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A paper boat drifts on a lake. SpongeBob with a cozy smile. A cat clinging to a man’s back.

Shiba Inu’s face on the toast. An origami unicorn is grazing. Girl in bunny ears scarf.

Figure 1: Results of our model. The inpainting outputs generated by our model are visually coher-
ent, semantically aligned with text prompts, and consistent with human aesthetic preferences.

ABSTRACT

This paper investigates image inpainting with preference alignment. Instead of
introducing a novel method, we go back to basics and revisit fundamental prob-
lems in achieving such alignment. We leverage the prominent direct preference
optimization approach for alignment training and employ public reward models
to construct preference training datasets. Experiments are conducted across nine
reward models, two benchmarks, and two baseline models with varying structures
and generative algorithms. Our key findings are as follows: (1) Most reward mod-
els deliver valid reward scores for constructing preference data, even if some of
them are not reliable evaluators. (2) Preference data demonstrates robust trends
in both candidate scaling and sample scaling across models and benchmarks. (3)
Observable biases in reward models, particularly in brightness, composition, and
color scheme, render them susceptible to cause reward hacking. (4) A simple en-
semble of these models yields robust and generalizable results by mitigating such
biases. Built upon these observations, our alignment models significantly outper-
form prior models across standard metrics, GPT-4 assessments, and human eval-
uations, without any changes to model structures or the use of new datasets. We
hope our work can set a simple yet solid baseline, pushing this promising frontier.

1 INTRODUCTION

Image inpainting (Bertalmio et al., 2000) aims to fill in user-specified regions of an image in a
visually coherent and realistic manner. It holds great value in applications such as photo restora-
tion (Liang et al., 2021), content creation (Zhuang et al., 2024), and image editing (Zhang et al.,
2023a). With the unprecedented success of diffusion models (Ho et al., 2020) and flow-based mod-
els (Lipman et al., 2022), image inpainting has become a prominent research focus in recent years.

Aligning human preferences in visual generation has emerged as a focal point of research ef-
forts (Wallace et al., 2024; Xue et al., 2025; Black et al., 2023; Fan et al., 2023). While great progress
has been made in image inpainting (Wu et al., 2025; Ju et al., 2024; Zhuang et al., 2024; Manukyan
et al., 2023), research on aligning inpainting results with human preferences remains limited.
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This paper explores image inpainting with preference alignment. Given the limited work on this
task, our goal is not to present a novel method, but rather to rethink foundational questions. To
this end, we adopt the prominent Direct Preference Optimization (DPO) (Rafailov et al., 2023;
Wallace et al., 2024; Liu et al., 2025) to conduct studies due to its simplicity and efficiency. Instead
of relying on costly and non-scalable human annotations, we employ public, off-the-shelf reward
models for constructing preference training datasets. Our study focuses on several key questions:
(1) How effective are these reward models in scoring and constructing high-quality preference data?
(2) How scalable is preference data with respect to the candidate quantity and the sample quantity?
(3) How does reward hacking (Pan et al., 2022) occur, and what method can be used to mitigate it?

To answer these questions, we conduct experiments across nine widely used reward models (e.g.,
HPSv2 (Wu et al., 2023), PickScore (Kirstain et al., 2023)), two representative evaluation bench-
marks (BrushBench (Ju et al., 2024), EditBench (Wang et al., 2023)), and two baseline inpainting
models (BrushNet (Ju et al., 2024), FLUX.1 Fill (BlackForestLabs, 2024b)) with diverse architec-
tures (U-Net (Ronneberger et al., 2015), Transformer-based (Vaswani et al., 2017)) and generative
algorithms (diffusion (Ho et al., 2020), flow-based (Lipman et al., 2022)). Our findings reveal that:
(1) Most reward models provide valid reward signals for constructing effective preference training
data, despite some being unreliable as evaluators and exhibiting shared biases. (2) Preference data
shows consistent trends in both candidate scaling and sample scaling across baseline models and
benchmarks. However, biases in certain reward models (e.g., HPSv2) can lead to reward hacking,
undermining scaling effectiveness. (3) We identify explicit biases in reward models—particularly
in brightness, composition, and color scheme—making them vulnerable to reward hacking. For ex-
ample, HPSv2 tends to favor images with bright lighting, complex composition with rich details,
and vivid colors; PickScore shows the opposite tendency. We also find that BrushNet generates vi-
brant images, making PickScore suitable for it; while FLUX.1 Fill produces plain images, aligning
well with the property of HPSv2. (4) A simple ensemble of these reward models exhibits strong
versatility across models, producing balanced and aesthetically pleasing inpainting results.

Building on these observations, we propose simple yet effective models via reward ensemble. With-
out modifying model architectures or introducing new datasets, our models substantially outperform
state-of-the-art models—across standard metrics, GPT-4 assessments, and human evaluations. Visu-
alizations show that our models generate more coherent and visually appealing results than competi-
tors. We hope our work can establish a simple yet strong baseline to advance this research field.

