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Abstract 

Deep neural networks (DNNs) are fundamental to modern applications like face recognition and autonomous driving. 
However, their security is a significant concern due to various integrity risks, such as backdoor attacks. In these attacks, 
compromised training data introduce malicious behaviors into the DNN, which can be exploited during inference 
or deployment. This paper presents a novel game-theoretic approach to model the interactions between an attacker 
and a defender in the context of a DNN backdoor attack.  The contribution of this approach is multifaceted. First, it 
models the interaction between the attacker and the defender using a game-theoretic framework. Second, it designs 
a utility function that captures the objectives of both parties, integrating clean data accuracy and attack success rate. 
Third, it reduces the game model to a two-player zero-sum game, allowing for the identification of Nash equilibrium 
points through linear programming and a thorough analysis of equilibrium strategies. Additionally, the framework 
provides varying levels of flexibility regarding the control afforded to each player, thereby representing a range of real-
world scenarios.  Through extensive numerical simulations, the paper demonstrates the validity of the proposed 
framework and identifies insightful equilibrium points that guide both players in following their optimal strategies 
under different assumptions. The results indicate that fully using attack or defense capabilities is not always the opti-
mal strategy for either party. Instead, attackers must balance inducing errors and minimizing the information con-
veyed to the defender, while defenders should focus on minimizing attack risks while preserving benign sample per-
formance. These findings underscore the effectiveness and versatility of the proposed approach, showcasing optimal 
strategies across different game scenarios and highlighting its potential to enhance DNN security against backdoor 
attacks.
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1  Introduction and related works
1.1  Introduction
Over the past decade, deep neural networks (DNNs) 
have achieved significant success in critical applications 
such as computer vision  [1], autonomous vehicles  [2], 
finance [3], healthcare [4], and beyond [5]. However, the 
increasing prevalence of DNNs has raised concerns about 
their security. Well-studied threats, such as adversarial 
examples, compromise DNN integrity during inference 
by subtly manipulating test-time inputs [6]. Additionally, 
malicious actors may target the DNN training process 
itself. Each step, from data collection and pre-process-
ing to architecture selection, training, and deployment, 
presents potential vulnerabilities that adversaries can 
exploit  [7, 8]. Furthermore, the considerable data and 
computational resources required for DNN training, cou-
pled with a shortage of machine learning expertise, often 
compel users to outsource aspects of their process to 
third parties (e.g., machine learning as a service (MLaaS), 
acquisition of pre-trained models  [9]. This outsourcing, 
while convenient, reduces control and introduces new 
attack surfaces [6].

Backdoor attacks, a critical threat to DNN security, 
involve embedding malicious behavior into a DNN 
prior to inference. Once injected, the backdoor can 
be triggered by the attacker during inference to pro-
duce a desired, incorrect output  [10–12]. The backdoor 
attacker’s objective is twofold: the compromised DNN 
must function normally on benign inputs to avoid detec-
tion, and the backdoor must be easily activated. Acti-
vation typically occurs through the presentation of a 
trigger-modified input. Backdoor injection can occur at 
any stage in the model’s supply chain and lifecycle before 
inference [6]. This includes poisoning training data [13], 
manipulating model parameters during training  [14], or 
even during deployment  [15–17]. Furthermore, transfer 
learning can also be exploited to embed a backdoor dur-
ing training [18, 19].

The prevalent backdoor attack strategy currently relies 
on training data poisoning [13, 20]. This involves insert-
ing samples, manipulated with a trigger pattern, into an 
otherwise benign dataset. The victim DNN then learns 
to associate the pattern with incorrect predictions. The 
labels of these poisoned samples may be altered [21, 22] 
(poison-label attacks) or remain consistent with their 
ground truths  [20, 23] (clean-label attacks). The latter 
strategy aims to avoid detection if a defender inspects the 
training dataset.

Backdoor attacks have been demonstrated in vari-
ous scenarios  [6, 24], ranging from natural language 
processing (NLP)  [25, 26] and audio  [27] to computer 
vision applications [6, 28]. Beyond poison and clean-label 
attacks, backdoors encompass diverse subcategories, 

including class-agnostic or class-specific attacks  [22], 
various trigger types and families  [6], and concepts like 
trigger transparency [13, 29]. For comprehensive surveys 
on backdoor attacks, defenses, and their categorization, 
please refer to [6, 8, 10–12, 24].

The evolving threat landscape and the ongoing cat-and-
mouse game between backdoor attackers and defend-
ers  [30], characterized by continuous development of 
new attacks and defenses, motivate this work. Within the 
specific context of clean-label backdoor attacks on image 
classification [6, 8, 20, 23], this paper asks the following 
question: can we model the interaction between a DNN 
backdoor attacker and a defender as a two-player game, 
determine its Nash equilibria, and assess each player’s 
performance at equilibrium? Addressing this question 
could potentially break the ongoing cycle and determine 
which party might ultimately win this game.

1.2  Related works
Prior work on backdoors in federated learning [31] offers 
initial insights into the applicability of game theory for 
better understanding DNN backdoor risks. This paper 
takes a different approach. It focuses on centralized 
learning and on on developing a game-theoretic defense 
approach, rather than solely exploring attacker-defender 
dynamics. In this context, existing research in robust 
learning [32–34] have previously highlighted the value of 
game theory in studying adversarial machine learning.

Prior work has made use of various methodologies to 
address backdoor attacks in DNNs  [24, 8], such as heu-
ristic-based approaches, probabilistic models, or adver-
sarial training. In this paper, we further expand the body 
of work on DNN integrity by using game theory. Due to 
its unique ability to model strategic interactions between 
rational attackers and defenders, game theory provides 
a structured framework for analyzing these adversarial 
behaviors, allowing for the identification of optimal strat-
egies for both parties. Unlike heuristic approaches that 
may lack theoretical guarantees, or probabilistic models 
that can be computationally intensive, game theory may 
provide a balanced approach between analytical tracta-
bility and practical applicability, especially in scenarios 
involving clear, competitive objectives as found in secu-
rity contexts.

1.3  Contributions
In this context, our research makes three significant 
contributions. First, we introduce a novel game-theo-
retic framework that models the interaction between a 
DNN backdoor attacker and a defender. This new for-
mulation enables a detailed examination of each player’s 
strategies and performance, with the goal of identifying 
the most effective strategies, typically known as Nash 
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equilibria [35]. Our approach advances the existing liter-
ature by providing a two-player game model that simul-
taneously evaluates the optimal strategies of both the 
attacker and the defender.

Second, instead of employing a complex bi-matrix 
game in our framework, we adopt a simpler, more tracta-
ble two-player zero-sum game. This simplification is cru-
cial as it significantly streamlines the analysis and strategy 
development process by focusing on the zero-sum nature 
of the game, where one player’s gain is precisely the 
other’s loss. To achieve this, we develop a utility func-
tion that encapsulates the dual objectives of the players, 
which include maintaining the performance of a DNN’s 
clean data accuracy while also addressing their con-
flicting goals concerning the success rate of a backdoor 
attack. This simplification not only enhances the analyti-
cal tractability but also bolsters the practical applicability 
of our game-theoretic approach to real-world scenarios, 
where clear and decisive strategies are paramount.

Our final contribution is the evaluation of our proposed 
game-theoretic framework using numerical simulations, 
exploring multiple game variants on a well-known data-
set and classification task. We investigate three configu-
rations with varying levels of control afforded to either 
the attacker or the defender. Each setting focuses on a 
different backdoor poisoning trigger regimen  [20]. The 
core value of our framework lies in finding the best strat-
egy for each player under each setting. To do so, we con-
struct utility matrices through numerical simulations and 
examine existing saddle points for each setup. Moreo-
ver, determining the optimal strategies at equilibrium 
provides deeper insights into the performance capabili-
ties of both the attacker and the defender across various 
situations.

Our proposed framework is attack-agnostic and 
designed to be used beyond the examples presented 
in this paper, such as applications on a wider range of 
attacks and countermeasures. To the best of our knowl-
edge, this is the first paper to offer a self-contained 
framework for modeling the interaction between DNN 
attackers and defenders, thereby circumventing the cur-
rent cat-and-mouse game between them. It standardizes 
the comparison between attacks and defenses by aiding 
in the identification of optimal strategies for the players. 
Furthermore, it provides valuable insights into the per-
formance of both players.

The rest of this paper is organized as follows. Section 2 
formalizes backdoor attacks on a computer vision task, 
covering the threat model and attack used in this work. 
Section 3 briefly introduces game theory and the game-
theoretic formulation of attacker-defender interactions 
central to this paper. Section  4 reports our simulation 
results and discusses the optimum strategies for each 

player and their performance at the Nash equilibrium. 
Finally, Section 5 concludes this paper.

2  Backdoor attack
This section motivates our threat model, a targeted, 
clean-label, data-poisoning-based backdoor on a classifi-
cation task, and introduces the attack and notation used 
in the rest of this paper.

2.1  Motivation for our threat model
Backdoor attacks on computer vision and their counter-
measures is a thriving area of research  [6, 8, 10–12, 24]. 
This paper assumes an attacker who targets a supervised 
learning model, specifically an image classification task. 
This setting is very common in the backdoor literature, 
from its early works like BadNets [22] to more recent dem-
onstrations on face recognition for instance [8]. Therefore, 
it is a fitting example on which to base our framework.

Our use case attacker looks to inject a backdoor behav-
ior in a targeted fashion, that is, the attacker aims to com-
promise the integrity of the model with a specific target 
in mind  [22], e.g., forcing misclassifications towards a 
specific target class. This differs from untargeted attacks 
which aim to deteriorate a DNN’s availability by causing 
general misclassifications [6, 36].

We focus on using a backdoor based on data poisoning. 
This is a core risk at the pre-training stage [6, 12, 22] where 
an attacker has hijacked the supply chain of a DNN trainer 
(e.g., at the data collection, data repository, etc.) such 
that a DNN’s training data become compromised. The 
attacker manipulates a portion of a victim’s dataset, modi-
fying its images and, possibly, their labels such that any 
DNN trained on the dataset will learn a malicious behav-
ior. Additionally, we follow a clean-label backdoor  [23] 
use case. In this context, the attacker only manipulates 
the image content of the class(es) they are targeting in the 
compromised dataset. Labels are left unchanged. This use 
case matters in the case of data poisoning as the attacker is 
maximizing their stealth and therefore the chance of a vic-
tim trainer to embed a backdoor in a DNN down the line.

