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ABSTRACT

Controllable video generation has attracted significant attention, largely due to
advances in video diffusion models. In domains like autonomous driving in par-
ticular it can be critical to develop highly accurate predictions for object motions.
This paper tackles a crucial challenge of how to exert precise control over object
motion for realistic video synthesis in a safety critical setting. To achieve this, we
1) use a separate, specialized model to predict object bounding box trajectories
given the past and optionally future locations of bounding boxes, and 2) generate
video conditioned on these high quality trajectory predictions. This formulation
allows us to test the quality of different model components separately and together.
To address the challenges of conditioning video generation on object trajectories
in settings where objects may disappear and appear within a scene, we propose
an approach based on rendering 2D or 3D boxes as videos. Our method, Ctrl-V,
leverages modified and fine-tuned Stable Video Diffusion (SVD) models to solve
both trajectory and video generation. Extensive experiments conducted on the
KITTI, Virtual-KITTI 2, BDD 100k, and nuScenes datasets validate the effective-
ness of our approach in producing realistic and controllable video generation.

Figure 1: Overview of Ctrl-V’s generation pipeline: Inputs (left): Our inputs include an initial frame,
its corresponding bounding-box image and the final frame’s bounding-box image. Bounding-box
generation samples (middle): We illustrate three different sequences generated from our diffusion
based bounding-box motion generation model. Videos sampled from our Box2Videodiffusion model
(right): Our Box2Video model conditions on the generated bounding-box videos to produce the
final video clips.
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1 INTRODUCTION

Recent advances in controllable image generation have enabled the creation of highly realistic im-
ages from various conditioning inputs, including points, bounding boxes, scribbles, segmentation
maps, and skeleton poses. Yet, translating this control to video generation is markedly more chal-
lenging due to the added temporal dimension. Incorporating time dynamics into diffusion models
significantly complicates controllable video generation, as it requires accounting for object interac-
tions, physical consistency, and coherent motion across frames.

Numerous recent studies have examined different forms of controllability for video generation. Re-
searchers have used an array of methods for control, including conditioning on information such as
canny edge and depth maps (Zhang et al. (2023b)), similar visual information (Chen et al. (2023)),
optical flow (Hu & Xu (2023)), and pose sequences (Karras et al. (2023)). These control inputs are
often expensive to produce, especially when sequences of them are required in order to condition
a video. Models that use accessible conditioning such as bounding boxes require additional input
such as text to help with the generation process (Wang et al. (2024)). A controllable video generation
model with an accessible and simple mode of control is greatly desired.

In this work, we focus on creating such a model. Specifically, we aim to generate higher fidelity
videos controlled by, at the minimum, the beginning and ending positions of 2D and 3D bounding
boxes without the help of other modes of control. Our two-part method includes a diffusion-based
model that generates the motions and dynamics of objects in the form of bounding box videos (2D
images of the bounding boxes evolving over time), and a generative model of videos according to
those bounding box videos. To this end, we choose to train and test our model on driving datasets
as they contain challenging scenes rich with different types of bounding boxes as well as complex
movement and irregular appearing and disappearing objects. In our experiments, we show that our
model generates videos that adhere tightly to the desired bounding box motion conditioning, accu-
rately depicting desired object movements. Additionally, through our novel pixel-level bounding
box generator and conditioning, our method robustly handles the appearance and disappearance of
different objects in a scene, including cars, pedestrians, bikers, and others.

In this paper, we present Ctrl-V, a diffusion-based bounding box conditional video generation
method that addresses multiple challenges and makes the following contributions to generate higher-
fidelity videos using diffusion techniques:

1. Bounding box Motion Generations with Diffusion: We devise a novel diffusion based ap-
proach for generating 2D/3D bounding box trajectories at the pixel-level (as 2D videos) based
on their initial and final states, and the first frame.

2. 2D-bounding box and 3D-bounding box Conditioning: We condition on 2D or 3D Bounding
boxes in order to provide a fine-grained control over the generated videos.

3. Uninitialized Object Generation: Tracking boxes coordinates outside the current window
(boxes that will eventually appear or that are leaving the view) is extremely difficult. With only
the first frame, we cannot easily predict these outside-view coordinate movements. This is why,
most coordinate-based bounding box generations methods do not account for non-persisting or
new bounding boxes (Wang et al., 2024). In this work, we propose a simple solution to this
difficult problem: by utilizing on bounding boxes rendered at the pixel-level, we train our model
to be sensitive to all bounding boxes, whether present from the first frame or appearing in the
middle of the video.

