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Figure 1. Overview of our method and visualization of one of the time series displacement satellite image samples in our dataset.

Abstract

Accurate yet lightweight forecasting of ground displacement
is vital for real-time hazard response. We propose the Koop-
man Operator-based Autoencoder (KOA), a deep model that
embeds a linear, physics-inspired Koopman operator into
its latent space. A compact CNN encoder compresses each
SBAS-InSAR frame; temporal evolution is then propagated
by a single linear map, slashing parameter count and FLOPs
relative to Transformer-style networks. Trained on nation-
wide Japanese SBAS archives and evaluated on unseen re-
gions (Turkey, Italy, Hawaii), KOA matches state-of-the-art
accuracy while cutting computational cost by orders of mag-
nitude. This efficiency makes KOA practical for deployment
on modest hardware in operational monitoring systems.

1. Introduction

Ground-surface deformation endangers infrastructure and
populations, yet time series displacement images calculated
by Small Baseline Subset (SBAS) algorithm [2] remain
purely observational. Forecasting future displacement re-
quires modelling highly nonlinear spatio-temporal dynamics
across decades of imagery while staying computationally

tractable.

Large sequence models such as Transformers and dif-
fusion networks can predict complex dynamics, but their
quadratic attention cost, heavy sampling, and weak physi-
cal guarantees make them ill-suited to SBAS archives. A
lightweight, physics-aware alternative is therefore essential.

We introduce the Koopman Operator-based Autoencoder
(KOA), which embeds a finite-dimensional Koopman opera-
tor [7, 8, 13] directly into the latent space of a compact convo-
lutional autoencoder. A single linear map propagates latent
states, while spectral regularisation enforces stability. KPA
thus marries deep spatial encoding with physics-consistent
temporal evolution, slashing parameters and FLOPs rela-
tive to Transformer baselines. Experiments on nationwide
Japanese SBAS data—and transfer tests in Turkey, Italy, and
Hawaii—show that KPA delivers state-of-the-art accuracy
at a fraction of the computational cost, offering a practical
tool for real-time hazard mitigation and sustainable urban
planning.

2. Method
2.1. Problem Statement

We aim to predict future frames from ground surface dis-
placement imagery. Each displacement image x; € R7*W
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Figure 2. Our network architecture comprises three key compo-
nents: Reconstruction, Future State, and Past State. All encoders
and decoders are weight-shared.

is treated as a discrete, time-invariant system:
Xi+1 = f(Xi), (D

where f is unknown and possibly nonlinear. Instead of learn-
ing f directly, we use Koopman theory, which finds a trans-
formation ¢, such that the system becomes linear:

zp1 = K, 2,  zp = 0e(Xg), 2)

allowing us to predict [ steps as zp,; = K'z; and recon-
struct via Xg1; = ©q(Zgr1)-

2.2. Koopman Operator-based Autoencoder(KOA)

KOA combines an autoencoder with linear latent dynamics:
* Encoder: CNN-based encoder ¢, maps each frame to a
latent vector z,,.
* Koopman Layer: Latent vectors evolve linearly, i.e.,
Zn+i = Kz,
* Decoder: CNN-based decoder ¢4 maps z,, 1 to predicted
frames X, .
Additionally, a backward operator K, predicts past states
and is trained to approximate K~!. Orthogonal K allows
K, = K for consistency.
The loss consists of reconstruction, forward and backward
prediction, and latent consistency:

L= ’Yrecﬁrec + ’wadewd + wadﬁbwd + ’Ylatﬁlab 3)

2.3. Network and Training

Our architecture uses a 3-stage FasterNet encoder and sym-
metric decoder with depthwise convolutions and LayerNorm.

Latent codes z,, are projected from the final feature map
and reconstructed via upsampling. The Koopman matrix K
operates on these latent vectors.

