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ABSTRACT

Federated Learning (FL) is a promising technology that enables edge devices/clients
to collaboratively and iteratively train a machine learning model under the coordi-
nation of a central server. The most common approach to FL is first-order methods,
where clients send their local gradients to the server in each iteration. However,
these methods often suffer from slow convergence rates. As a remedy, second-
order methods, such as quasi-Newton, can be employed in FL to accelerate its
convergence. Unfortunately, similarly to the first-order FL methods, the application
of second-order methods in FL can lead to unfair models, achieving high average
accuracy while performing poorly on certain clients’ local datasets. To tackle this
issue, in this paper we introduce a novel second-order FL framework, dubbed
distributed quasi-Newton federated learning (DQN-Fed). This approach seeks to
ensure fairness while leveraging the fast convergence properties of quasi-Newton
methods in the FL context. Specifically, DQN-Fed helps the server update the
global model in such a way that (i) all local loss functions decrease to promote
fairness, and (ii) the rate of change in local loss functions aligns with that of the
quasi-Newton method. We prove the convergence of DQN-Fed and demonstrate its
linear-quadratic convergence rate. Moreover, we validate the efficacy of DQN-Fed
across a range of federated datasets, showing that it surpasses state-of-the-art fair FL
methods in fairness, average accuracy and convergence speed. The Code for paper
is publicly available at https://github.com/ICMLDQNFed/ICMLDQN.

1 INTRODUCTION

Traditionally, machine learning (ML) models are trained centrally, with data stored in a central server.
However, in modern applications, devices often resist sharing private data remotely. To address this,
federated learning (FL) was introduced by McMahan et al. (2017), where each device trains locally
with a central server. In FL, devices share only local updates, maintaining data privacy. FedAvg,
proposed by McMahan et al. (2017), is a popular first-order FL method. It combines local stochastic
gradient descent (SGD) on each client with iterative model averaging. The server sends the global
model to selected clients Eichner et al. (2019); Wang et al. (2021a), which perform local SGD on
their training data. Local gradients are sent back to the server, which calculates their (weighted)
average to update the global model iteratively.

Nevertheless, first-order FL methods tend to exhibit slow convergence, particularly in terms of the
number of iterations or communication rounds required (Krouka et al., 2022). More precisely, the
convergence rate of first-order FL algorithms is sublinear, i.e., the required number of communication
rounds Tϵ to achieve ϵ-accurate solution is Tϵ = O( 1ϵ ). Additionally, their convergence speed is
highly influenced by the condition number, which is dependent on several factors, including: (i) the
architecture of the model being trained, (ii) the choice of loss function, and (iii) the distribution of the
training data (Elgabli et al., 2022).

To overcome this limitation, second-order methods can be applied in FL to significantly boost
convergence speed (Safaryan et al., 2022; Elgabli et al., 2022). By estimating the local curvature
of the loss landscape, these methods provide more adaptive and efficient update directions, leading
to faster and more reliable convergence (Battiti, 1992). Specifically, in second-order FL methods,
the clients compute the Newton direction for their respective local loss functions and send these
directions to the server. The server then averages the Newton directions from all clients and updates
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the global model in the direction of this average (Ghosh et al., 2020; Zhang & Lin, 2015). Moreover,
since Newton’s methods require calculating the inverse of the Hessian matrix at each iteration—a
computationally expensive operation—the inverse is typically approximated using iterative techniques,
leading to quasi-Newton methods (Wang et al., 2018).

While Newton-type methods accelerate the convergence of FL algorithms, they do not guarantee
that the averaged Newton direction computed by the server is a descent direction for all clients—a
limitation also present in first-order FL methods (Hu et al., 2022; Pan et al., 2024; Chen et al., 2024).
In other words, upon updating the global model toward this averaged direction, the loss function for
some client my not decrease, potentially leading to poor performance on their private datasets. As a
result, the learned model might exhibit unfairness, with high average accuracy but poor performance
for clients whose data distributions differ from the majority1. Thus, naively applying Newton methods
in FL can lead to the training of an unfair model (see Section 5 for results).

To tackle the issue mentioned above, this paper presents a novel second-order FL framework, dubbed
distributed quasi-Newton federated learning (DQN-Fed). This approach aims to ensure fairness while
leveraging the fast convergence properties of quasi-Newton methods in the FL setting. In particular,
DQN-Fed is designed to assist the server in updating the global model such that (i) all local loss
functions decrease resulting in training a fair model, and (ii) the rate of change in local loss functions
aligns with the rate of change in the quasi-Newton method. To achieve this, based on the received
local quasi-Newton directions and the local gradients, the server identifies an updating direction that
satisfies both of the aforementioned conditions. This will in turn yield a fair FL algorithm, as the
global updating direction is descent for all the clients. Moreover, the convergence of DQN-Fed is
fast, as the rate of change in the local loss functions follow quasi-Newton methods.

In summary, the contributions of the paper are as follows:

•We introduce distributed quasi-Newton federated learning (DQN-Fed), a method designed to assist
the server in updating the global model to achieve both fairness and fast convergence in FL.

• We present a closed-form solution for calculating the global updating direction, distinguishing
our approach from many existing fair FL methods that depend on iterative or generic quadratic
programming techniques.

• Leveraging common assumptions in FL literature, we establish the convergence proof for DQN-Fed
algorithm across various FL setups. In addition, we prove the convergence rate of the proposed
method, and show that DQN-Fed exhibits a linear-quadratic convergence rate. Specifically, the
convergence is either quadratic, with Tϵ = O

(
log log 1

ϵ

)
, or linear, with Tϵ = O

(
1

log( λ
Lδ )

log 1
ϵ

)
,

where λ, L and δ are constants.

• Through comprehensive experiments conducted on seven different datasets (six vision datasets and
one language dataset), we demonstrate that DQN-Fed attains superior fairness level among clients,
and converges faster compared to the state-of-the-art fair alternatives.

2 RELATED WORKS

• Fairness in FL. The literature offers a myriad of perspectives to address the challenge of fairness
in FL. These methods include client selection Nishio & Yonetani (2019); Huang et al. (2020a; 2022);
Yang et al. (2021), contribution Evaluation Zhang et al. (2020); Lyu et al. (2020); Song et al. (2021);
Le et al. (2021), incentive mechanisms Zhang et al. (2021); Kang et al. (2019); Ye et al. (2020);
Zhang et al. (2020), and the methods based on the loss function. Specifically, our work falls into the
latter category. This approach aims to achieve uniform test accuracy across clients. In particular,
works within this framework focus on reducing the variance of test accuracy among participating
clients. We provide a thorough review on fairness issue in ML and FL in Appendix L.

• Second-Order FL methods. DistributedNewton (Ghosh et al., 2020) and LocalNewton (Gupta
et al., 2021) perform Newton’s method instead of SGD on local machines to accelerate the conver-
gence of local models. FedNew (Elgabli et al., 2022) utilized one pass ADMM on local machines

1Learning an unfair model is a common challenge in first-order FL methods as well, and there is a substantial
body of research dedicated to developing fair FL models (Mohri et al., 2019; Du et al., 2021; Li et al., 2020; Hu
et al., 2022; Hamidi & YANG, 2024).
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to calculating local directions and approximate Newton method to update the global model. FedNL
(Safaryan et al., 2022) send the compressed local Hessian updates to global server and performed
Newton step globally. Based on eigendecomposition of the local Hessian matrices, SHED (Dal Fabbro
et al., 2024) incrementally updated eigenvector-eigenvalue pairs to the global server and recovered
the Hessian to use Newton method. Recently, Li et al. (2024) proposed federated Newton sketch
methods (FedNS) to approximate the centralized Newton’s method by communicating the sketched
square-root Hessian instead of the exact Hessian.

3 NOTATION AND PRELIMINARIES

3.1 NOTATION

We denote by [K] the set of integers {1, 2, · · · ,K}. In addition, we define {fk}k∈[K] =
{f1, f2, . . . , fK} for a scalar/function f . We use bold small letters to represent vectors, and bold
capital letters to represent matrices. Denote by ui the i-th element of vector u. For two vectors
u,v ∈ Rd, we say u ≤ v iff ui ≤ vi for ∀i ∈ [d]. Denote by v · u their inner product, and by
proju(v) =

v·u
u·uu the projection of v onto the line spanned by u.

3.2 PRELIMINARIES AND DEFINITIONS

Since our methodology is based on techniques in multi-objective minimization (MoM), we first
review some concepts from MoM, particularly the multiple gradient descent algorithm (MGDA).

3.2.1 MULTI-OBJECTIVE MINIMIZATION FOR FAIRNESS

Denote by f(θ) = {fk(θ)}k∈[K] the set of local clients’ loss functions; the aim of MoM is to solve

θ∗ = argmin
θ

f(θ), (1)

where the minimization is performed w.r.t. the partial ordering. Finding θ∗ could enforce fairness
among the users since by setting setting θ = θ∗, it is not possible to reduce any of the local objective
functions fk without increasing at least another one. Here, θ∗ is called a Pareto-optimal solution
of Equation (1). Although finding Pareto-optimal solutions can be challenging, there are several
methods to identify the Pareto-stationary solutions instead, which are defined as follows:

Definition 3.1. Pareto-stationary Mukai (1980): The vector θ∗ is said to be Pareto-stationary iff
there exists a convex combination of the gradient-vectors {gk(θ

∗)}k∈[K] which is equal to zero; that
is,
∑K

k=1 λkgk(θ
∗) = 0, where λ ≥ 0, and

∑K
k=1 λk = 1.

