
UnoLoRA: Single Low-Rank Adaptation for Efficient
Multitask Fine-tuning

Akash Kamalesh∗ Anirudh Lakhotia∗ Nischal H S∗ Prerana Sanjay Kulkarni∗
Gowri Srinivasa†

PES Center for Pattern Recognition,
Department of Computer Science, PES University,

Bangalore, India
{akash.kamalesh03,anirudhlakhotia5,nischalhelagally,prer.kulk}@gmail.com

gsrinivasa@pes.edu

Abstract

Recent advances in Parameter-Efficient Fine-Tuning (PEFT) have shown Low-
Rank Adaptation (LoRA) to be an effective implicit regularizer for large language
models. Building on these findings, we propose UnoLoRA, a novel approach that
leverages a single shared LoRA module for efficient multi-task learning. While ex-
isting methods typically use separate LoRA adaptations for each task, our approach
demonstrates that a single shared adapter can effectively capture both task-specific
and task-agnostic knowledge. We further introduce UnoLoRA*, an enhanced
variant that employs a shared hypernetwork to generate task-specific embeddings,
improving convergence and task adaptation. Our method significantly reduces train-
able parameters to just 0.05% per task while maintaining competitive performance
on the GLUE benchmark. Our analysis reveals that the A and B matrices in our
shared LoRA adapter naturally develop complementary roles: A matrices capture
generalizable features across tasks, while B matrices specialize in task-specific
representations. Our results show that sharing a single LoRA adapter can achieve
efficient multi-task learning while significantly reducing memory requirements,
making it particularly valuable for resource-constrained applications.

1 Introduction

The recent progress of Large Language Models (LLMs) has advanced the field of Natural Language
Processing significantly, but their increasing sizes make deployment and adaptation for specific or
multiple tasks complicated, making parameter-efficient methods essential. Multi-task learning is
advantageous in several ways, such as helping models develop robust and transferable representations,
lowering memory usage, and making it easier to adapt to multiple new tasks. However, it comes with
a set of challenges, including negative transfer, where learning one task can hurt the performance of
the model on other tasks, and the need for more model parameters, which can reduce efficiency.

Parameter-Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA) (Hu
et al., 2021), which our work builds upon, have gained attention due to their ability to adapt models to
new tasks with minimal overhead. Recent studies have shown that that LoRA behaves as an implicit
regularizer (Biderman et al., 2024), helping mitigate catastrophic forgetting and maintaining diverse
generations, suggesting its suitability for multi-task learning.

Building on these insights, we introduce UnoLoRA, a novel approach that uses a single LoRA module
for efficient multi-task learning in LLMs. Unlike previous methods that use separate LoRA adapters

∗Equal Contribution
†Research Advisor

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).

for each task, UnoLoRA employs a shared LoRA module across all the tasks, capitalizing on LoRA’s
suspected implicit regularization properties to facilitate knowledge sharing effectively between tasks.

This addresses some of the challenges in multi-task learning - it ensures parameter efficiency by using
a single low-rank adaptation, minimizing the additional parameters required for multiple tasks. The
shared nature of the LoRA module allows for task-agnostic adaptations that mitigate negative transfer
between tasks.

Furthermore, we introduce UnoLoRA⋆, which uses a shared hypernetwork to generate task-specific
embeddings on top of UnoLoRA, which allows to model to o distinguish between different tasks and
learn task-specific adaptations.

We evaluate UnoLoRA and UnoLoRA⋆ on the GLUE (Wang, 2018) benchmark, demonstrating their
effectiveness in a multi-task setting. Our experiments show that UnoLoRA⋆ achieves competitive
performance with existing multi-task approaches on GLUE while offering improved parameter
efficiency and having a significantly higher per-step convergence than UnoLoRA.

The main contributions of our work are:

1. A novel single-LoRA-based architecture designed for multi-task learning in LLMs.
2. Comprehensive empirical evaluation of UnoLoRA and UnoLoRA⋆ on GLUE.
3. Analysis and visualization of the behavior and properties of LoRA matrices in single-task

versus multi-task settings.

2 Related Work

2.1 Multi-task Learning in Large Language Models

Multi-task learning (MTL) in Large Language Models (LLMs) has gained attention due to the
potential for improving model generalization and efficiency. Older approaches often involve full
fine-tuning the model on multiple tasks simultaneously (Liu et al., 2019; Aghajanyan et al., 2021).
This can lead to challenges such as negative transfer and increased computational requirements (Wang
et al., 2019).