The choice of a targeted, clean-label backdoor threat 
model is motivated by the potential impact of such 
attacks in real-world scenarios and safety-critical 
fields  [6, 10], like autonomous vehicles or face recogni-
tion. Data poisoning and clean-label backdoor attacks 
are particularly relevant as they represent stealthy and 
effective methods for embedding malicious behaviors 
in DNNs, often bypassing traditional detection mecha-
nisms. These choices are supported by numerous stud-
ies  [6, 8], which highlight the effectiveness of targeted, 
clean-label attacks in compromising DNN integrity while 
maintaining high performance on benign inputs Fig. 1.
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2.2  Formalization
A DNN is an approximation function Fθ that deter-
mines for a given training dataset Dtr = {(xi, yi)}

Ntr
i=1 the 

mapping from an input set X = {xi}
Ntr
i=1

 to an output set 
Y = {yi}

Ntr
i=1 ∈ C , where C is the set of classes, and |C| is 

the total number of classes learned by Fθ , Fθ (xi) = yi , 
and θ are the DNN parameters optimized by solving the 
following problem:

After optimization, the DNN performance is evaluated 
on an unseen test dataset Dts = {(xj , yj)}

Nts
j=1 . The chosen 

metric is the DNN’s clean data accuracy (CDA, res. test 
accuracy) defined as follows:

where I(xj , yj) = 1 if Fθ (xj) = yj , and 0 otherwise.
A backdoor attack manipulates a DNN such that it out-

puts a wrong class label ỹi = t for a backdoored input x̃i , 
where x̃i correspond to an input xi altered with some trig-
ger xt . A backdoor approach uses training data poisoning 
where a subset P of m elements drawn from Dtr is altered 
with the trigger xt as follows:

where �tr is the backdoor attack’s power or strength, 
which determines the overlay of the trigger xt . Equation 4 
quantifies the attacker’s ability to embed a backdoor 
trigger in a DNN’s training data. The rationale for this 
formulation is that it allows the attacker to balance the 
visibility of the trigger against the risk of detection. By 

(1)arg min
θ

Ntr

i=1

L(Fθ (xi), yi).

(2)CDA(Fθ ,Dts) =

∑Nts
j=1 I(xj , yj)

Nts
,

(3)P = {(x̃i, ỹi)}
m
i=1

(4)x̃i = (1−�tr)× xi +�tr × xt

adjusting �tr , the attacker can fine-tune the influence of 
the trigger, ensuring that it is strong enough to be learned 
by the DNN but subtle enough to evade initial detection.

Here, we note that the attacker’s power at training time 
�tr (see Eq. 4) can differ from the one used at test time. 
As such, we use the notation �tr for the attacker’s power 
during training and �ts for its test time equivalent1. Since 
a human investigation of test samples may be unfeasible 
in the case of online platforms where response speed is 
crucial, we surmise that the attacker is free to update �ts 
at test time.

This paper focuses on a targeted, clean-label backdoor 
attack where the elements in P belong to the attacker’s 
target class t. In other words, the poisoned training sam-
ples keep their original labels, i.e.,  ỹi = yi = t . Since all 
poisoned samples belong to the same class, the size of 
P is defined by the ratio αtr ∈ (0, 1] of poisoned training 
samples belonging to class t such that:

where m is the size of the set P of poisoned samples of 
class t and Ntr,t is the number of training samples of class 
t.

This data poisoning process yields a poisoned dataset 
D
po
tr  such that training on it produces a backdoored DNN 

F
po
θ  . The attacker expects that a victim DNN trained on 

D
po
tr

 will learn to associate the trigger xt with the target 
class t while keeping CDA on par with a benign model.

The backdoored DNN Fpo
θ  is then assessed using its 

attack success rate (ASR). It corresponds to the propor-
tion of wrongful classifications towards the backdoored 
class t that the attacker can induce by poisoning the 

(5)αtr =
m

Ntr,t
,m << Ntr,t

Fig. 1 Benign vs. backdoored behavior: The DNN correctly predicts “cat” in the benign input but misclassifies it as “dog” when altered 
with the backdoor’s trigger: a “red circle”

1 In the rest of the paper, we use the terms overlay power, trigger power, and 
attack/defense power, for the attacker and defender, interchangeably.
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test elements from Dts (they belong to any source class 
y  = t ). This poisoned test set is denoted Dpo

ts  and the ASR 
is computed as such:

where I(x̃j , t) = 1 if Fpo
θ (x̃j) = t , and 0 otherwise2.

The attacker’s objective is to increase their ASR as 
much as possible while preserving the DNN’s CDA such 
that it is indistinguishable from a benign model, i.e., the 
victim trainer will deploy the inconspicuous DNN. For 
ease of use for the reader, we summarize our notation 
choices in Table 1.

2.3  Our backdoor use case
2.3.1  Attacker side
The SIG attack, introduced by Barni et al. [20], is a back-
door attack that uses subtle sinusoidal or ramp signals as 
triggers. These triggers are spread over the input image, 
akin to a watermark. They are designed to be hard to 
detect  [37], making them particularly suitable for clean-
label attacks where the attacker’s objective is to remain 
stealthy. We selected the SIG attack for this study due 
to its demonstrated effectiveness in bypassing detection 
while maintaining a high attack success rate (ASR)  [37]. 
Its simplicity and the difficulty in reverse-engineering the 
trigger make it an ideal candidate for analyzing the stra-
tegic interactions between attackers and defenders in our 
game-theoretic framework. Following a clean-label set-
ting, the attacker: 

1. Selects a target class t,
2. Randomly draws a αtr portion of the target class data-

point Dtr,t to construct Dpo
tr ,

3. Applies one of the triggers described in SIG [20].

We use either of two backdoor triggers provided by 
SIG  [20] to build Dpo

tr  : a simple ramp signal or a sinu-
soidal signal. Given an image x of h rows and w col-
umns, the ramp signal is defined as xt(i, j) = j ×�/w , 
given 1 ≤ i ≤ h and 1 ≤ j ≤ w . The sinusoidal signal 
is defined such that xt(i, j) = � sin(2πhf /w) , given 
1 ≤ i ≤ h, 1 ≤ j ≤ w and where f is the signal frequency. 
The attacker selects only one of the triggers to generate 
the poisoned samples as in Eq. 4, which are then used to 
construct Dpo

tr .

(6)ASR(F
po
θ ,D

po
ts ) =

∑|D
po
ts |

j=1 I(x̃j , t)

|D
po
ts |

,

2.3.2  Defender side
We consider a naive defense that attempts to recover the 
non-poisoned image by reverse-engineering the additive 
nature of the backdoor, similar to the input purification 
approach found in [37]. The process is defined as:

(7)xcl =
xini −�def × x̂t

1−�def
,

Table 1 Table of notations

Dtr Training dataset

Dts Testing dataset

D
po
tr

Poisoned training dataset

D
po
ts

Poisoned testing dataset

Fθ Deep learning model

F
p
θ

Backdoored deep learning model

L Loss function

C Number of classes

CDA Clean data accuracy

ASR Attack success rate

CDAcp Clean data accuracy on cleaned poisoned samples

ASRcp Attack success rate on cleaned poisoned samples

CDAcb Clean data accuracy on cleaned benign samples

ASRcb Attack success rate on cleaned benign samples

xt Trigger overlay

� Trigger overlay power

x̃i Poisoned sample

�tr Attack power on training samples

�ts Attack power on testing samples

αtr Fraction of poisoned training samples

αts Fraction of poisoned testing samples

αdef Fraction of cleaned samples

t Backdoor error target class

xcj Cleaned sample

�def Defense power on testing samples

G(.) Game

Si Strategy set for player i

ui Utility for player i

Pi Probability distribution overSi at the equilibrium

BGMin Backdoor game with minimum control

BGInt Backdoor game with intermediate control

BGMax Backdoor game with maximum control

uA Attacker’s utility

uD Defender’s utility

u∗A Attacker’s utility at the equilibrium

u∗D Defender’s utility at the equilibrium

u∗ Utility at the equilibrium

S∗A Attacker’s strategy profile at the equilibrium

Pr(S∗A) Attacker’s probability distribution over theS∗A
S∗D Defender’s strategy profile at the equilibrium

Pr(S∗D) Defender’s probability distribution over theS∗D

2 For an untargeted attack, I(x̃j , ỹj) = 1 if Fpo

θ (x̃j) �= yj , and 0 otherwise.
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Here, �def represents the defender’s overlay power, xini  
is the potentially backdoored input image, and x̂t is the 
estimated trigger to be removed. This equation oper-
ates on the premise that the backdoor trigger was lin-
early combined with the original image using a certain 
strength ( �tr ). The defender, using an estimated trig-
ger ( ̂xt ) and an assumed overlay power ( �def ), seeks to 
reverse this operation by subtracting the estimated trig-
ger influence and normalizing the image. The goal is to 
reconstruct the clean image xcl accurately, mitigating 
the backdoor’s effect. However, the effectiveness of this 
defense heavily relies on the precision of the defender’s 
estimates. Inaccuracies could result in incomplete trig-
ger removal or unintended alterations to benign images, 
potentially causing misclassifications.

It is important to note that the defender does not ini-
tially know whether the input sample xini  is a benign 
image xi or a poisoned one x̃i . Consequently, this defense 
is applied regardless of the nature of the input image. 
Nevertheless, the defender could apply a preliminary step 
to detect poisoned samples then applying the filtering 
step only to those identified samples. However, this paper 
does not cover such scenario.

For our numerical simulation, we set several prop-
erties for the estimation of the trigger x̂t from the 
defender’s perspective. First, the difficulty of the estima-
tion increases as the poisoning ratio αtr decreases. The 
defender should not be able to recover a perfect estimate 
of xt if αtr is sneakily low. We surmise the same property 
with respect to the trigger power �tr . Conversely, estima-
tion becomes easier as these parameters increase. The 
attacker’s strategy becomes more apparent.

In this context, a possible way to derive such an estimate 
is to assume that x̂t can be recovered from a sample aver-
age over input images xini  , effectively reversing the additive 
poisoning process applied by the attacker. By averaging 
the input images and substituting this average in place of 
xini  in Eq. 7, the following expression is obtained:

Here, x̄ ∼ N (0, 1) represents the average noise across 
the non-poisoned data, modeled as a standard normal 
Gaussian distribution. This equation illustrates that the 
estimated trigger, and consequently the cleaned sample 
xcl , may contain noise depending on the values of αtr and 
�tr . As these parameters increase, the accuracy of the 
trigger estimation improves, causing the estimate to con-
verge toward the actual trigger xt as the attack becomes 
more pronounced. The defender’s ability to remove the 
backdoor effectively relies on accurate estimation of the 
trigger, which is influenced by the attack’s strength �tr 
and the proportion of poisoned data αtr . In scenarios 

(8)x̂t = (αtr ×�tr)× xt + x̄(1− αtr ×�tr),

where these values are low, the process becomes more 
challenging, and the estimate may be less reliable due to 
increased noise in the data.

In a more empirical perspective, we assume that the 
defender has some trigger reverse-engineering capabil-
ity, which is in line with prior work in the backdoor lit-
erature  [38, 39]. Moreover, even without knowing the 
trigger, the defender may partially or fully modify input 
samples in a deterministic manner or via a random filter 
to improve the model’s robustness whenever assuming 
the presence of a backdoor [24].

