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Abstract

Recent studies demonstrate that query expan-001
sion, generated by large language models002
(LLMs), considerably enhances information003
retrieval systems by generating hypothetical004
documents that answer the queries as expan-005
sions. However, challenges arise from mis-006
alignments between the expansions and the007
retrieval corpus, resulting in issues like hal-008
lucinations and outdated information due to009
the limited intrinsic knowledge of LLMs. In-010
spired by Pseudo Relevance Feedback (PRF),011
we introduce Corpus-Steered Query Expansion012
(CSQE) to promote the incorporation of au-013
thentic knowledge embedded within the corpus.014
CSQE utilizes the relevance assessing capabil-015
ity of LLMs to systematically identify pivotal016
sentences in the initially-retrieved documents.017
These corpus-originated texts are subsequently018
used to expand the query together with LLM-019
knowledge empowered expansions, bolstering020
the relevance between the query and the tar-021
get documents. Extensive experiments reveal022
that CSQE exhibits remarkable performance023
without necessitating any training.024

1 Introduction025

Query expansions enhance the effectiveness of026

information retrieval systems by incorporating027

additional texts into the original query. Tradi-028

tional methods often employ pseudo-relevance029

feedback (Amati and Van Rijsbergen, 2002; Robert-030

son, 1990) or leverage external lexical knowledge031

sources (Bhogal et al., 2007; Qiu and Frei, 1993).032

Recent studies (Gao et al., 2022; Wang et al., 2023;033

Jagerman et al., 2023; Mackie et al., 2023) show034

query expansions generated by LLMs are able035

to significantly boost retrieval effectiveness, espe-036

cially in zero-shot scenarios. For instance, Gao037

et al. (2022) demonstrates the effectiveness of uti-038

lizing LLMs to generate hypothetical documents039

answering the original query as additional terms040

to augment the query. Mackie et al. (2023) show041

Figure 1: Overview of CSQE. Given a query Biology
definition and the top-2 retrieved documents, CSQE
utilizes an LLM to identify relevant document 1 and
extract the key sentences from the corpus that contribute
to the relevance. The query is then expanded by both
these corpus-originated texts and LLM-knowledge em-
powered expansions (i.e., hypothetical documents that
answer the query) to obtain the final results.

the efficacy of applying pseudo-relevance feedback 042

upon the LLM-generated answers for expansion. 043

Despite variations in prompts or expansion meth- 044

ods, a common foundational element across these 045

approaches is the reliance on the intrinsic knowl- 046

edge of LLMs. 047

Despite their effectiveness, generations that rely 048

on the intrinsic parametric knowledge within LLMs 049

encounter various issues. These include hallucina- 050

tion (Zhang et al., 2023), inability to update (Kasai 051

et al., 2022), and a deficiency in long-tail knowl- 052

edge (Kandpal et al., 2023). Such generations may 053

introduce irrelevant or misleading terms, adversely 054

affecting the retrieval performance (Weller et al., 055

2023). 056

To this end, we propose Corpus-Steered Query 057
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Expansion (CSQE). Unlike previous methods that058