Recent work has explored more parameter-efficient approaches. Adapter based methods, Houlsby
et al. (2019); Pfeiffer et al. (2020), introduce small task specific modules while keeping the base
model frozen. Prompt-tuning techniques, Lester et al. (2021); Li & Liang (2021), modify the input
representation to adapt models to new tasks.

A significant advancement in this area is the HyperFormer approach, introduced by Mahabadi et al.
(2021). This method employs shared hypernetworks for parameter-efficient multi-task fine-tuning of
Transformers. HyperFormer learns to generate task specific adapter parameters, enabling efficient
sharing of knowledge across tasks while maintaining task specific adaptations. This approach
significantly reduces the number of per task trainable parameters compared to traditional adapter
methods, while achieving superior performance on GLUE.

2.2 Implicit Regularization in Neural Networks

Regularization in machine learning is essential in preventing overfitting and improving model
generalization. Implicit regularization, which refers to the natural biases of optimization methods
or architectural constraints towards simpler, more generalizable solutions (Neyshabur et al., 2017),
has gained attention in deep learning. Implicit regularization happens without explicit regularization
terms, as seen in several training dynamics and optimization algorithms (Gunasekar et al., 2017).

Recent work shows that Low-Rank Adaptation (LoRA) possesses strong implicit regularization
properties. Biderman et al. (2024) found that LoRA’s low-rank structure leads to learning less and
forgetting less compared to full fine-tuning, suggesting it constrains models in ways that mitigate
catastrophic forgetting and may promote positive transfer between tasks.

LoRA’s regularization aligns with broader trends in deep learning, where limiting the parameter space
tends to improve generalization. Techniques like pruning (Han et al., 2015) and quantization (Jacob

2

et al., 2018) achieve model complexity reduction while maintaining performance through implicit
regularization.

LoRA’s parameter efficiency proves to be effective in the multi-task learning scenario. By sharing a
single LoRA module across multiple tasks, its regularization properties enable effective fine-tuning,
balancing task-specific adaptations with general language understanding. This shared adaptation
of LoRA both prevents overfitting, and promotes generalization. This allows UnoLoRA⋆ to deliver
competitive performance with minimal additional parameters.

3 Methodology

Problem Formulation. Our focus is on a multi-task learning problem where we seek to develop a
single model capable of performing well across diverse tasks. Consider a pre-trained language model
Mθ with parameter set θ, and a collection of target tasks T = {T1, T2, . . . , TK}, where K represents
the total number of tasks. Our goal is to determine an optimized set of parameters θ∗ that maximizes
performance across all the tasks.

For each task Tj ∈ T , we have a corresponding dataset Dj = {(Xi
j , Y

i
j)}

Mj

i=1. Here, Xi
j denotes the

input text, Y i
j represents the associated label for the i-th instance of the j-th task, and Mj indicates

the total number of samples in task j.

3.1 Model Architecture

Our model architecture consists of the pre-trained language model Mθ as the shared backbone
network, enhanced with an UnoLoRA⋆ adaptation module. This module is integrated into the self-
attention and encoder-decoder attention sub-layers of both the encoder and decoder blocks in the
transformer architecture, enabling task-specific adaptations without modifying the original pre-trained
weights.

Given a pre-trained weight matrix W ∈ Rd×k, the UnoLoRA⋆-adapted weight matrix W ′ is computed
as:

W ′ = W + α ·BA (1)
where B ∈ Rd×r and A ∈ Rr×k are learnable low-rank matrices shared across all tasks, r ≪
min(d, k) is the rank of the adaptation, and α is a scaling factor (Figure 1).

Our PCA visualization comparing the distribution of LoRA matrices A and B in multi-task learning,
as demonstrated in Figure 3, reveals that the A matrix exhibits strong generalization capabilities
across different tasks, while the B matrix captures task-specific features. This finding motivated our
design choice to multiply task-specific information with the A matrix, leveraging its generalization
power to better adapt to new tasks while maintaining task-specific knowledge.

