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Abstract

This paper explores Multi-Label Arabic Di-
alect Identification, addressing the limitations
of single-label classification, which fails to
capture the natural overlap between dialects.
We use pseudo-labeling to generate multi-label
training data and fine-tune BERT-based models
to improve dialect classification. Our approach
achieves state-of-the-art performance, surpass-
ing previous methods by 7% in macro F1 score.
These results show that allowing multiple di-
alect labels provides a more accurate represen-
tation of real-world language use. However,
distinguishing similar dialects remains a chal-
lenge, emphasizing the need for better annota-
tion techniques.

1 Introduction

Arabic is spoken by over 420 million people across
more than 28 nations, is a highly diverse language
encompassing Modern Standard Arabic (MSA)
and a wide range of regional and national dialects.
While MSA serves as the standardized form used
in formal settings such as education, media, and
official communication, Arabic dialects dominate
informal interactions, including social media, text
messaging, and everyday conversation. These di-
alects exhibit significant linguistic variation influ-
enced by geography, culture, and history, making
dialect identification a cornerstone challenge in
Arabic Natural Language Processing.
Traditionally, Arabic Dialect Identification
(ADI) has been framed as a single-label classifi-
cation task, where a given text is associated with
one dialect from a predefined set. However, this
approach faces several challenges, as highlighted
by (Keleg and Magdy, 2023). Short sentences often
lack sufficient cues to indicate a single dialect, and
MSA overlaps with all dialects, further complicat-
ing the task. Moreover, Arabic dialects exhibit sig-
nificant diversity across regional (e.g., Levant, Gulf,
and Maghreb), country (over 20 Arab nations), and

city levels (more than 100 micro-dialects). Distin-
guishing between dialects at finer levels remains
particularly challenging due to these overlaps, with
ADI models consistently struggling to achieve ro-
bust performance, as evidenced by low macro-F1
scores.

Single-label classification models are limited in
capturing the linguistic realities of Arabic dialects,
where sentences often belong to multiple dialects.
Overlapping expressions, shared vocabulary, and
code-switching with languages such as French or
English further complicate the task. These chal-
lenges have led to a paradigm shift in the field to-
ward Multi-Label Dialect Identification (MLDID),
where sentences can be associated with multiple
dialects. Table 1 illustrates such overlaps, high-
lighting the difficulties of single-label classification.
Furthermore, single-label datasets often introduce
bias, as annotators tend to favor their native di-
alects, and shared linguistic features further blur
distinctions.

Dialects Sentence

Iraq, Jordan, Lebanon, Libya,
Oman, Palestine, Qatar, Saudi
Arabia, Sudan, Syria, Tunisia,

(Where is the station?)

Yemen

Iraq, Morocco, Qatar 1) (5 ) g
(What is the flight/trip num-
ber?)

Lebanon, Syria, Jordan ?JMJ -
(What are you doing?)

Saudi Arabia, UAE, Qatar, ICHNE

Bahrain, Kuwait

(How are you?)

All Arabic dialects

e

(Allah is great)

Table 1: Examples illustrating dialect overlap in Arabic.

The NADI 2024 shared task exemplifies this
shift by introducing the ML.DID subtask, which fo-
cuses on multi-label classification of country-level



Arabic dialects (Abdul-Mageed et al., 2024). To
address these challenges, we introduce B2BERT, a
transformer-based model specifically designed for
MLDID. Our contributions can be summarized as
follows:

* We propose a synthetic multi-label dataset
by pseudo-labeling existing single-label di-
alect datasets, enabling models to learn over-
lapping dialectal features.

* We develop B2BERT, which is fine-tuned on
this dataset and leverages curriculum-based
training approach to improve classification
accuracy, mitigating the impact of dataset im-
balances.

¢ We demonstrate that B2ZBERT achieves state-
of-the-art (SOTA) performance in the new
paradigm of Arabic dialect identification, sur-
passing the top-performing models in the
NADI 2024 shared task leaderboard with a
macro Fl-score of 59.63%.

