i} = \sum_{s} |d^{\pi,\hat{\pi}^{i-1}}(s) - d^{\hat{\pi}^{i-1}}(s)|$, $\alpha^{i} = D_{TV}^{max}(\pi^{i}, \bar{\pi}^{i})$, where $D_{TV}(p,q)$ is the total variation distance between distributions *p* and *q* and we define $D_{TV}^{max}(\pi, \bar{\pi}) = \max_{s} D_{TV}(\pi(\cdot|s), \bar{\pi}(\cdot|s))$, then we have:

$$\begin{aligned} |\mathcal{J}(\hat{\pi}^{i}) - \mathcal{L}^{Our}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i})| &\leq 4\alpha^{i}\epsilon^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})}\right) + \frac{1}{1-\gamma}\alpha^{i}\delta^{i}\xi^{i} + \frac{1}{1-\gamma}\xi^{i} \\ &\leq \frac{4\gamma\epsilon^{i}}{(1-\gamma)^{2}}(\alpha^{i})^{2} + \frac{1}{1-\gamma}\alpha^{i}\delta^{i}\xi^{i} + \frac{1}{1-\gamma}\xi^{i}. \end{aligned}$$
(21)

Proof. Recall that $\mathcal{L}^{\operatorname{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i) = \mathcal{J}(\hat{\pi}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\pi,\pi^{i-1}},\hat{\pi}^i)}[A^{\pi,\pi^{i-1}}(s,\boldsymbol{a})].$

Theorem 2 (Corrected Joint Monotonic Bound). For each agent $i \in \mathcal{N}$, let $\epsilon^i = \max_{s,a} |A^{\hat{\pi}^{i-1}}(s,a)|$, $\epsilon = \max_i \epsilon^i$, $\xi^i = \max_{s,a} |A^{\pi,\hat{\pi}^{i-1}}(s,a) - A^{\hat{\pi}^{i-1}}(s,a)|$, $\delta^i = \max_{s,a} |A^{\pi,\hat{\pi}^{i-1}}(s,a)|$

$$\sum_{s} |d^{\pi, \hat{\pi}^{i-1}}(s) - d^{\hat{\pi}^{i-1}}(s)|, \alpha^{i} = D_{TV}^{max}(\pi^{i}, \bar{\pi}^{i}), \text{ then we have:}$$

$$|\mathcal{J}(\bar{\pi}) - \mathcal{G}_{\pi}^{Our}(\bar{\pi})| \leq 4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\alpha^{i})}\right) + \frac{\sum_{i=1}^{n} \alpha^{i} \delta^{i} \xi^{i}}{1-\gamma} + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}$$

$$\leq \frac{4\gamma\epsilon}{(1-\gamma)^{2}} \sum_{i=1}^{n} (\alpha^{i})^{2} + \frac{\sum_{i=1}^{n} \alpha^{i} \delta^{i} \xi^{i}}{1-\gamma} + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}.$$
(22)

Proof. Recall that $\mathcal{G}^{\text{Our}}_{\pi}(\bar{\pi}) = \mathcal{J}(\pi) + \frac{1}{1-\gamma} \sum_{i=1}^{n} \mathbb{E}_{(s, \boldsymbol{a}) \sim (d^{\pi, \pi^{i-1}}, \hat{\pi}^{i})} [A^{\pi, \pi^{i-1}}(s, \boldsymbol{a})].$