To enable the model to distinguish between different tasks and learn task-specific adaptations within
the shared LoRA space, we introduce a SharedHypernetwork module. This module generates
task-specific embeddings by combining task IDs, sample encodings, and position information:

et = H(t, s, p) (2)

where H is the SharedHypernetwork, t is the task ID, s is the sample encoding, and p is the position
information. The output et ∈ Rde is a task-specific embedding, where de is the dimensionality of the
task embedding space (Figure 2). This unified embedding space is essential for enabling effective
knowledge sharing across tasks while maintaining task-specific characteristics.

The inclusion of sample-level encodings is crucial as it allows the model to capture fine-grained,
instance-specific features that may be relevant across multiple tasks. Layer-wise position embeddings
provide important contextual information about how different layers in the transformer architecture
process and transform the input, enabling more nuanced adaptations at different levels of abstraction.
This multi-level representation ensures that the model can adapt its behavior based on both the specific
requirements of each input sample and its position in the network hierarchy.

The SharedHypernetwork consists of several components: A bottleneck network that processes the
sample encodings:

b = B(s) (3)

3

where B is a multi-layer perceptron and b ∈ Rdb is the bottleneck representation. This bottleneck
architecture is crucial for distilling high-dimensional sample encodings into a compact, information-
rich representation that captures essential features while reducing computational overhead.

Task and position embeddings:

etask = Etask(t), epos = Epos(p) (4)

where Etask and Epos are embedding layers. These dedicated embedding spaces allow the model to
learn distinct representations for task identity and structural position, ensuring that both task-specific
requirements and architectural context are properly encoded.

A network that processes the concatenated position and task embeddings (Xiao et al., 2023) to
differentiate between transformer blocks, and between the query and the value LoRA adapters:

et = C([etask, epos, b]) (5)

where C is a multi-layer perceptron and [·, ·, ·] denotes concatenation. This fusion network is essential
for learning complex interactions between task, position, and sample-specific information, creating a
unified representation that captures all relevant aspects of the current adaptation context.

The task-specific embedding et is then used to generate scaling factors that modulate the A matrix in
the UnoLoRA⋆ module:

st = S(et) (6)

where S : Rde → Rr is a linear layer that projects the task embedding to the LoRA rank dimen-
sion. This projection layer plays a critical role in translating the rich task-specific information into
appropriate scaling factors that can directly influence the LoRA adaptation process.

The task-specific scaling factors are applied to the LoRA adaptation:

W ′ = W + α ·B(A · diag(st)) (7)

where diag(st) creates a diagonal matrix from the scaling vector st. By applying the scaling to the
A matrix, we leverage its demonstrated generalization capabilities (Figure 3) while maintaining the
task-specific adaptations learned by the B matrix.

This approach provides a sophisticated mechanism for multi-task adaptation, combining the gen-
eralization power of the A matrix with fine-grained task-specific information from the SharedHy-
pernetwork. The integration of sample-level encodings and position information enables the model
to capture both instance-specific features and layer-wise contextual information, resulting in more
effective and nuanced adaptations across different tasks.

Figure 1: UnoLoRA⋆ Computation: Illustration of how UnoLoRA⋆ modifies the weight matrix W
using low-rank adaptation matrices A and B. The scaling factor α and task-specific scaling vector st
allow for task-dependent adjustments.

4

Figure 2: Shared Hypernetwork: The SharedHypernetwork generates embeddings that encode task-
specific information. These embeddings are used to adapt the LoRA weights dynamically, ensuring
that task-specific nuances are captured effectively.

3.2 Training Objective

We optimize the model parameters θ, the shared LoRA matrices B and A, the task embeddings {ei},
and the hypernetwork using AdamW (Loshchilov & Hutter). The optimization process jointly learns
the shared LoRA adaptation, task-specific scaling factors to maximize the overall performance across
all tasks.

3.3 Integration with Pre-trained Models

The integration of our UnoLoRA adapters with pre-trained language models is achieved through
a wrapper architecture, which we call EnhancedUnoloraWrapper. This wrapper encapsulates a
pre-trained T5 model and augments it with task-specific adaptations while preserving the original
model’s parameters. Given a pre-trained T5 model Mθ, we replace specific linear layers in the
self-attention and cross-attention modules with our UnoLoRA layers. The replacement occurs in both
the encoder and decoder blocks:

Mθ = Replace(Mθ,UnoLoRA) (8)

where Replace is a function that substitutes the query (Q) and value (V) projections in each attention
layer with UnoLoRA modules. The UnoLoRA module extends the standard LoRA adaptation by
incorporating task-specific scaling:

W ′t = W + α · (B · diag(st))A (9)

where W ′t is the task-specific adapted weight matrix, W is the original weight matrix, B and A are
the LoRA matrices, α is the scaling factor, and st is the task-specific scaling vector generated by the
SharedHypernetwork. The integration process involves the following steps:

1. Freezing the base model parameters:

∀θ ∈ Mθ :
∂L
∂θ

= 0 (10)

2. Replacing attention layers with UnoLoRA modules:

AttnUnoLoRA = UnoLoRA(Attnoriginal, r, α, de) (11)

where r is the LoRA rank, α is the scaling factor, and de is the task embedding dimension.

3. Initializing the SharedHypernetwork:

H = SharedHypernetwork(|T |, dh, de, ds, db, L, pmax) (12)

where |T | is the number of tasks, dh is the hidden dimension, de is the output dimension, ds is the
sample encoding dimension, db is the bottleneck dimension, L is the number of layers, and pmax is

5

the maximum position.

This integration approach allows for efficient task-specific adaptation of the pre-trained
model while maintaining its original knowledge. The UnoLoRA modules and SharedHypernetwork
introduce a relatively small number of trainable parameters, enabling rapid adaptation to new tasks
without the need for full model fine-tuning.

4 Experiments

Model and Implementation: We use T5-base (Raffel et al., 2020) as our backbone model across
all experiments. For multi-task experiments, we implement UnoLoRA, a single custom version of
LoRA (Hu et al., 2021) shared across all tasks. Furthermore, we implement UnoLoRA⋆ which is
UnoLoRA with a shared hypernetwork to generate task specific embeddings to aid the LoRA learning
process. For single-task experiments, we utilize the standard LoRA implementation from Hugging
Face Transformers (Wolf et al., 2020).

Datasets and Evaluation: We evaluate our models on the GLUE benchmark (Wang, 2018),
following the approach of Raffel et al. (2020). Since the original test sets are not publicly available,
we adopt the data split strategy from Zhang et al. (2020). For smaller datasets (RTE, MRPC, STS-B,
CoLA) with fewer than 10K samples, we split the original validation set equally into validation and
test sets. For larger datasets, we create a validation set by reserving 1K samples from the training
data and use the original validation set for testing.

Baselines: We compare our method against several baselines, with careful consideration of how
performance is measured and aggregated:

• Single-Task Fine-Tuning: Independent fine-tuning of T5-base for each task, updating all
parameters.

• Single-Task LoRA: Independent LoRA adaptation for each task, resulting in separate task-
specific adapters.The reported performance reflects the evaluation of a single task-specific
adapter.

• Multi-Task Fine-Tuning: Simultaneous fine-tuning of T5-base on all tasks, updating all
parameters.

• HyperFormer++: Implementation of the enhanced HyperFormer++ (Mahabadi et al., 2021)
approach for multi-task learning with T5-base.

For single-task models, best checkpoint is taken for each task(one model per-task). For multi-task
models, performance is measured using a single best checkpoint selected based on average validation
performance across tasks.

Experimental Details: All experiments use the GLUE benchmark’s natural language understanding
tasks. For multi-task training, we employ temperature-based sampling (T=10) to balance task
representation. We train for 50 epochs on smaller datasets and 10 epochs on larger datasets during
single-task LoRA fine-tuning. Following Raffel et al. (2020), we use a constant learning rate of
1e− 4 and train for 218 = 262144 steps, saving checkpoints every 29535 steps. Unlike Raffel et al.
(2020), who report results using task-specific best checkpoints, we adopt a more realistic approach by
selecting a single checkpoint based on the highest average validation performance across all tasks.
This ensures fair comparison between single-task and multi-task approaches. Detailed hyperparameter
settings are provided in Table 2 (See Appendix A.3). All experiments were conducted using NVIDIA
A100 and H100 GPUs (40GB VRAM).

4.1 Results on the GLUE Benchmark

We evaluate our proposed UnoLoRA method and its enhanced variant UnoLoRA⋆ against several
baselines on the GLUE benchmark, with results presented in Table 1. Our analysis focuses on both
performance and parameter efficiency across single-task and multi-task training paradigms. The
experiments highlight the effectiveness of our approach in terms of parameter efficiency and its ability
to leverage shared information across tasks through the shared LoRA adapter.