Lemma 3.2. Mukai (1980) Any Pareto-optimal solution is Pareto-stationary. On the other hand, if
all {fk(θ)}k∈[K]’s are convex, then any Pareto-stationary solution is weakly Pareto optimal 2.

There are many methods in the literature to find Pareto-stationary solutions among which MGDA is a
popular one Mukai (1980); Fliege & Svaiter (2000); Désidéri (2012).

MGDA adaptively tunes {λk}k∈[K] by finding the minimal-norm element of the convex hull of the
gradient vectors defined as follows (we drop the dependence of gk to θt for ease of notation hereafter)

G = {g ∈ Rd|g =

K∑
k=1

λkgk; λk ≥ 0;

K∑
k=1

λk = 1}. (2)

Denote the minimal-norm element of G by d(G). Then, either (i) d(G) = 0, and therefore based
on Lemma 3.2 d(G) is a Pareto-stationary point; or (ii) d(G) ̸= 0 and the direction of −d(G) is a
common descent direction for all the objective functions {fk(θ)}k∈[K] Désidéri (2009), meaning that
all the directional derivatives {gk · d(G)}k∈[K] are positive. Having positive directional derivatives is
a necessary condition to ensure that the common direction is descent for all the objective functions.

2θ∗ is called a weakly Pareto-optimal solution of Equation (1) if there does not exist any θ such that
f(θ) < f(θ∗); meaning that, it is not possible to improve all of the objective functions in f(θ∗). Obviously,
any Pareto optimal solution is also weakly Pareto-optimal but the converse may not hold.
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3.2.2 NEWTON-TYPE METHODS

First-order FL methods face challenges with slow convergence, measured in terms of the number of
iterations or communication rounds. Additionally, their convergence speed is intricately linked to
the condition number, influenced by factors such as the model’s structure, choice of loss function,
and distribution of training data. In contrast, second-order methods exhibit significantly faster
performance due to their additional computational effort in estimating the local curvature of the loss
landscape. This, in turn, yields faster and more adaptive update directions. Despite requiring more
computations per communication round, second-order methods achieve fewer communication rounds.
In the context of FL, where communication often poses a bottleneck rather than computation, the
appeal of second-order methods has grown. Notably, the Newton’s direction is obtained as

dN = −(∇2f(θ))−1∇f(θ). (3)

4 MOTIVATION AND METHODOLOGY

We discuss our motivation in Section 4.1 based on which we elaborate on the inner-working of
DQN-FL in Section 4.2.

4.1 MOTIVATION

We begin with finding out how much the local loss function fk(·), k ∈ [K], changes when the server
updates the global model as θt+1 = θt − ηtdt at round t. In other words, we want to determine the
rate of change ∆fk(θ

t) ≜ fk(θ
t+1)− fk(θ

t) for the local loss functions. To do this, by writing the
first-order Taylor expansion for the local loss function fk(·), we obtain:

fk(θ
t+1) = fk(θ

t − ηtdt) ≈ fk(θ
t)− ηtgt

k · dt (4)

⇔ ∆fk(θ
t) ≈ −ηtgt

k · dt. (5)

As per Equation (5), fk(·) changes by amount of −ηtgt
k · dt when the server updates the global

model. Hence, if gt
k · d ≥ 0, the global updating direction is descent for client k, and ∆fk(θ

t) ≤ 0.

Nevertheless, updating toward a descent direction does not guarantee any meaningful convergence.
Indeed, what can guarantee the convergence of GD-like algorithms is the rate of change in the loss
function in each iteration3. This is in fact what makes the second-order methods to converge faster as
the rate of change in the loss functions is automatically determined by the Hessian matrix.

This motivates us to see how the server can update the global model such that the rate of change in
the local loss functions is the same as that when local clients update their local loss function using
second-order methods.

Specifically, let dtk denote the rate of change in local loss function fk when it updates its local model
using Newton method; then, we have

dtk = gt
k · dN = gt

k ·
(
(Ht

k)
−1gt

k

)
= (gt

k)
T (Ht

k)
−1gt

k. (6)

Our goal is to assist the server in updating the global model such that, after the update, the rate of
change for client k becomes dtk. Achieving this is not a straightforward task. In the following section,
we derive a closed-form solution to meet this criterion.

4.2 METHODOLOGY

Our method is partially inspired from MGDA algorithm, but incorporates several key modifications.
Specifically, our approach comprises two stages: (i) gradient orthogonalization with a tailored scaling
strategy; and (ii) finding the optimal weights to combine these orthogonal gradients.

4.2.1 Stage 1, GRADIENT ORTHOGONALIZATION

The clients send the local gradients {gk}k∈[K] to the server, and then the server first generates a
mutually orthogonal 4 set {g̃k}k∈[K] that spans the same K-dimensional subspace in Rd as that

3If fk(·) is L-smooth, the convergence of gradient descent algorithm is guaranteed for ηt ∈ [0, 2
L
].

4Here, orthogonality is in the sense of standard inner product in Euclidean space.
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spanned by {gk}k∈[K]. To this aim, the server exploits a modified Gram–Schmidt orthogonalization
process over {gk}k∈[K] in the following manner 5

g̃1 = g1/d
t
1, (7)

g̃k =
gk −

∑k−1
i=1 projg̃i

(gk)

dtk −
∑k−1

i=1
gk·g̃i
g̃i·g̃i

, for k = 2, . . . ,K, (8)

where γ > 0 is a scalar. Note that the orthogonalization approach in stage 1 is feasible if we
assume that the K gradient vectors {gk}k∈[K] are linearly independent. Indeed, this assumption is
reasonable considering that (i) the gradient vectors {gk}k∈[K] are K vectors in d-dimensional space,
and d >> K for the DNNs6; and that (ii) the random nature of the gradient vectors due to the non-iid
distributions of the local datasets.

4.2.2 Stage 2, FINDING OPTIMAL WEIGHTS

In this stage, we aim to find the minimum-norm vector in the convex hull of the orthogonal gradients
found in Stage (I). First, denote by G̃ the convex hull of gradient vectors {g̃k}k∈[K]; that is,

G̃ = {g ∈ Rd|g =

K∑
k=1

λkg̃k; λk ≥ 0;

K∑
k=1

λk = 1}.

In the following, we find the minimal-norm element in G̃, and then we show that this element is a
descent direction for all the objective functions.

Denote by λ∗ the weights corresponding to the minimal-norm vector in G̃. To find the weight vector
λ∗, we solve

g∗ = argmin
g∈G
∥g∥22, (9)

which accordingly finds λ∗. For an element g ∈ G, we have

∥g∥22 = ∥
K∑

k=1

λkg̃k∥22 =

K∑
k=1

λ2
k∥g̃k∥22, (10)

where we used the fact that {g̃k}k∈[K] are orthogonal.

To solve Equation (9), we first ignore the inequality λk ≥ 0, for k ∈ [K], and then we observe that
it is automatically satisfied. Thus, we make the following Lagrangian to solve the minimization
problem in Equation (9):

Hence, ∂L
∂λk

= 2λk∥g̃k∥22 − α; and by setting this equation to zero we obtain

λ∗
k =

α

2∥g̃k∥22
. (11)

On the other hand, since
∑K

k=1 λk = 1, from Equation (11) we have α = 2∑K
k=1

1

∥g̃k∥22

from which

the optimal λ∗ is obtained as follows

λ∗
k =

1

∥g̃k∥22
∑K

k=1
1

∥g̃k∥2
2

, for k ∈ [K]. (12)

Note that λ∗
k > 0, and therefore the minimum norm vector we found belongs to G. Using the λ∗

found in equation 12, we can calculate dt =
∑K

k=1 λ
∗
kg̃k as the minimum norm element in the

convex hull G̃.
Theorem 4.1. If the server updates the model toward dt =

∑K
k=1 λ

∗
kg̃k, the rate of change for client

k is proportional to dtk, ∀k ∈ [K].
5The reason for such normalization will be clarified later.
6Also, note that to tackle non-iid distribution of user-specific data, it is a common practice that server selects

a different subset of clients in each round McMahan et al. (2017).

5
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Proof. We shall find the directional derivative of loss function fk, ∀k ∈ [K], over dt:

gk · dt =

(
g̃k

(
dtk −

k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+

k−1∑
i=1

projg̃i
(gk)

)
·
( K∑

i=1

λ∗
i g̃i

)
(13)

= λ∗
k∥g̃k∥22

(
dtk −

k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+

k−1∑
i=1

gk · g̃i

g̃i · g̃i

λ∗
i ∥g̃i∥22 (14)

=
α

2

(
dtk −

k−1∑
i=1

gk · g̃i

g̃i · g̃i

)
+

α

2

k−1∑
i=1

gk · g̃i

g̃i · g̃i

(15)

=
α

2
dtk =

dtk∑K
k=1

1
∥g̃k∥2

2

> 0, (16)

where (i) Equation (13) is obtained by using definition of g̃k in Equation (8), (ii) Equation (14)
follows from the orthogonality of {g̃k}Kk=1 vectors, and (iii) Equation (15) is obtained by using
Equation (11).

Hence, to realize a rate of change similar to the Newton step, at iteration t, the server set the global
learning rate as η =

∑K
k=1

1
∥g̃k∥2

2
, and update the global model as:

θt+1 = θt − ηtdt = θt −
K∑

k=1

1

∥g̃k∥22
dt. (17)

To summarize, updating the global model as in Equation (17) provides two key advantages:
(i) All local loss decreases (as shown by the inequality in Equation (16));
(ii) The rate of change for each local loss function aligns with that of the Newton method.

