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ABSTRACT

The connection between variational autoencoders (VAEs) and compression is well
established and they have been used for both lossless and lossy compression.
Compared to VAEs, importance-weighted autoencoders (IWAEs) achieve a larger
bound on the log-likelihood. However, it is not well understood whether a simi-
lar connection between IWAEs and compression exists and whether the improved
loss corresponds to better compression performance. Here we show that the loss
of IWAEs can indeed be interpreted as the cost of lossless or lossy compression
schemes, and using IWAEs for compression can lead to small improvements in
performance.

1 INTRODUCTION

Variational autoencoders (VAEs; Kingma and Welling, 2014; Rezende et al., 2014) are generative
models of the form p(x) =

∑
z p(x | z)p(z) together with an approximate posterior q(z | x).

Using bits-back coding, they can be used to losslessly compress data with an expected coding cost
corresponding to the negative evidence lower bound (ELBO) of the VAE (Hinton and van Camp,
1993; Frey and Hinton, 1996; Townsend et al., 2018):

DKL[q(z | x) ‖ p(z)]︸ ︷︷ ︸
Rate

+Eq[− log p(x | z)]︸ ︷︷ ︸
Distortion

= −

ELBO︷ ︸︸ ︷
Eq

[
log

p(x, z)

q(z | x)

]
︸ ︷︷ ︸

Coding cost

≥ − log p(x). (1)

In lossy compression, VAEs have been used to approximate rate-distortion trade-offs during training
(Ballé et al., 2017; Theis et al., 2017). The relationship between the ELBO and a rate-distortion
trade-off has further been shown to be exact for additive uniform noise (Agustsson and Theis, 2020).

In this paper we will draw connections between compression and importance weighted autoencoders
(IWAEs; Burda et al., 2016). The loss of an IWAE is given by

Eq

[
− log

p(x, z)

q(z | x)

]
︸ ︷︷ ︸

VAE

≥ Eq

[
− log

1

N

N∑
n=1

p(x, zn)

q(zn | x)

]
︸ ︷︷ ︸

IWAE

≥ − log p(x). (2)

Here, the expectation is over N independent samples from q. Given that the IWAE loss is less or
equal that of a VAE, it is natural to ask whether the IWAE can lead to an improvement in compression
performance. In the following, we answer this question positively by showing that the IWAE loss
can be interpreted as the cost of a compression scheme, for both the lossless and lossy case.

2 RELATED WORK

The compression viewpoint on VAEs has yielded insights into VAE behavior. For example, posterior
collapse is undesirable and a non-trivial property from a representation learning view (e.g., Phuong
et al., 2018), but it is expected and even desired from a compression point of view since matching
the prior is saving bits (Chen et al., 2017). The compression viewpoint on VAEs has also brought
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insights from generative modeling to compression. For example, Yang et al. (2020) recently demon-
strated improvements in lossy compression by applying various inference techniques. In particular,
iterative inference normally used to reduce the amortization gap (Campos et al., 2019) was shown
to also find better codes in a lossy neural compression scheme.

Similarly, our goal is to provide a compression viewpoint on IWAEs. This is in contrast to prior
work that also reframes IWAEs but mainly studies them for their ability to better approximate the
posterior over latents in a generative model (e.g., Bachman and Precup, 2015; Rainforth et al., 2018;
Yang et al., 2020; Finke and Thiery, 2019; Lawson et al., 2019), not their ability to compress data.

Our work reflects the theme of tailoring coding algorithms for various types of generative models.
Arithmetic coding (Rissanen, 1976) and asymmetric numeral systems (Duda, 2013) solve the coding
problem for autoregressive models. Bits-back coding (Wallace and Boulton, 1968; Hinton and van
Camp, 1993; Frey and Hinton, 1996) is suited for VAEs (Townsend et al., 2018; Kingma et al.,
2019; Townsend et al., 2018) and has been adapted for flow models (Ho et al., 2019). Reverse
channel coding techniques are also suitable for VAEs (Havasi et al., 2019; Flamich et al., 2020). In
this paper, we follow this theme by proposing coding algorithms for IWAEs.

3 LOSSLESS COMPRESSION

Bits-back coding Bits-back coding attains a coding cost given by the negative ELBO of a VAE,
provided access to a coding procedure for p(x | z), p(z), and q(z | x). Assuming that one is willing
to transmit extra random auxiliary bits, the sender follows these steps to encode x:

1. Decode z ∼ q(z | x) from the source of auxiliary bits
2. Encode x using p(x | z)

3. Encode z using p(z)

The receiver decodes (z,x) using p(z)p(x | z), then it re-encodes z using q(z |x). Re-encoding
recovers the auxiliary bits that the sender used to sample z. Not counting the auxiliary bits, the net
number of bits needed to encode x is the negative ELBO of the VAE (e.g., Townsend et al., 2018).
The coding cost savings due to the entropy of q are only possible if auxiliary bits are available, for
example if multiple data points are sent in sequence.