4. A New Benchmark for a New Problem Formulation: Given the novelty of our problem formu-
lation, there is no existing standard way to evaluate models that seek to predict vehicle video with
high fidelity. We therefore present a new benchmark consisting of a particular way of evaluating
video generation models using the KITTI (Geiger et al., 2013), Virtual KITTI 2 (vKITTI) (Cabon
et al., 2020), the Berkeley Driving Dataset (BDD 100k) (Yu et al., 2020) and nuScenes (Caesar
et al., 2019).

2 RELATED WORK

Video latent diffusion models (VLDMs) extend latent image diffusion techniques (Rombach et al.,
2022) to video generation. Early VLDMs (Blattmann et al., 2023b;a; He et al., 2023; Zeng et al.,
2023; Wu et al., 2023) shows temporally consistent frame generation and are tailored for text-
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prompted or image-prompted video generation. However, these models often struggle with complex
scenes and lack the capability for precise local control.

Conditional Video Diffusion techniques providing a certain degree of control. Methods like Video-
Compose (Wang et al., 2023a), Dreamix (Molad et al., 2023), Pix2Video (Ceylan et al., 2023), and
DreamPose (Karras et al., 2023) propose various designs of novel adapters on top of VLDMs in
order to incorporate different conditioning to achieve frame-level control. ControlNet Adapted

Video Diffusion, on the other hand, achieve precise regional or pixel-level control in video genera-
tion by utilizing ControlNet (Zhang et al., 2023a) adapters within VLDM frameworks. Models such
as Control-A-Video (Chen et al., 2023), Video ControlNet (Hu & Xu, 2023; Chu et al., 2023), Con-
trolVideo (Zhang et al., 2023b), and ReVideo (Mou et al., 2024) show that these adapters are highly
adaptable to various types of conditioning, easy to train, and allow for more precise manipulation
and enhanced accuracy in editing and creating video content.

Motion Control with bounding box Conditioning There are many strategies of control that have
been explored in controllable video generation research. Notably, ControlVideo (Zhang et al.,
2023b) utilizes a training-free strategy that employs pre-trained image LDMs and ControlNets to
generate videos based on canny edge and depth maps. Control-A-Video (Chen et al., 2023) lever-
ages a controllable video LDM that combines a pre-trained text-to-video model with ControlNet to
manipulate videos using similar visual information. Video ControlNets (Hu & Xu, 2023; Chu et al.,
2023) uses optical flow information to enhance video generation, while ReVideo (Mou et al., 2024)
depends on extracted video trajectories. DreamPose (Karras et al., 2023) injects pose sequence in-
formation into the initial noise. VideoComposer (Wang et al., 2023a) uses an array of sketch, depth,
mask, and motion vectors as conditioning.

Many of these conditions, such as edge, depth, and optical flow maps, are costly to produce and lack
the flexibility needed for customization. Bounding boxes emerge as a conditioning that are easily
customizable and can be edited into different shape, size, locations and classes efficiently. To the
best of our knowledge, six other research projects are currently exploring the use of bounding boxes
for motion control in video generation. However, it is important to note that our work is distinct
from these in several critical respects.

Direct-A-Video, TrailBlazer (Ma et al., 2024) and Peekaboo (Jain et al., 2024) are different
training-free approaches that employ attention map adjustments to direct the model in generating
a particular object within a defined region. Direct-A-Video, in particular, is a text-to-video model
that learns to control camera motion during training and then adopts a training-free approach to ma-
nipulate object movements using bounding boxes. FACTOR (Huang et al., 2023) augmented the
transformer-based generation model, Phenaki (Villegas et al., 2022), by integrating a box control
module. TrailBlazer, Peekaboo and FACTOR necessitate textual descriptions for individual boxes,
thus lacking direct visual grounding.

Our task setup shares mild similarities with Boximator(Wang et al., 2024) and TrackDiffu-