Our work establishes a new benchmark for Ara-
bic dialect identification and highlights the poten-
tial of multi-label classification frameworks in
capturing the linguistic diversity of Arabic dialects.

2 Related Work

The task of Arabic Dialect Identification has
emerged as a critical challenge in the field of Nat-
ural Language Processing (NLP) due to the vast
linguistic diversity of Arabic dialects (Zaidan and
Callison-Burch, 2014). This diversity, while rich
in cultural and historical significance, poses signif-
icant obstacles for NLP applications, particularly
with the widespread use of dialectal Arabic in digi-
tal communication, social media, and various on-
line platforms. The ability to accurately identify
and process these dialects is essential for enhancing
communication technologies, developing more in-
clusive Al systems, and improving language-based
applications like translation and sentiment analysis.

Recent years have witnessed a leap in research
efforts aimed at tackling ADI. Early approaches
primarily modeled ADI as a single-label classifica-
tion problem (Abdul-Mageed et al., 2020; Zirikly
et al., 2016; Bouamor et al., 2019), where each
text sample was associated with a single dialect
label. One of the main challenges of single-label
ADI models is their inability to handle linguistic

overlap across dialects. For instance, short sen-
tences or common expressions may be valid in
multiple dialects but are restricted to a single label
in conventional datasets. Studies, such as Keleg
and Magdy (2023), have demonstrated that approx-
imately 66% of predictions classified as errors by
single-label models are, in fact, valid in the pre-
dicted dialect. This reveals a critical evaluation
bottleneck, as traditional metrics fail to account for
the multi-dialectal nature of Arabic. Moreover, Al-
thobaiti (2020) emphasized the biases introduced
during manual annotation, where annotators often
over-identify their native dialect, further skewing
dataset validity.

Efforts like the Multi-Dialectal Parallel Cor-
pus of Arabic (MPCA) (Bouamor et al., 2014)
and the MADAR corpus (Bouamor et al., 2018)
provided significant resources for dialect identifi-
cation but were constrained by their reliance on
single-label paradigms. These datasets, often con-
structed through manual or automated annotation
techniques, fail to capture the intricate multi-label
dynamics of dialectal texts.

Recognizing these limitations, the research com-
munity has started to advocate for reframing ADI as
a multi-label classification task. NADI 2023’s first
subtask focused mainly on ADI in a single-label
manner (Abdul-Mageed et al., 2023). Although
this approach has led to some promising results
from the teams participating in NADI Subtask 1
2023 (Elkaref et al., 2023); (Abdel-Salam, 2023);
(Almarwani and Aloufi, 2023), these results were
limited due to the reasons listed above. There have
also been several efforts to develop parallel corpus
datasets to efficiently capture the characteristics of
each dialect. However, these datasets were paral-
lelly translated from other languages rather than
being naturally occurring, like tweets.

In NADI 2024(Abdul-Mageed et al., 2024), the
focus shifted to MLDID. The emergence of this
task posed serious challenges due to the nature of
the dataset: each tweet in the dataset had a single
label, but the objective was to generate multiple
labels as the model’s output.

Significant work was carried out by several
teams participating in this task, particularly the
work by (Karoui et al., 2024), who achieved the
highest results by leveraging multi-label architec-
tures, such as transformer-based models adapted
for multi-output predictions. These models sig-
nificantly improved evaluation fairness and perfor-



mance metrics, particularly in handling sentences
with high dialectal ambiguity. Our goal is to im-
prove these outcomes using new approaches.

3 Dataset

We used NADI 2020 (Abdul-Mageed et al., 2020),
NADI 2021 (Abdul-Mageed et al., 2021b), and
NADI 2023 (Abdul-Mageed et al., 2023), all of
which provided tweets with single-label annota-
tions. Furthermore, we incorporated the develop-
ment set from NADI 2024’s first subtask into our
data pool. All these datasets were shared with us
by the organizers.