Similarly to the conventional GD, we note that updating the global model as equation 17 is a necessary
condition to have f(θt+1) ≤ f(θt). In Theorem 4.2 whose proof is differed to Appendix A, we state
the sufficient condition to satisfy f(θt+1) ≤ f(θt).

Theorem 4.2. Assume that f = {fk}k∈[K] are L-Lipschitz smooth. If the step-size ηt =∑K
k=1

1
∥g̃k∥2

2
∈ [0, 2

L min{dtk}k∈[K]], then f(θt+1) ≤ f(θt), and equality is achieved iff dt = 0.

4.3 DQN-FED ALGORITHM

Since Newton’s method requires the computation of the inverse Hessian matrix, which is computation-
ally expensive, we employ quasi-Newton methods that approximate the inverse of the Hessian using
gradient information. The BFGS algorithm Broyden (1970) is one such approach. Let Bt

k denote the
matrix obtained using BFGS algorithm, where Bt

k ≈ (Ht
k)

−1. Using Bt
k, dtk in Equation (6) can be

approximated by

d̃tk = (gt
k)

TBt
kg

t
k. (18)

Lastly, similar to many recent FL algorithms McMahan et al. (2017); Li et al. (2019a), we allow each
client to perform a couple of local epochs e. We summarize DQN-Fed in Algorithm 1.

4.4 CONVERGENCE RESULTS

In the following, we prove the convergence guarantee of DQN-Fed based on how the clients update
the local models: (i) using SGD with e = 1, (ii) using GD with e > 1, and (iii) using GD with e = 1.
Naturally, the strongest convergence guarantee is provided for the third scenario.

Theorem 4.3 (e = 1 & local SGD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous
and L-Lipschitz smooth, and that the global step-size ηt satisfies the following three conditions:

6
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Algorithm 1: DQN-Fed.
Input: Number of global epochs T , global learning rate ηt, number of local epochs E, local
datasets {Dk}k∈K .
for t = 0, 1, . . . , T − 1 do

Server randomly selects a subset of devices St and sends θt to them.
for device k ∈ St in parallel do

Set θ̂0
k = θt and θ̂−1

k = θt−1

for e = 0, 1, . . . , E − 1 do
Perform BFGS algorithm as follows
Set sek = θ̂e

k − θ̂e−1
k , and ye

k = ∇f(θ̂e
k)−∇f(θ̂

e−1
k ).

Iteratively update matrix Be+1
k using information from Be

k, s
e
k,y

e
k according to:

Be+1
k = Be

k − Be
ks

e
k(s

e
k)

TBe
k

(stk)
TBe

ks
e
k

+
ye
k(y

e
k)

T

(sek)
Tye

k

. (19)

end
Use BE

k to calculate d̃tk from Equation (18).
Send local gradient gk = ∇f(θ̂e

k) and d̃tk to the server.
end
Server finds {g̃k}k∈[K] form Equations (7) and (8).
Server finds λ∗ from Equation (12).
Server calculates dt :=

∑K
k=1 λ

∗
kg̃k.

Server updates the global model as θt+1 ← θt − ηtdt.
end
Output: Global model θt.

(i) ηt ∈ (0, 1
2L ], (ii) limT→∞

∑T
t=0 η

t → ∞, and (iii) limT→∞
∑T

t=0 η
tσt < ∞; where σ2

t =

E[∥g̃λ∗ − g̃sλ
∗
s∥]2 is the variance of stochastic common descent direction. Then

lim
T→∞

min
t=0,...,T

E[∥dt∥]→ 0. (20)

Theorem 4.4 (e > 1 & local GD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and
L-Lipschitz smooth. Denote by ηt and η the global and local learning rates, respectively. Also, define
ζt = ∥λ∗ − λ∗

e∥, where λ∗
e is the optimum weights obtained from pseudo-gradients after e local

epochs. We have

lim
T→∞

min
t=0,...,T

∥dt∥ → 0, (21)

if the following conditions are satisfied: (i) ηt ∈ (0, 1
2L ], (ii) limT→∞

∑T
t=0 η

t → ∞, (iii)
limt→∞ ηt → 0, (iv) limt→∞ η → 0, and (v) limt→∞ ζt → 0.

Before introducing Theorem 4.5, we first introduce some notations. Denote by ϑ the Pareto-stationary
solution set7 of minimization problem argminθ f(θ). Then, denote by θ∗ the projection of θt onto
the set ϑ; that is, θ∗ = argminθ∈ϑ ∥θt − θ∥22.

Theorem 4.5 (e = 1 & local GD). Assume that f = {fk}k∈[K] are l-Lipschitz continuous and σ-
convex, and that the global step-size ηt satisfies the following two conditions: (i) limt→∞

∑t
j=0 ηj →

∞, and (ii) limt→∞
∑t

j=0 η
2
j <∞. Then almost surely θt → θ∗; that is,

P
(
lim
t→∞

(
θt − θ∗) = 0

)
= 1, (22)

where P(E) denotes the probability of event E.

7In general, the Pareto-stationary solution of multi-objective minimization problem forms a set with cardinal-
ity of infinity Mukai (1980).
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The proofs for Theorems 4.3 to 4.5 are provided in Appendices B.1 to B.3, respectively. Note
that all the Theorems 4.3 to 4.5 provide some types of convergence to a Pareto-optimal solution of
optimization problem in Equation (1). Specifically, diminishing dt in Theorems 4.3 and 4.4 implies
that we are reaching to a Pareto-optimal point Désidéri (2009). On the other hand, Theorem 4.5
explicitly provides this convergence guarantee in an almost surely fashion.

In addition, the following theorem shows that DQN-Fed has a linear-quadratic convergence rate (for
the full-version of the theorem and its proof refer to Appendix D).

Theorem 4.6 (Convergence rate of DQN-Fed). Assume that the global loss function is twice
continuously differentiable, L-Lipschitz gradient (L-smooth) and λ-strongly convex. In addition,
assume that the matrix B−1

t is a δ-approximate of true inverse Hessian H−1
t ; that is ∥B−1

t −H−1
t ∥ ≤

δ∥H−1
t ∥. Then, the convergence is either quadratic, with Tϵ = O

(
log log 1

ϵ

)
, or linear, with

Tϵ = O
(

1
log( λ

Lδ )
log 1

ϵ

)
, where λ, L and δ are constants.

5 EXPERIMENTS

In this section, we conclude the paper by presenting a series of experiments to demonstrate the
performance of DQN-Fed. We also conduct a comparative analysis to assess its effectiveness against
state-of-the-art alternatives using various performance metrics.

• Datasets: We conduct a comprehensive set of experiments across seven datasets. In this section,
we present results for four datasets: CIFAR-{10, 100} Krizhevsky et al. (2009), FEMNIST Caldas
et al. (2018), and Shakespeare McMahan et al. (2017). Results for Fashion MNIST Xiao et al. (2017),
TinyImageNet Le & Yang (2015), and CINIC-10 Darlow et al. (2018) are discussed in Appendix I. To
demonstrate DQN-Fed’s effectiveness across different FL scenarios, we examine two FL setups for
each dataset in this section. We provide some experimental analysis in Appendix H where we show
that DQN-Fed converges faster than the first-order FL methods. Furthermore, we evaluate DQN-Fed’s
performance on a real-world noisy dataset, Clothing1M Xiao et al. (2015), in Appendix K.

• Benchmarks: We compare the performance of DQN-Fed against some fair first-order FL and some
second-order FL methods. The fair FL algorithms include q-FFL Li et al. (2019a), TERM Li et al.
(2020), FedMGDA+ Hu et al. (2022), Ditto Li et al. (2021), FedLF Pan et al. (2024), FedHEAL Chen
et al. (2024), and conventional FedAvg McMahan et al. (2017); and also second-order FL methods
include FedNL (Safaryan et al., 2022) and FedNew (Elgabli et al., 2022).

It is worth noting that we conduct a grid-search to find the best hyper-parameters for each of the
benchmark methods including DQN-Fed in our experiments. The details of this hyper-parameter
tuning are reported in Appendix J.

• Performance metrics: Denote by ak the prediction accuracy on device k. We use ā = 1
K

∑K
k=1 ak

as the average test accuracy of the underlying FL algorithm, and use σa =
√

1
K

∑K
k=1(ak − ā)2 as

the standard deviation of the accuracy across the clients. Furthermore, we report Worst 10% (5%)
and Best 10% (5%) accuracies as a common metric in fair FL algorithms Li et al. (2020).

• Notations: We use bold and underlined numbers to denote the best and second best performance,
respectively. We use e and K to represent the number of local epochs and that of clients, respectively.

5.1 CIFAR-10

CIFAR-10 dataset Krizhevsky et al. (2009) has 50K training and 10K test images of size 32 × 32
labeled for 10 classes. The batch size is equal to 64 for both of the following setups.

• Setup 1: Following Wang et al. (2021b), we sort the dataset based on their classes, and then split
them into 200 shards. Each client randomly selects two shards without replacement so that each has
the same local dataset size. We use a feedforward neural network with 2 hidden layers. We fix e = 1
and K = 100. We carry out 2000 rounds of communication, and sample 10% of the clients in each
round. We run SGD on local datasets with stepsize η = 0.1.
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• Setup 2: We distribute the dataset among the clients deploying Dirichlet allocation Wang et al.
(2020) with β = 0.5. We use ResNet-18 He et al. (2016) with Group Normalization Wu & He
(2018). We perform 100 communication rounds in each of which all clients participate. We set e = 1,
K = 10 and η = 0.01.