3  Backdoor game formulation
3.1  Game theory in a nutshell
Game theory is a well-established field of mathemat-
ics that analyzes competitive and cooperative interac-
tions among decision-makers, referred to as players, 
who make interdependent choices. Its foundations 
were laid with the publication of “Theory of Games and 
Economic Behavior” by John von Neumann and Oskar 
Morgenstern in 1944  [40]. The fundamental assump-
tion in game theory is that players are rational and 
intelligent, having clear preferences over game out-
comes and the ability to choose actions that maximize 
their returns. However, there are important exceptions, 
such as bounded rationality, where players have limited 
cognitive resources; and behavioral game theory, which 
accounts for psychological biases and irrational behav-
iors that can lead to decisions deviating from pure pay-
off maximization [41].

The primary objective of game theory is to predict the 
behavior of rational players in a game or provide guid-
ance on playing against rational opponents. Each rational 
player has clear preferences regarding the outcomes 
of a game where they all perform mutually dependent 
actions. Given the expected actions of their opponents, 
a rational player always selects the course of action that 
yields the most favorable payoff.

The normal or strategic form is the basic game model 
investigated in non-cooperative game theory. A normal 
game lists the strategies available to each player and the 
results associated with every potential set of decisions. 
A tuple of four components G(S1, S2,u1,u2) serves as 
the definition of a two-player normal form game, where 
S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are the sets 
of strategies available to the first and second players. 
Then, for p ∈ {1, 2} , up(s1,i, s2,j) is the payoff or utility of 
the game for the pth player when the first player chooses 
the strategy s1,i and the second chooses s2,j . Each pair of 
strategies (s1,i, s2,j) is called a strategy profile.

Utility (res. Payoff) matrices are used as a com-
pact representation of normal-form games. Thus, a 
more general formulation of the normal form game 
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is given by G(N , S,u) where  N = {1, 2, . . . , n} is a set 
of players, S = {S1, . . . , Sn} are the sets of strategies, 
Si = {si,1 . . . si,ni} represents the strategies set available to 
the players, and the vector u = (u1, . . . ,un) is the set of 
the game utilities with ui corresponding to the utility of 
the ith player. A strategy profile for the game can be rep-
resented by the vector (s1,i1 , . . . , sn,in) ∈ S.

Finding equilibrium points that reflect, to some extent, 
a decent choice for both players is a common goal in 
game theory. There are several definitions of equilibrium, 
but the one developed by John Nash [35, 42] is the most 
well-known and used. For example, a profile (s∗1,i, s

∗
2,j) in 

a two-player game is a Nash equilibrium if the following 
conditions about the utility of the players are met:

In a zero-sum game, the utilities of the two players sum up 
to zero: u1 + u2 = 0 . A profile is in a Nash equilibrium if no 
player can unilaterally change their strategy to increase their 
utility. This is the equilibrium or saddle point of the game.

Pure strategy Nash equilibria and mixed strategy Nash 
equilibria are the two distinct types of Nash equilibria. A 
pure strategy Nash equilibrium occurs when players usu-
ally choose a single strategy. In such a case, a pure strategy 
profile (s∗1,i, s

∗
2,j) is a Nash equilibrium for the game with s∗1,i 

and s∗2,j the pure strategies for player 1 and player 2 respec-
tively. Conversely, in a mixed strategy Nash Equilibrium, 
players may use a particular probability distribution over 
the strategy set in order to randomize their decisions.

In normal-form games, dominance solvable games [42] 
exhibit a stronger form of equilibrium. A strictly domi-
nant strategy for a player implies that this strategy is the 
best strategy for the player regardless of the other play-
er’s strategy. Based on a fundamental principle of game 
theory, if mixed strategies are allowed, every game with 
a finite number of players and a finite number of pure 
strategies for each player is said to have at least one Nash 
equilibrium [43]. Finding the Nash equilibrium of a game 
corresponds to solving one of the two linear program-
ming problems [44] expressed as follows:

In a two-player game, by denoting the probability distri-
bution over the strategy profile at the equilibrium for each 
player i as Pi , the expected utility can be computed as follows:

(9)
u1(s

∗
1,i, s

∗
2,j) ≥ u1(s1,i, s

∗
2,j) ∀s1,i ∈ S1

u2(s
∗
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∗
2,j) ≥ u2(s

∗
1,i, s2,j) ∀s2,j ∈ S2
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S1
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S2

u1(s1,i, s2,j) = min
S2

max
S1

u1(s1,i, s2,j)

(11)

U1(P1,P2) =
∑

S1,S2

P1(s1,i)u1(s1,i, s2,j)P2(s2,j),

U2(P1,P2) =
∑

S1,S2

P1(s1,i)u2(s1,i, s2,j)P2(s2,j).

3.2  Backdoor game
3.2.1  Overview
In this work, we employ a game-theoretic framework to 
model the interaction between a DNN model defender 
and a backdoor attacker, framing it as a two-player game. 
Both the attacker and defender are rational agents with 
full knowledge of the game’s structure but lack complete 
information about each other’s strategies. The defender 
aims to maximize their DNN’s CDA while minimizing 
the attacker’s ASR, whereas the attacker seeks to maxi-
mize their ASR while keeping the DNN’s CDA above a 
threshold to avoid detection and rejection (the defender 
will not use the DNN if its CDA is too low).

We assume the DNN model is trained in a controlled 
environment, allowing the defender to implement defen-
sive measures, albeit within real-time constraints. This 
interaction is modeled as a one-shot, zero-sum game 
where both the attacker and defender commit to a strat-
egy without iterative adjustments. While this approach 
simplifies the analysis and provides a foundational under-
standing, we recognize that real-world scenarios can be 
more complex, involving multiple attackers, defenders, or 
third-party entities, where strategies might differ, and a 
zero-sum model may not be sufficient.

In particular, situations where both the attacker and 
defender experience simultaneous losses-such as when 
defensive measures degrade overall system perfor-
mance or when an attack only partially succeeds but at 
a significant cost-are not fully captured by a zero-sum 
framework. Additionally, cases where the defender’s suc-
cess does not directly equate to the attacker’s failure, or 
where considerations like energy consumption, defense 
cost, and complexity come into play, may require more 
advanced models. Nonetheless, our zero-sum assump-
tion remains valid as a foundational study, offering a basis 
for exploring more sophisticated scenarios.

To explore these dynamics in DNN backdoor attacker-
defender interactions, we present three scenarios. Each 
scenario offers different levels of control and strategic 
options for the players, enabling a comprehensive exami-
nation of their decision-making processes. 

1. Backdoor game with minimum control  (BGMin ): The 
attacker controls the backdoor trigger power dur-
ing both the training and testing phases ( �tr and �ts , 
respectively), while the defender only controls their 
trigger removal power �def during the test phase.

2. Backdoor game with intermediate control  (BGInt ): 
This scenario provides the attacker with an increased 
strategic flexibility. They now also have the ability to 
manipulate the backdoor poisoning ratio αtr during 
the training phase.
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3. Backdoor game with maximum control  (BGMax ): In 
this scenario, both players are granted maximum 
control over their strategy sets. Specifically, on the 
top of BGInt , the defender now also decides whether 
or not to apply their defense to an input sample, add-
ing a decision probability αdef to their strategy set.

These configurations are designed to incrementally 
raise the complexity and autonomy in decision-making 
for both the defender and the attacker, allowing for a 
detailed exploration of their strategic behaviors and the 
potential equilibria of the game. This systematic variation 
in control settings aims to clarify the dynamics of adver-
sarial interactions and support the development of effec-
tive defensive strategies.

To keep this paper self-contained and analytically clear, we 
choose to simplify the interaction between the DNN back-
door attacker and defender into a manageable two-player 
zero-sum game, leaving a more complex bi-matrix game 
formulation for future works. This simplification focuses on 
the zero-sum aspect of the game, where one player’s gain 
is the another player’s loss, making the analysis straightfor-
ward. In so doing, we develop a utility function that encap-
sulates the dual objectives of the players: the shared goal of 
maximizing the CDA of the DNN and the players’ conflict-
ing objectives regarding the backdoor’s ASR.

3.2.2  Constructing a utility function
As the core of our game, we design an appropriate utility 
function. Based on our simplified setup as described in 
Section 3.2, we first exclude the costs related to defense 
operations (Eq. 7) and the injection of the backdoor trig-
ger (Eq. 4), along with their computational costs, as these 
are considered minor operations. Additionally, the infer-
ence time cost of the model (i.e., one forward propaga-
tion per input sample) is also disregarded. This approach 
not only streamlines our analysis but also enhances the 
generalization of our game-theoretic framework.

Therefore, in the context of backdoor attacks with an 
attacker (A) and a defender (D), the utility functions 
for A and D are formulated to capture the dynamics of 
a competitive zero-sum game, i.e., a player’s win corre-
sponds inversely to the other’s loss. For backdoor attacks, 
it is realized through the following:

where CDAinf represents the minimum acceptable 
clean data accuracy on benign samples accessible to the 
defender D. CDAinf thus implies that the defender D 
rejects DNN models when their CDA drops below some 
threshold. This is a common practice in the backdoor 

(12)
uA = ASR× 1[CDA > CDAinf ],

uD = −uA,

literature  [22] that is dependent on the defender’s mod-
els and task requirements. Concurrently, the ASR is the 
attacker A’s attack success rate, known to the game once 
a defense is applied. When factoring in the indicator 
function and CDAinf , it is understood that a backdoored 
model rejected by the defender D, because of a too low 
CDA, results in an ASR of 0% for the attacker A.

As an example, the defender D might accept an accu-
racy of 80% on some task. Given a use case where a 
benign DNN may achieve an accuracy of 90% , the 
attacker A therefore must perform a backdoor attack that 
does not result in a CDA drop of more than 10% , thus 
CDAinf = CDA− 0.1 . If the resulting CDA of a back-
doored DNN is below CDAinf , the model is rejected and 
the attacker A’s ASR is effectively null.

3.2.3  Game formalizations
Through these three scenarios with progressively larger 
sets of strategies, which reflect greater freedom of choice 
for both players, we provide a comprehensive understand-
ing of how both defender and attacker may deploy their 
strategies. This further highlights the implications these 
choices have on the security of DNNs in adversarial set-
tings and to ultimately understand who may win the game.

Definition 1 – BGMin : The backdoor game with mini-
mum control is a zero-sum, two-players, strategic game 
played by the Attacker (A) and the Defender (D), defined 
by the following strategies and utilities:

• The sets of strategies available to the attacker and the 
defender are respectively comprised of the set of all 
possible overlay power values �tr and �ts , and �def : 

• The utility functions for A and D are defined by (12).

Definition 2 – BGInt : The backdoor game with inter-
mediate control is a zero-sum, two-players, strategic 
game played by the players A and D, defined by the fol-
lowing strategies and payoffs:

• The sets of strategies available to the attacker and 
defender are respectively the set of possible values of 
�tr , �ts and αtr , and �def : 

(13)
SA = (�tr,�ts) ∈ [0, 1] × [0, 1],

SD = �def ∈ [0, 1]

(14)

SA = (αtr,�tr,�ts) ∈ [0, 1] × [0, 1] × [0, 1],

SD = �def,∈ [0, 1].
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• The utility functions for A and D are defined by (12).