$$\begin{aligned} \left| \mathcal{J}(\bar{\pi}) - \mathcal{J}(\pi) - \frac{1}{1 - \gamma} \sum_{i=1}^{n} \mathbb{E}_{(s, a) \sim (d^{\pi, \hat{\pi}^{i-1}}, \hat{\pi}^{i})} \left[A^{\pi, \hat{\pi}^{i-1}} \right] \right| \\ &\leq \left| \mathcal{J}(\hat{\pi}^{n}) - \mathcal{J}(\hat{\pi}^{n-1}) + \dots + \mathcal{J}(\hat{\pi}^{1}) - \mathcal{J}(\hat{\pi}^{0}) - \frac{1}{1 - \gamma} \sum_{i=1}^{n} \mathbb{E}_{(s, a) \sim (d^{\pi, \hat{\pi}^{i-1}}, \hat{\pi}^{i})} \left[A^{\pi, \hat{\pi}^{i-1}} \right] \right| \\ &\leq \sum_{i=1}^{n} \left| \mathcal{J}(\hat{\pi}^{i}) - \mathcal{J}(\hat{\pi}^{i-1}) - \frac{1}{1 - \gamma} \mathbb{E}_{(s, a) \sim (d^{\pi, \hat{\pi}^{i-1}}, \hat{\pi}^{i})} \left[A^{\pi, \hat{\pi}^{i-1}} \right] \right| \\ &\leq 4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1 - \gamma} - \frac{1}{1 - \gamma(1 - \alpha^{i})} \right) + \frac{\sum_{i=1}^{n} \xi^{i}}{1 - \gamma} + \frac{\sum_{i=1}^{n} \alpha^{i} \delta^{i} \xi^{i}}{1 - \gamma} \end{aligned}$$

A.4 MONOTONIC POLICY IMPROVEMENT OF MAPPO, COPPO, HAPPO AND A2PO

We use the formats of the monotonic bounds of MAPPO, CoPPO, HAPPO and A2PO given in (Wang et al., 2023).

A.5 PROOFS OF STABILITY OF CORRECTED CLIP RANGE

Recall that $\tilde{\mathcal{L}}_{\hat{\pi}^{i-1}}^{\text{Native}}(\hat{\pi}^i)$:

$$\mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\hat{\boldsymbol{\pi}}^{i})}\bigg[\min\bigg(r^{i}\boldsymbol{r}^{i-1}\omega^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}},\operatorname{clip}\bigg(r^{i}\boldsymbol{r}^{i-1},l,h\bigg)\omega^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}\bigg)\bigg],\qquad(23)$$

where $r^{i} = \bar{\pi}^{i}(a^{i}|s)/\pi^{i}(a^{i}|s)$, $r^{i-1} = \hat{\pi}^{i-1}(a|s)/\pi(a|s)$, $l = 1 - \epsilon$, $h = 1 + \epsilon$, and $A^{\pi, \hat{\pi}^{i-1}}$ is short for $A^{\pi, \hat{\pi}^{i-1}}(s, a)$.

If we use corrected clip range (lr^{i-1}, hr^{i-1}) , then we have $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i})$:

$$\mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\hat{\boldsymbol{\pi}}^{i})}\left[\min\left(r^{i}\boldsymbol{r}^{i-1}\omega^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}},\operatorname{clip}\left(r^{i}\boldsymbol{r}^{i-1},l\boldsymbol{r}^{i-1},h\boldsymbol{r}^{i-1}\right)\omega^{i-1}(s)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}\right)\right],\tag{24}$$

we denote Π^i_{opt} as the optimal policy set maximizing $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$ (Eq. 24).

912 Lemma 7. $\Pi_{opt}^{i} = \{\hat{\pi}^{i} | \text{ for all state and action pair } (s, a) \text{ that } A^{\pi, \hat{\pi}^{i-1}} < 0, \hat{\pi}^{i}(a|s) \leq \pi(a|s) lr^{i-1}; \text{ for all state and action pair } (s, a) \text{ that } A^{\pi, \hat{\pi}^{i-1}} > 0, \hat{\pi}^{i}(a|s) \geq \min(\pi(a|s)hr^{i-1}, 1)\}.$

Proof. Firstly, we prove that a policy $\hat{\pi}_{opt}^i$ meeting the conditions in Π_{opt}^i is the optimal solution maximizing the objective in $\mathcal{L}_{\hat{\pi}^{i-1}}^{Our}(\hat{\pi}^i)$.