6

Table 1: Results on the GLUE benchmark. For MRPC and QQP, we report accuracy/F1. For STS-B,
we report Pearson/Spearman correlation. For other tasks, we report the standard metric. Bold
indicates best results in multi-task training. Trained is the per-task trainable parameters of the model.
†: Results reported directly from Mahabadi et al. (2021).

Model
#Params CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.

Total Trained
Single-Task Training

T5† (full fine-tuning) 8.0× 100% 54.85 92.19 88.18 / 91.61 91.46 / 88.61 89.55 / 89.41 86.49 91.60 67.39 84.67
LoRA 1 + (8 × 0.004) 0.4% 56.10 93.81 84.31 / 84.31 90.44 / 89.84 90.19 / 89.79 86.29 93.56 69.78 84.40

Multi-Task Training

T5† (full fine-tuning) 1.0× 12.50% 54.88 92.54 90.15 / 93.01 91.13 / 88.07 88.84 / 88.53 85.66 92.04 75.36 85.47
HyperFormer++ 1.02× 0.290% 63.73 94.03 89.66 / 92.63 90.28 / 87.20 90.00 / 89.66 85.74 93.02 75.36 86.48
UnoLoRA (Ours) 1.004× 0.049% 50.79 94.61 85.78 / 85.78 89.99 / 89.32 88.63 / 88.44 84.71 92.68 77.70 84.40
UnoLoRA⋆ (Ours) 1.004× 0.050% 56.11 93.92 86.76 / 86.76 89.88 / 89.21 88.52 / 88.69 85.24 93.14 76.26 84.95

In the single-task setting, traditional LoRA achieves competitive performance (84.40% average)
compared to full fine-tuning (84.67% average) while training only 0.4% of the parameters. This
establishes a strong baseline for parameter-efficient fine-tuning approaches.

In the multi-task setting, our enhanced UnoLoRA⋆ achieves an average score of 84.95%, showing
improvement over the base UnoLoRA’s 84.40%. While HyperFormer++ achieves the highest average
performance (86.48%), both our methods offer compelling parameter efficiency, using just a single
shared adapter approach. UnoLoRA⋆ demonstrates particular strengths on several tasks, notably
improving performance on CoLA (56.11% vs 50.79%), MRPC (86.76% vs 85.78%), and MNLI
(85.24% vs 84.71%) compared to base UnoLoRA.

A key advantage of our approaches is their parameter efficiency. Both UnoLoRA and UnoLoRA⋆

require training only about 0.05% of the total parameters, significantly more efficient than full
fine-tuning (12.50% in multi-task setting) and even HyperFormer++ (0.290%). This efficiency is
particularly important in resource-constrained environments or when scaling to larger models.

Both variants show strong performance on classification tasks, with UnoLoRA excelling on SST-2
(94.61%) and UnoLoRA⋆ achieving strong results on QNLI (93.14%). Notably, UnoLoRA achieves
the best RTE performance (77.70%) among all multi-task approaches, while UnoLoRA⋆ provides
more consistent performance across the full task suite.

5 Analysis

We present an analysis of UnoLoRA’s performance and internal mechanisms, demonstrating its
effectiveness in multi-task learning settings through three key findings: (1) superior parameter
efficiency - as discussed earlier, (2) distinct functional specialization in the A and B matrices, and (3)
faster convergence through our enhanced UnoLoRA⋆ variant.

5.1 Empirical Analysis and Findings

To understand how UnoLoRA achieves efficient multi-task learning, we analyzed the properties of
its LoRA matrices through multiple mathematical perspectives and discovered a clear functional
specialization between components:

Matrix Properties and Representations: Our analysis reveals distinct characteristics between A
and B matrices. The A matrices demonstrate higher singular values and eigenvalues (Figure 6c,d),
indicating they capture a broader range of transformations in the parameter space. This is further
supported by their scattered distribution in PCA visualization (Figure 3, left), suggesting diverse
feature representations. In contrast, B matrices show more concentrated eigenvalue distributions and
form dense clusters in PCA space (Figure 3, right), indicating more specialized transformations.

7

Figure 3: 2D PCA visualization comparing the distribution of LoRA matrices in multi-task learning.
A matrices (left) exhibit a dispersed pattern with greater variance suggesting diverse, generalizable
features. B matrices (right) show tighter clustering indicating task-specific feature specialization.
Points represent individual matrix components projected onto the first two principal components.