The NADI 2023 dataset which is particularly no-
table for its balanced distribution, includes equal
representation from 18 Arabic dialects from coun-
tries such as Algeria, Bahrain, Egypt, Iraq, Jordan,
Kuwait, Lebanon, Libya, Morocco, Oman, Pales-
tine, Qatar, Saudi Arabia, Sudan, Syria, Tunisia,
UAE, and Yemen. Each dialect class in this dataset
consists of 1000 tweets. In contrast, the datasets
from NADI 2020 and NADI 2021 were found to be
unbalanced, with dialects like Bahraini and Qatari
being underrepresented compared to the more fre-
quently encountered Egyptian and Iraqi dialects.
Furthermore, classification in these datasets was
influenced by the location from which posts were
made, introducing a significant margin of error.
The combined distribution for the three datasets is
shown in Figure 1.
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Dialect

Figure 1: Number of samples in each dialect after com-
bining the three datasets

To construct a more diverse and representative
dataset we selected 31,760 samples from these
three datasets. Since NADI 2023 dataset was bal-
anced, it was used in full. Evenly sampled records
were selected from NADI 2020 and NADI 2021 to
enhance dataset consistency and avoid excessive
dominance of particular dialects.

For evaluation, we utilized the official NADI

2024 test set which consists of 1,000 samples cov-
ering 14 Arabic-speaking countries This dataset
provides a more reliable benchmark for assessing
model performance on real-world dialect identi-
fication. The final dataset splits are provided in
Table 2.

Splits Sentences Classes
Train 31,760 18
Validation 120 8
Test 1,000 14

Table 2: Final Dataset Splits.

4 Methodology

4.1 Baseline

We use the same baseline as that employed in the
NADI 2024 (Abdul-Mageed et al., 2024) shared
task. Specifically, a softmax-based model was
fine-tuned for single-label dialect classification and
adapted for the multi-label setting. The model out-
puts softmax probabilities for each dialect. It pre-
dicts the most probable labels until their cumula-
tive probability exceeds 90%, allowing multiple
dialects to be assigned to a sentence.

4.2 Proposed Method

The proposed approach consists of two main steps.
First, a multi-label dataset is created from the origi-
nal mono-label dataset by applying pseudo-labeling
(Lee et al., 2013), allowing sentences with overlap-
ping dialectal features to be assigned multiple la-
bels. Pseudo-labeling is a semi-supervised learning
technique where a model is initially trained on la-
beled data, then used to generate artificial (pseudo)
labels for unlabeled data, treating them as ground
truth for further training. This approach effectively
expands the labeled dataset while leveraging the
model’s existing knowledge. Second, a multi-label
classification model is fine-tuned on the generated
dataset to predict all relevant dialects for a given
sentence.

4.2.1 Dataset Creation

The provided NADI dataset is originally mono-
labeled across 18 Arabic dialects.

Three distinct approaches were explored for
converting the mono-label dataset into a multi-
label dataset. The first approach employed a
pipeline of logistic regression classifiers, where



18 independent classifiers were trained to deter-
mine whether a sentence belonged to a specific di-
alect. Tweets labeled with the target dialect, along
with MSA sentences, were treated as positive sam-
ples, while negative samples were evenly selected
from the remaining dialects to balance training data.
This approach served as an initial attempt at multi-
label classification, leveraging the efficiency of lo-
gistic regression.

The second approach improved upon this by
fine-tuning MARBERT (Abdul-Mageed et al.,
2021a) binary classifiers, a classifier for each
dialect. MARBERT is an Arabic specific BERT
based model. MARBERT’s ability to capture nu-
anced dialectal differences made it a strong candi-
date for binary classification at a more fine-grained
level. Each binary classifier was fine-tuned using
the same dataset setup as the logistic regression
approach, ensuring a fair comparison between mod-
els.