Definition 3 – BGMax : The backdoor game with maxi-
mum control is a zero-sum, two-players, strategic game 
played by the players A and D, defined by the following 
strategies and payoffs:

• The sets of strategies available to the attacker and 
defender are respectively the set of possible values of 
�tr , �ts and αtr , and αdef and �def : 

• The utility functions for A and D are defined by (12).

We note that the sets of strategies that are available 
to the players A and D in the three game variants are 
defined as continuous sets. In practice, however, quan-
tization is applied. In the utility matrices, CDA and ASR 
are computed for both players after applying the defense 
strategy to the test dataset Dts as follows:

where CDAcb and CDAcp represent the test accuracy met-
rics on the benign and poisoned test sets, respectively, 
after the defense mechanism has been applied. Similarly, 
ASRcb and ASRcp indicate the attack success rates on the 
benign and poisoned test sets, respectively, following the 
application of the defense.

3.2.4  Game dynamics
The goal of our framework is to model the interaction 
between attacker and defender as a dynamic game. Such 
game is characterized by evolving finite set of strategies 
where each player’s decisions influence the subsequent 
responses of their opponent. The core rationale behind 
this formulation is to reflect the continuous adaptation 
seen in cybersecurity environments, where attackers and 
defenders dynamically adapt their tactics and strategies 
based on each other’s actions.

We thus designed our utility function, critical to any 
game-theoretic analysis, to provide a key performance 
metrics of such dynamics while keeping close to the 
backdoor literature (i.e., why we use the success rate of 
a backdoor attack (ASR) and the clean data accuracy 
(CDA) of the DNN). The utility function should therefore 
capture the effectiveness of each player’s strategies under 
the assumption of rational behavior where everyone aims 

(15)

SA = (αtr,�tr,�ts) ∈ [0, 1] × [0, 1] × [0, 1],

SD = (αdef,�def),∈ [0, 1] × [0, 1].

(16)
CDA = (CDAcb + CDAcp)/2,

ASR = (ASRcb + ASRcp)/2.

to maximize their respective outcomes under different 
level of knowledge and control.

We further note that the dynamic nature of the game 
incorporates inherent feedback mechanisms, where 
adjustments in one player’s strategy lead to poten-
tial strategy reevaluations and adjustment by the other 
player, creating a continuous interactive and interplay 
loop. Initially described as a zero-sum game, the gain of 
one player in our model equates to the loss of the other, 
which is fundamental in adversarial settings such as the 
ones explored here. Each game configuration (mini-
mal, intermediate, and maximum control) increases the 
complexity of a player’s decision-making, reflecting an 
increasingly complex real-world scenario. This rationale 
aims to highlight the value of the theoretical and practi-
cal implications of our framework in real-world adversar-
ial environments in DNN security.

Finally, we note that this paper and its framework do 
not aim to compare the performance of different back-
door attacks and defenses. Rather, this paper offers a way 
to better understand the context of their design and the 
strategic constraints and dynamics they depend on. From 
the attacker’s perspective, this will help highlight the best 
possible attack regimen and, from a system designer or 
defender side, how to better protect the running DNN in 
an adversarial environment.

3.2.5  Assumptions and limitations
Our proposed game-theoretic model operates under 
several key assumptions that are common in the lit-
erature but may limit its applicability in more complex, 
real-world scenarios. First, we assume a rational behav-
ior from both the attacker and defender, meaning each 
player is expected to make decisions that maximize their 
respective payoffs. This rationality assumption simplifies 
the analysis but may not fully capture scenarios where 
players behave unpredictably or irrationally.

Second, the game is modeled in a static environment 
where the players’ strategies and the game conditions are 
assumed to be fixed during the interaction. This assump-
tion overlooks the dynamic nature of many real-world 
systems, where strategies can evolve over time and exter-
nal factors might influence the game.

Additionally, our framework is based on a zero-sum 
game, where the gain of one player is exactly balanced by 
the loss of the other. While this is a common approach in 
modeling adversarial interactions, it assumes a direct and 
exclusive conflict of interests, which may not always hold 
true. For instance, in some scenarios, both the attacker 
and defender might incur losses simultaneously, or the 
success of one party might not entirely translate into the 
failure of the other. Such scenarios suggest the need for 
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more complex models, such as non-zero-sum games, 
where shared risks, collaborative behaviors, or external 
constraints (e.g., energy consumption, defense cost, and 
limited access to the system through APIs during infer-
ence) can be accounted for.

The assumptions made in this paper aim to establish a 
fundamental framework that is analytically tractable and 
can serve as a foundation for understanding basic adver-
sarial dynamics in backdoor attacks.

4  Experimental results
In this section, we perform a series of numerical simu-
lations of our game-theoretic framework. This frame-
work allows the study the behavior of either attacking 
or defending players given an increasingly complex 
strategy mix on either side. Doing so, we evaluate the 
performance attainable by each player and highlight the 
existence of equilibria involving either pure or mixed 
strategies. By analyzing the behavior of each player at 
these equilibria, we assess their utility and determine the 
best attainable performance for each backdoor player. 
This allows us to identify a potential winner.

As a note, we refer the reader to the Table 1 for a sum-
mary of the different notations used in this section.

4.1  Experimental setup
4.1.1  Dataset and models
We use the MNIST dataset  [45] in our numerical simu-
lations to analyze our set of games. While MNIST is 
simple, the framework can be easily translated to other 
datasets and different DNN architectures. We use a 
shallow CNN architecture set with the following layers: 
64-filter convolution, max pooling, 128-filter convolu-
tion, max pooling, 256-neuron fully-connected layer, 
and 10-neuron fully-connected layer. The kernel size of 
convolutions is set to 5. ReLU activations are used. For 
each game and strategy profile, we train the network for 
100 epochs with a batch size of 64. Following the comple-
tion of each model training, we compute the utility value 

using the resulting test CDA and ASR. This utility value 
represents a single entry in the utility matrix. The refer-
ence test accuracy of the benign model Fθ is 99.07%.

4.1.2  Game setups
As described in Section  3.2, each game includes an 
increasing number of parameters afforded to each player 
in their strategy set. The �tr , �ts , and αts parameters 
are available to the attacker, and �def and αdef to the 
defender. Table 2 summarizes the parameters in the strat-
egy set that each player exerts control over for each game 
BGMin , BGInt , or BGMax.

In the BGMin game, the poisoning ratios αtr and αts and 
the defense decision ratio αdef (i.e., the ratio of inputs on 
which the defense is applied) are all fixed to 1.0. In the 
BGInt game, the attacker incorporates αtr in their strategy. 
Finally, in BGMax , both player have access to their poison-
ing/coverage ratios. For BGMax , both players have access 
to their widest strategy set.

For each game, we quantize αtr and αdef such that 
αtr,αdef ∈ {0.05, 0.1, · · · , 0.9, 1.0} . We do the same with the 
attacker and defender’s overlay powers, �tr , �ts and �def 
such that �{tr,tr,def} ∈ {0.01, · · · , 0.09} ∪ {0.1, · · · , 0.5} . The 
maximum overlay power for the attacker is empirically 
selected by evaluating the highest achievable attack suc-
cess rate (ASR) given no defense.

In our game’s utility function, as defined in Eq. 12, we 
arbitrarily set CDAinf to 0.9, an acceptable up-to 10% drop 
in ASR in the context of the MNIST [45] dataset. Though 
this acceptable drop is larger than the 1− 2% drop typi-
cally used in the literature [22, 37], we motivate this choice 
in that it allows us to possibly capture a wider range of 
potential optima. If the CDA falls below this threshold, 
the DNN is considered useless from the defender’s per-
spective and will not be deployed. Figure 2 shows the util-
ity function plot for CDAinf = 0.5 and CDAinf = 0.9 . The 
figure illustrates that, when a defender tolerates a lower 
CDAinf , the range in which the attacker can achieve a high 
ASR increases.

During evaluation, CDAcb and CDAcp denote the test 
accuracy metrics on the benign and poisoned test sets 

Table 2 Parameter (and their value ranges) used in each game’s strategy set

Parameter control in BG setup

 Player Parameter BGMin BGInt BGMax Range

Attacker �tr � � � {0.01, · · · , 0.09} ∪ {0.1, · · · , 0.5}

Attacker �ts � � � {0.01, · · · , 0.09} ∪ {0.1, · · · , 0.5}

Attacker αtr � � {0.05, 0.1, · · · , 0.9, 1.0}

Attacker αts 1

Defender �def � � � {0.01, · · · , 0.09} ∪ {0.1, · · · , 0.5}

Defender αdef � {0.05, 0.1, · · · , 0.9, 1.0}
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after applying the defense, referred to as cleaned benign 
( cb ) and cleaned poisoned ( cp ) data, respectively (see 
Eq.  7). Similarly, ASRcb and ASRcp represent the ASR 
on the benign and poisoned test sets after applying the 
defense, respectively.

4.1.3  Backdoor attack setup
We use either the sinusoidal trigger with a frequency 
parameter of f = 6 or the ramp trigger (both drawn from 
Barni et al. [20]). The target class t of the backdoor attack 
is set to digit 3 in this paper.

4.1.4  Running experiments and result assessment
We proceed by employing utility matrices to solve our 
zero-sum games through linear programming, which 
corresponds to resolving the min-max problem stated 
in Eq. (10). The resulting utilities for each game are then 
visualized using a 2-dimensional plot, where defender 
strategies are mapped on the x-axis and attacker strat-
egies on the y-axis. Such representation offers a clear 
representation of the competitive dynamics between 

each player (see Fig.  3). Due to the extensive strategy 
sets available in different game setups, displaying every 
possible option on the two axes would be impractical. 
Therefore, we selectively chose specific strategy profiles 
to display, where equilibria tend to appear, ensuring the 
plots remain clear and informative.

As part of our experiments, we examine the dynamics 
and player strategies for all configurations BGMin , BGInt , 
and BGMax . Each game is analyzed using the flattened 
utility matrix representation mentioned above, alongside 
a summary table illustrating the performance of the play-
ers at equilibria. These tables present the optimal strategy 
profiles for both players, denoted as S∗A and S∗D , as defined 
in Section 3.2, alongside their corresponding probability 
distributions, Pr(S∗A) and Pr(S∗D) , representing pure or 
mixed Nash equilibrium strategies. In the cases where 
a pure strategy Nash equilibrium is present for either 
player, the associated probability is 1 (e.g., see Table  5). 
Conversely, instances with mixed strategy Nash equilibria 
(for either the attacker or defender) introduce a probabil-
ity distribution over the strategy profiles selected by the 

Fig. 2 Plot of the utility function uA as described in Eq. (12) for different values of CDAinf

Fig. 3 BGMin : uA with sine trigger and different αtr
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player. In such scenarios, these mixed strategies are pre-
sented across distinct columns, alongside their respective 
probabilities, Pr(S∗A) and Pr(S∗D) (e.g., see Table 4).