2 RELATED WORK

Image inpainting (Bertalmio et al., 2000) is the process of filling in missing or damaged regions
of an image. Traditional image inpainting methods (Yu et al., 2018; Yeh et al., 2017) often rely on
adversarial learning (Goodfellow et al., 2020), which may suffer from training instability issues.
Recently, great progress (Manukyan et al., 2023; Wang et al., 2025c; Chen et al., 2024; Ma et al.,
2024b; Yuan et al., 2023) has been achieved by employing diffusion models (Ho et al., 2020; Song
et al., 2020) and flow-based models (Lipman et al., 2022; Esser et al., 2024; Wan et al., 2025)—
generative models that iteratively transform random noise into structured data. Some pioneering
efforts make attempts (Avrahami et al., 2023; Rombach et al., 2022; Zhang et al., 2023b) to incorpo-
rate these generative models into image inpainting, and others (Ju et al., 2024; Zhuang et al., 2024;
Liu et al., 2024a) later advance and refine it. For example, BrushNet (Ju et al., 2024) introduces
a dual-branch diffusion model that decouples masked image feature extraction from generation.
FLUX (BlackForestLabs, 2024a) is a rectified flow transformer that generates impressive images.
Its variant, FLUX.1 Fill (BlackForestLabs, 2024b), is tailored specifically for image inpainting.

Image generation with preference alignment is an emerging field that seeks to align synthesized
images with human preferences (Wu et al., 2025). Some previous works (Black et al., 2023; Fan
et al., 2023) employ reinforcement learning (RL) (Sutton et al., 1998) to fine-tune the models using
reward feedback derived from reward models. More recent approaches have begun exploring meth-
ods based on Direct Preference Optimization (DPO) (Rafailov et al., 2023), without explicit reward
models or the RL process. For instance, Diffusion-DPO (Wallace et al., 2024) represents the first
attempt to align image generation models with human preferences by optimizing pairwise feedback
through a diffusion-aware extension of DPO. PrefPaint (Liu et al., 2024b) aligns image inpainting
results with human preferences by using a reward model trained on human-annotated data.
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3 PRELIMINARIES

3.1 DIFFUSION MODELS AND FLOW-BASED MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Song et al., 2020), such as DDPM (Ho et al., 2020),
are a class of generative models that learn to reverse a gradual noise corruption process. DDPM
assumes a forward process that gradually applies noise to real data. At timestep t, the real data
x0 is destroyed to xt: q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I), where ᾱt is noise scheduling hyper-

parameters. It has a reparameterization formula: xt =
√
ᾱtx0+

√
1− ᾱtϵ, where noise ϵ ∼ N (0, I).

DDPM learns a reverse process using a denoising model ϵθ with parameters θ, inverting the forward
process: pθ(xt−1|xt) = N (µθ(xt),Σθ(xt)). The denoising model ϵθ can be trained by minimizing:

LDDPM = Et,x0,ϵ

[
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||2

]
. (1)

Flow-based models (Esser et al., 2024) are generative models that learn to model data distributions
using invertible transformations. Recently, Flow Matching (Lipman et al., 2022) has emerged as a
prominent approach for visual generation (Ma et al., 2024a; Gao et al., 2025a). It usually learns a
continuous-time flow that transforms a simple prior distribution into the data distribution by solving
an ODE. The process, with an optimal-transport path, employs a linear interpolation scheme: xt =
(1− t)x0 + tϵ. A denoising model vθ is trained to predict the velocity field by minimizing:

LFlowMatching = Et,x0,ϵ

[
||vθ((1− t)x0 + tϵ, t)− (ϵ− x0)||2

]
. (2)

U-Net (Ronneberger et al., 2015) is used as the basic model structure by many previous denois-
ing models (Ho et al., 2020; Song et al., 2020). U-Net is a symmetric encoder-decoder architecture
that captures multi-scale features through progressive downsampling and upsampling. Transform-
ers (Vaswani et al., 2017), employed in recent works (Gao et al., 2025b;a; Wan et al., 2025; Kong
et al., 2024), process all data elements in parallel using attention, facilitating training scalibility.

To improve the reliability and generalization of conclusions drawn in our studies, we conduct investi-
gations using two different baseline models—BrushNet (Ju et al., 2024) and FLUX.1 Fill (Black-
ForestLabs, 2024b), introduced in section 2. BrushNet is built on a U-Net-like architecture and
trained with the DDPM loss, while FLUX leverages transformers and learns via Flow Matching.