sion(Fischer et al., 2023) because we also utilize bounding box conditioning during training without
relying on text descriptions for individual boxes. However, our approach diverges from these text-
to-video models, as our primary focus is on generating realistic videos conditioned only on a couple
frames of bounding boxes, whereas Boximator and TrackDiffusion are designed to be conditioned
on text information as they both are text-to-video models. Boximator and TrackDiffusion enhance
their models by introducing new self-attention layers to 3D U-Net blocks. These layers incorpo-
rate additional conditional information, such as box coordinates and object IDs, into the pretrained
VLDM model. Their bounding box information is processed using a Fourier embedder (Mildenhall
et al., 2020), which is then passed through multi-layer perceptron layers to encode. In contrast,
our approach uses ControlNet and does not involve training additional encoding layers or utiliz-
ing Fourier embedder to handle the bounding box information. Moreover, Boximator introduces a
self-tracking technique to ensure adherence to the bounding boxes in generated outputs, a technique
also adopted by TrackDiffusion. This enables the network to learn the object tracking task along-
side video generation, but requires a two-stage training process: one with target bounding boxes
in frames, and another with the boxes removed. They demonstrate that without this technique, the
model’s performance markedly declines. Conversely, our model achieves alignment with the bound-
ing box conditions without additional training.
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Vehicle Oriented Generative Models DriveDreamer (Wang et al., 2023b) presents noteworthy con-
tribution from autonomous driving domain. It takes an action-based approach to video simulation.
It also makes use of bounding boxes and generate actions along with a video rendering. Within
the DriveDreamer framework, Fourier embeddings (Mildenhall et al., 2020) are also employed to
encode bounding box information, and CLIP embeddings (Radford et al., 2021) are used for box
categorization. They focus on generating multiple camera views and do not condition on bounding
box sequences, so cannot be directly compared with our problem setting. In contrast, the DriveGAN
work of Kim et al. (2021) aims to learn a GAN based driving environment in pixel-space, complete
with actions and an implicit model of dynamics encoded using the latent space of a VAE. While
driving oriented, the approach does not focus on controlling the generation of vehicle video that
respects well-defined object trajectories with high fidelity.

3 OUR METHOD: CTRL-V
3.1 PRELIMINARIES

In this section, we provide an overview of the Stable Video Diffusion (SVD) (Blattmann et al.,
2023a;b) model, due to its importance in our approach. SVD is an image-to-video (I2V) model
that employs video diffusion. Using an image f (0) as initial condition, SVD is able to extend that
single frame into a video f = [f (0), . . . ,f (N)] where N is the length of the sequence. Notably,
SVD operates in latent space, where the diffusion and denoising process act upon the latents z of
the video f . Here, SVD employs an image encoder (E) and an image decoder (D) to translate each
frame into and out of latent space: D

�
E(f (i))

�
= D(z(i)) ⇡ f (i). At each diffusion step, SVD

progressively introduces noise into the latent representations. In this work, the amount of noise is
dictated by Euler discrete noise scheduling method (EDM) introduced in Karras et al. (2022).

A UNet based denoiser network within the SVD is used to predict this noise in order to recover the
original latent representations. The UNet, U✓, is parameterized as:

U✓

�
ẑt, z

(0)
pad , c

(0), t
�
, (1)

• ẑt 2 RN⇥C
0⇥H

0⇥W
0
: latent representation of frames corrupted by noise at noise level t.

• z(0) 2 R1⇥C
0⇥H

0⇥W
0
: latent representation of the initial frame.

• z(0)
pad 2 RN⇥C

0⇥H
0⇥W

0
: Padded z(0) by repeating itself along the first dimension N times.

• c(0): CLIP encoding (Radford et al., 2021) of the initial frame.

The full denoiser network, D✓, with an EDM noise scheduler, is formulated as

D✓(z; c
(0),�t) = �skip(�t)z + �out(�t)U✓

�
�in(�t)z, z

(0)
pad , c

(0);�noise(�t)
�

(2)

Here �skip, �out, �in and �noise denote scaling functions, while �t represents the computed noise at
level t. The precise mathematical definitions of these terms are detailed in Appendix F.

Note that 3D UNet U✓ in Equation 1, is a re-parameterized version of the one in Equation 2 (Ron-
neberger et al., 2015). The scaling terms are absorbed and the inputs are simplified for clarity. In
the following sections, we follow the re-parameterized version in Equation 1 when refering to the
UNets in our model.

3.2 OVERVIEW OF OUR METHOD: CTRL-V

Our controllable video generation method is illustrated in Figure 2. It consists of two sequential
steps:

1. First, we generate bounding box frames using our diffusion based bounding box predictor net-
work, the BBox Generator, which is shown on the left side of Figure 2. These frames contain
only bounding boxes. They make up a video of moving (or stationary) bounding boxes and it
serve as the “skeleton” for the generated video.