Bits-back coding for importance weighted autoencoders We now show how to apply bits-back
coding to the IWAE. We first expand the IWAE objective:

E

[
− log

1

N

N∑
n=1

p(x, zn)

q(zn | x)

]
= E

− log
∑
n

1

N
p(x, zn)

∏
m 6=n

q(zm | x) +
∑
n

log q(zn | x)

 (3)

This suggests a coding scheme where −
∑

n log q(zn | x) bits are saved by decoding z1:N indepen-
dently from auxiliary bits. We only have to show that we can encode (x, z1:N ) into

l(x, z1:N ) = − log
∑
n

1

N
p(x, zn)

∏
m6=n

q(zm | x) (4)

bits to achieve the IWAE objective. If we define the notation

P (n) = 1/N and p̃(x, z1:N | n) = p(x | zn)p(zn)
∏
m 6=n

q(zm | x), (5)

then we see that
l(x, z1:N ) = − log

N∑
n=1

P (n)p̃(x, z1:N | n) (6)

is the codelength of what appears to be a mixture model over N components. Now we can intro-
duce our idea: we can achieve this codelength by treating n as a latent variable to be transmitted
stochastically using bits-back. The optimal way of doing so is with the true posterior,

Q(n | x, z1:N ) =
p̃(x, z1:N | n)∑N

m=1 p̃(x, z1:N | m)
=

p(x | zn)p(zn)/q(zn | x)∑N
m=1 p(x | zm)p(zm)/q(zm | x)

, (7)
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which is tractable to calculate since N is generally not too large. The complete bits-back coding
scheme for the sender is as follows:

1. Decode z1, . . . , zN ∼ q(z | x). (Saves
∑

n− log q(zn | x) bits.)
2. Decode n ∼ Q(n | x, z1:N ). (Saves − logQ(n | x, z1:N ) bits.)
3. Encode (x, z1:N ) using p̃(x, z1:N | n) = p(x | zn)p(zn)

∏
m 6=n q(zm | x):

(a) Encode z1:N\n using q(z | x). (Costs
∑

m 6=n− log q(zm | x) bits.)
(b) Encode x using p(x | zn). (Costs − log p(x | zn) bits.)
(c) Encode zn using p(z). (Costs − log p(zn) bits.)

4. Encode n using P (n). (Costs − logP (n) = logN bits.)

The decoding steps save bits because the receiver is able to recover the auxiliary bits needed to sam-
ple the latents (z1, . . . , zN , n), and one can verify that summing the coding cost contributions above
yields the IWAE objective. Interestingly, the first two steps of the sender resemble the sampling-
importance-resampling algorithm of Cremer et al. (2017), who devised a method to modify a given
VAE’s approximate posterior to make its ELBO equal to or better than the IWAE objective.

Our coding procedure allows the user to bring the coding cost arbitrarily close to the theoretical
optimum − log p(x) by increasing the number of IWAE samples N . The tradeoff is that increasing
N increases the number of auxiliary bits required to attain the IWAE objective, because auxiliary
bits are needed to decode all of the N latents. Thus our scheme may only be practical if N is chosen
adaptively over the course of sending a long sequence of data.

4 LOSSY COMPRESSION

Softmin coding Consider a lossy compression scheme where we first try to encode the same input
multiple times. We do this either using different encoders or, if our encoder is stochastic, by running
the same encoder multiple times. For each of the N attempts, we can measure a rate-distortion loss:

#1 + λd1, #2 + λd2, . . . , #N + λdN .

In the following discussion it will be convenient to assume that the coding cost #n is measured
in nats. dn is the distortion achieved by the n-th code and λ controls how much we care about
distortion relative to the coding cost.