rely on the intrinsic parametric knowledge of059

LLMs, CSQE exclusively leverages the remarkable060

relevance assessing capability of LLMs (Faggioli061

et al., 2023; Thomas et al., 2023). As illustrated in062

Figure 1, given a query and its initially retrieved063

documents, CSQE utilizes LLMs to first identify064

relevant documents to the query and then extract065

pivotal sentences that contribute to their relevance.066

These corpus-originated texts are then combined067

together with LLM-knowledge empowered expan-068

sions to expand the original query. By incorporat-069

ing query expansions that strictly originate from070

the corpus, CSQE balances out the limitations com-071

monly found in LLM-knowledge empowered ex-072

pansions.073

To sum up, our contributions are 3-fold:074

1) We propose CSQE, which exclusively exploits075

the relevance assessing capability of LLMs to over-076

come the hinder posed by LLM-knowledge em-077

powered expansions.078

2) Experimental results reveal that CSQE combined079

with a simple BM25 model, without necessitating080

any training, outperform not only LLM-knowledge081

empowered expansion methods but also the SOTA082

supervised ContrieverFT model across two high-083

resource web search datasets and six low-resource084

BEIR datasets.085

3) Further analysis demonstrates the advantages of086

BM25 over dense retrieval with query expansion087

from LLMs, as well as query expansion over large-088

scale fine-tuning upon Contriever.089

2 Method090

In this section, we first describe how we imple-091

ment a Knowledge Empowered Query Expansion092

baseline based on LLMs (KEQE), then present the093

details of CSQE to enhance BM25.094

KEQE Inspired by recent works that directly gen-095

erate hypothetical documents to answer the query096

via LLMs for boosting retrieval (Gao et al., 2022;097

Wang et al., 2023; Jagerman et al., 2023; Mackie098

et al., 2023), we implement a KEQE baseline in a099

similar pattern for fair comparison. Given a query100

q, we use LLMs to generate the hypothetical an-101

swer a via a task-agnostic prompt shown in Table 1.102

The concatenation of q and a is then used as the ex-103

panded query to BM25 to retrieve the final results.104

It is worth noting that these hypothetical docu-105

ments are inevitably susceptible to issues like hal-106

lucination, due to the limitation of LLMs’ inherent107

knowledge, and then adversely affect the retrieval 108

performance. To mitigate such problems, we pro- 109

pose CSQE to incorporate corpus-originated expan- 110

sions with authentic knowledge embedded in the 111

corpus. 112

CSQE Given a query q and the document col- 113

lection D, we first retrieve top-k documents 114

{d1, d2, . . . , dk} using BM25. Then we elicit 115

large language models to directly generate the 116

pseudo-relevance feedback via one-shot prompt- 117

ing as shown in Table 2, where the current re- 118

trieved documents are integrated. The learning con- 119

text in the prompt is constructed from the TREC 120

DL19 dataset for constraining the structure of gen- 121

erated texts. Noting that such a prompt remains 122

unchanged for all tasks, we can therefore consider 123

our method with minimal relevance supervision 124

and being a zero-shot approach for all datasets ex- 125

cluding DL19. 126

Based on the above prompting, the generation 127

of LLMs will contain (1) the indices of documents 128

that are identified as relevant to the query and (2) 129

the key sentences that contribute to their relevance, 130

denoted as S = {s1, s2, . . . , sn}. Then we expand 131

the query by concatenating q, all sentences in S, 132

and generations from KEQE as a new query for 133

BM25 retrieval, where the results in this turn are 134

regarded as the final retrieved documents. Since 135

these key sentences are identical to the existing 136

texts in the corpus, 1 they are susceptible to issues 137

such as hallucinations and shortness of long-tail 138

knowledge and can balance out the limitations of 139

KEQE expansions. 140

To increase diversity, we sample N genera- 141

tions from the LLM for expansion. For KEQE, 142

N = 5. As CSQE involves both KEQE and corpus- 143

originated expansions, we sample N = 2 for both 144

KEQE and corpus-originated expansions, in total 145

only 4 generations for fair comparison. 146

KEQE Prompt

Please write a passage to answer the question
Question: {q}
Passage:

Table 1: Prompt of KEQE. {·} denotes the placeholder
for the corresponding text.

1In our preliminary study, we found 830 out of 1000 key
sentences extracted by GPT-3.5-Turbo are identical to sen-
tences in the initially-retrieved documents.
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CSQE Prompt

Query: "how are some sharks warm blooded"
Retrieved documents:
1. Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are
partially warmblooded (they are endotherms). . .
2. Are sharks cold-blooded or warm-blooded? Sharks have a reputation as cold-blooded
and despite how negative that term is. . .
3. Great white sharks are some of the only warm blooded sharks. This allows them to
swim in colder waters in addition to warm, tropical waters. . .
You will begin by examining the initially retrieved documents and identifying the ones
that are relevant, even partially, to the query. Once the relevant documents are identified,
you will extract the key sentences from each document that contribute to their relevance.