2. Then, we generate a video using our video generator network, Box2Video, shown on the right
side of Figure 2, where the bounding boxes frames act as the control signal. The bounding boxes
in each frame determine the objects generated in the corresponding frames of the video.
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BBox Generator and Box2Video each utilizes a modified SVD backbone – illustrated by the SVD
backbone in Figure 2. These backbones are adapted to their respective generation tasks. De-
tails of each model are presented in their individual sections: BBox Generator – Section 3.3 and
Box2Video – Section 3.4.
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+
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Generated
Video Frames

Bbox Generator

Noise

6272D9
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Embedding

b
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(0)
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(N-1)

b 
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(0)

b

6272D9

6272D9

 

Initial Frame f (0)

Other Frames 
f (1), ... , f (N-1)

(Above) Our Diffusion-Based Bounding Box Generator. 
(Right)   Our Diffusion-Based Bounding Box and Video Frame Conditioned Video Generator

PAD

Figure 2: The diagram illustrates two components of Ctrl-V: (left) the BBox Generator and
(right) Box2Video. For both models, we use a frozen, off-the-shelf VAE to encode images into
latent space (E) and decode them back into pixel space (D). During training, (1) the BBox Gener-

ator (Sec. 3.3) learns to denoise the noisy bounding box frame latents b̂t, conditioned on the first
(b(0)) and last (b(N�1)) bounding box frame latents and the padded initial frame latent z(0)

pad
and (2)

the Box2Video (Sec. 3.4) denoises the target frame latents ẑt by conditioning on the initial frame’s
latent z(0)

pad
(input to the SVD UNet) and the bounding box frame latents b (input to the ControlNet).

3.3 CTRL-V: BBOX GENERATOR

The BBox Generator shown on the left in Figure 2 aims to predict object bounding boxes across
all video frames using an SVD backbone. The four inputs to the model are b̂t, b(0), b(N�1), z(0),
where: b̂t is the encoded “video” of bounding boxes with t levels of noise added; b(0) is the encoded
initial bounding box frame(s); b(N�1) is the encoded final bounding box frame; z(0) is the encoded
initial video frame. During training, the model learns to predict the noise added in b̂t according to
the EDM noise scheduler. This allows the recovery of b after subtracting the predicted noise from
b̂t and passing it through scaling functions. We opt to abstract this detail in the model diagram for
readability.

In practice, the four inputs are transformed and concatenated into a vector format accepted by the
UNet adapter within the SVD backbone. Specifically, as shown in Figure 2, z(0) 2 R1⇥C

0⇥H
0⇥W

0

is replicated along the first dimension, and its front and end (in the first dimension) are replaced by
b(0), b(N�1) respectively. This forms z(0)

pad = concat(b(0), z(0), ..., z(0), b(N�1)) 2 RN⇥C
0⇥H

0⇥W
0
.

The noise-added encoding of bounding box video b̂t is then concatenated with z(0)
pad to form the final

input to the UNet adapter.

The network incorporates additional conditioning inputs, including a CLIP-encoded embedding of
the initial frame c(0) and a noise-level embedding t. These embeddings are individually integrated
into every sub-block of the U-Net through a self-attention mechanism.

3.4 CTRL-V: BOX2VIDEO

Box2Video is shown on the right in Figure 2 and it aims to generate high-fidelity videos controlled
by bounding box frames, such as those generated by the BBox Generator network. Box2Video con-
sists of an SVD backbone for video generation, and an adapted ControlNet module to process the

5
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bounding box control signal. ControlNet is a widely used network for controlling image generation.
In this work, we modify ControlNet and adapt it to the video diffusion framework (as shown on the
right in Figure 2). This architecture allows us to train Box2Video in a single stage without the need
for additional optimization criteria, in contrast to previous work such as Boximator and TrackDif-
fusion (Wang et al., 2024; Li et al., 2024), which require multi-stage learning with extra criteria to
train their models.

The SVD component takes two inputs: z(0) and ẑt. Here, z(0) is the encoded initial video frame
and ẑt is the encoded full video with t levels of noise added to it. As shown in Figure 2, we process
these inputs by padding z(0) by repeating it along the first dimension before concatenating it with
ẑt to create the final input to the UNet adapter of the SVD.

The same input is also sent to the ControlNet module through its own UNet adapter layers. Addi-
tionally, ControlNet also receives the encoded bounding box frames, b, as input, through ControlNet
adapter layers. Both of these transformed input is then added together before processed by the Con-
trolNet module. The output signal of the ControlNet module then goes through a zero-convolution
before being sent to the SVD UNet decoder layers through residual paths as control signal.

During training, the weights of the SVD model (✓) are frozen, while only the weights in the Con-
trolNet (⇠) are updated.