3.2 PREFERENCE ALIGNMENT

The standard pipeline for training large-scale models typically involves pre-training, supervised fine-
tuning, and preference alignment. Preference alignment refines model outputs to better match human
values. Reinforcement Learning from Human Feedback (RLHF) (Bai et al., 2022) is a popular align-
ment approach. It utilizes human preferences on model outputs to train a separate reward model,
which subsequently provides rewards for alignment via reinforcement learning algorithms such as
PPO (Schulman et al., 2017) and GRPO (Guo et al., 2025). In comparison, Direct Preference Op-
timization (DPO) (Rafailov et al., 2023), which performs direct supervised learning, offers higher
training efficiency. It constructs a preference dataset that comprises preferred samples and dispre-
ferred samples. DPO learns human preferences implicitly contained within the data by maximizing:

Ex,yw,yl [log σ(β log
πθ(y

w|x)
πref(yw|x)

− β log
πθ(y

l|x)
πref(yl|x)

)], (3)

where σ is the sigmoid function; πθ and πref are the policy and the reference policy respectively. In
image generation, given a text prompt x, yw and yl denote the generated preferred image and dis-
preferred image, respectively. The hyper-parameter β controls the strength of regularization: a large
value of β increases regularization pressure, dampening preference learning. In visual generation,
Equation 3 can be derived to yield a simplified loss (Wallace et al., 2024; Liu et al., 2025):

LDPO = −E[log σ(−β((Lw
θ − Lw

ref)− (Ll
θ − Ll

ref)))], (4)

where Lw
θ and Ll

θ denote the loss (Equation 1 or Equation 2) applied to the policy on preferred
samples and dispreferred samples, respectively; similarly, Lw

ref and Ll
ref denote the loss applied

to the reference policy. This loss function aligns the distribution of generated samples with the
preferred data distribution and diverges from the dispreferred distribution. Due to the simplicity,
efficiency, and stability of DPO, this paper will explore preference alignment for image inpainting
by optimizing Equation 4 on different preference datasets that are constructed for investigation.
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Table 1: Comparisons of reward models using BrushNet on BrushBench and EditBench.

reward model
CLIPScore Aesthetic ImageR PickScore HPSv2 VQAScore UnifiedR Perception HPSv3 GPT-4

Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit.

Baseline 26.415 27.337 6.425 5.392 12.717 -1.296 22.133 20.616 27.509 23.076 9.060 6.770 3.303 2.100 26.290 26.410 5.749 0.403 79.391 57.046

Random 26.441 27.631 6.424 5.392 12.685 -1.136 22.130 20.642 27.501 23.067 9.050 6.917 3.302 2.110 26.292 26.422 5.738 0.425 79.177 56.753

CLIPScore 26.461 27.710 6.430 5.393 12.782 -0.720 22.146 20.680 27.582 23.316 9.062 6.894 3.341 2.124 26.324 26.548 5.777 0.640 79.661 57.539

Aesthetic 26.465 27.355 6.477 5.520 12.994 -0.877 22.221 20.689 27.594 23.166 9.065 6.828 3.343 2.140 26.293 26.342 5.922 0.597 81.603 58.603

ImageR 26.471 27.539 6.462 5.434 12.891 -0.377 22.153 20.701 27.672 23.467 9.036 6.761 3.334 2.144 26.305 26.501 5.913 0.782 80.341 57.806

PickScore 26.397 27.199 6.454 5.454 12.893 -1.364 22.254 20.732 27.322 22.933 9.062 6.873 3.353 2.178 26.273 26.427 5.750 0.469 82.726 59.550

HPSv2 26.481 27.677 6.476 5.495 12.890 0.128 22.137 20.725 27.818 23.742 9.073 6.818 3.332 2.155 26.361 26.678 5.979 1.061 79.914 57.658

VQAScore 26.442 27.524 6.429 5.407 12.658 -0.800 22.126 20.667 27.527 23.234 9.038 6.879 3.311 2.139 26.326 26.406 5.723 0.555 78.877 56.975

UnifiedR 26.428 27.505 6.433 5.402 12.764 -0.812 22.157 20.675 27.562 23.204 9.061 6.857 3.329 2.155 26.320 26.436 5.800 0.540 80.333 57.185

Perception 26.448 27.484 6.428 5.393 12.789 -0.973 22.177 20.660 27.519 23.111 9.069 6.894 3.327 2.160 26.310 26.515 5.764 0.433 80.277 57.254

HPSv3 26.461 27.547 6.464 5.448 12.922 -0.146 22.176 20.713 27.758 23.491 9.065 6.850 3.344 2.158 26.317 26.535 6.014 0.863 80.623 57.485

Ensemble 26.535 27.398 6.485 5.497 13.037 -0.352 22.229 20.735 27.797 23.522 9.053 6.892 3.365 2.176 26.338 26.603 6.074 1.015 82.172 58.986

Bold values denote the best results. Underlined values denote the second-best results. Values in blue denote the results below the baseline or random chance.