4.2  Results with BGMin

4.2.1  Sinusoidal trigger

Analysis of the utility matrices Using various poisoning 
ratios for the BGMin game, we observe that the attacker 
optimizes their utility uA (i.e., this reduces the defender’s 
utility uD ) by carefully selecting their strategy set values 
for their training and testing-time trigger powers ( �tr , 
�ts ). Additionally, the attacker’s utility uA increases with 
the poisoning ratio αtr , as demonstrated by different cases 
of the game’s utility matrix in Fig. 3. For instance, when 
αtr = 0.05 , the maximum uA is slightly above 0.14. This 
increases to above 0.15 when αtr = 0.5 , and to beyond 
0.16 when αtr = 1 (see also in Fig.  3). This underscores 
the importance for the attacker in having a greater access 
to the training dataset, as it helps enhance the backdoor’s 
attack success rate (ASR), to the extent that it does not 
compromise the clean data accuracy (CDA) and get dis-
covered by the defender, thereby increasing the attacker’s 
overall utility.

Overall, we observe that the attacker’s strategy profiles 
that maximize their utility consistently exhibit a fixed test 
set trigger power of �ts = 0.5 , irrespective of whether 
these points are equilibrium points for the game. This 
trend can be traced back to the consistently high utilities 
uA in the rows of the utility matrices (see the light orange 
and yellow rows in Fig.  3 when �ts = 0.5 ). However, 
when the defender employs a high defense power ( �def ), 
the attacker’s utility decreases toward zero (see the blue 
zones in the utility matrices on columns starting with 
�def ≥ 0.3 in Fig. 3 for αtr = 0.05 and αtr = 0.5).

Finally, as the poisoning ratio αtr increases, the size of the 
blue areas also increases. This is because a higher number 
of poisoned training samples makes the DNN backdoor 
more evident to the defender. For example, with αtr = 1.0 , 
all target class t samples contain the backdoor trigger.

Analysis of the equilibrium strategies To further under-
stand the dynamics of the BGMin game, we analyze 
the equilibrium strategies for both the attacker and the 
defender across different poisoning ratios αtr.

In the case with αtr = 0.05 , the poisoning ratio is very 
small. On average, the attacker poisons 306 out of the 
6,131 training samples for the target class t = 3 , mean-
ing the attacker does not have significant access to the 

training dataset. Consequently, the attacker pairs this 
low αtr , which they cannot control, with a low �tr = 0.01 
to cause poor trigger estimation by the defender. 
Additionally, using a very low testing trigger power 
�ts = 0.01 in conjunction with a high defense power 
�def = 0.5 would cause the defender to harm benign 
samples more than merely reducing the attack’s effect. 
Thus, as the pure strategy Nash Equilibrium point 
((0.01, 0.01), 0.5) results in CDA < CDAinf  , and because 
the defender, following their dominant strategy, has 
no incentive to change their strategy regardless of the 
attacker’s strategy, the recommended result would be 
for the defender to not deploy the model (see Table 3).

For the case with αtr = 0.5 , the fraction of poisoned 
samples is, on average, 50% of the target class t. Con-
sequently, the information delivered about the attack 
has increased compared to the case with αtr = 0.05 . 
The attacker exploits this fact to confuse the defender 
regarding their behavior by using a mixed strategy 
Nash equilibrium to balance between delivering infor-
mation to the defender, which worsens their trigger 
estimation. This is demonstrated by the adopted strat-
egy (0.02, 0.01) (see Table 4) and the maximizing of the 
error rate (and raising of the ASR) by assigning some 
probability to high (�tr,�ts) profiles. In response, the 
defender attempts to counter this strategy by distrib-
uting their probabilities over both high and low values 
of �def , following the attacker’s mixed strategy. Follow-
ing this scenario, the defender deploys the model as 
CDA > CDAinf  (see Table 4).

In other cases with αtr ranging from 0.1 to 0.4 and from 
0.6 to 1.0, a similar analysis applies. As the information 
delivered to the defender increases with αtr = 0.9 and 
αtr = 1.0 , the trigger estimation improves. Consequently, 
the attacker tries to balance this by using low �tr values. 
In these scenarios, the defender responds strongly by 
using high �def values. This results in the attacker losing 
the game because the defender degrades the performance 
of both poisoned and benign samples, as indicated by the 
low values of CDAcb and CDAcp . Even though this also 
degrades the attack performance on ASRcb and ASRcp , 
the defender ends up with CDA < CDAinf  , thus win-
ning the game by not deploying a non-performing model 

Table 3 Equilibrium point of BGMin : αtr = 0.05 and sine trigger

Profiles Parameters Equilibrium

Attacker S∗A = (�tr ,�ts) (0.01, 0.01)

Pr(S∗A) 1.0

Defender S∗D = (�def) 0.5

Pr(S∗D) 1.0

Utility u∗A = −u∗D = u∗ 0.0
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and preventing the attack. On the other hand, when the 
attacker uses covert strategies in all other cases (as with 
the other αtr values), the backdoored model is deployed 
even if the defender experiences a performance drop in 
terms of ASR or CDA (see Tables 5 and 6).

4.2.2  Ramp trigger

Analysis of the utility matrices We begin by examining 
the utility matrices for the BGMin game with the ramp 
trigger (see Fig.  4). While the overall utility behavior 
is similar to that of the BGMin game with the sine trig-
ger (see Section  4.2.1), a distinct trend emerges with 
the ramp trigger. Specifically, the ramp trigger results in 
broader high uA light orange and yellow regions (indicat-
ing high utility) in the attacker’s utility matrix. This sug-
gests that the strategy set beneficial for the attacker is 
comparatively larger when using the ramp trigger com-
pared to the sine trigger. However, comparing the maxi-
mum attainable utility by the attacker between the ramp 
and sine triggers (see Fig.  4 versus Fig.  3), we see that 
the sine trigger achieves a slightly higher maximum util-
ity. This observation is also reflected in the comparison 
between Table 6 and Table 10. The reason for this differ-
ence lies in the nature of the triggers: the ramp trigger 
modifies only half of the input image, whereas the sine 
trigger modifies the entire input sample, making it more 
pervasive.

This difference underscores the dataset-specific impact 
of trigger selection: different triggers can vary in their 

effectiveness and how easily they are learned by the 
model, affecting the activation patterns of relevant neu-
rons during inference and, consequently, the attack per-
formance. From the utility matrices in Fig. 4, we observe 
that, for αtr = 0.05 and αtr = 1.0 , the defender has a dom-
inant strategy at �def = 0.5 (see the dark purple zone). 
Additionally, a similar observation about the dual behav-
ior of the attacker is noted at αtr = 0.5 . Here, examining 
the �def = 0.5 column from top to bottom, we see some 
orange and yellow rows, indicating that the defender 
adjusts their dominant strategy in response to the infor-
mation level conveyed by the attacker’s dual behavior.

Analysis of the equilibrium strategies The equilib-
rium strategies for the BGMin game with the ramp trig-
ger reveal that broader utility regions offer the attacker 
increased strategic flexibility, particularly at extreme 
poisoning ratios ( αtr = 0.05 and αtr = 1.0 ). At αtr = 0.05 , 
both players decide to settle into a pure strategy Nash 
equilibrium. The attacker minimizes their trigger powers 
to (�tr,�ts) = (0.01, 0.01) to evade detection, while the 
defender responds with a strong defense at �def = 0.5 . 
This leads to a zero utility outcome for both, indicating 
a tightly contested scenario where neither side gains an 
advantage (see Table 7).

As the poisoning ratio increases to αtr = 0.5 , the 
dynamics become more intricate, resulting in a mixed 
strategy equilibrium. The attacker now employs a dual 
approach, alternating between (�tr,�ts) = (0.5, 0.03) 
with a probability of 0.557 and (0.5, 0.5) with a proba-
bility of 0.443. The defender, in turn, adjusts their strat-
egy by choosing �def = 0.4 with a probability of 0.422 
and �def = 0.5 with a probability of 0.578. This complex 
interplay reflects the attacker’s need to balance between 
maximizing their utility and minimizing detection, 
while the defender continuously adapts to these shifting 
tactics (see Table 8).

At the highest poisoning ratio, αtr = 1.0 , the attacker 
reverts to a pure strategy Nash equilibrium, again mini-
mizing trigger powers to (�tr,�ts) = (0.01, 0.01) . This 
conservative approach ensures the backdoor remains 
subtle enough to avoid triggering the defender’s coun-
termeasures. Predictably, the defender maintains their 
strategy of �def = 0.5 , resulting in a utility of 0.0 for 
both players, underscoring the equilibrium’s stability in 
this scenario (see Table 9).

Overall, as shown in Table  10, the ramp trigger’s 
broader strategic options do not necessarily trans-
late into higher utility for the attacker when compared 
to the sine trigger. The mixed strategies and varying 
effectiveness across different αtr values suggest that 

Table 4 Strategy profiles of BGMin , given αtr = 0.5 and sine trigger

Profiles Parameters Equilibria

Attacker S∗A = (�tr ,�ts) (0.02, 0.01) (0.2, 0.5) (0.3, 0.5) (0.5, 0.5)

Pr(S∗A) 0.9077 0.0001 0.0244 0.0678

Defender S∗D = (�def) 0.05 0.3 0.4 0.5

Pr(S∗D) 0.7207 0.0012 0.0095 0.2686

Utility u∗A = −u∗D = u∗ = −0.1049

Table 5 Equilibrium point of BGMin : αtr = 1.0 and sine trigger

Profiles Parameters Equilibrium

Attacker S∗A = (�tr ,�ts) (0.01, 0.01)

Pr(S∗A) 1.0

Defender S∗D = (�def) 0.5

Pr(S∗D) 1.0

Utility u∗A = −u∗D = u∗ 0.0
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despite the flexibility offered by the ramp trigger, the 
game remains balanced, with neither player achieving a 
definitive advantage.