Table 1: Test accuracy on CIFAR-10. The reported results are averaged over 5 seeds.
Setup 1 Setup 2

Algorithm ā σa W(5%) B(5%) ā σa W(10%) B(10%)

Naive First-Order FedAvg 46.85 3.54 19.84 69.28 63.55 5.44 53.40 72.24

Fair First-Order

q-FFL 46.30 3.27 23.39 68.02 57.27 5.60 47.29 66.92
FedMGDA 45.34 3.37 24.00 68.51 62.05 4.88 52.69 70.77
FedHEAL 46.40 3.61 19.33 69.30 63.05 4.95 48.69 70.88
TERM 47.11 3.66 28.21 69.51 64.15 5.90 56.21 72.20
Ditto 46.31 3.44 27.14 68.44 63.49 5.70 55.99 71.34

Second-Order
FedNL 47.33 3.92 24.41 69.52 64.72 6.02 56.20 72.33
FedNew 47.51 3.68 25.77 69.74 64.58 6.11 56.96 72.12
DQN-Fed 47.72 3.20 29.34 69.37 64.88 4.90 58.01 72.88

5.2 CIFAR-100

CIFAR-100 Krizhevsky et al. (2009) has the same number of samples as CIFAR-10, but comprises
100 classes compared to the 10 classes found in CIFAR-10.

The model for both setups is ResNet-18 He et al. (2016) with Group Normalization Wu & He (2018),
where all clients participate in each round. We also set e = 1 and η = 0.01. The batch size is equal
to 64. The results are reported in Table 2 for both of the following setups:

• Setup 1: We set K = 10 and β = 0.5 for Dirichlet allocation, and use 400 communication rounds.

• Setup 2: We set K = 50 and β = 0.05 for Dirichlet allocation, and use 200 communication rounds.

Table 2: Test accuracy on CIFAR-100. The reported results are averaged over 5 different seeds.
Setup 1 Setup 2

Algorithm ā σa W(10%) B(10%) ā σa W(10%) B(10%)

Naive First-Order FedAvg 30.05 4.03 25.20 40.31 20.15 6.40 11.20 33.80

Fair First-Order

q-FFL 28.86 4.44 25.38 39.77 20.20 6.24 11.09 34.02
FedMGDA 29.12 4.17 25.67 39.71 20.15 5.41 11.12 33.92
FedLF 30.28 3.68 25.33 39.45 18.92 4.90 11.29 28.60
TERM 30.34 3.51 27.03 39.35 17.88 5.98 10.09 31.68
Ditto 29.81 3.79 26.90 39.39 17.52 5.65 10.21 31.25

Fair First-Order
FedNL 31.58 4.55 27.14 40.62 22.74 6.02 12.15 34.44
FedNew 30.95 4.39 27.19 40.55 21.16 5.27 11.77 34.27
DQN-Fed 32.58 3.60 27.91 40.99 23.15 4.45 12.81 35.11

5.3 FEMNIST

FEMNIST (Federated Extended MNIST) Caldas et al. (2018) is a federated image dataset distributed
over 3,550 devices which has 62 classes containing 28× 28-pixel images of digits (0-9) and English
characters (A-Z, a-z). For implementation, we use a CNN model with 2 convolutional layers followed
by 2 fully-connected layers. The batch size is 32, and e = 2 for both of the following setups:

• FEMNIST-original: We use the setting in Li et al. (2021), and randomly sample K = 500 devices
and train models using the default data stored in each device.

• FEMNIST-skewed: K = 100. We sample 10 lower case characters (‘a’-‘j’) from Extended
MNIST (EMNIST), and randomly assign 5 classes to each of the 100 devices.

Consistent with Li et al. (2019a), we use two other fairness metrics for this dataset: (i) the angle
between the accuracy distribution and the all-ones vector 1 denoted by Angle (◦), and (ii) the KL
divergence between the normalized accuracy a and uniform distribution u denoted by KL (a∥u).
Results for both setups are reported in Table 3.
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Table 3: Test accuracy on FEMNIST. The reported results are averaged over 5 different seeds.
FEMNIST-original FEMNIST-skewed

Algorithm ā σa Ang (◦) KL (a∥u) ā σa Ang (◦) KL (a∥u)

Naive First-Order FedAvg 80.42 11.16 10.18 0.017 79.24 22.30 12.29 0.054

Fair First-Order

q-FFL 80.91 10.62 9.71 0.016 84.65 18.56 12.01 0.038
FedMGDA 81.00 10.41 10.04 0.016 85.41 17.36 11.63 0.032
TERM 81.08 10.32 9.15 0.015 84.29 13.88 11.27 0.025
FedLF 82.45 9.85 9.01 0.012 85.21 14.92 11.44 0.027
Ditto 83.77 10.13 9.34 0.014 92.51 14.32 11.45 0.022

Fair First-Order
FedNL 84.21 11.22 10.07 0.015 92.94 16.45 12.56 0.045
FedNew 84.25 10.88 9.78 0.014 92.25 15.21 11.92 0.037
DQN-Fed 85.15 9.58 8.14 0.010 93.80 13.91 11.41 0.011

5.4 TEXT DATA

We use The Complete Works of William Shakespeare McMahan et al. (2017) as the dataset, and train
an RNN whose input is 80-character sequence to predict the next character. We use e = 1, and let all
the devices participate in each round. The results are reported in Table 4 for the following setups:

• Setup 1: Following McMahan et al. (2017), we subsample 31 speaking roles, and assign each role
to a client (K = 31) to complete 500 communication rounds. We use a model with two LSTM layers
Hochreiter & Schmidhuber (1997) and one densely-connected layer. The initial η = 0.8 with decay
rate of 0.95.

• Setup 2: Among the 31 speaking roles, the 20 ones with more than 10000 samples are selected,
and assigned to 20 clients. We use an LSTM followed by a fully-connected layer. η = 2, and the
number of communication is 100.

Table 4: Test accuracy on Shakespeare. The reported results are averaged over 5 different seeds.
Setup 1 Setup 2

Algorithm ā σa W(10%) B(10%) ā σa W(10%) B(10%)

Naive First-Order FedAvg 53.21 9.25 51.01 58.41 50.48 1.24 48.20 52.10

Fair First-Order

q-FFL 53.90 7.52 51.52 58.47 50.72 1.07 48.90 52.29
FedMGDA 53.08 8.14 52.84 58.51 50.41 1.09 48.18 51.99
FedLF 54.58 8.44 52.87 59.84 52.45 1.23 50.02 54.17
TERM 54.16 8.21 52.09 59.15 52.17 1.11 49.14 53.62
Ditto 60.74 8.32 53.57 64.92 53.12 1.20 50.94 55.23

Fair First-Order
FedNL 60.25 8.24 53.15 64.15 52.24 1.25 50.77 54.41
FedNew 60.59 7.55 53.18 64.09 52.49 1.19 50.82 54.36
DQN-Fed 61.65 6.55 53.79 64.86 52.89 0.98 51.02 54.48

5.5 ANALYSIS OF RESULTS

Based on the insights gleaned from Tables 1 to 4, several noteworthy observations emerge:

(i) Naive second-order FL methods, namely FedNL and FedNew, tend to train unfair models, despite
achieving high average accuracy across clients.

(ii) Compared to the benchmark models, DQN-Fed consistently trains models that demonstrate
significantly higher levels of fairness across clients.

(iii) The average accuracy of the model learned by DQN-Fed is higher compared to both first-order
and second-order FL methods.

6 CONCLUSION

This paper introduced distributed quasi-Newton federated learning (DQN-Fed), a novel approach
designed to ensure fairness while harnessing the fast convergence properties of quasi-Newton methods
in FL setting. DQN-Fed aids the server in updating the global model by ensuring (i) all local loss
functions decrease, promoting fairness; and (ii) the rate of change in local loss functions matches
that of the quasi-Newton method. We prove the convergence of DQN-Fed and establish its linear-
quadratic convergence rate. Furthermore, we validate DQN-Fed’s effectiveness across various
federated datasets, demonstrating its superiority over state-of-the-art fair FL methods.
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A PROOF OF THEOREM 4.2

Proof. If all the {fk}k∈[K] are L-smooth, then

f(θt+1) ≤ f(θt) + gT (θt+1 − θt) +
L

2
∥θt+1 − θt∥22. (23)

Now, for client k ∈ [K], by using the update rule Equation (17) in Equation (23) we obtain

fk(θ
t+1) ≤ fk(θ

t)− ηtgk · dt + (ηt)2
L

2
∥dt∥22. (24)

To impose fk(θ
t+1) ≤ fk(θ

t), we should have

ηtgk · dt ≥ (ηt)2
L

2
∥dt∥22 (25)

⇔ gk · dt ≥ ηtL

2

K∑
k=1

∥g̃k∥22
∥g̃k∥42

(∑K
i=1

1
∥g̃i∥2

2

)2 (26)

⇔ d̃tk∑K
k=1

1
∥g̃k∥2

2

≥ ηtL

2

1(∑K
k=1

1
∥g̃k∥2

2

)2 K∑
k=1

1

∥g̃k∥22
(27)

⇔ ηt ≤ 2

L
d̃tk. (28)

B CONVERGENCE OF DQN-FED

In the following, we provide three theorems to analyse the convergence of DQN-Fed under different
scenarios. Specifically, we consider three cases: (i) Theorem B.1 considers e = 1 and using SGD for
local updates, (ii) Theorem B.2 considers an arbitrary value for e and using GD for local updates, and
(iii) Theorem B.4 considers e = 1 and using GD for local updates.