Given any (s, a), if $A^{\pi, \hat{\pi}^{i-1}}(s, a) < 0$, $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i, s, a)$ could be written as:

$$\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{Our}}(\hat{\pi}^{i}, s, \boldsymbol{a}) = \begin{cases} l\boldsymbol{r}^{i-1}\omega^{i-1}(s)A^{\boldsymbol{\pi}, \hat{\pi}^{i-1}}(s, \boldsymbol{a}), & r^{i}\boldsymbol{r}^{i-1} \leq l\boldsymbol{r}^{i-1} \\ r^{i}\boldsymbol{r}^{i-1}\omega^{i-1}(s)A^{\boldsymbol{\pi}, \hat{\pi}^{i-1}}(s, \boldsymbol{a}), & r^{i}\boldsymbol{r}^{i-1} > l\boldsymbol{r}^{i-1} \end{cases}$$
(25)

921 922 923

924

925

920

 $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}_{\text{opt}}, s, \boldsymbol{a}) \text{ falls in the first case, because } \hat{\pi}^{i}_{\text{opt}} \text{ meeting the condition in } \Pi^{i}_{\text{opt}} \text{ satisfies } \frac{\hat{\pi}^{i}_{\text{opt}}(\boldsymbol{a}|s)}{\pi(\boldsymbol{a}|s)} \leq lr^{i-1} \text{ when } A^{\pi, \hat{\pi}^{i-1}}(s, \boldsymbol{a}) < 0.$

926
927 Thus, if
$$A^{\pi, \hat{\pi}^{i-1}}(s, \boldsymbol{a}) < 0$$
, $then \mathcal{L}^{\operatorname{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}, s, \boldsymbol{a}) \leq \mathcal{L}^{\operatorname{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}_{\operatorname{opt}}, s, \boldsymbol{a})$ for any $\hat{\pi}^{i}$.

Given any (s, a), if $A^{\pi, \hat{\pi}^{i-1}}(s, a) > 0$, $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^i, s, a)$ could be written as:

$$\mathcal{L}_{\hat{\pi}^{i-1}}^{\text{Our}}(\hat{\pi}^{i}, s, \boldsymbol{a}) = \begin{cases} h\boldsymbol{r}^{i-1}\omega^{i-1}(s)A^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s, \boldsymbol{a}), & r^{i}\boldsymbol{r}^{i-1} \ge h\boldsymbol{r}^{i-1} \\ r^{i}\boldsymbol{r}^{i-1}\omega^{i-1}(s)A^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s, \boldsymbol{a}), & r^{i}\boldsymbol{r}^{i-1} < h\boldsymbol{r}^{i-1} \end{cases}$$
(26)

931 932 933

934

935

930

 $\mathcal{L}^{\text{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}_{\text{opt}}, s, \boldsymbol{a}) \text{ also falls in the first case, because } \hat{\pi}^{i}_{\text{opt}} \text{ meeting the condition in } \Pi^{i}_{\text{opt}} \text{ satisfies } \\ \frac{\hat{\pi}^{i}_{\text{opt}}(a|s)}{\pi(a|s)} \ge hr^{i-1} \text{ when } A^{\pi, \hat{\pi}^{i-1}}(s, \boldsymbol{a}) > 0.$

936 Thus, if
$$A^{\pi, \hat{\pi}^{i-1}}(s, \boldsymbol{a}) > 0$$
, $then \mathcal{L}^{\operatorname{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}, s, \boldsymbol{a}) \leq \mathcal{L}^{\operatorname{Our}}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}_{\operatorname{opt}}, s, \boldsymbol{a})$ for any $\hat{\pi}^{i}$.

Based on such fact, we have proven that a policy $\hat{\pi}_{opt}^i$ meeting the conditions in Π_{opt}^i is the optimal solution.

Secondly, we prove that a policy $\hat{\pi}_0^i$ not meeting conditions in Π_{opt}^i is not the optimal solution of maximizing the objective in Eq. 24. In order to prove this, we construct a policy $\hat{\pi}_{opt}^i$ satisfying conditions in Π_{opt}^i . Then, $\mathcal{L}_{\hat{\pi}^{i-1}}^{Our}(\hat{\pi}_0^i, s, a) \leq \mathcal{L}_{\hat{\pi}^{i-1}}^{Our}(\hat{\pi}_{opt}^i, s, a)$ for any state and action pair (s, a). Based on such fact, we have proven that a policy not meeting the conditions in Π_{opt}^i is not the optimal solution of maximizing the objective in Eq. 24.

Finally, combining the above results, we prove that Π_{opt}^i described in Lemma 7 contains all the optimal solutions of maximizing Eq. 24.