4.2.3  Trigger mismatch

  Analysis of the utility matrices We now focus on 
the scenario where there is a mismatch between the 
attacker’s and defender’s trigger types, specifically when 

Table 6 BGMin with sine trigger: performance at the equilibrium

αtr ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.05 0.204 0.112 0.786 0.838 0.158 0.812 0.0

0.1 0.105 0.109 0.968 0.960 0.107 0.964 − 0.1039

0.2 0.105 0.119 0.964 0.950 0.112 0.957 − 0.1062

0.3 0.093 0.103 0.905 0.909 0.098 0.907 − 0.0978

0.4 0.102 0.115 0.948 0.938 0.108 0.943 − 0.1058

0.5 0.106 0.115 0.964 0.957 0.111 0.961 − 0.1049

0.6 0.103 0.096 0.926 0.898 0.099 0.912 − 0.0939

0.7 0.102 0.117 0.953 0.922 0.109 0.938 − 0.1043

0.8 0.106 0.116 0.964 0.958 0.111 0.961 − 0.1051

0.9 0.129 0.109 0.770 0.801 0.119 0.786 0.0

1.0 0.103 0.101 0.861 0.861 0.102 0.861 0.0

Fig. 4 BGMin : uA with ramp trigger and different αtr

Table 7 Equilibrium point of BGMin : αtr = 0.05 and ramp trigger

Profiles Parameters Equilibrium

Attacker S∗A = (�tr ,�ts) (0.01, 0.01)

Pr(S∗A) 1.0

Defender S∗D = (�def) 0.5

Pr(S∗D) 1.0

Utility u∗A = −u∗D = u∗ 0.0

Table 8 Strategy profiles of BGMin , given αtr = 0.5 and ramp 
trigger

Profiles Parameters Equilibria

Attacker S∗A = (�tr ,�ts) (0.5, 0.03) (0.5, 0.5)

Pr(S∗A) 0.557 0.443

Defender S∗D = (�def) 0.4 0.5

Pr(S∗D) 0.422 0.578

Utility u∗A = −u∗D = u∗ = −0.1056

Table 9 Equilibrium point of BGMin : αtr = 1.0 and ramp trigger

Profiles Parameters Equilibrium

Attacker S∗A = (�tr ,�ts) (0.01, 0.01)

Pr(S∗A) 1.0

Defender S∗D = (�def) 0.5

Pr(S∗D) 1.0

Utility u∗A = −u∗D = u∗ 0.0
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the attacker uses a sine trigger while the defender recon-
structs a ramp trigger.

This mismatch introduces additional challenges for the 
defender who, lacking precise knowledge of the attack-
er’s trigger, may adopt less optimal strategies. Despite 
this uncertainty, the general behavior of utilities in the 
BGMin game remains consistent with the matched trigger 
cases (see Fig. 5). However, the defender’s incorrect trig-
ger assumption broadens the strategy profiles, leading to 
higher attacker utility as the defender struggles to effec-
tively counter the attack. This results in strategic behav-
iors that, while similar to previous scenarios, are slightly 
more advantageous for the attacker.

Despite the mismatch, the sine trigger continues to 
be advantageous for the attacker, leading to high util-
ity regions in the utility matrices (light orange and yel-
low zones). This is particularly evident in scenarios 
with αtr = 0.5 , where the CDA remains relatively high 
for both clean and poisoned samples ( CDAcb = 0.959 , 
CDAcp = 0.951 ), but the ASR also stays notable at 

0.109. As αtr increases to 1.0, the defender’s perfor-
mance declines further, with CDA values dropping to 
CDAcb = 0.873 and CDAcp = 0.783 , while the ASR 
remains high at 0.113. These outcomes illustrate that 
a trigger mismatch, though not drastically reducing 
defender performance due to the similarity between sine 
and ramp triggers, still weakens the defender’s effective-
ness and favors the attacker (see Table 14).

Analysis of the equilibrium strategies The equilibrium 
strategies in the presence of a trigger mismatch show 
that both players must adjust their approaches due to 
the incorrect assumption made by the defender. At a 
low poisoning ratio ( αtr = 0.05 ), the attacker maintains 
a conservative strategy with the equilibrium profile 
(�tr,�ts) = (0.01, 0.01) , while the defender, unaware of 
the mismatch, continues to apply a high defense power 
�def = 0.5 . This results in a utility of zero for both play-
ers, indicating a balance where the defender’s incorrect 
assumption does not drastically change the outcome (see 
Table 11).

Table 10 BGMin with ramp trigger: performance at the equilibrium

αtr ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.05 0.204 0.183 0.771 0.697 0.1935 0.7340 0.0

0.1 0.100 0.098 0.887 0.914 0.0990 0.9005 − 0.0989

0.2 0.092 0.085 0.654 0.595 0.0885 0.6245 0.0

0.3 0.104 0.150 0.078 0.747 0.1270 0.4125 0.0

0.4 0.092 0.095 0.915 0.934 0.0935 0.9245 − 0.0936

0.5 0.098 0.113 0.958 0.934 0.1055 0.9460 − 0.1056

0.6 0.100 0.103 0.978 0.969 0.1015 0.9735 − 0.1013

0.7 0.088 0.100 0.953 0.937 0.0940 0.9450 − 0.0937

0.8 0.091 0.109 0.925 0.921 0.1000 0.9230 − 0.1002

0.9 0.100 0.109 0.964 0.947 0.1045 0.9555 − 0.1040

1.0 0.108 0.116 0.810 0.888 0.1120 0.8490 0.0

Fig. 5 BGMin : uA with trigger mismatch and different αtr
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As the poisoning ratio increases to αtr = 0.5 , the 
attacker begins to exploit the defender’s mistake more 
effectively by adopting a complex mixed strategy, with 
a notable preference for (�tr,�ts) = (0.5, 0.06) , along-
side other strategies such as (0.02, 0.05), (0.2, 0.5), and 
(0.5, 0.5). This approach reflects the attacker’s attempt 
to capitalize on the defender’s uncertainty about the 
trigger type. In response, the defender, still operat-
ing under the assumption of a ramp trigger, employs a 
mixed strategy across different defense powers, notably 
selecting �def = 0.4 with a probability of 0.6155 and 
�def = 0.5 with a probability of 0.2756. The resulting 
utility slightly favors the defender, with u∗ = −0.1047 , 
yet the presence of mixed strategies from both sides 
indicates ongoing uncertainty and a lack of dominance 
by either player (see Table 12).

At the highest poisoning ratio ( αtr = 1.0 ), the attack-
er’s strategy reverts to a pure strategy Nash equilibrium, 
favoring minimal trigger powers (�tr,�ts) = (0.01, 0.01) 
to maintain the backdoor’s persistence while mini-
mizing detection risk. Despite the mismatch in trig-
ger types, the defender’s strong defense at �def = 0.5 
neutralizes the attack, resulting in zero utility for both 
players, similar to what is observed in pure trigger 
cases. While the trigger mismatch offers the attacker 
some advantage, particularly in sustaining a higher 
ASR, it does not significantly alter the overall utility 
compared to scenarios where the trigger types match 
(see Table  13). The performance metrics confirm this 
outcome, indicating that the overall dynamics remain 
balanced even with the mismatch (see Table 14).

4.3  Results with BGInt

In this section, we analyze the results obtained from 
the BGInt game setup, where the attacker has full con-
trol over the dataset and can decide both the fraction of 
samples to poison and the power of the attack.

4.3.1  Sinusoidal trigger

Analysis of the utility matrix In the BGInt game with a 
sine trigger, the attacker has full access to the dataset and 
can strategically decide the fraction of samples to poison 
alongside their attack power. The utility matrix for the 
attacker in BGInt , as illustrated in Fig. 6, exhibits behav-
ior similar to that observed in the BGMin game, particu-
larly showing low attacker utility ( uA ) for columns where 
the defender’s power �def > 0.3 . This similarity suggests 
that increasing the defender’s defense power significantly 
hampers the attacker’s ability to execute a successful 
backdoor attack, especially when the defense power is 
strong enough to detect and mitigate the effects of the 
trigger. Additionally, the attacker’s utility increases with 
the poisoning ratio ( αtr ). Higher utilities are observed for 
more rows of the (�tr,�ts) profiles since the attacker has 
a greater flexibility in balancing strategies regarding the 
amount of poisoned samples and the trigger power. This 
flexibility allows the attacker to optimize their strategy 
more effectively, resulting in more high-utility rows (light 
orange and yellow) in the utility matrix.

The attacker’s utility in the BGInt game with a sine trig-
ger increases with the poisoning ratio αtr , indicating that 
the more samples the attacker can poison, the greater 
their potential utility. A higher poisoning ratio improves 
the likelihood that the backdoor trigger will be effective 
during the testing phase, thereby enhancing the attack’s 
success rate (ASR). However, as αtr increases excessively 
(i.e., 0.9 and above), the attack becomes more apparent 
to the defender, resulting in the appearance of low-util-
ity (blue) rows at the bottom of the utility matrix, where 
uA = 0 . These low-utility strategies should be avoided by 
the attacker.

Table 11 Equilibrium points of BGMin : αtr = 0.05 with trigger 
mismatch

Profiles Parameters Equilibrium

Attacker S∗A = (�tr ,�ts) (0.01, 0.01)

Pr(S∗A) 1.0

Defender S∗D = (�def) 0.5

Pr(S∗D) 1.0

Utility u∗A = −u∗D = u∗ 0.0

Table 12 Equilibrium point of BGMin : αtr = 0.5 with trigger 
mismatch

Profiles Parameters Equilibria

Attacker S∗A = (�tr ,�ts) (0.02, 0.05) (0.2, 0.5) (0.5, 0.06) (0.5, 0.5)

Pr(S∗A) 0.2594 0.0557 0.6400 0.0449

Defender S∗D = (�def) 0.2 0.3 0.4 0.5

Pr(S∗D) 0.6155 0.0975 0.0114 0.2756

Utility u∗A = −u∗D = u∗ = −0.1047

Table 13 Equilibrium point of BGMin: αtr = 1.0 with trigger 
mismatch

Profiles Parameters Equilibrium

Attacker S∗A = (�tr ,�ts) (0.01, 0.01)

Pr(S∗A) 1.0

Defender S∗D = (�def) 0.5

Pr(S∗D) 1.0

Utility u∗A = −u∗D = u∗ 0.0
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Unlike in the BGMin game, there is no dominant strat-
egy for either player in BGInt . This absence of a dominant 
strategy likely stems from the variable αtr , which was 
fixed in BGMin . Consequently, the utility matrix in BGInt 
does not contain fully low-utility (purple) columns, lead-
ing both players to adopt mixed strategies that involve 
different power levels of their strategy profiles.

Analysis of the equilibrium strategies The equilib-
rium analysis in the BGInt game reveals that the attacker 
employs a mixed strategy with a strong preference for 
the profile (αtr,�tr,�ts) = (0.2, 0.2, 0.05) , selected with a 

high probability of 0.8504. This choice indicates that the 
attacker strategically balances the poisoning ratio with 
moderate trigger powers to optimize the ASR while mini-
mizing the risk of detection. The remaining strategies 
have significantly lower probabilities, serving as fallback 
options or less favored strategies to maintain uncertainty 
and keep the defender off balance. On the other hand, the 
defender’s strategy distribution is more dispersed, show-
ing a cautious approach to selecting defense powers. The 
defender frequently opts for lower �def values, particu-
larly 0.04 and 0.06, which are chosen with probabilities 
of 0.3914 and 0.3329, respectively. This suggests that even 

Table 14 BGMin with trigger mismatch: performance at the equilibrium

αtr ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.05 0.131 0.130 0.832 0.805 0.131 0.819 0.0

0.1 0.103 0.098 0.825 0.683 0.101 0.754 0.0

0.2 0.102 0.117 0.971 0.945 0.110 0.958 − 0.1052

0.3 0.099 0.128 0.902 0.858 0.114 0.880 0.0

0.4 0.102 0.105 0.975 0.972 0.104 0.974 − 0.1021

0.5 0.105 0.112 0.959 0.951 0.109 0.955 − 0.1047

0.6 0.102 0.102 0.909 0.924 0.102 0.917 − 0.0996

0.7 0.099 0.110 0.973 0.959 0.105 0.966 − 0.1012

0.8 0.104 0.134 0.956 0.910 0.119 0.933 − 0.1169

0.9 0.090 0.098 0.918 0.883 0.094 0.901 − 0.0943

1.0 0.098 0.128 0.873 0.783 0.113 0.828 0.0

Fig. 6 BGInt : uA and sine trigger
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minimal defense efforts can effectively neutralize the 
attack under certain conditions, reflecting the defender’s 
intent to maintain a high level of defense across various 
scenarios (see Table 15).