Based on the query "how are some sharks warm blooded", I have examined the initially
retrieved documents. Here are the relevant documents and the key sentences extracted
from each:
Document 1:
"Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are
partially warm-blooded (they are endotherms)."
Document 3:
"Great white sharks are some of the only warm-blooded sharks."

Query: "{q}"
Retrieved documents:
1. {d1}
2. {d2}
. . .
{k}. {dk}
You will begin by examining the initially retrieved documents and identifying the ones
that are relevant, even partially, to the query. Once the relevant documents are identified,
you will extract the key sentences from each document that contribute to their relevance.

Table 2: Prompt of CSQE. {·} denotes the placeholder
for the corresponding text. Refer to Appendix A.1 for
the complete prompt.

3 Experiments147

3.1 Setup148

Datasets Following Gao et al. (2022), the datasets149

for evaluation are (1) Two web search datasets:150

TREC DL19 (Craswell et al., 2020) and TREC151

DL20 (Craswell et al., 2021), which are based on152

the high-resource MS-MARCO dataset (Bajaj et al.,153

2018); and (2) Six low-resource retrieval datasets154

from the BEIR dataset (Thakur et al., 2021) cover-155

ing a variety of domains (e.g., medical and finance)156

and query types (e.g., news headlines and argu-157

ments).158

Baselines The baselines we consider are within159

two categories: PRF methods and query expan-160

sion methods using LLMs. The PRF method we161

include is BM25+RM3 (Jaleel et al., 2004). The162

query expansion methods with LLMs include: (1)163

Contriever+HyDE, a KEQE method that employs164

hypothetical documents generated by LLMs to165

enhance unsupervised Contriever (Izacard et al.,166

2022) model; (2) BM25+GPR (Mackie et al.,167

2023), a query expansion method that applies168

PRF upon LLM-knowledge empowered hypothet-169

ical texts. GPR is a strong baseline that out-170

performs multiple SOTA PRF methods; and (3)171

BM25+KEQE.172

Moreover, we also include three supervised173

dense retrievers that are trained with over 500k174

human-labeled data of MS-MARCO for reference:175

(1) DPR; (2) ANCE, which involves sophisticated176

negative mining; and (3) ContrieverFT, which is 177

the fine-tuned version of Contriever. 178

Implementation We utilize GPT-3.5-Turbo2 as 179

our serving LLM for the trade-off between per- 180

formance and cost. We sample from the LLM with 181

a temperature of 1.0. The BM25 retrieval and RM3 182

query expansion are performed using Prserini (Lin 183

et al., 2021) toolkit with default hyper-parameters. 184

CSQE utilize the top-10 retrieved documents, with 185

each truncated to at most 128 tokens. To increase 186

diversity, for each API call, we sample N genera- 187

tions. For KEQE, N = 5. As CSQE involves both 188

KEQE and corpus-originated expansions, we sam- 189

ple N = 2 for both KEQE and corpus-originated 190

expansions, in total only 4 generations for fair com- 191

parison. The expanded query of each generation 192

is further concatenated together to form the final 193

query. 194

3.2 Web Search Results 195

Table 3 shows the retrieval results on TREC DL19 196

and DL20. CSQE is able to bring substantially 197

larger improvement over BM25 compared to the 198

strong PRF baseline RM3. Despite utilizing fewer 199

LLM generations for expansion, CSQE surpasses 200

KEQE on 5/6 metrics, showing the effectiveness of 201

our corpus-steered approach. Moreover, CSQE 202

consistently outperforms GPR on 5/6 metrics, 203

which employs PRF on KEQE expansions, empha- 204

sizing the necessity of corpus-steered expansions. 205

Without any training, CSQE with simple BM25 is 206

able to beat the SOTA ContrieverFT model across 207

all metrics by a substantial margin. 208

3.3 Low-Resource Retrieval Results 209

The results on 6 low-resource BEIR datasets are 210

shown in Table 4. Applying RM3 leads to perfor- 211

mance drops on 5/6 datasets, while CSQE is robust 212

to domain shifts and is able to consistently improve 213

BM25 on all datasets. Although KEQE can achieve 214

similar results as ContrieverFT, CSQE is able to out- 215

perform both KEQE and ContrieverFT by a large 216

margin, demonstrating the strong generalizability 217

of CSQE. 218

4 Analysis 219

4.1 CSQE on Dense Retrieval 220

To test the versatility of CSQE, we apply CSQE 221

on the unsupervised Contriever in Table 5. Fol- 222

2In our preliminary study, updating HyDE’s LLM from
Text-Davinci-003 to GPT-3.5-Turbo cannot improve results.
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DL19 DL20