948 949

950

951 952

953 954

955

956

Theorem 3 (Stability of Corrected Clip Range). Let Π_{opt}^{i} as the optimal policy set maximizing $\mathcal{L}_{\hat{\pi}^{i-1}}^{Our}(\hat{\pi}^{i})$, $\hat{\pi}_{*,off}^{i} \in \Pi_{opt}^{i}$ denotes the optimal joint policy, which achieves the minimum KL divergence over all optimal joint policies, i.e., $D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{*,off}^{i}(\cdot|s_t)) \leq D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{opt}^{i}(\cdot|s_t))$ for $\hat{\pi}_{opt}^{i} \in \Pi_{opt}^{i}$ at any timestep t, and let $\hat{\pi}_{*,on}^{i}$ have the similar definition for PPO with data collected by $\hat{\pi}^{i-1}$ and clip range (l,h), we have $\max_t D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{*,off}^{i}(\cdot|s_t)) = \max_t D_{KL}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}_{*,off}^{i}(\cdot|s_t))$ for all timestep t.

957 958 Proof. we denote $D_{\mathrm{KL}}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}^i_{*,\mathrm{off}}(\cdot|s_t))$ as $D^{s_t}_{\mathrm{KL}}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\mathrm{off}})$ and 959 $D_{\mathrm{KL}}(\hat{\pi}^{i-1}(\cdot|s_t), \hat{\pi}^i_{*,\mathrm{on}}(\cdot|s_t))$ as $D^{s_t}_{\mathrm{KL}}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\mathrm{on}})$. In the proof, we need to prove that 960 $D^{s_t}_{\mathrm{KL}}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\mathrm{off}}) = D^{s_t}_{\mathrm{KL}}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\mathrm{on}})$ for any timestep t. Specifically, we prove this in two 961 cases: $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) \leq 0$ and $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) > 0$.

If $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) \leq 0$, the optimal policy $\hat{\pi}^i_{*, \text{off}}$ can be derived by solving the following constraint optimization problem according to Lemma 7:

965
966
967
968
968
969
970
970
971

$$\hat{\pi}^{i-1}(a|s_t) \log \frac{\hat{\pi}^{i-1}(a|s_t)}{\hat{\pi}^{i}(a|s_t)}$$

s.t. $\hat{\pi}^{i}(a_t|s_t) \leq lr^{i-1}\pi(a_t|s_t),$
 $\sum_{a} \hat{\pi}^{i}(a|s_t) = 1,$
 $\hat{\pi}^{i}(a|s_t) > 0,$
(27)

972 where a_t denotes the action at timestep t. By using the Karush-Kuhn-Tucker conditions (Gordon & Tibshirani, 2012), we get:

$$\hat{\pi}_{*,\text{off}}^{i}(\boldsymbol{a}|s_{t}) = \begin{cases} \frac{\hat{\pi}^{i-1}(\boldsymbol{a}|s_{t})(1-\boldsymbol{\pi}(\boldsymbol{a}_{t}|s_{t})\boldsymbol{l}\boldsymbol{r}^{i-1})}{1-\hat{\pi}^{i-1}(\boldsymbol{a}|s_{t})}, & \boldsymbol{a} \neq \boldsymbol{a}_{t} \\ \boldsymbol{\pi}(\boldsymbol{a}_{t}|s_{t})\boldsymbol{l}\boldsymbol{r}^{i-1}, & \boldsymbol{a} = \boldsymbol{a}_{t} \end{cases}$$
(28)

The corresponding KL divergence is:

$$D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}_{*,\text{off}}^i) = (1 - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t)) \log \frac{1 - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t)}{1 - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t) \cdot l} - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t) \log (l)$$
(29)

For $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\text{on}})$, we can directly applying Eq. (26) of appendix in (Wang et al., 2019) in our setting. Then we can get $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\text{off}})$ equals $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\text{on}})$, when $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) \leq 0$.