The third approach utilized GPT-4 for
pseudo-labeling, leveraging large language mod-
els (LLMs) to generate high-quality multi-label
annotations. Carefully crafted prompts were de-
signed to guide GPT-4 in detecting dialectal fea-
tures in tweets and assigning appropriate dialect
labels. This approach allowed us to explore how
LLMs perform in dialect identification, particularly
in cases where dialect boundaries are unclear.

An analysis of the pseudo-labeled dataset re-
vealed a significant imbalance, with most samples
containing only a single active label. Multi-label
samples, particularly those with 16 or more active
labels, were underrepresented. To mitigate this, in-
stances with 16 and 17 active labels were merged
with the 18-label category (representing MSA).

4.2.2 Multi-Label Classification

The initial experiments focused on a pipeline of bi-
nary classifiers trained on the original single-label
dataset. Two approaches were explored: one using
18 fine-tuned MARBERT (Abdul-Mageed et al.,
2021a) classifiers, each predicting a specific di-
alect, and another using logistic regression classi-
fiers trained independently for each dialect. While
these models provided a basic framework for di-
alect prediction, they were inherently limited by the
constraints of single-label classification, failing to
capture the overlapping nature of dialects in many
sentences.

To address this limitation, we fine-tuned multi-
label classification models using the pseudo-

labeled multi-label dataset. =MARBERT and
CAMeLBERT (Inoue et al., 2021) were selected for
this task due to their pretraining on dialectal Arabic
datasets, which made them well-suited for dialect
identification. However, initial results were sub-
optimal, revealing that the pseudo-labeled dataset
was highly imbalanced, with most samples contain-
ing only a small number of active labels (ranging
from 1 to 3 dialects). This imbalance skewed the
model’s learning process, making it less effective
at identifying multi-dialect samples.

To mitigate this issue, an undersampling strategy
was applied, focusing on reducing the dominance
of samples with few active labels. The goal was
to ensure that the model was trained on a more
balanced distribution of label combinations. While
this adjustment improved overall performance, a
new challenge emerged: the model struggled to
accurately classify sentences with a higher number
of active labels (sentences that belong to many di-
alects). This suggested that after undersampling,
predicting samples with a larger number of active
labels became more difficult.

This observation motivated the adoption of
curriculum-based training (Soviany et al., 2022),
a technique inspired by human learning processes,
where models are trained on progressively struc-
tured examples rather than being exposed to all
complexities at once. Given that after undersam-
pling, the model struggled with higher active labels,
we hypothesized that introducing them gradually,
rather than all at once, would help mitigate this
issue. Initially, the model was trained exclusively
on samples containing a single active label to es-
tablish a strong foundation. In subsequent epochs,
samples with two active labels were introduced
alongside a proportional number of single-label
samples. This gradual inclusion continued across
epochs, introducing samples with higher numbers
of active labels at each step while maintaining bal-
anced representation across categories. By the final
epoch, the model had been exposed to the full range
of label complexities, enabling it to generalize ef-
fectively and handle complex multi-label scenarios.
This approach ensured balanced learning without
the drastic data reduction caused by undersampling.

By structuring the training in this manner, the
model was encouraged to progressively adjust to
more complex label distributions, preventing it
from being overwhelmed by high-active-label sam-
ples too early. This provided a systematic alterna-



tive to standard undersampling, preventing exces-
sive information loss while ensuring that the model
learned to recognize complex multi-label patterns
more effectively.

5 Experiments and Evaluation

To ensure a fair comparison among the exper-
imented systems, we adopted the same hyper-
parameters used by the top-performing team in
NADI2024 (Karoui et al., 2024) shared task. These
settings, listed in Table 3, were carefully selected
to optimize model performance while maintaining
consistent evaluation metrics across different con-
figurations.

The experiments were conducted using a single
NVIDIA RTX 6000 GPU with 24GB of memory.
The training was performed with a batch size of
11 and ran for 10 epochs. Each experiment took
approximately 27 minutes to complete. The mod-
els fine-tuned include MARBERT, which has ap-
proximately 163M parameters, and CAMeLBERT,
which consists of about 110M parameters. Using
these standardized hyperparameters ensured a fair
and direct comparison with the best-performing
system in the shared task, while also maintaining
computational efficiency and consistency across
our experiments.