Layer-wise Behavior: Examining the cross-layer relationships, we observe that A matrices ex-
hibit noticeable correlation across different layers (Figure 4, left), suggesting they learn consistent
transformations throughout the network. This layer-wise generalization capability, combined with
their diverse representational properties, makes them particularly suitable for multi-task learning. B
matrices, conversely, show minimal cross-layer correlation (Figure 4, right), aligning with their role
in task-specific adaptations.

Figure 4: Pearson correlation analysis of LoRA matrices across network layers in multi-task learning.
Left: A matrices show noticeable correlation between different layers suggesting these matrices
learn similar transformations across layers. This consistency across layers indicates the learning of
general features that are reused throughout the network, supporting their role in capturing transferable
knowledge. Right: B matrices show minimal correlations between layers implying each layer learns
distinct transformations, consistent with their role in capturing task-specific adaptations.

This complementary behavior enables efficient multi-task learning through:

Enhanced Representational Capacity: Multi-task adaptations demonstrate consistently higher
effective rank across all layers (Figure 6a), particularly pronounced in the encoder layers. As shown
in Figure 5a, this enhanced representational capacity translates to superior performance scaling,
where our multi-task approach (green dots) maintains efficiency across different parameter regimes
compared to single-task models (red dots) and either matches or surpasses their performance.

8

(a) Comparison of accuracy versus percentage (log
scale) of trained parameters across different models in
a multi-task learning setting. The green dots represent
multi-task fine-tuned models, and the red dots repre-
sent single-task fine-tuned models.

(b) Comparison of the overall accuracy of UnoLoRA
and UnoLoRA⋆ over the first 5000 training steps on
a subset of the validation dataset. We can see that
UnoLoRA⋆ is able to achieve a higher performance at
an earlier stage than UnoLoRA.

Figure 5: Performance analysis of multi-task learning models. (a) Illustrates the trade-off between
model accuracy and the percentage of trained parameters across various models. (b) Shows the
per-step convergence rates of UnoLoRA and UnoLoRA⋆, highlighting the improved early-stage
performance of UnoLoRA⋆.

Optimal Parameter Updates: The multi-task setting exhibits larger Frobenius norms (Figure 6b) and
consistently higher singular values (Figure 6c) and eigenvalues (Figure 6d) compared to single-task
counterparts. The larger Frobenius norms indicate stronger overall weight updates, suggesting the
model makes more substantial adaptations to accommodate multiple tasks. The higher singular and
eigenvalues reveal that these adaptations utilize a broader range of transformation directions in the
parameter space, allowing the model to capture more complex patterns.

5.2 Convergence Analysis

Building on these insights, we developed UnoLoRA⋆, which enhances the base architecture’s ability
to learn task-specific features more efficiently. As demonstrated in Figure 5b, UnoLoRA⋆ achieves
higher performance at earlier training stages compared to the original UnoLoRA. This pattern of
faster convergence is consistently observed across multiple tasks in the GLUE benchmark, including
MNLI, STS-B, QQP, and SST-2 (see Appendix A.1 for detailed per-task convergence plots). This
faster convergence is particularly valuable in resource-constrained scenarios and rapid deployment
settings.

The improved early-stage performance can be attributed to the enhanced architecture’s ability to
better leverage the functional specialization we observed between A and B matrices, allowing for
more efficient learning of both shared and task-specific features.

9

(a) Effective rank comparison across model layers,
showing consistently higher values for multi-task train-
ing.

(b) Layer-wise Frobenius norm distribution, indicat-
ing magnitude of weight adjustments in adaptation
matrices.

(c) Distribution of singular values across layers, re-
flecting the complexity of learned transformations.

(d) Eigenvalue distributions showing the dimensional-
ity of learned feature spaces.

Figure 6: Comparative analysis of LoRA adaptation matrices between single-task (CoLA, MNLI)
and multi-task models across different metrics. Layer indices (x-axis) correspond to the model archi-
tecture progression from encoder (lower indices) to decoder (higher indices). The multi-task model
consistently demonstrates higher effective rank and more distributed eigenvalue patterns, suggesting
more complex and comprehensive feature representations compared to single-task variants. This
analysis spans multiple mathematical perspectives: effective rank (measuring dimension utilization),
Frobenius norm (capturing overall adaptation magnitude), and spectral properties (singular and
eigenvalues) revealing the internal structure of learned transformations.