3.3 REWARD MODELS

Reward models play an important role in preference alignment: they provide real-time rewards
in RLHF (Schulman et al., 2017), and offer scores for constructing offline preference data in
DPO (Wang et al., 2025b; Lee et al., 2025). However, prior works (Wang et al., 2025a; Xue et al.,
2025) directly employ off-the-shelf reward models for visual preference alignment without suffi-
cient evaluations. In this paper, we evaluate the effectiveness of these reward models in constructing
preference data via extensive studies. Specifically, we examine the following public reward mod-
els: (1) CLIPScore (Hessel et al., 2021) measures semantic alignment between images and text
prompts by calculating cosine similarities of their CLIP embeddings (Radford et al., 2021). (2)
Aesthetic (Schuhmann et al., 2022) predicts human aesthetic preferences on top of the CLIP em-
beddings. (3) ImageReward (ImageR) (Xu et al., 2023) is trained by fine-tuning BLIP (Li et al.,
2022) on 137K preference samples. (4) PickScore (Kirstain et al., 2023) is a CLIP-based image
scoring model, trained on over 500K synthesized image samples with users’ preference choices.
(5) HPSv2 (Wu et al., 2023) is also a CLIP-based model that evaluates both image quality and
text-image alignment by learning from 798K human preferences on 433K sample pairs. (6) VQAS-
core (Lin et al., 2024) provides a semantic alignment score by computing the probability of a VQA
model answering “yes” to each question: “Does this figure show {text}?”. (7) UnifiedReward (Uni-
fiedR) (Wang et al., 2025b) is a unified model that assesses both visual generation and understand-
ing. (8) Perception Encoder (Perception) (Bolya et al., 2025) is trained by contrastive visual-
language pre-training, producing semantically aligned multimodal embeddings. (9) HPSv3 (Ma
et al., 2025b) is trained on 1.5M annotated sample pairs using Qwen2VL-7B (Wang et al., 2024).

To assess their efficacy, these models are employed to assign reward scores to candidate samples
which are generated by the baseline models with different random seeds. The resulting highest- and
lowest-scoring samples from each text prompt are subsequently utilized as the preferred and dis-
preferred samples for DPO training. Based on the evaluation of training results, the top-performing
ones are designated as the most effective reward models to provide accurate rewards, and vice versa.

4 HOW EFFECTIVE ARE REWARD MODELS?

The ability of reward models to accurately predict human preferences is critical to the performance
of preference alignment algorithms. To evaluate this capability, we apply DPO on the preference data
constructed by the reward models and evaluate the model’performance after training. Specifically,
based on the popular dataset of BrushData (Ju et al., 2024), we generate 16 candidate inpainting
results with varied random seeds for each prompt and the corresponding masked image. The can-
didates are scored by the reward models, and the highest-scoring (preferred) and lowest-scoring
(dispreferred) samples form preference pairs for DPO training. Following (Ma et al., 2025a; Wang
et al., 2025b), the reward models are employed to serve two purposes: (1) providing scores to con-
struct training data, and (2) evaluating performance after training. All experiments adhere to the
same training configurations by default (e.g., learning rate is 1e-7, β is 2000, 2000 training steps,
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Table 2: Comparisons of reward models using FLUX.1 Fill on BrushBench and EditBench.

reward model
CLIPScore Aesthetic ImageR PickScore HPSv2 VQAScore UnifiedR Perception HPSv3 GPT-4

Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit.

Baseline 26.244 27.103 6.429 5.458 12.760 4.910 22.327 21.211 27.476 24.076 9.081 8.012 3.360 2.485 25.945 26.834 6.055 2.470 83.935 66.979

Random 26.239 27.078 6.431 5.459 12.772 4.955 22.328 21.211 27.475 24.100 9.077 8.030 3.356 2.491 25.944 26.838 6.056 2.490 83.517 66.942

CLIPScore 26.233 27.072 6.432 5.477 12.791 4.997 22.329 21.215 27.487 24.121 9.071 8.071 3.361 2.512 25.948 26.859 6.056 2.499 83.942 66.997

Aesthetic 26.250 27.200 6.432 5.478 12.823 5.175 22.337 21.219 27.520 24.142 9.075 8.001 3.363 2.507 25.954 26.878 6.075 2.577 83.950 67.906

ImageR 26.251 27.121 6.434 5.481 12.823 5.001 22.336 21.211 27.518 24.143 9.080 7.977 3.362 2.536 25.946 26.846 6.078 2.550 84.176 67.785

PickScore 26.236 27.195 6.436 5.476 12.879 5.134 22.341 21.223 27.530 24.154 9.076 8.003 3.383 2.514 25.955 26.900 6.105 2.548 84.188 67.100

HPSv2 26.246 27.160 6.441 5.475 12.904 5.145 22.356 21.232 27.605 24.202 9.085 8.028 3.363 2.553 25.963 26.895 6.181 2.605 84.699 68.186

VQAScore 26.243 27.101 6.432 5.466 12.781 4.926 22.329 21.215 27.486 24.104 9.075 8.020 3.353 2.501 25.950 26.861 6.046 2.473 83.854 66.793

UnifiedR 26.235 27.133 6.434 5.473 12.769 5.034 22.331 21.212 27.485 24.120 9.076 8.014 3.366 2.517 25.954 26.853 6.057 2.524 83.950 67.372

Perception 26.251 27.088 6.433 5.466 12.752 4.975 22.331 21.209 27.479 24.109 9.082 8.023 3.356 2.514 25.951 26.818 6.064 2.504 84.022 68.024

HPSv3 26.238 27.223 6.441 5.465 12.855 5.092 22.340 21.226 27.534 24.155 9.083 8.000 3.378 2.497 25.957 26.859 6.106 2.568 84.615 68.107

Ensemble 26.239 27.158 6.442 5.472 12.884 5.239 22.346 21.215 27.560 24.146 9.082 8.036 3.367 2.507 25.963 26.905 6.151 2.577 84.628 67.549

Bold values denote the best results. Underlined values denote the second-best results. Values in blue denote the results below the baseline or random chance.

etc.), with the only variation being the reward model used to score and construct the training data.
Note that we may encounter an oracle reward model (Ma et al., 2025a), where the same model
is used both for data construction and performance evaluation within one experiment. We assess
results on two benchmarks, i.e., BrushBench (Ju et al., 2024) and EditBench (Wang et al., 2023).