B.1 CASE 1: e = 1 & LOCAL SGD

Notations: We use subscript (·)s to indicate a stochastic value. Using this notation for the values we
introduced in the paper, our notations used in the proof of Theorem B.1 are summarized in Table 5.

Table 5: Notations used in Theorem B.1 for e = 1 & local SGD.

Notation Description

gk,s Stochastic gradient vector of client k.

gs Matrix of Stochastic gradient vectors [g1,s, . . . , gK,s].

g̃k,s Stochastic gradient vector of client k after orthogonalization process.

g̃s Matrix of orthogonalized Stochastic gradient vectors [g̃1,s, . . . , g̃K,s].

λ∗
k,s Optimum weights obtained from Equation equation 12 using Stochastic gradients g̃s.

ds Optimum direction obtained using Stochastic g̃s; that is, ds =
∑K

k=1 λ
∗
k,sg̃k,s.

Theorem B.1. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz smooth, and
that the step-size ηt satisfies the following three conditions: (i) ηt ∈ (0, 1

2L ], (ii) limT→∞
∑T

t=0 η
t →

∞ and (iii) limT→∞
∑T

t=0 η
tσt <∞; where σ2

t = E[∥g̃λ∗ − g̃sλ
∗
s∥]2 is the variance of stochastic

common descent direction. Then

lim
T→∞

min
t=0,...,T

E[∥dt∥]→ 0. (29)
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Proof. Since orthogonal vectors {g̃k}k∈[K] span the same K-dimensional space as that spanned by
gradient vectors {gk}k∈[K], then

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk = gλ′. (30)

Similarly, for the stochastic gradients we have

∃{λ′
k,s}k∈[K] s.t. ds =

K∑
k=1

λ∗
k,sg̃k,s =

K∑
k=1

λ′
k,sgk,s = gsλ

′
s. (31)

Define ∆t = gλ′ − gsλ
′
s = g̃λ∗ − g̃sλ

∗
s , where the last equality is due to the definitions in

Equations (30) and (31).

We can find an upper bound for f(θt+1) as follows

f(θt+1) = f(θt − ηtdt) (32)

= f(θt − ηt
K∑

k=1

λ∗
k,sg̃k,s) (33)

= f(θt − ηtgsλ
′
s) (34)

≤ f(θt)− ηtgTgT
s λ

′
s +

L(ηt)2

2
∥gT

s λ
′
s∥2 (35)

≤ f(θt)− ηtgTgTλ′ + L(ηt)2∥gTλ′∥2 + ηtgT∆t + L(ηt)2∥∆t∥2 (36)

≤ f(θt)− ηt(1− Lηt)∥gTλ′∥2 + lηt∥∆t∥+ L(ηt)2∥∆t∥2, (37)

where equation 33 uses stochastic gradients in the updating rule of DQN-Fed, equation 34 is obtained
from the definition in equation 31, equation 35 holds following the quadratic bound for smooth
functions f = {fk}k∈[K], and lastly equation 37 holds considering the Lipschits continuity of
f = {fk}k∈[K].

Assuming ηt ∈ (0, 1
2L ] and taking expectation from both sides, we obtain:

min
t=0,...,T

E[∥dt∥] ≤
f(θ0)−E[f(θt+1)] +

∑T
t=0 η

t(lσt + Lηtσ2
t )

1
2

∑T
t=0 η

t
. (38)

Using the assumptions (i) limT→∞
∑T

j=0 η
t →∞, and (ii) limT→∞

∑T
t=0 η

tσt <∞, the theorem
will be concluded. Note that vanishing dt implies reaching to a Pareto-stationary point of original
MoM problem. Yet, the convergence rate is different in different scenarios as we see in the following
theorems.

B.1.1 DISCUSSING THE ASSUMPTIONS

• The assumptions over the local loss functions: The two assumptions l-Lipschitz continuous and
L-Lipschitz smooth over the local loss functions are two standard assumptions in FL papers providing
some sorts of convergence guarantee Li et al. (2019b).

• The assumptions over the step-size: The three assumptions we enforced over the step-size could
be easily satisfied as explained in the sequel. For instance, one can pick ηt = κ1

1
t for some constant

κ1 such that ηt ∈ (0, 1
2L ] is satisfied. Then even if σt has a extremely loose upper-bound, let’s say

σt < κ2

tϵ for a small ϵ ∈ R+ and a constant number κ2, then all the three assumptions over the
step-size in the theorem will be satisfied. Note that the convergence rate of DQN-Fed depends on
how fast σt diminishes which depends on how heterogeneous the users are.

B.2 CASE 2: e > 1 & LOCAL GD

The notations used in this subsection are elaborated in Table 6.
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Table 6: Notations used in the Theorem B.2 for e > 1 and local GD.

Notation Description

θ(k,e)t Updated weight for client k after e local epochs at the t-th round of FL.

gk,e gk,e = θt − θ(k,e)t ; that is, the update vector of client k after e local epochs.

ge Matrix of update vectors [g1,e, . . . , gK,e].

g̃k,e Update vector of client k after orthogonalization process.

g̃e Matrix of orthogonalized update vectors [g̃1,e, . . . , g̃K,e].

λ∗
k,e Optimum weights obtained from Equation equation 12 using g̃e.

de Optimum direction obtained using g̃e; that is, de =
∑K

k=1 λ
∗
k,eg̃k,e.

Theorem B.2. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and L-Lipschitz smooth.
Denote by ηt and η the global and local learning rate, respectively. Also, define ζt = ∥λ∗ − λ∗

e∥,
where λ∗

e is the optimum weights obtained from pseudo-gradients after e local epochs. Then,

lim
T→∞

min
t=0,...,T

∥dt∥ → 0, (39)

if the following conditions are satisfied: (i) ηt ∈ (0, 1
2L ], (ii) limT→∞

∑T
t=0 η

t → ∞ and (iii)
limt→∞ ηt → 0, (iv) limt→∞ η → 0, and (v) limt→∞ ζt → 0.

Proof. As discussed in the proof of Theorem B.1, we can write

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk = gλ′, (40)

∃{λ′
k,e}k∈[K] s.t. de =

K∑
k=1

λ∗
k,eg̃k,e =

K∑
k=1

λ′
k,egk,e = geλ

′
e. (41)

To prove Theorem B.2, we first introduce a lemma whose proof is provided in Appendix C.

Lemma B.3. Using the notations used in Theorem B.2, and assumming that f = {fk}k∈[K] are
L-Lipschitz smooth, we have ∥gk,e − gk∥ ≤ ηel.

Using Lemma B.3, we have

∥d− de∥ = ∥g̃λ∗ − g̃eλ
∗
e∥ ≤ ∥g̃λ∗ − g̃λ∗

e∥+ ∥g̃λ∗
e − g̃eλ

∗
e∥ (42)

≤ ∥g̃∥∥λ∗ − λ∗
e∥+ ∥gλ′

e − geλ
′
e∥ (43)

≤ ∥g̃∥∥λ∗ − λ∗
e∥+ ηel (44)

≤ ζtl
√
K + ηel, (45)

where Equation (42) follows triangular inequality, Equation (43) is obtained from Equations (40)
and (41), and Equation (44) uses Lemma B.3.

As seen, if limt→∞ η → 0, and limt→∞ ζt → 0, then ∥d− de∥ → 0. Now, by writing the quadratic
upper bound we obtain:

f(θt+1) ≤ f(θt)− ηtgTgT
e λ

′
e +

L(ηt)2

2
∥gT

e λ
′
e∥2 (46)

≤ f(θt)− ηtgTgTλ′ + L(ηt)2∥gTλ′∥2 + ηtgT (d− de) + L(ηt)2∥d− de∥2 (47)

≤ f(θt)− ηt(1− Lηt)∥gTλ′∥2 + lηt∥d− de∥+ L(ηt)2∥d− de∥2. (48)
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Noting that ηt ∈ (0, 1
2L ], and utilizing telescoping yields

min
t=0,...,T

∥dt∥ ≤
f(θ0)− f(θt+1) +

∑T
t=0 η

t(l∥d− de∥+ Lηt∥d− de∥2)
1
2

∑T
t=0 η

t
. (49)

Using ∥d− de∥ → 0, the Theorem B.2 is concluded.

B.3 CASE 3: e = 1 & LOCAL GD

Denote by ϑ the Pareto-stationary solution set of minimization problem argminθ f(θ). Then, define
θ∗ = argminθ∈ϑ ∥θt − θ∥22.

Theorem B.4. Assume that f = {fk}k∈[K] are l-Lipschitz continuous and σ-convex, and that
the step-size ηt satisfies the following two conditions: (i) limt→∞

∑t
j=0 ηj → ∞ and (ii)

limt→∞
∑t

j=0 η
2
j <∞. Then almost surely θt → θ∗; that is,

P
(
lim
t→∞

(
θt − θ∗) = 0

)
= 1, (50)

where P(E) denotes the probability of event E.

Proof. The proof is inspired from Mercier et al. (2018). Without loss of generality, we assume that
all users participate in all rounds.