6 Limitations and Future Work

While UnoLoRA demonstrates promising results in multi-task learning with parameter-efficient fine-
tuning, several limitations and opportunities for future research remain. Firstly, our evaluation mainly
focuses on the GLUE (Wang, 2018) benchmark. While the dataset is comprehensive, evaluating
UnoLoRA on additional datasets would further reinforce the results obtained.

Our experiments have been conducted exclusively with the T5-base model (Raffel et al., 2020),
which uses an encoder-decoder architecture. Future work could investigate UnoLoRA’s effectiveness
with other architectural paradigms, such as encoder-only (e.g., BERT) and decoder-only (e.g., GPT)
models. Additionally, testing UnoLoRA across different model scales, both smaller and larger, would
provide valuable insights into its scalability and efficiency characteristics.

Several promising directions emerge for future research. First, investigating UnoLoRA’s performance
in few-shot learning scenarios would help understand its effectiveness with limited training data.
Second, exploring task transfer capabilities, particularly between unrelated domains, would provide
insights into cross-domain generalization. Third, extending UnoLoRA beyond natural language
processing to other modalities such as computer vision and audio processing would evaluate its
broader applicability. Furthermore, the shared nature of our single LoRA module presents unique
opportunities for interpretability research. Unlike models with separate task-specific modules, our
approach could enable better analysis of how different tasks influence the learned weights, potentially
providing insights into task relationships and knowledge transfer mechanisms. These extensions
would help establish the boundaries of UnoLoRA’s capabilities and potentially reveal new applications
for parameter-efficient multi-task learning.

10

7 Conclusion

This paper introduces UnoLoRA, demonstrating that a single shared LoRA module can effectively
handle multi-task learning while requiring only 0.05% trainable parameters per task. Unlike traditional
approaches that require separate LoRA modules for each task, our approach only requires one LoRA
module for all tasks, and achieves competitive performance on the GLUE benchmark.

We further enhance this architecture with UnoLoRA⋆, which employs a shared hypernetwork to
generate task-specific embeddings. This enhancement leads to significantly faster convergence across
multiple GLUE tasks, making it particularly valuable for resource-constrained scenarios and rapid
deployment settings. Our empirical analysis reveals how UnoLoRA achieves efficient multi-task
learning through complementary roles of its components: A matrices capture generalizable features
with consistent cross-layer transformations, while B matrices handle task-specific adaptations.

These findings establish UnoLoRA as a promising PEFT method for multi-task learning. The
success of our approach in maintaining performance while drastically reducing parameters opens
new possibilities for efficient model adaptation and has the potential to inspire further research in
PEFT methods, particularly in scenarios where computational resources are limited.

References
Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and

Sonal Gupta. Muppet: Massive multi-task representations with pre-finetuning. arXiv preprint
arXiv:2101.11038, 2021.

Dan Biderman, Jose Gonzalez Ortiz, Jacob Portes, Mansheej Paul, Philip Greengard, Connor Jennings,
Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and forgets less.
arXiv preprint arXiv:2405.09673, 2024.

Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro.
Implicit regularization in matrix factorization. Advances in neural information processing systems,
30, 2017.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704–2713, 2018.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks for
natural language understanding. arXiv preprint arXiv:1901.11504, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. arXiv preprint
arXiv:2106.04489, 2021.

11

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
tion in deep learning. Advances in neural information processing systems, 30, 2017.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting transformers. arXiv
preprint arXiv:2007.07779, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding
negative transfer. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11293–11302, 2019.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Zedian Xiao, William Held, Yanchen Liu, and Diyi Yang. Task-agnostic low-rank adapters for unseen
english dialects. arXiv preprint arXiv:2311.00915, 2023.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-sample
bert fine-tuning. arXiv preprint arXiv:2006.05987, 2020.

12

A Appendix

Supplementary Material

Please find the link attached to replicate our experiments: Google Drive Link

A.1 Task Convergence Plots

To investigate how UnoLoRA⋆’s hypernetwork affects training dynamics, we compare learning
curves against the base UnoLoRA model across four representative tasks from the GLUE benchmark.
Figure 7 presents the convergence plots for STS-B, SST-2, MNLI, and QQP, showcasing tasks with
varying complexity and objectives.