Here, we introduce a new reward model—Ensemble that constructs samples based on the average
ranking of all the reward models. We make GPT-4 (Achiam et al., 2023) serve as a “fair” evaluator
by assessing aesthetic quality, structural coherence, and semantic alignment of the results (see details
in Appendix). We report two other results. Baseline: The model’s performance prior to DPO train-
ing. Random: It involves training with randomly sampled preferred and dispreferred pairs. Results
are reported in Table 1 and Table 2. We have the following observations and conclusions.

Some reward models are not reliable evaluators. It is believed that an accurate and robust reward
model should assign high evaluation scores to models trained on its own preference dataset (i.e.,
the oracle reward model setting). Surprisingly, we find that CLIPScore, VQAScore, and Perception
fail to meet this requirement—in Table 2, their scores can be even lower than baseline or random
results. We hypothesize that the fail of CLIPScore and Perception stems from their large-scale yet
potentially coarse contrastive pre-training; the fail of VQAScore likely arises from its simplistic,
VQA-like evaluation approach. In light of this, we exclude these models from subsequent analyses.

Most reward models provide valid reward scores. Most reward models are capable of offering
valid reward scores for preference data construction, as they outperform both the baseline and ran-
dom selection across most evaluation results—especially GPT-4. Even though CLIPScore and Per-
ception are observed to be less effective at accurately evaluating on small-scale benchmarks, they re-
main viable when their reward scores are incorporated into larger-scale preference training datasets.
In this context, we continue to attribute VQAScore’s limitations to its simple scoring methodology.

Reward models may share common biases. We find that the model trained on HPSv2-constructed
data outperforms most competitors when evaluated using public reward models. Specifically, when
trained using BrushNet, it ranks first or second in 4 out of 12 evaluations; when trained using
FLUX.1 Fill, it ranks first or second in 9 out of 12 evaluations. This pattern aligns with GPT-4’s
results when using FLUX.1 Fill but diverges when using BrushNet—under the latter condition, the
model is largely outperformed by PickScore. We posit that HPSv2 and many other models may share
some common biases, which can potentially lead to reward hacking (Pan et al., 2022).

Ensemble is an accurate and robust reward model. It shows that Ensemble ranks first or second
in 11 out of 12 public model evaluations when using BrushNet, and 7 out of 12 when using FLUX.1
Fill. Besides, Ensemble ranks first or second in 3 out of 4 GPT-4’s evaluations across both baseline
models, demonstrating its robustness in constructing effective preference data. We hypothesize that
its versatility arises from the bias of reward models being weakened in Ensemble.

Discussion. Part of the above analysis is based on an untested assumption—GPT-4 is an ideal eval-
uator. We will examine its validity as well as reward hacking in section 6 and the Appendix.
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(a) Candidate scaling using HPSv2.

(b) Candidate scaling using PickScore.

(c) Candidate scaling using Ensemble.

(d) Sample scaling using HPSv2.

(e) Sample scaling using PickScore.

(f) Sample scaling using Ensemble.
Figure 2: Candidate scaling (a-c) and sample scaling (d-f) using HPSv2, PickScore, and Ensemble.
We employ Aesthetic, ImageR, HPSv2, PickScore, and GPT-4 for evaluation. The first and second
row of each sub-figure is based on BrushNet and FLUX.1 Fill, respectively. We use training steps to
indicate the consumed samples to align the scaling across models (their batch-sizes are different).

5 HOW SCALABLE ARE PREFERENCE DATA?

The results in section 4 have shown that HPSv2, PickScore, and Ensemble are promising reward
models. Building on this finding, we conduct an investigation into the scalability of preference data
using these reward models. Specifically, we explore along two dimensions: (1) Candidate scaling.
As the number of candidate samples generated from different random seeds increases, their diversity
expands. This augmentation in diversity would enhance the accuracy of the construction of preferred
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(a) Examples from models trained using BrushNet.

(b) Examples from models trained using FLUX.1 Fill.
Figure 3: Bias studies. In each sub-figure, the four images (from left to right) display: the masked
image, followed by inpainting results from models trained using HPSv2, PickScore, and Ensemble.
We omit text prompts for brevity. Zoom in to see details. Find more examples in the Appendix.

(a) Examples from models trained using BrushNet.

(b) Examples from models trained using FLUX.1 Fill.