Based on the definition of θ∗ we can say

∥θt+1 − θ∗
t+1∥22 ≤ ∥θt+1 − θ∗

t ∥22 = ∥θt − ηtdt − θ∗
t ∥22 (51)

= ∥θt − θ∗
t ∥22 − 2ηt(θt − θ∗

t ) · dt + (ηt)2∥dt∥22. (52)

To bound the third term in Equation (52), we note that from Equation (27), we have:

(ηt)2∥dt∥22 =
(ηt)2∑K

k=1
1

∥g̃k∥2
2

≤ (ηt)2l2

K
. (53)

To bound the second term, first note that since orthogonal vectors {g̃k}k∈[K] span the same K-
dimensional space as that spanned by gradient vectors {gk}k∈[K], then

∃{λ′
k}k∈[K] s.t. d =

K∑
k=1

λ∗
kg̃k =

K∑
k=1

λ′
kgk. (54)

Using Equation (54) and the σ-convexity of {fk}k∈[K] we obtain

(θt − θ∗
t ) · dt = (θt − θ∗

t ) ·
K∑

k=1

λ∗
kg̃k (55)

= (θt − θ∗
t ) ·

K∑
k=1

λ′
kgk (56)

≥
K∑

k=1

λ′
k

(
fk(θ

t)− fk(θ
∗
t )
)
+ σ
∥θt − θ∗

t ∥22
2

(57)

≥ λ′
αM

2
∥θt − θ∗

t ∥22 + σ
∥θt − θ∗

t ∥22
2

(58)

=
λ′
αM + σ

2
∥θt − θ∗

t ∥22. (59)

Now, we return back to Equation (52) and find the conditional expectation w.r.t. θt as follows

E[∥θt+1 − θ∗
t+1∥22 | θt] ≤ (1− ηtE[λ′

αM + σ|θt])∥θt − θ∗
t ∥22 +

(ηt)2l2

K
. (60)
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Assume that E[λ′
αM + σ|θt] ≥ c, taking another expectation we obtain:

E[∥θt+1 − θ∗
t+1∥22] ≤ (1− ηtc)E[∥θt − θ∗

t ∥22] +
(ηt)2l2

K
, (61)

which is a recursive expression. By solving Equation (61) we obtain

E[∥θt+1 − θ∗
t+1∥22] ≤

t∏
j=0

(1− ηjc)E[∥θ0 − θ∗
0∥22]︸ ︷︷ ︸

First term

+

t∑
m=1

∏t
j=1(1− ηjc)η

2
ml2

K
∏m

j=1(1− ηjc)︸ ︷︷ ︸
Second term

. (62)

It is observed that if the limit of both First term and Second term in Equation (62) go to zero, then
E[∥θt+1 − θ∗

t+1∥22]→ 0. For the First term, from the arithmetic-geometric mean inequality we have

lim
t→∞

t∏
j=0

(1− ηjc) ≤ lim
t→∞

(∑t
j=0(1− ηjc)

t

)t

= lim
t→∞

(
1− c

∑t
j=0 ηj

t

)t

(63)

= lim
t→∞

e−c
∑t

j=0 ηj . (64)

From Equation (64) it is seen that if limt→∞
∑t

j=0 ηj →∞, then the First term is also converges to
zero as t→∞.

On the other hand, consider the Second term in Equation (62). Obviously, if limt→∞
∑t

j=0 η
2
j <∞,

then the Second term converges to zero as t→∞.

Hence, if (i) limt→∞
∑t

j=0 ηj →∞ and (ii) limt→∞
∑t

j=0 η
2
j <∞, then E[∥θt+1− θ∗

t+1∥22]→ 0.
Consequently, based on standard supermartingale Mercier et al. (2018), we have

P
(
lim
t→∞

(
θt − θ∗) = 0

)
= 1. (65)

C PROOF OF LEMMA B.3

Proof.

gk,e = θt − θ(k,e)t = (θt − θ(k,1)t) + (θ(k,1)t − θ(k,2)t) + · · ·+ (θ(k,e−1)t − θ(k,e)t) (66)

= gk(θ
t) + ηgk,1 + · · ·+ ηgk,e−1. (67)

Hence,

∥gk,e − gk∥ = ∥η
e∑

j=1

gk,j∥ ≤ η

e∑
j=1

∥gk,j∥ ≤ ηel. (68)

D CONVERGENCE RATE, FULL-VERSION OF THEOREM 4.6

In this subsection, we provide convergence guarantee for DQN-Fed. First, consider the following
assumptions which we use in our convergence theorems.

Definition D.1. We say that B−1
t is a δ-approximate of true inverse Hessian H−1

t , if the following
holds

∥B−1
t −H−1

t ∥ ≤ δ∥H−1
t ∥. (69)

• Assumption 1. The global loss function is twice continuously differentiable, L-Lipschitz gradient
(L-smooth) and λ-strongly convex. As such, we have

λI ⪯ ∇2f(θ) ⪯ LI, (70)
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where I represents the identity matrix, and the notation A ⪯ B, where A and B are matrices of the
same size, signifies that A−B is positive semidefinite. Note that the strong convexity of the global
loss function implies that there exists a unique optimal model parameter which we denote by θ⋆

hereafter in our proof.

• Assumption 2. The matrix B−1
t is a δ-approximate of true inverse Hessian H−1

t .

Theorem D.2. Let Assumptions 1 & 2 hold. Then,

∥θt − θ⋆∥ ≤

{(
Lδ
λ

)t ∥∥θ0 − θ⋆
∥∥+A′

0, t ≤ t0(
Lδ
λ

)t ∥∥θ0 − θ⋆
∥∥+A′

1, t > t0
(71)

where A′
0 and A′

1 are defined as follows

A′
0 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

[λ
L
(t0 − t+

2γ

1− γ
)
]
, (72a)

A′
1 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

[ 2λγ2t−t0

L(1− γ2t−t0 )
+
]
, (72b)

with t0 = max
{
0,
⌈ 2L

λ2∥d0∥
⌉
− 2
}
, (72c)

and γ =
L

2λ2
∥d0∥ −

t0
4
. (72d)

Proof. The proof is differed to Appendix E.

As per Theorem equation D.2, DQN-Fed method has a linear-quadratic convergence rate. In fact, the
quadratic term in equation 71 is exactly the same as that of Polyak & Tremba (2020); yet, the linear
term is the result of approximating the local Hessian matrices using BFGS method.

In the ensuing corollary, our objective is to determine the required number of communication rounds
Tϵ such that

∥∥θTϵ
− θ⋆

∥∥ ≤ ϵ.

Corollary D.3. If
∥∥θ0 − θ⋆

∥∥ <
A′

1

(Lδ
λ )

t , then DQN-Fed has a quadratic convergence rate:

∥θt − θ⋆∥ ≤ 2A′
1. (73)

Also, if Lδ
λ < 1, we have

Tϵ = O
(
log log

1

ϵ

)
, (74)

which is also called super-linear convergence rate.

Corollary D.4. On the other hand, If
∥∥θ0 − θ⋆

∥∥ ≥ A′
1

(Lδ
λ )

t and Lδ
λ < 1, then DQN-Fed method has a

linear convergence rate:

∥θt − θ⋆∥ ≤ 2

(
Lδ

λ

)t

∥θ0 − θ⋆∥. (75)

and,

Tϵ = O

(
1

log( λ
Lδ )

log
1

ϵ

)
. (76)

The proof for Corollary D.3 and D.4 can be found in Appendix F and G, respectively.

Remark D.5. It is worth noting that for distributed GD-like methods, the number of communication
rounds needed to achieve a desired precision ϵ, follows a linear convergence rate. Specifically, we
have Tϵ = O

(
L
λ log 1

ϵ

)
. This underscores the superiority of DQN-Fed in terms of convergence rate.
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E PROOF OF THEOREM THEOREM D.2

Throughout the proofs in this section, we frequently use the triangular inequality for two vectors v
and u: ∥v ± u∥ ≤ ∥v∥+ ∥u∥.
Our goal is to prove the theorem by deriving a recursive relation for the distance between the optimal
global model θ⋆ and the global model at the t-th round θt, specifically ∥θt − θ⋆∥. First, noting that
θt+1 = θt + ηtB

−1
t g̃t, we have

∥θt+1 − θ⋆∥ =
∥∥θt − ηtB

−1
t g̃t − θ⋆

∥∥
≤
∥∥θt − ηtH

−1
t gt − θ⋆

∥∥︸ ︷︷ ︸
M1

+ ηt
∥∥H−1

t gt −B−1
t g̃t

∥∥︸ ︷︷ ︸
M2

. (77)

To bound M1, we use the results in Polyak & Tremba (2020). In particular, define t0 =

max
{
0,
⌈

2L
λ2∥d0∥

⌉
− 2
}

, γ = L
2λ2 ∥d0∥ − t0

4 ; then,

M1 ≤


λ
L (t0 − t+ 2γ

1−γ ), t ≤ t0
2λγ2t−t0

L(1−γ2t−t0 )
, t > t0

(78)

Next, we bound M2 in the sequel.

M2 ≤
∥∥H−1

t gt −B−1
t gt

∥∥+ ∥∥B−1
t gt −B−1

t g̃t

∥∥ (79)

≤
∥∥H−1

t −B−1
t

∥∥∥∥gt

∥∥+ ∥∥B−1
t

∥∥∥∥gt − g̃t

∥∥, (80)

where in equation 79 we used triangular inequality. Note that using the assumption 2, we have∥∥H−1
t −B−1

t

∥∥ ≤ δ
∥∥H−1

t

∥∥, and by λ-strong convexity of the loss function, we have
∥∥H−1

t

∥∥ ≤ 1
λ .