3.5 BOUNDING BOX REPRESENTATION

The choice of taking bounding boxes information and rendering them out in pixel space is an impor-
tant detail in Ctrl-V. The method of incorporating bounding box information as a control signal is not
trivial. For example, prior work such as Boximator Wang et al. (2024) represents bounding boxes
as a Fourier transformed concatenated vector of their raw coordinates, ID and other information. In
contrast, in our work we choose to render bounding boxes into frames while maintaining minimal
loss of meta information. We encode information such as track ID, object type, and orientation for
each bounding box using a combination of visual attributes, including border color, fill color, and
markings. Specifically, the track ID represents a unique identifier for each tracked object across
frames, the object type specifies the category of the object (e.g., car, pedestrian), and the orienta-
tion indicates the direction the object is facing. Details about how these bounding box frames are
rendered can be found in Appendix B.1. Our approach allows us to leverage the highly effective
ControlNet approach to provide pixel-level guidance to influence diffusion generated imagery.

4 EXPERIMENTAL ANALYSIS AND ABLATION STUDIES

Frame 1 Frame 7 Frame 13 Frame 19 Frame 25

GT

GF

GB

Figure 3: Visualizing video samples generated using the Ctrl-V pipeline: bounding box frame pre-
dictions (GB) alongside motion-controlled video generation (GF). GT: The ground truth frame se-
quence from BDD dataset. GF: Frames generated based on the predicted bounding box frames. GB:
Predicted bounding box frames with ground-truth bounding box overlaid+track IDs included.

For quantitative evaluation, we assess the model’s performance across four driving datasets on three

key aspects:
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1. The overall visual quality of the generated results (Section 4.2)
2. The alignment of the predicted bounding box trajectories with the ground truth (Section 4.3)
3. The fidelity of the generated objects in the video to the bounding box control signal (Section 4.4)

For visual assessment, Figure 3 and Appendix D showcase sample demonstrations generated by our
model. To assess video quality, we randomly select 200 initial frames from each dataset’s testing
set and generate videos. The results in this section are based on analyses of these 200 generated
videos per dataset. Furthermore, we explored different bounding box conditioning options: one or
three initial bounding box frames, followed by a single final bounding box. Additional variations
are discussed in Appendix D.8.

4.1 DATASETS

We evaluate the performance of our models across four autonomous-vehicle datasets: KITTI (Geiger
et al., 2013), Virtual KITTI 2 (vKITTI) (Cabon et al., 2020), Berkeley Driving Dataset (BDD) (Yu
et al., 2020) with Multi-object Tracking labels (MOT2020), and the nuScenes Dataset (Caesar et al.,
2019).

KITTI comprises 22 real-world driving clips with 3D object labelling. vKITTI consists of 5 virtual
simulated driving scenes, each offering 6 weather variants, all including 3D object labelling. BDD is
a large-scale real-world driving dataset, featuring 1603 2D-labeled sequences of driving videos. The
nuScenes dataset is a large-scale driving dataset that includes 1000 scenes 20-second scenes anno-
tated with 3D bounding boxes, multiple sensor data (lidar, radar and cameras) and map information.
Further details on dataset configurations are provided in Appendix B.3.

4.2 GENERATION QUALITY

To assess the quality of video generation, we compare videos generated through 4 distinct pipelines:

1. Pre-trained Stable Video Diffusion (SVD) baselines
1

without fine-tuning (initial frame !
video)

2. Fine-tuned Stable Video Diffusion (SVD) baselines on the provided dataset (initial frame !
video)

3. Teacher-forced Box2Video generation (initial frame and all bounding box frames ! video)
4. bounding box generation with BBox Generator and Box2Video (initial frame, one or three

initial and one last bounding box frames ! in-between bounding box frames and video).

We evaluate our generation across four metrics: Fréchet Video Distance (FVD) (Unterthiner et al.,
2019), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), Structural Similarity
Index Measure (SSIM) (Wang et al., 2004b) and Peak Signal-to-Noise Ratio (PSNR). These metrics
either measure the consistency of frame pixels with the ground truth or the consistency of the frame
latents extracted by another network. FVD2 is an exception; it evaluates the generation distribution
against the ground truth’s distribution. It is important to note that while many papers report their
best-out-of-K results on these metrics, due to computational constraints, we evaluate our model on
a single sample for each input.

The evaluated results are reported in Table 1 and visualizations are available in Appendix D.1. These
results indicate that the generation quality improves as we condition on more ground-truth bounding
box frames. Details regarding the metrics and their limitations are discussed in Appendix C.1.

4.3 BBOX GENERATOR: QUANTITATIVE EVALUATION

To evaluate the quality of our bounding box generations, we create mask images for both the ground-
truth and generated bounding box sequences. The mask images are generated by converting the

1Stable Video Diffusion (SVD) baseline is an image-to-video (I2V) model that generates a video sequence
conditioned on a single video frame.