We train on NVj, input frames and predict Ny, future
frames. Initially, only reconstruction and prediction loss are
active. After epoch ey, latent consistency loss is added with
weight iy

3. Experimental Results

3.1. Training Details

Key tunables are the learning rate [, (with decay [,.4 and
schedule), maximum predict roll-out k,,, loss weights
{Vrecons Yrwd> Ypasts Vat }» and Ny set as 16. Input- and output-
frame counts (/Vi, Noy) are fixed by the task. All models
are trained for 600 epochs; we adopt Adam, batch size 32,
cosine decay, and early stopping on validation MSE.

3.2. SBAS Dataset

We employ the nationwide Japanese SBAS archive of [9],
comprising 191 deformation stacks generated from Sentinel-
1 via LiCSBAS [10](Table 3 in the supplemental material
6.2). Interferograms are unwrapped, denoised, outliers re-
moved, and frames down-sampled to 64 x 64 pixels. Each se-
ries is chronologically split: the first 30 frames form the train-
ing context ({Vi,), the next 30 frames the validation targets
(Nout), and the most recent 20 frames the test horizon(Figure
5 in the supplemental material 6.2). To probe data-scarce
regimes we additionally consider (Ni,, Now) = (10, 50) and
(20, 40) while keeping the same test set. This strict forward-
time split mimics operational forecasting. The details are
described in the supplemental material 6.2.

3.3. Forecasting Performance

Table | summarises mean-squared displacement error (mm)
over the 20 test frames. KOA consistently outperforms or
matches deep baselines while using two orders of magni-
tude fewer parameters. KOA yields MSEs of 39.19, 35.93,
34.71 for N, = 10,20, 30, respectively, rivaling ConvL-
STM and beating Transformers on short contexts. Adding
an autoencoder reduces DMD and Mamba errors by ~ 70%,
underscoring the value of compact latent representations.
KOA surpasses its non-AE Koopman variant by up to 65%,
confirming that coupling Koopman dynamics with learned
compression is crucial.

Transformers underperform on this regional-scale dataset,
reflecting their data hunger [4]. By contrast, KOA’s physics-
based prior delivers strong accuracy from limited training se-
quences, making it well suited to geographically constrained
or rapidly deployed monitoring systems.

3.4. Computational Efficiency Analysis

To evaluate the computational efficiency of our proposed
KOA model, we conduct comprehensive comparisons with
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Figure 3. Starting the initial SBAS image(the first frame of training data), we compared our model, Dynamic Mode Decomposition-based
AutoEncoder and State Space Model-based Auto Encoder to forecast the future displacement of SBAS data for the 80th frames(the last
frames of test data). All models use the first 30 frames as context data for the training process.

Method Nipn =10 Nijpm =20 Ny, =30

SSM w/o AE 143.348 141.438 138.156
SSM w AE 41.782 39.238 36.593
DMD w/o AE 153.854 151.289 143.662
DMD w AE 45.721 42.299 38.327
Koopman w/o AE 129.101 102.716 100.243
Koopman w AE(Ours) 39.192 35.929 34.708
ConvLSTM 40.122 35.524 33.182
Transformer 83.316 45.625 40.537

Table 1. Prediction displacement of Mean Square Error (mm)
comparison at test data: Our Koopman Operator-based Auto En-
coder(KOA) and baseline algorithms on SBAS dataset. Vj, is used
as input frames of SBAS dataset.

state-of-the-art models, including Transformers and ConvL-
STM networks. All experiments were performed on a single

NVIDIA RTX 3080 GPU to ensure fair comparison. All
models use the first 30 frames as context data for the training
process. Specific experimental details are described in the
supplemental material 7.1.

As shown in Table 2, our KOA achieves remarkable effi-
ciency improvements across all computational metrics. The
parameter count of our model is merely 0.2M, which rep-
resents a reduction of 99.3% compared to the Transformer
baseline (28M parameters) and 98.0% compared to ConvL-
STM (10M parameters). This dramatic reduction in model
complexity is attributed to our efficient Koopman operator
design and the utilization of spectral methods through FFT.