Hyper-parameter Value
Learning Rate le-05
Optimizer AdamW
Train Batch Size 11
Evaluation Batch Size 11
Number of Training Epochs 10
Dropout Rate 0.3

Table 3: Fine-Tuning Hyper-parameters.

5.1 Dataset Preprocessing

The preprocessing stage focused on cleaning and
standardizing text from the NADI 2020, 2021, and
2023 datasets. Specific cleaning was applied to
the 2021 dataset to remove @ symbol before the
USER and https before the URL placeholder tags.

We removed punctuation, emojis, and diacritics
to reduce noise, with URLs and mentions replaced
by placeholders to retain context while guarantee-
ing anonymization for the training data. Character
normalization was applied by unifying Alef vari-
ants, for example: converting ’ ¢’ to ’ ¢’ and ’ &

to ’o’, and reducing repeated letters (e.g., *!I) to

a single occurrence to avoid inflating word counts.
Stopwords were eliminated using an Arabic and
English stopwords list to focus on meaningful text.

We also addressed mixed-language text, intro-
ducing spaces between Arabic and English charac-
ters to prevent parsing issues caused by language
switching then removed all english text. After
cleaning each dataset individually, we concatenated
them into a single dataset to be used in our specific
task. This preprocessing ensured the data was con-
sistent, normalized, and ready for model training
and evaluation.

We utilized Python libraries such as NLTK (Bird
and Loper, 2004), Camel Tools (Obeid et al., 2020),
and PyArabic (Zerrouki, 2023) to perform text
cleaning and normalization for Arabic text.

6 Results

To assess the performance of our models on the
multi-label classification task, we utilized macro
F1-score, precision, recall, and accuracy as eval-
uation metrics. These metrics provide a compre-
hensive evaluation of each model’s effectiveness,
particularly in handling overlapping dialects and
distinguishing between similar ones. The experi-
ments highlighted the strengths and limitations of
various models and training strategies under differ-
ent dataset configurations.

We present the performance of our MLDID
pipeline across the most significant experiments,
showcasing the impact of dataset creation strate-
gies such as undersampling and curriculum-based
training. Each experiment was evaluated using the
scoring methodology of the NADI shared task to
ensure consistency and comparability. As bench-
marks, we included the ELYADATA model (Karoui
et al., 2024) and NADI2024 shared task baseline.

All reported results in the following sections are
based on the development set. A final evaluation
on the test set is presented separately.

6.1 Experiments on Binary and Multi-Label
Classifiers

We first evaluate traditional single-label dialect
classification using independent binary classifiers
for each dialect. The results from table ?? indi-
cate that MARBERT outperforms logistic regres-
sion significantly, highlighting the advantage of
transformer-based models in dialect identification.

Models were also trained on pseudo-labeled
datasets generated using three different ap-



F, P R

Binary Classifiers Pipeline using Single-label Data

Logistic Regression (18)  0.4018 0.4389 0.4027
MARBERT (18) 0.5841 0.5559 0.6752
Logistic Regression Pseudo Labels
CAMeLBERT 0.5238 0.4680 0.6437
MARBERT 0.5755 0.5576 0.6370

Logistic Regression Pseudo Labels (Undersampled)

CAMeLBERT
MARBERT

0.5477 0.5125
0.5730 0.5267

0.6260
0.6709

MARBERT Classifiers Pseudo Labels

CAMeLBERT
MARBERT

0.5808 0.4882
0.5527 0.4780

0.8052
0.7263

MARBERT Classifiers Pseudo Labels (Undersampled)

CAMEeLBERT 0.5884 0.4767 0.8573
MARBERT 0.5729 0.4948 0.7772
GPT4 Pseudo-Labels
CAMeLBERT 0.4534 0.6233 0.3908
MARBERT 0.4600 0.7588 0.3688