map ndcg@10 recall@1k map ndcg@10 recall@1k

w/o relevance judgement
BM25 30.1 50.6 75.0 28.6 48.0 78.6
BM25+RM3 34.2 52.2 81.4 30.1 49.0 82.4
Contriever+HyDE 41.8 61.3 88.0 38.2 57.9 84.4
BM25+GRF 44.1 62.0 79.7 48.6 60.7 87.9
BM25+KEQE 45.0 65.9 88.8 42.8 60.5 88.3
BM25+CSQE 47.2 67.3 88.5 46.5 66.2 89.1

reference. w/ relevance judgement
DPR 36.5 62.2 76.9 41.8 65.3 81.4
ANCE 37.1 64.5 75.5 40.8 64.6 77.6
ContrieverFT 41.7 62.1 83.6 43.6 63.2 85.8

Table 3: Results on TREC DL19 and DL20 datasets. In-domain supervised models DPR, ANCE and ContrieverFT

are trained on the MS-MARCO dataset and listed for reference. Bold indicates the best result across all models.

Scifact Arguana Trec-Covid FiQA DBPedia TREC-NEWS Avg.

nDCG@10

w/o relevance judgement
BM25 67.9 39.7 59.5 23.6 31.8 39.5 43.7
BM25+RM3 64.6 38.0 59.3 19.2 30.8 42.6 42.4
Contriever+HyDE 69.1 46.6 59.3 27.3 36.8 44.0 47.2
BM25+KEQE 70.5 40.7 66.6 22 38.8 48.3 47.8
BM25+CSQE 69.6 40.3 74.2 25 40.3 48.7 49.7

reference. w/ relevance judgement
DPR 31.8 17.5 33.2 29.5 26.3 16.1 25.7
ANCE 50.7 41.5 65.4 30.0 28.1 38.2 42.3
ContrieverFT 67.7 44.6 59.6 32.9 41.3 42.8 48.2

Table 4: Results on low-resource retrieval datasets. Bold indicates the best result across all models.

lowing Gao et al. (2022), we encode each query223

expansion separately into dense embeddings and224

average their embeddings with the original query225

embedding as the final embedding. Similar to the226

impact of CSQE on BM25, CSQE is able to im-227

prove Contriever significantly. Interestingly, it is228

worth noting that in all cases, Contriever performs229

worse than BM25. Surprisingly, query expansion230

(Contriever+CSQE) is proven to be more effec-231

tive than fine-tuning the model using 500K human-232

labeled data (ContrieverFT).233

Model map ndcg@10 recall@1k

Contriever 24.0 44.5 74.6
+KEQE 41.7 62.2 87.4
+CSQE 44.0 65.6 88.6

BM25 30.1 50.6 75.0
+KEQE 45.0 65.9 88.8
+CSQE 47.6 68.6 89.0

ContrieverFT 41.7 62.1 83.6

Table 5: Results of CSQE on Contriever on DL19.

4.2 Corpus-Originated expansion on Different234

LLMs235

We apply different LLMs for corpus-originated ex-236

pansion in Table 6. Consistent with findings in237

Sun et al. (2023), we find LLM-based expansion 238

is able to bring consistent improvements and more 239

powerful models are able to bring bigger improve- 240

ment. Considering the trade-off between perfor- 241

mance and cost, we choose GPT-3.5-Turbo as our 242

serving LLM.

Model map ndcg@10 recall@1k

BM25 30.1 50.6 75.0
w/ LLAMA-2-7B-Chat 35.8 54.3 82.5
w/ Text-Davinci-003 37.9 55.8 80.8
w/ GPT-3.5-Turbo 41.9 63.9 82.9
w/ GPT-4 42.9 67.0 84.8

Table 6: Corpus-originated expansion with different
LLMs on DL19.