Hence, ∥∥H−1
t −B−1

t

∥∥ ≤ δ

λ
. (81)

In addition, the L-smoothness of the global loss function yields∥∥gt

∥∥ ≤ L
∥∥θt − θ⋆

∥∥. (82)

Hence, from equation 81 and equation 82, the first term in equation 80 could be bounded. Now, to
bound the second term in equation 80, note that∥∥B−1

t

∥∥ ≤ ∥∥B−1
t −H−1

t

∥∥+ ∥∥H−1
t

∥∥ (83)

≤ δ

λ
+

1

λ
=

δ + 1

λ
. (84)

Using equation 81, equation 82 and equation 83 in the inequality equation 79 we obtain

M2 ≤
Lδ

λ

∥∥θt − θ⋆
∥∥+ δ + 1

λ

∥∥gt − g̃t

∥∥. (85)

Next, we have (note that ηt ≤ 1)

∥θt+1 − θ⋆∥ ≤
{

Lδ
λ

∥∥θt − θ⋆
∥∥+A0, t ≤ t0

Lδ
λ

∥∥θt − θ⋆
∥∥+A1, t > t0

(86a)

where A0 =
λ

L
(t0 − t+

2γ

1− γ
), (86b)

and A1 =
2λγ2t−t0

L(1− γ2t−t0 )
. (86c)

Applying equation 86 recursively yields
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∥θt − θ⋆∥ ≤

{(
Lδ
λ

)t ∥∥θ0 − θ⋆
∥∥+A′

0, t ≤ t0(
Lδ
λ

)t ∥∥θ0 − θ⋆
∥∥+A′

1, t > t0
(87a)

where A′
0 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

A0, (87b)

and A′
1 =

(
Lδ
λ

)t − 1
Lδ
λ − 1

A1. (87c)

F PROOF OF COROLLARY D.3

As per Theorem equation D.2, if
∥∥θ0 − θ⋆

∥∥ <
A′

1

(Lδ
λ )

t , then

∥θt − θ⋆∥ ≤
(
Lδ

λ

)t
A′

1(
Lδ
λ

)t +A′
1 = 2A′

1. (88)

Hence, to find Tϵ, we shall have
2A′

1 ≤ ϵ (89)

⇔ 2

(
Lδ
λ

)t − 1
Lδ
λ − 1

[ 2λγ2t−t0

L(1− γ2t−t0 )︸ ︷︷ ︸
diminishing term

]
≤ ϵ. (90)

Since
(
Lδ
λ

)
< 1, as t becomes larger,

(
Lδ
λ

)t ≈ 0, and therefore 2
(Lδ

λ )
t−1

Lδ
λ −1

≈ 2
1−Lδ

λ

. In addition,

since γ ∈ [0, 1
2 ], for the large values of t, 2λγ2t−t0

L(1−γ2t−t0 )
≈ 2λγ2t−t0

L . Thus, by inverting the inequality

equation 90, and then taking log from both sides we have

log(
1

ϵ
) ≤ − log(

4λ

L− L2δ
λ

)− 2t−t0 log(γ). (91)

Note that log(γ) < 0, and therefore the second term on the RHS of equation 91 is positive. Also,
since − log( 4λ

L−L2δ
λ

)≪ −2t−t0 log(γ), then

Tϵ ≤ O
(
log log

1

ϵ

)
. (92)

G PROOF OF COROLLARY D.4

Based on Theorem equation D.2, if
∥∥θ0 − θ⋆

∥∥ ≥ A′
1

(Lδ
λ )

t , then

∥θt − θ⋆∥ ≤
(
Lδ

λ

)t ∥∥θ0 − θ⋆
∥∥+

(
Lδ

λ

)t ∥∥θ0 − θ⋆
∥∥ (93)

≤ 2

(
Lδ

λ

)t ∥∥θ0 − θ⋆
∥∥. (94)

Thus, to find Tϵ, we shall have

2

(
Lδ

λ

)Tϵ ∥∥θ0 − θ⋆
∥∥ ≤ ϵ (95)

⇔ Tϵ log(
λ

Lδ
) ≥ log

(
2
∥∥θ0 − θ⋆

∥∥
ϵ

)
. (96)

Hence

Tϵ = O

(
1

log( λ
Lδ )

log
1

ϵ

)
. (97)
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H EXPERIMENTAL ANALYSIS

H.1 COMPARISON OF CONVERGENCE RATE

In this subsection, we empirically compare the convergence speed of DQN-Fed against several fair
first-order methods. To do so, we use the four datasets from setup 1 described in Section 5 and plot
the validation accuracy of different methods as a function of communication rounds. The results are
shown in Figure 1. As observed, DQN-Fed demonstrates a faster convergence rate compared to all
benchmark methods.
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Figure 1: The test accuracy curves Vs. communication rounds for different FL methods.

H.1.1 PERCENTAGE OF IMPROVED CLIENTS

We measure the training loss before and after each communication round for all participating clients
and report the percentage of clients whose loss function decreased or remained unchanged, defined

as ρt =
∑

k∈St
I{fk(θ

t+1)≤fk(θ
t)}

|St| , where St is the participating clients in round t, and I(·) is the
indicator function. Then, we plot ρt versus communication rounds for different fair FL methods. The
curves for CIFAR-10 and CIFAR-100 datasets are reported in Figure 2a and Figure 2b, respectively.
As seen, both DQN-Fed and FedMGDA+ consistently outperform other benchmark methods in that
fewer clients’ performances get worse after participation. We further note that after enough number
of communication rounds, curves for both DQN-Fed and FedMGDA+ converge to 100%. In ??, we
also present experimental analysis to validate the claims made in the paper.

I ADDITIONAL DATASETS

In this section, we assess the performance of DQN-Fed against several benchmarks using additional
datasets, namely Fashion MNIST, CINIC-10, and TinyImageNet. The corresponding results for each
dataset are detailed in Appendices I.1 to I.3.

I.1 FASHION MNIST

Fashion MNIST (Xiao et al., 2017) is an extension of MNIST dataset (LeCun et al., 1998) with
images resized to 32× 32 pixels.
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Figure 2: Number of improved clients.

We use a fully-connected neural network with 2 hidden layers, and use the same setting as that used
in Li et al. (2019a) for our experiments. We set e = 1 and use full batchsize, and use η = 0.1. Then,
we conduct 300 rounds of communications. For the benchmarks, we use the same as those we used
for CIFAR-10 experiments. The results are reported in Table 7.

By observing the three different classes reported in Table 7, we observe that the fairness level attained
in DQN-Fed is not limited to a dominate class.

Table 7: Test accuracy on Fashion MNIST. The reported results are averaged over 5 different seeds.

ALGORITHM ā σa SHIRT PULLOVER T-SHIRT

FEDAVG 80.42 3.39 64.26 87.00 89.90
Q-FFL 78.53 2.27 71.29 81.46 82.86
FEDMGDA+ 79.29 2.53 72.46 79.74 85.66
FEDHEAL 80.22 3.41 63.71 86.87 89.94
DQN-FED 81.27 2.31 72.57 88.21 90.99

I.2 CINIC-10

CINIC-10 (Darlow et al., 2018) has 4.5 times as many images as those in CIFAR-10 dataset (270,000
sample images in total). In fact, it is obtained from ImageNet and CIFAR-10 datasets. As a result,
this dataset fits FL scenarios since the constituent elements of CINIC-10 are not drawn from the same
distribution. Furthermore, we add more non-iidness to the dataset by distributing the data among the
clients using Dirichlet allocation with β = 0.5.

For the model, we use ResNet-18 with group normalization, and set η = 0.01. There are 200
communication rounds in which all the clients participate with e = 1. Also, K = 50. Results are
reported in Table 8.

Table 8: Test accuracy on CINIC-10. The reported results are averaged over 5 different seeds.

ALGORITHM ā σa WORST 10% BEST 10%

Q-FFL 86.57 14.91 57.70 100.00
DITTO 86.31 15.14 56.91 100.00
FEDLF 86.49 15.12 57.62 100.00
TERM 86.40 15.10 57.30 100.00
DQN-FED 87.34 14.85 57.88 99.99
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I.3 TINYIMAGENET

Tiny-ImageNet (Le & Yang, 2015) is a subset of ImageNet with 100k samples of 200 classes. We
distribute the dataset among K = 20 clients using Dirichlet allocation with β = 0.05

We use ResNet-18 with group normalization, and set η = 0.02. There are 400 communication rounds
in which all the clients participate with e = 1. The results are reported in Table 9.

Table 9: Test accuracy on TinyImageNet. The reported results are averaged over 5 different seeds.

ALGORITHM ā σa WORST 10% BEST 10%

Q-FFL 18.90 3.20 13.12 23.72
FEDLF 16.55 2.38 12.40 20.25
TERM 16.41 2.77 11.52 21.02
FEDMGDA+ 14.00 2.71 9.88 19.21
DQN-FED 19.05 2.35 13.24 23.58

J EXPERIMENTS DETAILS, TUNING HYPER-PARAMETERS

For all benchmark methods, we conducted a grid-search to identify the optimal hyper-parameters for
the underlying algorithms. The parameters tested for each method are outlined below:

• q-FFL: q ∈ {0, 0.001, 0.01, 0.1, 1, 2, 5, 10}.
• TERM: t ∈ {0.1, 0.5, 1, 2, 5}.
• FedLF: ηt ∈ {0.01, 0.05, 0.1, 0.5, 1}.
• Ditto: λ ∈ {0.01, 0.05, 0.1, 0.5, 1, 2, 5}.
• FedMGDA+: ϵ ∈ {0.01, 0.05, 0.1, 0.5, 1}.
• FedHEAL: (α, β) = {(0.5, 0.5)}, (γs, γc) = {(0.5, 0.9)}.