Figure 4: Qualitative results of ablations. In each sub-figure, the three images (from left to right)
display: the masked image, followed by inpainting results from baseline models and baseline models
+ preference alignment using Ensemble. We omit text prompts for brevity. Zoom in to seed details.

and dispreferred samples by enhancing their differences. (2) Sample scaling. A larger dataset en-
ables the model to capture nuanced patterns more comprehensively, leading to deeper learning of
preferences. Based on the insights in section 4, we select Aesthetic, ImageR, HPSv2, PickScore, and
GPT-4 as the evaluation models. To enable the model to achieve optimal performance, we conduct
a search over two typical hyper-parameters—β and learning rate (see details in the Appendix), be-
fore the scaling experiments. For each experiment, we tune one scaling dimension and fix the other
dimension. The results are reported in Figure 2. We have the following results and discoveries.

Consistent scaling trends across models and benchmarks. First, we observe that data scaling
demonstrates robust trends regardless of the model used—BrushNet and FLUX.1 Fill, in the first
and second rows of each sub-figure, respectively. Second, we find that similar scaling trends emerge
when evaluating on different benchmarks, as evidenced by the comparable patterns of the two lines
within each sub-figure. These findings indicate that the observed scaling behavior is robust and
generalizable. However, we also observe some inconsistent phenomena: when using PickScore as
the reward model, ImageR/HPSv2 exhibit opposite trends on BrushNet and FLUX.1 Fill. This issue
is caused by the characteristics of both reward models and baseline models, as analyzed in section 6.

Reward hacking from HPSv2 undermines training. When evaluated by Aesthetic, ImageR,
HPSv2, and PickScore, using HPSv2 as the reward model shows benefits from both candidate scal-
ing and sample scaling. However, its GPT-4 results deteriorate significantly in the later stages of
scaling. This observation aligns with our finding in section 4, where HPSv2 achieves good results
under public model evaluations but sometimes loses to others when assessed by GPT-4. We hypoth-
esize that this degradation stems from some shared common biases among these reward models.
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Table 3: Ablation studies on a new dataset of I Dream My Painting (Fanelli et al., 2025).
inpainting model CLIPScore Aesthetic ImageR PickScore HPSv2 VQAScore UnifiedR Perception HPSv3 GPT-4

BrushNet 24.849 5.923 -0.246 20.550 19.749 8.503 2.317 27.317 -0.551 72.669
BruPA (ours) 25.460 6.111 2.152 20.735 21.086 8.653 2.463 28.294 1.265 73.739
FLUX.1 Fill 24.194 6.017 0.544 20.855 20.203 8.667 2.476 26.627 0.547 76.391
FluPA (ours) 25.500 6.448 5.961 21.407 23.770 9.031 2.784 28.868 5.023 79.255

Bold values denote the best results.

Table 4: Comparisons of state-of-the-art image inpainting models on BrushBench and EditBench.
inpainting model

CLIPScore Aesthetic ImageR PickScore HPSv2 VQAScore UnifiedR Perception HPSv3 GPT-4

Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit. Brush. Edit.

SDI 26.304 26.526 6.368 5.377 12.026 -1.100 22.105 20.791 27.079 23.203 8.981 6.923 3.268 2.069 26.190 25.382 5.320 0.849 79.004 60.751

CNI 26.341 26.972 6.305 5.382 11.421 -1.044 21.953 20.874 26.633 23.076 8.890 6.906 3.218 2.125 26.150 25.894 4.546 0.894 74.173 63.921

BLD 26.337 27.666 6.262 5.372 11.161 0.563 21.901 20.980 26.723 23.839 8.852 7.467 3.202 2.228 26.128 27.093 4.559 1.114 71.794 62.690

PowerPoint 26.265 27.291 6.312 5.448 11.771 0.720 22.089 20.912 27.065 23.347 8.931 7.238 3.271 2.219 26.123 26.264 5.112 1.068 78.241 63.092

PrefPaint 26.268 25.569 6.377 5.296 11.798 -3.023 22.125 20.666 26.855 22.241 8.925 6.226 3.271 1.951 26.116 24.264 5.208 -0.336 80.327 60.815

StrDiffusion 23.872 21.398 5.330 4.405 -0.063 -16.282 20.342 19.147 21.431 16.616 7.281 3.662 2.417 1.236 23.381 20.102 -2.243 -7.131 34.255 25.200

HD-Painter 26.367 26.934 6.480 5.640 12.913 0.046 22.314 21.016 27.931 23.951 9.019 6.682 3.349 2.136 26.214 25.721 6.224 1.983 85.016 69.087

ASUKA 24.387 20.842 6.294 5.078 5.208 -14.110 21.601 19.603 25.285 18.702 7.681 3.631 2.862 1.282 23.959 19.017 3.556 -3.506 75.140 58.686

BrushNet 26.415 27.337 6.425 5.392 12.717 -1.296 22.133 20.616 27.509 23.076 9.060 6.770 3.303 2.100 26.290 26.410 5.749 0.403 79.391 57.046

BruPA (ours) 26.547 27.694 6.516 5.577 13.315 10.463 22.279 20.844 28.037 23.933 9.093 7.043 3.371 2.193 26.390 26.881 6.276 1.398 83.054 61.186

FLUX.1 Fill 26.244 27.103 6.429 5.458 12.760 4.910 22.327 21.211 27.476 24.076 9.081 8.021 3.360 2.485 25.945 26.834 6.055 2.470 83.935 66.979

FluPA (ours) 26.436 27.813 6.546 5.681 13.859 7.707 22.577 21.559 28.735 25.972 9.152 8.434 3.457 2.649 26.096 27.617 7.000 4.230 87.609 72.307

Bold values denote the best results. Underlined values denote the second-best results. All methods are evaluated using official implementations with blending (Ju et al., 2024).