243

5 Conclusion 244

In this paper, we propose CSQE, which utilizes the 245

relevance assessing ability of LLMs to balance out 246

limitations associated with the intrinsic knowledge 247

of LLMs. Experimental evaluation demonstrates 248

CSQE’s superiority over the LLM-knowledge em- 249

powered expansion methods and SOTA supervised 250

ContrieverFT model across various datasets. 251
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Limitations252

We acknowledge two limitations in our work: com-253

putational overhead and reliance on closed-source254

models. The utilization of OPENAI LLMs neces-255

sitates API calls, resulting in increased process-256

ing time and latency. However, in retrieval tasks257

where latency is less crucial, such as legal case re-258

trieval, our method may offer benefits. Moreover,259

our approach does not necessitate training, making260

it more accessible to researchers and practitioners261

without extensive GPU resources. Additionally,262

the unavailability of the LLMs’ source models and263

training data restricts our ability to conduct thor-264

ough analysis. There may exist social biases (Zhao265

et al., 2017) in LLM generations and thus have the266

risk of offending people from under-represented267

groups.268

We utilize ChatGPT to correct the grammar in269

our paper and ensure that none of the text was270

directly generated by ChatGPT.271
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A Appendix 386

A.1 Instruction of PRF-LLM 387

Query: "how are some sharks warm blooded"
Retrieved documents:
1. Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are partially
warmblooded (they are endotherms). Cold blooded although if you’ve ever seen a Great White
Shark hunt sea lions you’d be thinking they would have to be hotblooded. Actually the Salmon
Shark is a warm blooded shark.
2. Are sharks cold-blooded or warm-blooded? Sharks have a reputation as cold-blooded and
despite how negative that term is, it is not entirely inaccurate. Sharks are by no means evil, vicious
killers like that quote suggests. Nonetheless, sharks are, for the most part anyways, efficient
ectothermic predators. Endo vs Ecto.
3. Great white sharks are some of the only warm blooded sharks. This allows them to swim in
colder waters in addition to warm, tropical waters. Great White sharks can be found asâ¦ north
as Alaska and as south as the southern tip of South America. They exist worldwide, everywhere
in-between. 5 people found this useful.
4. Sharks’ blood gives them turbo speed. Several species of shark and tuna have something special
going on inside their bodies. For a long time, scientists have known that some fish species appear
warm-blooded. Salmon sharks can elevate their body temperatures by up to 20 degrees compared
to the surrounding water, for example.
You will begin by examining the initially retrieved documents and identifying the ones that are
relevant, even partially, to the query. Once the relevant documents are identified, you will extract
the key sentences from each document that contribute to their relevance.

Based on the query "how are some sharks warm blooded", I have examined the initially
retrieved documents. Here are the relevant documents and the key sentences extracted from each:
Document 1:
"Most sharks are cold-blooded. Some, like the Mako and the Great white shark, are partially
warm-blooded (they are endotherms)."
"Actually, the Salmon Shark is a warm-blooded shark."
Document 3:
"Great white sharks are some of the only warm-blooded sharks."
"This allows them to swim in colder waters in addition to warm, tropical waters."
Document 4:
"Salmon sharks can elevate their body temperatures by up to 20 degrees compared to the
surrounding water, for example."

Query: "{q}"
Retrieved documents:
1. {d1}
2. {d2}
. . .
{k}. {dk}
You will begin by examining the initially retrieved documents and identifying the ones that are
relevant, even partially, to the query. Once the relevant documents are identified, you will extract
the key sentences from each document that contribute to their relevance.

388
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A.2 Dataset Statistics389

Details about the retrieval datasets are shown in Table 7.390

Dataset #Test #Corpus

DL19 43 8,841,823
DL20 50 8,841,823
Scifact 300 5183
Arguana 1406 8674
Trec-Covid 50 171,332
FiQA 648 57,638
DBPedia 400 4,635,922
TREC-NEWS 57 594,977

Table 7: Dataset Statistics
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