2FVD is highly sensitive to video configuration parameters—such as frame rate, clip duration, and spatial
resolution—making direct comparisons of FVD values across studies challenging. Additionally, the metric’s
sensitivity to sample sizes raises concerns, as some datasets may lack sufficient samples for convergence,
leading to unreliable estimates.
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Pipeline # Cond. BBox FVD# LPIPS# SSIM" PSNR"

K
IT

TI

Stable Video Diffusion Baseline (Blattmann et al., 2023a) None 1118.4 0.4575 0.2919 10.63
Stable Video Diffusion Fine-tuned (Blattmann et al., 2023a) None 552.7 0.3504 0.4030 13.01
Ctrl-V: BBox Generator + Box2Video(Ours) 1-to-1 467.7 0.3416 0.3241 13.21
Ctrl-V: BBox Generator + Box2Video(Ours) 3-to-1 422.2 0.2981 0.4277 13.85
Ctrl-V: Teacher-forced Box2Video(Ours) All 435.6 0.2963 0.4394 14.10

vK
IT

TI

Stable Video Diffusion Baseline (Blattmann et al., 2023a) None 922.7 0.3636 0.4740 14.61
Stable Video Diffusion Fine-tuned (Blattmann et al., 2023a) None 331.0 0.2852 0.5540 16.60
Ctrl-V: BBox Generator + Box2Video(Ours) 1-to-1 400.2 0.3179 0.4714 15.78
Ctrl-V: BBox Generator + Box2Video(Ours) 3-to-1 341.4 0.2645 0.5841 17.60
Ctrl-V: Teacher-forced Box2Video(Ours) All 313.3 0.2372 0.6203 18.41

B
D

D

Stable Video Diffusion Baseline (Blattmann et al., 2023a) None 933.6 0.4880 0.3349 12.70
Stable Video Diffusion Fine-tuned (Blattmann et al., 2023a) None 409.0 0.3454 0.5379 16.99
Ctrl-V: BBox Generator + Box2Video(Ours) 1-to-1 412.8 0.2967 0.5470 17.52
Ctrl-V: BBox Generator + Box2Video(Ours) 3-to-1 373.1 0.3071 0.5407 17.37
Ctrl-V: Teacher-forced Box2Video(Ours) All 348.9 0.2926 0.5836 18.39

nu
Sc

en
es Si

ng
le

-V
ie

w

Stable Video Diffusion Baseline (Blattmann et al., 2023a) None 1179.4 0.5004 0.2877 13.31
Stable Video Diffusion Fine-tuned (Blattmann et al., 2023a) None 316.6 0.2730 0.4787 18.58
Ctrl-V: BBox Generator + Box2Video(Ours) 1-to-1 285.3 0.2647 0.5050 18.93
Ctrl-V: BBox Generator + Box2Video(Ours) 3-to-1 235.0 0.2235 0.5500 20.33
Ctrl-V: Teacher-forced Box2Video(Ours) All 235.5 0.2104 0.5705 23.36

DriveGAN (Kim et al., 2021) None 390.8 - - -
DriveDreamer (Wang et al., 2023b) All 340.8 - - -

M
ul

ti-
vi

ew

WoVoGen (Lu et al., 2023) All 417.7 - - -
Drivingdiffusion (Li et al., 2023) All 332.0 - - -
Drive-WM (Lu et al., 2023) None 212.5 - - -
BEVWorld (Zhang et al., 2024) None 154.0 - - -
Panacea (Wen et al., 2024) All 139.0 - - -
Drive-WM (Lu et al., 2023) All 122.7 - - -
DriveDreamer-2 (Zhao et al., 2024) None 105.1 - - -

Table 1: Comparing the quality and diversity of the generated video models. The generated videos
consist of 25 frames (except for our nuScenes models which consist of 11 frames videos at 4 Hz) at
a resolution of 312⇥ 520, while the reported metrics from this table are evaluated at a resolution of
256 ⇥ 410. The “# Cond. BBox” column reports the number of ground-truth input bounding box
frames used by the generation pipelines. “None” indicates that no ground-truth frames are used,
while “All” indicates that all ground-truth bounding box frames are utilized. If “# Cond. BBox” is
n-to-m, then it represents the number of initial bounding box frames used by the pipeline is n and
the number of final bounding box frames used by the pipeline is m.

bounding box frames into binary masks (details can be found in Appendix C.2). We then calculate
the generated averaged mask Intersection over Union (maskIoU) scores, averaged mask Precision
(maskP) scores, and averaged mask Recall (maskR) scores against the ground-truth bounding box
masks. To assess our bounding box trajectories, we applied the “best-out-of-K” method, selecting
the model with the highest maskIoU score for evaluation. In this instance, K equals 5. We compare
our results with a baseline referred to as the “Trajeglish-Style” model, an autoregressive GPT-like
encoder-decoder that models the bounding box trajectories as a sequence of discrete motion tokens.
This baseline is inspired by the work of Philion et al. (2023) with implementation details provided
in Appendix E. We present our findings in Table 2, and demonstrate examples of our bounding box
generations on each dataset in Appendix D.