GPT4 Pseudo-Labels (Undersampled)

CAMeLBERT
MARBERT

0.6411 0.7090
0.5597 0.7141

0.6357
0.5153

Curriculum-Based Training - GPT Pseudo-Labels

CAMeLBERT(B2BERT) 0.6549 0.6966
MARBERT 0.6532 0.6896

0.6552
0.6543

Table 4: Performance Comparison of Models Based on
Macro-Average Scores

proaches: LR-based pseudo-labeling, MARBERT-
based pseudo-labeling, and GPT-4 pseudo-labeling.
For each dataset, two multi-label classification
models, MARBERT and CAMeLBERT, were fine-
tuned. The dataset configurations included the
whole dataset and the undersampled dataset. Ad-
ditionally, for the GPT-4 pseudo-labeled dataset,
curriculum-based training was applied as a third
configuration.

The results for models trained on the LR-based
pseudo-labeled dataset show that CAMeLBERT
exhibited a small improvement when trained on the
undersampled dataset, increasing from 0.5238 to
0.5477 in macro F1-score. However, MARBERT
showed a slight drop, with its score decreasing from
0.5755 to 0.5730. These results indicate that while
undersampling helped CAMeLBERT slightly, it
did not provide a consistent benefit for MARBERT,

suggesting that balancing strategies alone may not
fully address the challenges of multi-label dialect
identification.

A similar pattern is observed in models
trained on the MARBERT pseudo-labeled dataset.
CAMEeLBERT improved slightly with undersam-
pling, increasing from 0.5808 to 0.5884, while
MARBERT showed a more noticeable gain, rising
from 0.5527 to 0.5729. This suggests that pseudo-
labeling quality plays a bigger role in model perfor-
mance than dataset balancing alone, as both mod-
els performed better than their LR pseudo-labeled
counterparts.

Among all dataset variations, the GPT-4 pseudo-
labeled dataset produced the highest macro F1
scores across different models and dataset configu-
rations. Unlike the other two datasets, undersam-
pling led to significant improvements, particularly
for CAMeLBERT, which increased from 0.4534 to
0.6411. However, MARBERT showed a less signif-
icant improvement, rising from 0.4600 to 0.5597,
indicating that while balancing the dataset helped,
the model still struggled with certain dialectal vari-
ations.

Applying curriculum-based training led to fur-
ther performance improvements, with MARBERT
achieving its highest macro Fl-score of 0.6532
and CAMeLBERT reaching 0.6549. This under-
scores curriculum-based training as the most effec-
tive strategy for enhancing generalization, particu-
larly when applied to high-quality pseudo-labeled
data.

These findings highlight the importance of high-
quality pseudo-labeling, where GPT-4-generated
labels consistently outperformed both LR and
MARBERT-based pseudo-labeling. Furthermore,
the success of curriculum-based training suggests
that models benefit from a gradual increase in label
complexity, particularly when applied to datasets
with rich dialectal variations. The results also show
that while undersampling improved performance
for certain models, it was not a universally effec-
tive solution, reinforcing the need for structured
training approaches.

6.1.1 Final Evaluation on the Test Set

For completeness, the final performance of selected
models is evaluated on the test set. Table 5 summa-
rizes the macro F1-scores, precision, and recall for
B2BERT (CAMeLBERT + GPT-4 Pseudo-labeled
data + Curriculum-learning), ELYADATA (Karoui
et al., 2024), and the baseline model.



Model Macro F1 P R

NADI2024 Baseline 0.4698 0.648 0.3986
ELYADATA 0.5240 0.5015 0.5687
B2BERT 0.5963 0.5818 0.6976

Table 5: Final Performance on the Test Set

The test set evaluation provides an objective
comparison between our best-performing model
and existing benchmarks.