At equilibrium, the performance metrics show that 
the attacker achieves a modest ASR of 0.11635, while the 
defender successfully preserves high CDA values, under-
scoring the effectiveness of the defender’s strategy. This 
balance results in a utility of u∗ = −0.1078 for both play-
ers, highlighting the competitive nature of the game where 
neither player can dominate completely. The attacker’s 
dominant strategy allows them to maintain a reasonable 
ASR, while the defender’s mixed strategy effectively miti-
gates the attack’s impact, demonstrating the complex stra-
tegic interplay between the two players (see Table 16).

4.3.2  Ramp trigger

Analysis of the utility matrices The utility matrices for the 
attacker in the BGInt game under the ramp trigger scenario 
demonstrate behaviors similar to the ones observed with the 
sine trigger. As shown in Fig. 7, the attacker does not have a 
clearly dominant strategy, reflecting the complexity of the 
interaction between the attacker’s choices and the defend-
er’s countermeasures. The utility for both the attacker and 
the defender at equilibrium is u∗ = −0.1059 , suggesting a 
near-equilibrium state where neither player can significantly 
improve their position unilaterally (see Table 17).

Analysis of the equilibrium strategies Under the ramp 
trigger, the attacker’s mixed strategy is more varied, 
including three profiles: (αtr,�tr,�ts) = (0.05, 0.05, 0.02) , 

(0.5, 0.5, 0.1), and (0.8, 0.4, 0.5). These profiles are chosen 
with probabilities of 0.0666, 0.7529, and 0.1805, respec-
tively. This distribution indicates that the attacker might 
adopt a higher trigger power when paired with a signifi-
cant poisoning ratio, reflecting a more aggressive strat-
egy compared to the sine trigger scenario. The defender’s 
strategy set includes a preference for �def = 0.4 , which 
is chosen with the highest probability, reflecting an opti-
mal balance between resource allocation and defensive 
effectiveness.

The equilibrium performance metrics for the ramp 
trigger indicate an ASR of 0.111 and a CDA of 0.942, 
slightly lower than the sine trigger case, but still reflecting 
an effective defense (see Table 18).

4.3.3  Trigger mismatch

Analysis of the utility matrices In the trigger mismatch 
scenario, where the attacker deploys a sine trigger and 
the defender mistakenly counters with a ramp trigger, 
the dynamics of the BGInt game reveal notable variations 
in strategy effectiveness compared to matching trigger 
cases.

The attacker’s utility matrix (Fig.  8) demonstrates that 
despite the defender’s misjudgment, the attacker main-
tains high utility across several strategy profiles, indi-
cating the robustness of the sine trigger. This resilience 
is particularly evident when the defender’s defense 
power ( �def ) is not optimally aligned with the actual 
trigger, allowing the attacker to sustain an advantage 
similar to that in matched trigger scenarios. The flex-
ibility afforded by the variable poisoning ratio αtr in the 
BGInt setup further enhances the attacker’s ability to 

Table 15 Equilibrium point of BGInt with sine trigger

Profiles Parameters Equilibria

Attacker S∗A = (αtr ,�tr ,�ts) (0.2, 0.2, 0.05) (0.3, 0.4, 0.5) (0.9, 0.09, 0.3) (0.9, 0.09, 0.5) -

Pr(S∗A) 0.8504 0.1225 0.0127 0.0144 -

Defender S∗D = (�def) 0.04 0.06 0.3 0.4 0.5

Pr(S∗D) 0.3914 0.3329 0.0116 0.0014 0.2627

Utility u∗A = −u∗D = u∗ = −0.1078

Table 16 BGInt with sine trigger: performance at the equilibrium

ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.1088 0.1239 0.9617 0.9515 0.11635 0.9566 − 0.1078
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optimize their strategy, as reflected in the frequent light 
orange/yellow zones within the utility matrix in Fig. 8. 
In contrast to the BGMin scenario, where the fixed αtr 
constrained the attacker’s options, the BGInt game 
underscores the critical role of accurate trigger identifi-
cation; the defender’s lack of knowledge about the exact 
trigger leads to suboptimal defense strategies, provid-
ing the attacker with more opportunities to exploit the 
mismatch.

Analysis of the equilibrium strategies In the trigger mis-
match scenario for the BGInt game, where the attacker 
uses a sine trigger while the defender assumes a ramp 

trigger, the attacker’s strategy heavily favors the profile 
(αtr,�tr,�ts) = (0.8, 0.5, 0.4) , selected with a high prob-
ability of 0.8652. This choice likely reflects the attacker’s 
intent to exploit the mismatch by increasing both the poi-
soning ratio and trigger powers to maximize the impact. 
The defender, on the other hand, adopts a more distrib-
uted approach with defense power levels �def = 0.3 , 
�def = 0.4 , and �def = 0.5 , with probabilities of 0.4984, 
0.31, and 0.1916, respectively. This strategy distribu-
tion indicates the defender’s uncertainty about the exact 
nature of the attack, leading to a varied defense approach 
that aims to balance the potential threat while minimiz-
ing the impact on CDA (see Table 19).

Fig. 7 BGInt : uA and ramp trigger

Table 17 Equilibrium point of BGInt with ramp trigger

Profiles Parameters Equilibria

Attacker S∗A = (αtr ,�tr ,�ts) (0.05, 0.05, 0.02) (0.5, 0.5, 0.1) (0.8, 0.4, 0.5) -

Pr(S∗A) 0.0666 0.7529 0.1805 -

Defender S∗D = (�def) 0.2 0.3 0.4 0.5

Pr(S∗D) 0.0152 0.0438 0.7595 0.1815

Utility u∗A = −u∗D = u∗ = −0.1059

Table 18 BGInt with ramp trigger: performance at the equilibrium

ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.108 0.114 0.941 0.943 0.111 0.942 − 0.1059
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The performance metrics at equilibrium, as shown in 
Table  20, reveal an ASR of 0.12025 and a CDA of 0.944, 
with a utility value of u∗ = −0.1193 for both players. 
These results suggest that the trigger mismatch scenario 
introduces additional challenges for the defender, slightly 
increasing the attack’s effectiveness compared to uniform 
trigger scenarios. The mismatch complicates the defender’s 
ability to predict the attacker’s actions accurately, necessi-
tating a more cautious and varied defense strategy to main-
tain effective protection against the attack.

4.4  Results with BGMax

In this section, we present the results from the BGMax 
game, our most comprehensive game setup, where the 
defender’s decision-making incorporates the probabil-
ity of defending against an incoming sample, denoted 
as αdef . This setup extends the framework of the BGInt 
game, providing the defender with greater flexibility to 
balance the likelihood of an attack and the strength of 
their defense.

4.4.1  Sinusoidal trigger

Analysis of the utility matrix The utility matrix for the 
BGMax game under the sinusoidal trigger scenario shows 
a pattern consistent with that observed in the BGInt 
game. However, the repetition across different defender 
decision ratios ( αdef ) becomes more pronounced as αdef 
increases (see Fig. 9). The attacker’s utility decreases sig-
nificantly in the lower rows and columns where �def and 
αdef are high, reflecting a more conspicuous attack that is 
easily detected by the defender. Consequently, this results 
in lower utility scores for the attacker in these regions, as 
indicated by the dark purple areas in the matrix, where 

Fig. 8 BGInt : uA with trigger mismatch

Table 19 Equilibrium point of BGInt with trigger mismatch

Profiles Parameters Equilibria

Attacker S∗A = (αtr ,�tr ,�ts) (0.8, 0.4, 0.3) (0.8, 0.4, 0.5) (0.8, 0.5, 0.4)

Pr(S∗A) 0.1021 0.0327 0.8652

Defender S∗D = (�def) 0.3 0.4 0.5

Pr(S∗D) 0.4984 0.31 0.1916

Utility u∗A = −u∗D = u∗ = −0.1193

Table 20 BGInt with trigger mismatch: performance at the equilibrium

ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.1008 0.1397 0.973 0.915 0.12025 0.944 − 0.1193
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uA = 0 . The absence of a dominant strategy in this sce-
nario leads both players to adopt mixed strategies at the 
Nash equilibrium.

Analysis of the equilibrium strategies In the sine trigger 
scenario, the attacker employs various strategies with sig-
nificant probabilities assigned to several profiles, particu-
larly (αtr,�tr,�ts) = (0.4, 0.2, 0.09) and (0.7,  0.5,  0.06), 
which are selected with probabilities of 0.2142 and 0.212, 
respectively (see Table 21). The defender, meanwhile, dis-
tributes their strategy across multiple profiles, with a pref-
erence for higher αdef values. The strategies (0.8, 0.5) and 

(0.9, 0.5) are chosen most frequently, reflecting the defend-
er’s focus on maintaining strong defense as αdef increases. 
The performance metrics at equilibrium, as shown in 
Table  22, indicate an ASR of 0.10775 and CDA values of 
0.9034 and 0.8864 for clean and poisoned data, respectively. 
The equilibrium utility for both players is u∗ = −0.0636 , 
suggesting that while the defender maintains effective 
defense, the attack’s subtlety is key to its limited success.

4.4.2  Ramp trigger

Analysis of the utility matrix The utility matrix for the 
BGMax game under the ramp trigger scenario reveals 

Fig. 9 BGMax : uA and sine trigger

Table 21 Equilibrium points of BGMax with sine trigger

Profiles Parameters Equilibria

Attacker S∗A = (αtr ,�tr ,�ts) (0.4,0.2,0.09) (0.7,0.5,0.02) (0.7,0.5,0.06) (0.7,0.5,0.09) (0.7,0.5,0.2)

Pr(S∗A) 0.2142 0.0042 0.212 0.1519 0.1838

Defender S∗D = (αdef ,�def) (0.05,0.5) (0.1,0.5) (0.2,0.5) (0.4,0.5) (0.6,0.5)

Pr(S∗D) 0.0334 0.1097 0.0484 0.0167 0.1001

Utility u∗A = −u∗D = u∗ = −0.0636

Attacker S∗A = (αtr ,�tr ,�ts) (0.7,0.5,0.3) (0.8,0.4,0.1) (0.8,0.5,0.02) (0.8,0.5,0.03)

Pr(S∗A) 0.0736 0.0011 0.0154 0.1438

Defender S∗D = (αdef ,�def) (0.7,0.5) (0.8,0.5) (0.9,0.5) (1,0.5)

Pr(S∗D) 0.1307 0.2439 0.2013 0.1158

Utility u∗A = −u∗D = u∗ = −0.0636
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more dense orange areas compared to the sine trigger, 
indicating that the ramp trigger conveys less information 
in poisoned samples (see Fig. 10). This results in a lower 
maximum utility for the attacker, as evidenced by the 
matrix’s structure, which leads to a more cautious defen-
sive strategy from the defender. The lack of dominant 
strategy in this scenario compels both players to adopt 
mixed strategies, focused on optimizing their outcomes 
while minimizing the risk of detection.