(a) STS-B Pearson correlation comparison (b) SST-2 accuracy comparison

(c) MNLI matched accuracy comparison (d) QQP accuracy comparison

Figure 7: Convergence plots for (a) STS-B Pearson correlation, (b) SST-2 accuracy, (c) MNLI
matched accuracy, and (d) QQP accuracy. Each plot compares the performance of UnoLoRA and
UnoLoRA⋆ over training steps. UnoLoRA⋆ consistently demonstrates faster convergence and better
early-stage performance across all tasks, regardless of the task complexity or evaluation metric.

The plots demonstrate that UnoLoRA⋆’s improved convergence is not task-specific but rather a
general characteristic of the enhanced architecture. This is particularly evident in more complex tasks
like MNLI (natural language inference) and QQP (semantic similarity), where the performance gap
between UnoLoRA⋆ and the base UnoLoRA is more pronounced in the early stages of training. Even
for simpler tasks like SST-2 (sentiment analysis), UnoLoRA⋆ maintains its advantage in convergence
speed while achieving comparable final performance.

A.2 Sampling Strategies for Multi-Task Learning

In multi-task learning, the sampling strategy plays a crucial role in determining the proportion of data
from each task that the model is trained on. The goal is to strike a balance between providing enough
data for the model to learn each task effectively while avoiding over-training on any particular task.
Several sampling strategies have been proposed to address this challenge:

Examples-Proportional Mixing: This strategy samples examples from each task in proportion to the
size of its dataset. It is equivalent to concatenating all the datasets and randomly sampling examples

13

https://drive.google.com/drive/folders/1IQc8c7wx8LMOnPj4mRBR-YJIK7I4NyuZ?usp=sharing

from the combined dataset. However, when there is a significant disparity in dataset sizes, such as the
inclusion of a large unsupervised task, this approach can lead to under-training on the supervised
tasks. To mitigate this issue, an artificial "limit" can be set on the dataset sizes before computing the
proportions.

Temperature-Scaled Mixing: Temperature scaling is another way to address the imbalance in
dataset sizes. In this approach, the mixing rates of each task are raised to the power of the reciprocal
of a temperature parameter T and then renormalized. When T = 1, it is equivalent to examples-
proportional mixing. As T increases, the mixing proportions become closer to equal mixing. This
allows for adjusting the influence of larger datasets while still considering their relative sizes.The
MultiTaskBatchSampler used in Mahabadi et al. (2021) falls under this category of temperature-
scaled mixing. It aims to balance the proportions of tasks in each batch by sampling tasks according
to their dataset sizes. However, this approach can still lead to oversampling of smaller datasets like
RTE, as the proportions are solely based on the dataset sizes without considering other factors such
as task difficulty or model performance.

During multi-task training, we sample tasks with conventional temperature-based sampling, using a
temperature of T = 10, following . Tasks are sampled proportionally to p

1/T
τ , where pτ = Nτ∑T

i=1 Nτ

and Nτ is the number of training samples for the τ -th task.

Equal Mixing: In this strategy, examples are sampled from each task with equal probability,
regardless of the dataset sizes. While this ensures equal representation of all tasks, it may lead to
overfitting on low-resource tasks and underfitting on high-resource tasks.

A.3 Hyperparameters

Table 2: Hyperparameter settings of T5-base models on GLUE for UnoLoRA and UnoLoRA⋆

Hyperparameters MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Rank r 8

Alpha 16

Layer L All Q,V Self-Attention

Bottleneck dim L 8

Sample encoding dim L 512

Dropout 0.1

Optimizer AdamW

Learning Rate 1e-4

Weight decay 0.01

Warmup steps 1000

Max steps 262144

LR scheduler Cosine Annealing

Batch size 32

Learning Rate 32

Epochs 10 10 50 50 10 10 50 50

14

	Introduction
	Related Work
	Multi-task Learning in Large Language Models
	Implicit Regularization in Neural Networks

	Methodology
	Model Architecture
	Training Objective
	Integration with Pre-trained Models

	Experiments
	Results on the GLUE Benchmark

	Analysis
	Empirical Analysis and Findings
	Convergence Analysis

	Limitations and Future Work
	Conclusion
	Appendix
	Task Convergence Plots
	Sampling Strategies for Multi-Task Learning
	Hyperparameters