Ensemble offers robust data scaling by resisting hacking. Although PickScore demonstrates good
scaling behavior, its performance remains sub-optimal. In contrast, the Ensemble approach achieves
the best results across benchmarks, model structures, evaluation models, and scaling dimensions.
This is likely because Ensemble averages the preference choices of different reward models, which
eliminates the biases of the employed reward models and improves its resistance to the hacking.

6 HOW REWARD HACKING HAPPENS?

We identify potential biases in reward models that may lead to reward hacking, as discussed in
section 4 and section 5. In this section, we delve deeper into exploring these intriguing biases—
examining their nature and how they make reward hacking happen. To investigate it, we sample
inpainting examples in Figure 3 and Figure 4. We report the following findings and insights.

Reward models exhibit biases in brightness, composition, and color scheme. As evidenced by
the results from HPSv2 and PickScore—the second and third images in each sub-figure of Figure 3
respectively, we observe notable biases in their preferences. HPSv2 tends to favor images with bright
lighting, complex composition with rich details, and vivid colors. In contrast, PickScore shows a
preference for dim lighting, simple composition with few details, and muted colors.

Biases in reward models affect different baseline models in distinct ways. Although each re-
ward model has its own inherent biases, we find that their influence varies across baseline models.
For instance, BrushNet trained using HPSv2 produces inpainting outputs characterized by exces-
sively bright lighting, overly intricate details, and unnaturally vivid colors—they seem deviate from
human aesthetic preferences. In contrast, FLUX.1 Fill trained using HPSv2 generates visually pleas-
ing results. PickScore shows a similar disparity in performance. It stems from the characteristics of
baseline models as shown in Figure 4: BrushNet generates vibrant images, making PickScore par-
ticularly suitable for it; while FLUX.1 Fill produces plain images, aligning with HPSv2’s property.

Ensemble shows generality and generalization by mitigating biases. Ensemble, a simple and
straightforward method implemented through reward ensembling, exhibits strong versatility across
models by producing balanced and aesthetically pleasing inpainting results, as shown in Figure 3
and Figure 4. It likely stems from Ensemble’s ability to mitigate biases inherent in reward models.

7 ABLATION STUDIES AND COMPARISONS WITH STATE-OF-THE-ART

We name our methods BruPA and FluPA—BrushNet and FLUX.1 Fill with Ensemble-based pref-
erence alignment. We compare them with state-of-the-art image inpainting models. Specifically,
the following methods are compared (they are introduced in section 2): SDI (Rombach et al.,
2022), CNI (Zhang et al., 2023b), BLD (Avrahami et al., 2023), PowerPaint (Zhuang et al., 2024),

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A girl is painting a pumpkin with a cat.

A colorful cat with a splash of paint on its face.

A cartoon girl with long hair and backpack.

Cartoon fox driving a car with a cute face.

Condition SDI CNI BLD PowerPaint PrefPaint StrDiffusion HD-Painter ASUKA Ours

Figure 5: Qualitative comparisons with state-of-the-art image inpainting models.

Figure 6: User studies. We compare each pair of models by randomly sampling 100 pairs from their
inpainting results. We invite 30 volunteers to participate in a blind assessment to determine which
one is better (“A win”, “B win”, or “tie”) based on their preferences. We report the winning rates.

BrushNet (Ju et al., 2024), PrefPaint (Liu et al., 2024b), StrDiffusion (Liu et al., 2024a), FLUX.1
Fill (BlackForestLabs, 2024b), HD-Painter (Manukyan et al., 2023), and ASUKA (Wang et al.,
2025c), where BrushNet and FLUX.1 Fill are also the baseline models for ablation studies.

Ablation studies. We report quantitative and qualitative ablation studies, i.e., before and after pref-
erence alignment training, in Table 4 and Figure 4, respectively. After preference alignment using
Ensemble, our method significantly surpasses the baseline models by achieving much better results
and yielding visually appealing results. We further conduct ablation studies on a new dataset, re-
ported in Table 3. It also confirms that our improvement is generalizable across data distributions.

Comparisons with state-of-the-art. Table 4 reports the results. Our BruPA and FluPA set new
state-of-the-arts, attaining the best results on all evaluations and the second-best results in nearly half
of the cases. Notably, even on coarser metrics—CLIPScore, VQAScore, and Perception (analyzed
in section 4)—our methods still outperform competitors. Besides, BruPA and FluPA significantly
outperform BrushNet and FLUX.1 Fill, i.e, the baselines before applying preference alignment. The
qualitative results are reported in Figure 5, and our model generates images with better aesthetics.