6.2 Discussion

To assess the performance of our models on the
multi-label classification task, we analyzed both
quantitative metrics and qualitative examples. This
approach highlights key challenges and areas
for improvement. One notable challenge is the
difficulty in distinguishing between dialects in
the Maghreb region. For instance, the sentence
e OF dane oliS Ja 0 bgx gue’  (Live,
brother, everything is fine, we’ll meet later if
so) is a pure Tunisian dialect. However, the
model incorrectly predicted Algeria and Morocco
alongside Tunisia. This confusion suggests that
the model struggles to capture subtle linguistic
differences between closely related dialects.

A similar issue arises with Sudanese Arabic.
For the sentence sty o3} & (g5 5 (Every-

one has their own person), which is clearly Su-
danese, but the model mistakenly included Egypt
as a predicted label. This misclassification may be
attributed to the annotation methodology employed
during the dataset creation. This methodology fo-
cuses on location metadata.

On a more positive note, the model demonstrated
strong performance in identifying MSA. For in-

stance, the sentence ’_AS~ T ar (Allah is the great-

est) was correctly classified with all relevant la-
bels activated, showcasing the model’s robustness
in handling MSA. This indicates that the imple-
mented curriculum learning approach successfully
strengthened the model’s ability to generalize to
less ambiguous cases while gradually introducing
complexity during training.

Overall, the results demonstrated that while the
model shows strong potential in handling multi-
label classification tasks for Arabic dialects, it still
faces challenges in differentiating closely related
varieties. The model also encounters difficulties in
accurately classifying sentences that are character-
istic of a single dialect, often incorrectly assigning
them to multiple dialects. This tendency to over-

generalize suggests that the model may struggle to
discern the nuanced linguistic features that distin-
guish each dialect. These difficulties emphasize the
need to enhance the model’s ability to capture sub-
tle linguistic and contextual cues specific to each
dialect, even within closely related groups. Fur-
thermore, addressing inconsistencies in the dataset,
such as noise introduced by geographic overlaps
or metadata-driven annotations, could significantly
improve the model’s accuracy and generalizability.

7 Conclusion and Future Work

In this study, we introduced B2BERT, a model
designed to tackle the challenge of Multi-Label
Arabic Dialect Identification by recognizing the
natural overlap between dialects. By using GPT-4-
based pseudo-labeling and curriculum-based train-
ing, B2BERT effectively learns from imbalanced
dialect distributions, achieving a macro F1-score of
59.63% and outperforming all previous approaches,
including the top-performing model in the NADI
2024 shared task.

As a next step, we aim to refine annotation
techniques to ensure cleaner labels, explore data
augmentation to strengthen generalization, and ex-
pand the model’s coverage to include a broader
range of dialects. Additionally, incorporating self-
training and semi-supervised learning could allow
the model to make better use of unlabeled data,
further enhancing its accuracy.

Ultimately, this work provides a strong founda-
tion for improving ADI, bringing us closer to lan-
guage technologies that better reflect the richness
and diversity of the Arabic-speaking world.

Limitations

The model has several limitations, which are dis-
cussed in this section. Firstly, the NADI dataset
was annotated based on geographic regions, which
may introduce noise as some gold labels might be
inaccurately assigned. To mitigate this issue, we
propose engaging dialect experts to review and, if
necessary, correct the dataset annotations. Addi-
tionally, implementing a multi-annotator system
could ensure that each sample is reviewed multiple
times, increasing the inter-annotator agreement and
enhancing the overall quality of dataset curation.
Secondly, the conversion of the dataset from single-
label to multi-label, our primary contribution, was
not performed manually. This introduces potential
errors in the multi-label dataset, which could neg-



atively impact the model’s performance in certain
scenarios where dialects overlap or share similari-
ties. The model may struggle to distinguish closely
related dialects; for example, if a sentence is purely
Tunisian, the model might incorrectly classify it as
Tunisian, Moroccan, and Algerian.

8 Ethics and Broader Impact

Human Subject Considerations. All annotators
provided informed consent, were fully aware of the
study’s objectives, and had the right to withdraw at
any time.

Transparency and Reproducibility. To promote
open research, we release our code to the public.
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