If $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) > 0$, the optimal policy $\hat{\pi}^i_{*, \text{off}}$ can be derived by solving the following constraint optimization problem according to Lemma 7:

$$\min_{\hat{\pi}^{i}} \sum_{a} \hat{\pi}^{i-1}(\boldsymbol{a}|s_{t}) \log \frac{\hat{\pi}^{i-1}(\boldsymbol{a}|s_{t})}{\hat{\pi}^{i}(\boldsymbol{a}|s_{t})}$$
s.t. $\hat{\pi}^{i}(\boldsymbol{a}_{t}|s_{t}) \geq \min(hr^{i-1}\pi(\boldsymbol{a}_{t}|s_{t}), 1),$

$$\sum_{a} \hat{\pi}^{i}(\boldsymbol{a}|s_{t}) = 1,$$
 $\hat{\pi}^{i}(\boldsymbol{a}|s_{t}) > 0,$
(30)

By using the KKT conditions, we get:

$$\hat{\pi}_{*,\text{off}}^{i}(\boldsymbol{a}|s_{t}) = \begin{cases} \frac{\hat{\pi}^{i-1}(\boldsymbol{a}|s_{t})(1-\min(h\boldsymbol{r}^{i-1}\boldsymbol{\pi}(\boldsymbol{a}_{t}|s_{t}),1))}{1-\hat{\pi}^{i-1}(\boldsymbol{a}|s_{t})}, & \boldsymbol{a} \neq \boldsymbol{a}_{t} \\ \min(h\boldsymbol{r}^{i-1}\boldsymbol{\pi}(\boldsymbol{a}_{t}|s_{t}),1), & \boldsymbol{a} = \boldsymbol{a}_{t} \end{cases}$$
(31)

When $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) > 0$ and $hr^{i-1}\pi(a_t|s_t) \le 1$, the KL divergence is:

$$D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}_{*,\text{off}}^i) = (1 - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t)) \log \frac{1 - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t)}{1 - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t) \cdot h} - \hat{\pi}^{i-1}(\boldsymbol{a}|s_t) \log(h).$$
(32)

For $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}_{*,\text{on}}^i)$, we can directly applying Eq. (28) of appendix in (Wang et al., 2019) in our setting. Then we can get $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}_{*,\text{off}}^i)$ equals $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}_{*,\text{on}}^i)$, when $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) > 0$ and $hr^{i-1}\pi(a_t|s_t) \leq 1$. when $A^{\pi, \hat{\pi}^{i-1}}(s_t, a_t) > 0$ and $hr^{i-1}\pi(a_t|s_t) > 1$, we have $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}_{*,\text{off}}^i) = +\infty = D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}_{*,\text{on}}^i)$.

1011 Combining above results on two cases $(A^{\pi,\hat{\pi}^{i-1}}(s_t, a_t) \leq 0 \text{ and } A^{\pi,\hat{\pi}^{i-1}}(s_t, a_t) > 0.)$, we have proven $D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\text{off}}) = D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\text{on}})$ for any timestep t. Based on such fact, we can conclude that $\max_t D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\text{off}}) = \max_t D_{\text{KL}}^{s_t}(\hat{\pi}^{i-1}, \hat{\pi}^i_{*,\text{on}}).$

B EXPERIMENTAL DETAILS

¹⁹ B.1 PSEUDO CODE

1021 The pseudo code for our OPSPO is given in Alg. 1. The pseudo code for learning state density ratio 1022 $\omega^i(s)$ is given in Alg. 2.