User studies. As shown in Figure 6, our models align with human preferences better.

8 CONCLUSION AND LIMITATION DISCUSSIONS

We conduct extensive studies on image inpainting with preference alignment and obtain key insights
into the effectiveness, scalability, and challenges in achieving alignment. We find that a simple en-
semble method mitigate biases and achieve non-trivial results. Yet, our work is confined to images
and DPO training; future extensions can generalize these findings to video, 3D data, and RLHF.

9
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Reproducibility statement. We conduct experiments using the official implementations of Brush-
Net (Ju et al., 2024) and FLUX.1 Fill (BlackForestLabs, 2024b). The DPO loss is implemented based
on the official code from Wallace et al. (2024). Additional implementation details are also provided
in section 4, section 5, and the Appendix. Our code will be open-sourced to ensure reproducibility.
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A DETAILS TO MAKE GPT-4 AS AN EVALUATOR

Given GPT-4’s (Achiam et al., 2023) strong multi-modal understanding capabilities, we use it to
evaluate image inpainting results. Specifically, we provide GPT-4 with (1) a system prompt, (2) an
input image, (3) the mask to inpaint, (4) an inpainting prompt, (5) and the inpainting result.

We randomly choose 500 inpainting pairs and invite volunteers to determine which one is better.
GPT-4 achieves 86% accuracy; HPSv2: 82%, PickScore: 80%, ImageReward: 77%, Aesthetic: 80%.

The system prompt designed by us is given below:

GPT-4 System Prompt for Image Inpainting Evaluation

You are a human expert in analysis of image inpainting. Please evaluate the image inpainting
result based on the following three criteria:

• Aesthetic Quality (0–40 points):
– Visual appeal in color harmony, composition, style coherence
– Texture realism and naturalness

• Structural Coherence (0–30 points)
– Preservation of geometric structures and content continuity
– Seamlessness at mask boundaries

• Semantic Alignment (0–30 points)
– Faithfulness to the Text Prompt instructions
– Contextual consistency of added or restored content

For each criterion, provide:
• A sub-score.
• A 1–2-sentence justification.

Then compute the total score (0–100).

B SEARCHES OF HYPER-PARAMETERS

(a) Sensitivity analysis on β.

(b) Sensitivity analysis on lr.
Figure 7: Searches of β, i.e., sub-figure (a), and learning rate (lr), i.e., sub-figure (b). The first and
second row of each sub-figure is based on BrushNet and FLUX.1 Fill, respectively.
We conduct hyper-parameter searches for Ensemble, as shown in Figure 7. For Ensemble, we finally
adopt a learning rate of 1e-6, and set β = 4000 for BrushNet; while using a learning rate of 1e-5,
and set β = 2000 for FLUX.1 Fill. For HPSv2, we use a learning rate of 1e-5 with β = 4000 for
BrushNet; and a learning rate of 1e-6 with β = 8000 on FLUX.1 Fill. For PickScore, we set the
learning rate to 1e-7 and use β = 2000 for both BrushNet and FLUX.1 Fill.
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C MORE RESULTS ON REWARD MODEL BIAS STUDIES

(a) A cartoon drawing of a kitchen. (b) A pink lotus flower blooming with green leaves.

(c) A couch with pillows and a wall behind it. (d) A dog sitting on the beach.

(e) A house floating in the air over a lake. (f) Sunflowers in a vase with pears on a table.

(g) A vase filled with colorful flowers on a table. (h) A notebook, glasses and a camera on a map.

(i) A pigeon is sitting on the ground. (j) A purple chair with a black seat and back.

(k) A sheep with pink fur is standing. (l) A teacup and saucer with spoons.

(m) A lamb standing in a field of green grass. (n) A vase with blue flowers sitting on a table.

(o) A vase with some flowers in it. (p) A kitten is playing with a flower.

Figure 8: More results on reward model bias studies using BrushNet. In each sub-figure, the four
images (from left to right) display: the masked image, followed by inpainting results from models
trained using HPSv2, PickScore, and Ensemble. For optimal detail, view figures zoomed in.
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(a) A woman in white holding a bouquet of flowers. (b) A cartoon boy driving a car.

(c) Wolf howling at the moon. (d) A cat is shown in low polygonal style.

(e) A couch with a winged chair at a window. (f) A bright moon on the sea.

(g) A fruit bowl with a pink flower on top. (h) A small cabin in the snow near a lake.

(i) A girl with pink hair and flowers on her face. (j) Cartoon fox driving a car with a cute face.

(k) A lamp and a cup of tea on a table. (l) A person standing on a tile floor with a rug.

(m) A rabbit sitting on a hill with trees. (n) A red cabin sits on the shore of a lake.

(o) A teacup and saucer with spoons. (p) A vase with flowers in it on a dark background.

Figure 9: More results on reward model bias studies using FLUX.1 Fill. In each sub-figure,
the four images (from left to right) display: the masked image, followed by inpainting results from
models trained using HPSv2, PickScore, and Ensemble. For optimal detail, view figures zoomed in.
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