In the bounding box generation figures, our generator model achieves the closest alignment with
the ground-truth in the first and last frames. This near-perfect alignment is primarily attributed to
conditioning the model on the bounding boxes of these key frames. When considering all generated
frames, the alignment scores decrease, as shown by the plotted demonstrations and metric results in
Table 2. This is because objects in frames do not move deterministically. The role of the bounding
box generator is to generate a plausible trajectory for moving objects from the initial bounding box
frame to the last.

Despite the disparity between the ground-truth trajectory and the generated trajectory, our
Box2Video consistently generates high-fidelity videos based on either trajectory provided. Further
analysis of this aspect is provided in the subsequent sections.

4.4 BOX2VIDEO: MOTION CONTROL EVALUATION
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Method
# Cond.

BBox
maskIoU" maskP" maskR" maskIoU"

(first+last)
maskP"

(first+last)
maskR"

(first+last)

K
IT

TI
BBox Generator (ours) 1-to-1 .629 ± .212 .758 ± .176 .763 ± .188 .986 ± .012 .994 ± .008 .992 ± .009

Trajeglish-Style .447± .154 .568± .172 .679± .177 .561± .151 .663± .150 .789± .165

BBox Generator (ours) 3-to-1 .795 ± .112 .881 ± .082 .884 ± .078 .986 ± .010 .992 ± .007 .994 ± .005
Trajeglish-Style .491± .164 .622± .173 .691± .175 .576± .154 .684± .149 .784± .163

vK
IT

TI

BBox Generator (ours) 1-to-1 .710 ± .205 .828 ± .178 .809 ± .171 .943 ± .048 .946 ± .046 .997 ± .006
Trajeglish-Style .471± .171 .578± .200 .700± .187 .557± .171 .628± .194 .835± .135

BBox Generator (ours) 3-to-1 .767 ± .131 .881 ± .126 .853 ± .078 .944 ± .039 .948 ± .036 .996 ± .006
Trajeglish-Style .520± .162 .630± .186 .741± .176 .575± .154 .657± .182 .836± .143

B
D

D

BBox Generator (ours) 1-to-1 .587 ± .214 .747 ± .187 .712 ± .194 .954 ± .047 .955 ± .047 .999 ± .002
Trajeglish-Style .305± .183 .372± .213 .658± .207 .432± .171 .483± .192 .840± .166

BBox Generator (ours) 3-to-1 .647 ± .176 .784 ± .150 .783 ± .156 .955 ± .043 .955 ± .042 .997 ± .001
Trajeglish-Style .373± .185 .454± .206 .686± .193 .492± .190 .553± .208 .842± .154

nu
Sc

en
es BBox Generator (ours) 1-to-1 .364± .242 .433± .278 .740 ± .186 .983 ± .013 .985 ± .0112 .997 ± .003

Trajeglish-Style .405 ± .202 .506 ± .220 .661± .216 .511± .168 .603± .172 .789± .195

BBox Generator (ours) 3-to-1 .827 ± .150 .892 ± .120 .906 ± .099 .983 ± .013 .985 ± .012 .998 ± .003
Trajeglish-Style .448± .194 .554± .213 .695± .196 .529± .172 .623± .177 .791± .192

Table 2: Comparing real and generated bounding boxes. We condition on 1 or 3 initial bounding
box frame(s) and 1 final bounding box or trajectory frame. The first three columns show evaluations
on the entire generated bounding box sequence, measuring the alignment scores between our gener-
ated bounding box generations and ground-truth labels. The last three columns focus on testing the
auto-encoding capability of the network, evaluating only the first and last frames of the generated
sequence. “BBox Generator” is our method and “Trajeglish-Style” is a baseline inspired from Phil-
ion et al. (2023) (see Appendix E for implementation details on this baseline).

Frame 1 Frame 7 Frame 13 Frame 19 Frame 25

KITTI

vKITTI

BDD

Figure 4: Illustrations of the generations conditioned on ground truth 3D bounding boxes (2D for
BDD) across various datasets. The 2D outlines of bounding boxes are overlayed on top.

Our Box2Video is trained to control object motions through bounding boxes using a teacher-forcing
approach, where only ground-truth bounding box frames are provided during the training phase.
In this section, we analyze the fidelity of our Box2Video generations to the ground-truth bounding
box conditions. To access the consistency of objects’ locations between our generated content and
ground-truth, we compute the average precision of the bounding boxes in the generated frames and
the ground-truth frames.