K INTEGRATION WITH A LABEL NOISE CORRECTION METHOD

K.1 UNDERSTANDING LABEL NOISE IN FL

Label noise in FL refers to inaccuracies or errors present in the ground truth labels associated with
the data used for training FL models. These inaccuracies manifest when the labels assigned to data
points are incorrect or noisy due to various reasons. Label noise can originate at different stages
of the FL process, including data collection, annotation, or transmission phases. Addressing label
noise is crucial as it can substantially impact the performance and reliability of FL models, making it
essential to develop robust strategies to mitigate its effects.

Addressing label noise in FL presents unique challenges due to its reliance on decentralized data
sources, where participants may have limited control over label quality in remote environments.
Mitigating label noise in FL requires the development of robust models and FL algorithms capable of
adapting to inaccuracies in the labels. This adaptation is essential for maintaining model performance
and reliability in real-world FL scenarios where label noise is prevalent.

K.2 ROBUSTNESS OF FAIR FL ALGORITHMS TO LABEL NOISE

The core objective of fair FL algorithms, such as DQN-Fed, is to uphold fairness among clients while
preserving average accuracy across them. However, it’s important to note that these algorithms are
not inherently robust against label noise, which refers to instances where data points are mislabeled.

However, by integrating DQN-Fed with label-noise resistant methods from existing literature, we
can develop a FL approach that not only ensures fairness among clients but also exhibits robustness
against label noise. Specifically, among the label-noise resistant FL algorithms available in the
literature, we choose FedCorr (Xu et al., 2022) to be integrated with DQN-Fed. This integration
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offers a promising avenue for enhancing the performance and resilience of FL models in real-world
scenarios affected by label noise.

FedCorr introduces a dimensionality-based filter to identify noisy clients, achieved through the
measurement of local intrinsic dimensionality (LID) within local model prediction subspaces. They
illustrate the feasibility of distinguishing between clean and noisy datasets by monitoring the behavior
of LID scores throughout the training process. For further insights into FedCorr, we defer interested
readers to the original paper for a comprehensive discussion.

Following a methodology similar to FedCorr, we utilize a real-world noisy dataset known as Cloth-
ing1M. This dataset comprises 1 million clothing images across 14 classes and is characterized
by noisy labels, as it is sourced from various online shopping websites, incorporating numerous
mislabeled samples.

For our experiments with Clothing1M, we adopt the identical settings as utilized by FedCorr, which
are available in their GitHub repository (https://github.com/Xu-Jingyi/FedCorr). Specifically, we
employ local SGD with a momentum of 0.5, utilizing a batch size of 16 and conducting five local
epochs. Additionally, we set the hyper-parameter T1 = 2 in accordance with their algorithm.

The results are summarized in Table 10. It is evident that the average accuracy achieved by DQN-
Fed is approximately 2.2% lower compared to that obtained with FedCorr, indicating DQN-Fed’s
susceptibility to label noise. However, DQN-Fed demonstrates a notable improvement in ensuring
fair client accuracy, aligning with expectations.

Conversely, when DQN-Fed is combined with FedCorr, there is a noticeable enhancement in average
accuracy while still preserving satisfactory fairness among clients. This integration showcases the
potential of leveraging both methodologies to achieve improved performance and fairness in FL
scenarios affected by label noise.

Table 10: Test accuracy on Clothing1M dataset. The reported results are averaged over 5 different
seeds.

ALGORITHM ā σa W(10%) B(10%)

FEDAVG 70.49 13.25 43.09 91.05
FEDCORR 72.55 13.27 43.12 91.15
DQN-FED 70.35 5.17 49.91 90.77
FEDCORR + DQN-FED 72.36 8.07 46.77 91.15

L MORE ON FAIRNESS IN FL AND ML

L.1 SOURCES OF UNFAIRNESS IN FEDERATED LEARNING

Unfairness in FL can arise from various sources and is a concern that needs to be addressed in FL
systems. Here are some of the key reasons for unfairness in FL:

1. Non-Representative Data Distribution: Unfairness can occur when the distribution of data across
participating devices or clients is non-representative of the overall population. Some devices may
have more or less relevant data, leading to biased model updates.

2. Data Bias: If the data collected or used by different clients is inherently biased due to the
data collection process, it can lead to unfairness. For example, if certain demographic groups are
underrepresented in the training data of some clients, the federated model may not perform well for
those groups.

3. Heterogeneous Data Sources: Federated learning often involves data from a diverse set of sources,
including different device types, locations, or user demographics. Variability in data sources can
introduce unfairness as the models may not generalize equally well across all sources.

4. Varying Data Quality: Data quality can vary among clients, leading to unfairness. Some clients
may have noisy or less reliable data, while others may have high-quality data, affecting the model’s
performance.
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5. Data Sampling: The way data is sampled and used for local updates can introduce unfairness. If
some clients have imbalanced or non-representative data sampling strategies, it can lead to biased
model updates.

6. Aggregation Bias: The learned model may exhibit a bias towards devices with larger amounts of
data or, if devices are weighted equally, it may favor more commonly occurring devices.

L.2 FAIRNESS IN CONVENTIONAL ML VS. FL

The concept of fairness is often used to address social biases or performance disparities among
different individuals or groups in the machine learning (ML) literature (Barocas et al., 2017). However,
in the context of FL, the notion of fairness differs slightly from traditional ML. In FL, fairness
primarily pertains to the consistency of performance across various clients. In fact, the difference in
the notion of fairness between traditional ML and FL arises from the distinct contexts and challenges
of these two settings:

1. Centralized vs. decentralized data distribution:

• In traditional ML, data is typically centralized, and fairness is often defined in terms of
mitigating biases or disparities within a single, homogeneous dataset. Fairness is evaluated
based on how the model treats different individuals or groups within that dataset.

• In FL, data is distributed across multiple decentralized clients or devices. Each client may
have its own unique data distribution, and fairness considerations extend to addressing
disparities across these clients, ensuring that the federated model provides uniform and
equitable performance for all clients.

2. Client autonomy and data heterogeneity:

• In FL, clients are autonomous and may have different data sources, labeling processes, and
data collection practices. Fairness in this context involves adapting to the heterogeneity and
diversity among clients while still achieving equitable outcomes.

• Traditional ML operates under a centralized, unified data schema and is not inherently
designed to handle data heterogeneity across sources.

We should note that in certain cases where devices can be naturally clustered into groups with specific
attributes, the definition of fairness in FL can be seen as a relaxed version of that in ML, i.e., we
optimize for similar but not necessarily identical performance across devices (Li et al., 2019a).

Nevertheless, despite the differences mentioned above, to maintain consistency with the terminology
used in the FL literature and the papers we have cited in the main body of this work, we will continue
to use the term “fairness” to denote the uniformity of performance across different devices.

L.3 FAIR ALGORITHMS IN FL

A seminal method in this domain is Agnostic Federated Learning (FedLF) Mohri et al. (2019).
FedLF optimizes the global model for the worst-case realization of the weighted combination of
user distributions. Their approach involves solving a saddle-point optimization problem, and they
employ a fast stochastic optimization algorithm for this purpose. However, FedLF exhibits strong
performance only for a limited number of clients. In addition, Du et al. (2021) adopted the framework
of FedLF and introduced the AgnosticFair algorithm. They linearly parameterized model weights
using kernel functions and demonstrated that FedLF can be considered as a specific instance of
AgnosticFair. To address the challenges in FedLF, the q-fair Federated Learning (q-FFL) method was
introduced by Li et al. (2019a). q-FFL aims to achieve a more uniform test accuracy across users,
drawing inspiration from fair resource allocation methods employed in wireless communication
networks Huaizhou et al. (2013). Following this, Li et al. (2020) introduced TERM, a tilted empirical
risk minimization algorithm designed to address outliers and class imbalance in statistical estimation
procedures. In numerous FL applications, TERM has shown superior performance compared to
q-FFL. Adopting a similar concept, Huang et al. (2020b) introduced a method that adjusts device
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weights based on training accuracy and frequency to promote fairness. Additionally, FCFC Cui et al.
(2021) minimizes the loss of the worst-performing client, effectively presenting a variant of FedLF.
Subsequently, Li et al. (2021) introduced Ditto, a multitask personalized FL algorithm. By optimizing
a global objective function, Ditto enables local devices to perform additional steps of SGD, within
certain constraints, to minimize their individual losses. Ditto proves effective in enhancing testing
accuracy among local devices and promoting fairness.

Our approach shares similarities with FedMGDA+ Hu et al. (2022), which treats the FL task as a multi-
objective optimization problem. The objective here is to simultaneously minimize the loss function
of each FL client. To ensure that the performance of any client is not compromised, FedMGDA+
leverages Pareto-stationary solutions to identify a common descent direction for all selected clients.
In a similar approach, Hamidi & YANG (2024); Mohajer Hamidi & Damen (2024) use ideas from
multi-objective optimization to ensure fairness in FL models.
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