In terms of computational complexity, KOA demonstrates
exceptional efficiency, requiring only 19M FLOPs compared
to 31.3G for Transformers and 76.5M for ConvLSTM. This
represents a substantial 99.9% reduction in computational
requirements compared to the Transformer baseline. The



Model Parameters FLOPs Inference Time
Transformer 28M 31.3G 15-30ms
ConvLSTM 10M 76.5M 5-10ms
KOA (Ours) 0.2M 19M 1-3ms

Table 2. Computational Resource Requirements.All models use the
first 30 frames as context data for the training process.

inference speed of our approach demonstrates a particular
advantage in real-time applications, processing each frame
in 1- 3ms compared to 15- 30ms for Transformers and 5-
10ms for ConvLSTM. This translates to a 10x speedup over
Transformers and 3 x over ConvLSTM, while maintaining
competitive accuracy as shown in our previous experiments.
This efficiency stems from the spectral representation and the
linear nature of operations in the Koopman-embedded latent
space, eliminating the need for complex attention mecha-
nisms or recurrent computations.

3.5. Robustness Evaluation on Unseen Regions

To assess the robustness of our proposed Koopman Opera-
tor Autoencoder (KOA) in predicting ground deformation
in unseen regions, we conducted evaluations on three inde-
pendent volcanic areas: Mauna Loa in Hawaii (Sentinel-1
frame 087D_07004_060904), Mount Etna in Italy (Sentinel-1
frame 124D_05291_081406), and Mount Ararat in Turkey
(Sentinel-1 frame 152D_04960-131313) (shown in Supple-
mentary material 6.3). These locations were not included in
the training dataset, providing a rigorous test of the model’s
generalization capability.

Our experimental results demonstrate that KOA trained
on the first 30 frames as context data effectively generalizes
to these unseen locations, accurately predicting ground de-
formation patterns derived from SBAS data(Figure 4). The
model successfully reconstructs spatiotemporal deformation
dynamics despite differences in geological characteristics,
indicating its adaptability to diverse terrains. We evaluated
on Mauna Loa the mean absolute error (MAE) was 525.2
mm, on Mount Etna it was 36.5 mm, and on Mount Ararat it
reached 39.1 mm—each exceeding the Japanese SBAS data.

In the case of Mauna Loa, we observed instances where
the predicted deformation deviated significantly from histori-
cal trends. This suggests that our approach could potentially
be utilized for anomaly detection, as such deviations may in-
dicate abnormal volcanic activity. This capability highlights
the potential of KOA not only for standard forecasting tasks
but also for early warning systems in volcanic monitoring
applications. Overall, these findings confirm that our model
maintains high robustness and applicability even in regions
with no prior training data, supporting its effectiveness in
real-world geophysical and remote sensing scenarios.
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Figure 4. Predicted ground deformation on unseen regions using
KOA. The model using the first 30 frames as context data for the
training process successfully captures deformation trends across
different geological environments.

4. Conclusion

In this paper, we introduced Koopman Operator-based Au-
toencoder (KOA), an efficient and lightweight model for fore-
casting time-series displacement of SBAS data. KOA lever-
ages the Koopman operator to map the encoder-extracted
nonlinear latent space of SBAS data into a linear latent space.
A key aspect is enforcing temporal consistency in the latent
variables by exploiting the time-invariance property of the
Koopman operator for autonomous dynamical systems. We
evaluated KOA on Japanese SBAS datasets, comparing it
against physics-based techniques and recent time series pre-
diction methods, including Diffusion models [6, 17]. Our
method demonstrated superior performance with shorter
training times and faster inference compared to state-of-
the-art approaches. KOA’s ability to handle limited data
is significant for computationally demanding simulations
of high-dimensional physical systems. Furthermore, this
method can be extended to non-autonomous control systems
using a bilinearly recurrent physics-based architecture based
on [5].
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