Average precision (AP) scores gauge the alignment of predicted/generated bounding boxes with the
ground-truth labeling. In all related prior studies, average precision (AP) scores have been consis-
tently reported. However, it is important to acknowledge that AP scores can vary across studies,
depending on the specifics of the task setup. Boximator (Wang et al., 2024)’s motion control model
predicts object locations in the scene, focusing solely on objects with consistent appearances across
all frames. Their AP implementation disregards the object locations in the intermediate frames,
comparing the objects’ locations only in the final frame. In contrast, TrackDiffusion (Li et al., 2024)
uses TrackAP for evaluation, employing a QDTrack model (Fischer et al., 2023) to track instances
in generated videos and comparing them to ground-truth labels. However, these evaluated datasets

9
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have limited instances, and TrackAP requires consistent tracking across frames, making it unsuit-
able for our project without modifications. Therefore, our AP score differs slightly from those in
previous works.

Autonomous driving datasets often contain numerous object instances within a scene, with objects
continuously entering, exiting, and interacting with each other. In line with this complexity, we
have introduced our own version of the AP metric in this work. Our AP metric is designed to
comprehensively compare all objects across every scene: encompassing those that newly enter,
those that exist during the intermediate frames, and those that overlap with others.

First, we utilize the state-of-the-art object detection tool, YOLOv8 (Reis et al., 2024), to obtain the
objects’ trackings from the generated and ground-truth scenes. Detailed information about the tool
and our configurations is reported in Appendix C.3. Next, we match objects in each generated-vs-
ground-truth frame pair based on spatial similarity – calculating the intersection over union (IoU)
score to determine the similarity in location between objects’ bounding boxes. Our metric disregards
object type and tracking IDs equivalence – assuming that objects close in location should naturally
have the same type and IDs. Finally, we compute the average precision score following MS COCO
protocol (Lin et al., 2015). Details are provided in Appendix C.4 and results are listed in Table 3.
These results indicate that our Box2Video model is particularly adept at adhering to the specified
conditions, especially when evaluated with a more lenient metric (i.e., a lower IoU threshold for the
AP computation).

Method Dataset Dataset Type # Frames mAP" AP50" AP75" AP90"

Ctrl-V

KITTI Driving 25 0.547 0.712 0.601 0.327
vKITTI Driving-sim 25 0.599 0.776 0.667 0.356
BDD Driving 25 0.685 0.855 0.781 0.401
nuScenes Driving 25 0.661 0.833 0.734 0.381

Boximator
3

(Wang et al., 2024)

MSR-VTT(Xu et al., 2016) Web videos 16 0.365 0.521 0.384 -
ActivityNet (Heilbron et al., 2015) Human-action 16 0.394 0.607 0.409 -
UCF-101 (Soomro et al., 2012) Human-action 16 0.212 0.343 0.205 -

TrackDiffusion

(Li et al., 2024)

YTVIS (Yang et al., 2019) YouTube videos 16 0.467 0.656 - -
UCF-101 Soomro et al. (2012) Human-action 16 0.205 0.326 - -

Table 3: Average Precision scores obtained by comparing the YOLOv8 bounding box estimations of
real and generated samples. Prior works (Wang et al., 2024; Li et al., 2024) do not report results on
driving datasets; thus, we draw upon their reported performances on alternative datasets to provide a
comparative context. Longer videos are associated with decreased quality and lower detection rates,
posing an additional challenge for our model (since it generates 56.25% more frames), yet it obtains
higher precision than the other baselines.

5 CONCLUSIONS

We present Ctrl-V, a novel model capable of generating controllable autonomous vehicle videos via
bounding boxes rendering. Our approach demonstrates that the BBox Generator model can closely
follow generation requirements for the first and last frames and produce a coherent bounding box
track for the intermediate frames. Moreover, our Box2Video network generates high-fidelity videos
that strictly conform to the provided bounding boxes. Furthermore, our model accommodates both
2D and 3D bounding boxes and handles uninitialized objects appearing in the middle of the videos.
Ctrl-V provides future researchers with an efficient way to simulate driving video data with flexible
controllability in the form of bounding boxes. In addition, we further define an improved metric to
evaluate bounding box conditioned video generation to account for objects that are not present in the
first frame, and those that do not remain until the last frame. In Appendix G, we discuss potential
future work for this project. With Ctrl-V and an improved metric for more accurate evaluation, we
aim to establish a solid foundation for future research in controllable video generation.
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