1024 B.2 IMPLEMENTATION OF STATE DISTRIBUTION CORRECTION

1026 Algorithm 1: Off-Policyness-aware Sequential Policy Optimization (OPSPO) 1027 1 **Initial** the joint policy $\pi_0 = {\pi_0^1, \dots, \pi_0^n}$, and the global value function V. 1028 for iteration $m = 1, 2, \ldots$ do 2 1029 Collect data using $\pi_{m-1} = \{\pi_{m-1}^1, ..., \pi_{m-1}^n\}.$ 3 1030 for *Order* i = 1, ..., n do 4 1031 Joint policy $\hat{\pi}^{i} = \{\pi_{0}^{1}, \dots, \pi_{m}^{i}, \pi_{m-1}^{i+1}, \dots, \pi_{m-1}^{n}\}.$ 5 1032 Compute state density ratio ω^{i-1} via Alg. 2. 6 1033 Compute the advantage estimation as $A^{\pi, \hat{\pi}^{i-1}}(s, a)$ via Eq. 15. 1034 7 Compute the value target $V_{\text{Target}}^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s_t)$ via Eq. 14. 1035 Compute the clip range $(l^i r^{i-1}, h^i r^{i-1})$. for P epochs do 10 1038 $\pi_m^i = \arg \max_{\pi_m^i} \tilde{\mathcal{L}}_{\hat{\pi}^{i-1}}^{\operatorname{Our}}(\hat{\pi}^i)$ as in Eq. 20. 11 1039 $V = \arg\min_{V} \mathbb{E}_{s \sim d^{\pi}} \| V_{\text{Target}}^{\pi, \hat{\pi}^{i-1}}(s) - V(s) \|^2.$ 1040 12 1041 1042 1043 Algorithm 2: Optimization of state density ratio $\omega^{i}(s)$ 1044 **Input:** Transition data \mathcal{D} from ω_n behavior joint policies, $\pi_{k-\omega_n+1}, \cdots, \pi_k$; a target policy 1045 1 1046 $\hat{\pi}_k^i$. Discount factor $\gamma \in (0, 1)$, starting state \mathcal{D}_0 from initial distribution, $T = \omega_e, K = f_e$, $\boldsymbol{\pi}_{\min} = \frac{1}{\omega_n} \sum_{j=k-\omega_n+1}^k \boldsymbol{\pi}_j(\boldsymbol{a}|s).$ 1047 1048 2 Initial the density ratio $\omega(s) = \omega_{\theta^i}(s)$ to be a neural network parameterized by θ^i , 1049 $f(s) = f_{\psi^i}(s)$ to be a neural network parameterized by ψ^i . 1050 $\omega_{\Delta}^{\mathrm{mix}}(s, \boldsymbol{a}, s') = \left(\omega(s') - \omega(s) \frac{\hat{\pi}_k^i(\boldsymbol{a}|s)}{\pi_{\mathrm{mix}}(\boldsymbol{a}|s)}\right).$ 1051 for iteration $1, 2, \ldots, T$ do 1052 3 Randomly choose a batch \mathcal{M} uniformly from the transition data \mathcal{D} and a batch \mathcal{M}_0 1053 uniformly from start states \mathcal{D}_0 . 1054 for *iteration* = $1, 2, \ldots, K$ do 5 1055 Update the parameter ψ^i by $\psi^i \leftarrow \psi^i + \epsilon_{\psi^i} \nabla_{\psi^i} \hat{L}(\omega_{\theta^i}, f_{\psi^i})$, where 1056 6 1057 $\hat{L}(\omega_{\theta^{i}}, f_{\psi^{i}}) = \gamma \frac{1}{|\mathcal{M}|} \sum_{(s, \boldsymbol{a}, s') \in \mathcal{M}} \omega_{\Delta}^{\min}(s, \boldsymbol{a}, s') f(s') - (1 - \gamma) \frac{1}{|\mathcal{M}_{0}|} \sum_{s \in \mathcal{M}_{0}} (1 - \omega(s)) f(s)$ 1058 Update the parameter θ^i by $\theta^i \leftarrow \theta^i - \epsilon_{\theta^i} \nabla_{\theta^i} \hat{L}(\omega_{\theta^i}, f_{\psi^i})$. 7 1061 1062 **Output**: the density ratio $\omega^i = \omega_{\theta^i}$. 8 1064 1065 For the training of state density ratio $\omega^i(s)$, we adapt the algorithm 2 in (Tang et al., 2020) to perform minimax optimization to train a neural network parameterized $\omega^i(s;\theta^i)$ and a neural network 1067 parameterized test function $f^i(s; \psi^i)$. Moreover, to alleviate the partial coverage issue and better predict $\omega^i(s)$, we use a multi-behavior policies version (Chen et al., 2019) of BCH. Compared 1068 with the original BCH, this variant allows us to use data collected by previous ω_n policies, i.e., 1069 $\pi_{k-\omega_n+1}, \cdots, \pi_k$. The corresponding min-max problem formation is: 1070 1071 $\min_{\omega} \max_{f \in \mathcal{F}} \gamma \mathbb{E}_{(s,\boldsymbol{a},s') \sim d_{\min}^{\pi}} \Big[\omega_{\Delta}^{\min}(s,\boldsymbol{a},s') f(s') \Big]^2 + (1-\gamma) \mathbb{E}_{s \sim d_{\min}^{\pi}} \Big[(1-\omega(s)) f(s) \Big]^2.$ (33)1072 where $\pi_{\text{mix}} = \frac{1}{\omega_n} \sum_{j=k-\omega_n+1}^k \pi_j(\boldsymbol{a}|s), \pi_k$ is the lastest behavior policy, ω_n is the number of 1074 behavior policies, d_{\min}^{π} is state distribution under π_{\min} , $\omega_{\Delta}^{\min}(s, \boldsymbol{a}, s') = \left(\omega(s') - \omega(s) \frac{\pi^i(\boldsymbol{a}|s)}{\pi_{\min}(\boldsymbol{a}|s)}\right)$, d_0^{π} 1075 is an initial state distribution under π_{mix} . A detail description can be found in Alg. 2. 1077 Following the suggestion of previous work (Wang et al., 2023), we adopt a parameter sharing setting 1078 in SMAC. This makes the sequential updating corrupted, making it very difficult to learn the exact 1079 state density ratio $\omega^i(s)$ by solving Eq. 17. To this end, we use step-wise weighted importance sampling to approximate $\omega^{i-1}(s_t)$. Given *m* observed trajectories $\tau_{j=1}^m$, for the *j*-th trajectory τ_j we define $\omega_j^{i-1}(s_t) = \frac{1}{Z_t} \prod_{k=0}^t \frac{\hat{\pi}^{i-1}(\boldsymbol{a}_k|s_k)}{\pi(\boldsymbol{a}_k|s_k)}, (\boldsymbol{a}_k, s_k) \sim \tau_j$, where $Z_t = \sum_{j=1}^m \omega_j^{i-1}(s_t)$.