Analysis of the equilibrium strategies In the ramp trig-
ger scenario, the attacker’s equilibrium strategies include 
profiles such as (αtr,�tr,�ts) = (0.5, 0.5, 0.08) , which is 
heavily favored with a probability of 0.5555 (see Table 23). 
The defender’s strategy distribution shifts towards mod-
erate defense levels, with αdef = 0.3 being the most prob-
able at 0.3447. The performance metrics at equilibrium, 
presented in Table 24, show CDAcb and CDAcp values of 
0.917 and 0.914 for clean and poisoned data, respectively, 
with an ASR of 0.09705 and a utility of u∗ = −0.0966 . 
These results highlight the ramp trigger’s less aggressive 

nature, leading to a more balanced scenario where nei-
ther player can significantly improve their outcomes.

4.4.3  Trigger mismatch

Analysis of the utility matrix In the trigger mismatch 
scenario, where the attacker uses a sine trigger while the 
defender deploys a ramp trigger, the utility dynamics shift 
significantly, introducing additional complexity into the 
game.

Although the behavior of the utilities for the same 
strategy sets remains consistent with scenarios involv-
ing uniform triggers, the mismatch complicates the 
defender’s ability to effectively counter the attack. This 
complexity is reflected in the attacker’s utility matrix 
(Fig.  11), where more strategy profiles yield high util-
ity for the attacker due to the defender’s lack of precise 
knowledge about the trigger in use. The increased fre-
quency of orange and yellow zones in the utility matrix 
suggests that the attacker benefits from the defender’s 
uncertainty, allowing them to exploit the mismatch 
more effectively.

Table 22 BGMax with sine trigger: performance at the equilibrium

ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.1075 0.108 0.9034 0.8864 0.10775 0.8949 − 0.0636

Fig. 10 BGMax : uA and ramp trigger



Page 23 of 26Kallas et al. EURASIP Journal on Information Security         (2024) 2024:32  

This scenario underscores the importance of the 
defender’s ability to correctly anticipate or identify the 
type of trigger used by the attacker, as misjudgment 
leads to suboptimal defense strategies and a broader 
distribution of high-utility strategies for the attacker.

Analysis of the equilibrium strategies In the trigger mis-
match scenario with BGMax , the attacker shows a strong 

preference for the strategy (αtr,�tr,�ts) = (0.7, 0.5, 0.05) , 
with a dominant probability of 0.7227 (see Table  25), 
likely reflecting an attempt to maximize the attack suc-
cess rate (ASR) while maintaining a relatively low trig-
ger power to evade detection. Conversely, the defender’s 
strategy is more distributed across various profiles, with 
the most probable being (αdef,�def) = (1, 0.5) , selected 
with a probability of 0.2111. This broader distribution 

Table 23 Equilibrium points of BGMax with ramp trigger

Profiles Parameters Equilibria

Attacker S∗A = (αtr ,�tr ,�ts) (0.5,0.5,0.03) (0.5,0.5,0.06) (0.5,0.5,0.08) (0.6,0.5,0.2) (0.7,0.5,0.5)

Pr(S∗A) 0.0072 0.0128 0.5555 0.0189 0.1036

Defender S∗D = (αdef ,�def) (0.05,0.5) (0.1,0.5) (0.2,0.5) (0.3,0.5) (0.4,0.5)

Pr(S∗D) 0.0178 0.1636 0.299 0.3447 0.0249

Utility u∗A = −u∗D = u∗ = −0.0966

Attacker S∗A = (αtr ,�tr ,�ts) (0.8,0.4,0.04) (0.8,0.4,0.08) (0.8,0.4,0.02) (0.8,0.4,0.4)

Pr(S∗A) 0.0184 0.1384 0.1361 0.0091

Defender S∗D = (αdef ,�def) (0.5,0.5) (0.6,0.5) (0.7,0.5) (1,0.5)

Pr(S∗D) 0.0356 0.0081 0.0924 0.0139

Utility u∗A = −u∗D = u∗ = −0.0966

Table 24 BGMax with ramp trigger: performance at the equilibrium

ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.0951 0.099 0.917 0.914 0.09705 0.9155 − 0.0966

Fig. 11 BGMax : uA with trigger mismatch
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indicates the defender’s difficulty in effectively countering 
an unexpected trigger type. The performance metrics, as 
shown in Table 26, demonstrate that the defender’s per-
formance is compromised compared to uniform trigger 
cases, with CDA values dropping to CDAcb = 0.935 and 
CDAcp = 0.8962 , and an ASR of 0.1018. The utility at 
equilibrium is u∗ = −0.0953 , highlighting the advantage 
gained by the attacker in the mismatched trigger scenario 
due to the defender’s increased challenge in adapting 
their strategy.

5  Conclusions and future works
In this paper, we proposed a novel game-theoretic frame-
work to model the interaction between an attacker and a 
defender in the context of a DNN backdoor attack. Our 
framework introduced a utility function that integrates 
clean data accuracy (CDA) and attack success rate (ASR), 
formulating the backdoor attack as a two-player zero-
sum game, and provided flexibility with respect to the 
level of control afforded to each player. Through numeri-
cal simulations, we demonstrated the effectiveness of the 
proposed framework and found insightful equilibrium 
strategies, thus evaluating player’s performances at the 
equilibrium.

We explored three different game setups with varying 
levels of control: BGMin , BGInt , and BGMax . In BGMin , the 
attacker controlled the trigger power during training and 
testing, while the defender controlled the trigger removal 
power during testing. BGInt extended this by allowing the 
attacker to control the poisoning ratio during training. 
BGMax further allowed the defender to decide whether 

to apply the defense to an input sample, adding a deci-
sion probability into their strategy set. These setups were 
chosen to reflect different real-world scenarios, ranging 
from minimal to maximum strategic complexity, thus 
providing a comprehensive analysis of attacker-defender 
dynamics.

A key finding was the paradox faced by the attacker, 
where increasing the attack power or poisoning ratio 
improved the attack’s success but also made the attack 
more detectable and the trigger easier to estimate by 
the defender. This led to the attacker having to balance 
between delivering sufficient information to the DNN 
to learn the backdoor and avoiding revealing too much 
information to the defender. As the attacker’s free-
dom increased (from BGMin to BGMax ), the strategies 
employed became more sophisticated, often involv-
ing mixed strategies to maintain unpredictability. This 
increased the complexity of the game and required the 
defender to adapt by also employing mixed strategies, 
particularly in scenarios where no single strategy was 
dominant.

In all cases, the defender aimed to maximize the clean 
data accuracy, while minimizing the attack success rate. 
The defender’s strategies involved using high trigger 
removal power when the attack was more apparent and 
balancing between different levels of defense power to 
counter the attacker’s mixed strategies. The effectiveness 
of the defender’s strategies was evident in maintaining a 
high clean data accuracy, even in the face of sophisticated 
attacks. Other important findings include the observa-
tion that fully utilizing one’s capacity is a suboptimal 
strategy for either attacker or defender when maximizing 
their utilities. The attacker must find a balance between 

Table 25 Equilibrium point of BGMax with trigger mismatch

Profiles Parameters Equilibria

Attacker S∗A = (αtr ,�tr ,�ts) (0.7,0.5,0.05) (0.7,0.5,0.1) (0.8,0.4,0.05) (0.8,0.4,0.1) (0.8,0.5,0.01)

Pr(S∗A) 0.7227 0.0024 0.0361 0.0129 0.0050

Defender S∗D = (αdef ,�def) (0.1,0.5) (0.2,0.5) (0.3,0.5) (0.4,0.5) (0.5,0.5)

Pr(S∗D) 0.0176 0.1366 0.0209 0.1174 0.0741

Utility u∗A = −u∗D = u∗ = −0.0953

Attacker S∗A = (αtr ,�tr ,�ts) (0.8,0.5,0.02) (0.8,0.5,0.05) (0.8,0.5,0.07) (0.8,0.5,0.4)

Pr(S∗A) 0.0067 0.0129 0.0058 0.1805

Defender S∗D = (αdef ,�def) (0.7,0.5) (0.8,0.5) (0.9,0.5) (1,0.5)

Pr(S∗D) 0.0276 0.0118 0.0163 0.2111

Utility u∗A = −u∗D = u∗ = −0.0953

Table 26 BGMax with trigger mismatch: performance at the equilibrium

ASRcb ASRcp CDAcb CDAcp ASR CDA u∗

0.0915 0.112 0.935 0.8962 0.1018 0.9156 − 0.0953



Page 25 of 26Kallas et al. EURASIP Journal on Information Security         (2024) 2024:32  

inducing errors and minimizing information conveyed 
to the defender, while the defender must minimize attack 
risks while preserving benign samples.

Future research could extend this framework in several 
key directions. One significant area for expansion is multi-
agent settings, such as scenarios with multiple attackers 
or the involvement of third parties. For instance, in feder-
ated learning, where attackers might strike during the same 
training round or communicate with each other, the dynam-
ics could evolve into more complex forms like sequential 
games, Bayesian games, or games with incomplete informa-
tion. These variations would add layers of complexity to the 
model, requiring substantial modifications to the game defi-
nition and framework, but they would also provide a more 
accurate reflection of real-world conditions. Further exten-
sions could explore dynamic strategies, where attackers and 
defenders adapt over time based on ongoing observations, 
offering deeper insights into practical applications. Addi-
tionally, investigating the level of information exchanged 
between players could quantify strategic advantages from an 
information-theoretic perspective. Incorporating more var-
ied attack and defense mechanisms, especially in contexts 
like transfer learning and federated learning, would enhance 
the framework’s robustness and generalizability. Testing the 
framework on larger datasets and more complex models, 
such as those in autonomous driving and healthcare, would 
be essential for assessing scalability and practicality. Finally, 
exploring collaborative defense approaches, where multiple 
defense techniques share information to counteract a com-
mon attacker, could refine the game-theoretic approach, 
improving the security of deep neural networks across vari-
ous domains.

In future work, we also plan to explore non-zero-sum 
game formulations, which better capture the complexi-
ties of real-world adversarial interactions. For example, in 
federated learning, attackers might aim not only to disrupt 
a system but also to avoid detection, leading to scenarios 
where both parties incur non-opposing losses or gains. 
Additionally, incorporating third-party entities or exter-
nalities could necessitate more sophisticated models, such 
as cooperative or Bayesian games, to account for variable 
total payoffs. These extensions will provide a more compre-
hensive understanding of the strategic interplay between 
attackers and defenders in diverse adversarial settings.
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