B.3 HYPER-PARAMETERS

We list the hyper-parameters used for each task of SMAC in Tab 2. Other parameters use the default settings in A2PO (Wang et al., 2023).

1089	Table 2: Hyper-parameters in SMAC.				
1090	Tasks	ppo epoch	γ	ϵ_1	ϵ_2
1091	8m vs 9m	15	0.95	0.2	0.05
1092	5m vs 6m	10	0.93	0.1	0.05
1093	3s5z	10	0.95	0.2	0.05
1094	10m vs 11m	10	0.95	0.2	0.05
1005	MMM2	10	0.95	0.2	0.05
1095	3s5z vs 3s6z	8	0.90	0.2	0.1
1096	27m vs 30m	8	0.95	0.2	0.05
1097	6h vs 8z	8	0.95	0.2	0.1
1098	corridor	8	0.95	0.2	0.1
1099					

For MA-MuJoCo, the output from the last layer is processed by a Tanh layer and the action distribution is modeled as a Gaussian distribution initialized with mean as 0 and log std as -0.5. The probability output of different actions are averaged when computing the policy ratio. We list the hyper-parameters used for each task of MA-MuJoCo in Tab 3. The parameters not mentioned are consistent with A2PO.

Table 3: Hyper-parameters in MA-MuJoCo.							
Tasks	ppo epoch	γ	ϵ_1	ϵ_2	ω_e	f_e	ω_n
Ant-v2 8x1	8	0.93	0.2	0.1	10	5	20
Walker2d-v2 6x1	8	0.93	0.2	0.1	10	5	20
Hopper-v2 3x1	8	0.95	0.1	0.05	10	5	20
HalfCheetah-v2 6x1	8	0.93	0.2	0.1	10	5	20
Humanoid-v2 9 8	8	0.90	0.2	0.05	10	5	20
HumanoidStandup-v2 9 8	8	0.93	0.2	0.05	10	5	20

For GRF, We list the hyper-parameters used in the 5-vs-5 scenario in Tab. 4. The parameters not mentioned are consistent with A2PO.

Table 4: Hyper-parameters in GRF.				
	Hyperparameters	Values		
	ppo epoch	15		
	γ	0.95		
	ϵ_1	0.2		
	ϵ_2	0.1		
	ω_e	5		
	ω_f	5		
	ω_n	10		