We could now chose to use the code with smallest rate-distortion cost. Importantly, we then also
have to communicate to the decoder the index n∗ of the encoding used. If we uniformly encode
n∗, then the additional cost is lnN nats. But in general it could be − lnP (n∗) for some probability
distribution P (n). To minimize the overall cost, we should pick

n∗ = argminn (#n + λdn − lnP (n)) . (8)

Since we are free to choose P (n), we could randomly generate the probabilities every time we
encode data. As long as our probabilities do not depend on the data, we are able to generate them
both on the encoder and the decoder side using, for example, a pseudorandom number generator
with a common seed. We choose to generate the probabilities as follows:

P (n) =
S−1n∑N

m=1 S
−1
m

, Sn ∼ Exp(1). (9)

For reasons that will become clear in a moment, we dub this randomized coding strategy softmin
coding. Now consider the expected cost of doing softmin coding. Averaging over Sn, the expected
rate-distortion loss is (Appendix A)

EP [#n∗ + λdn∗ − lnPn∗ ] = − ln 1
N

∑
n exp (−#n − λdn) + ψN . (10)

Here, ΨN is the extra cost incurred for encoding the data N times instead of once (Fig. 1, left),

ψN = ES

[
ln 1

N

∑
n S
−1
n

]
− γ ≥ 0, (11)

and γ is the Euler-Mascheroni constant. The left-hand term in Equation 10 is also called a soft-
minimum, hence the name.
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Figure 1: Left: Overhead of softmin coding compared to the overhead incurred when assigning uniform
probabilities to the samples. Middle: Rate-distortion loss (Eq. 10, λ = 0.003125) of a linear model with (SC)
and without (IWAE) taking into account the overhead ΨN . Right: Rate-distortion curves for a linear model
using universal quantization with and without softmin coding with up to 4096 samples.

Softmin coding for importance weighted autoencoders Now consider applying softmin coding
to universally quantized neural compression (Agustsson and Theis, 2020). Given some input x, the
encoder generates a uniformly distributed representation z using universal quantization (Ziv, 1985),

k = bf(x)− u′e, z = k + u′, (12)

where u′ ∼ U([−0.5, 0.5)M ) is a vector of independent uniform noise and the rounding function
is applied pointwise. Importantly, z has the same uniform distribution as if we added uniform noise
directly, f(x) +u (Roberts, 1962; Schuchman, 1964). The uniform noise is assumed to be available
on both the encoder and the decoder side. The encoder transmits k and the decoder reconstructs
z = k + u. The cost of encoding k is

− ln pz(k + u) = − ln pz(z)/q(z | x), (13)

where q(z | x) = 1 if z− f(x) ∈ [−0.5, 0.5)M and pz(z) is an appropriately chosen model density.

Next, let us assume that the distortion is a cross-entropy, i.e. λd(x, z) = − ln p(x | z). If we now
generate N samples zn and encode one of them using softmin encoding, the expected coding cost is

− ln
1

N

∑
n

p(x, zn)

q(zn | x)
+ ΨN (14)

which is the loss of an importance weighted autoencoder up to a constant.

5 DISCUSSION AND RESULTS

We tested the feasibility of softmin coding in practice. Following Agustsson and Theis (2020), we
trained a linear model with a factorial prior and a deep model with a hyperprior (Ballé et al., 2018).
The linear model uses linear transforms to encode 8x8 image patches independently. Each encoder
produces a stochastic encoding by adding uniform noise to the output of a neural network (more
details are provided in Appendix C).

An important consideration is how much information to encode at once. Using softmin coding
incurs an overhead which becomes less significant as we encode more information. On the other
hand, picking 1 out of N samples can communicate at most logN bits of extra information and so
we should expect to need more samples to make a meaningful contribution for larger images.

Among other factors, the number of bits is controlled by the trade-off parameter λ (Eq. 10) and the
image size. We used the linear model to independently encode 8x8 patches of an image (which does
not degrade its performance) and applied the deep model to 64x64 image patches (which degraded
its performance on the Kodak dataset only slightly).

Results for the linear model are provided in Fig. 1. Note that unlike for the loss of IWAEs, the opti-
mal number of samples with softmin coding is finite. We find that softmin coding slightly improves
the performance of the linear model. For the deep model, results are provided in Appendix B. In this
case the optimal number of samples is too large to be practically feasible. We found that using 4096
samples only slightly improved its performance.
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APPENDIX A

EP [#n∗ + λdn∗ − lnPn∗ ] = EP

[
min
n

(#n + λdn − lnPn)
]

(15)

= ES

[
min
n

(
#n + λdn − lnS−1n

)
+ ln

∑
n

S−1n

]
(16)

= EG

[
min
n

(#n + λdn −Gn)
]

+ ES

[
ln
∑
n

S−1n

]
(17)

= EG

[
−max

n
(−#n − λdn +Gn)

]
+ ES

[
ln
∑
n

S−1n

]
(18)

= − ln
∑
n

exp (−#n − λdn)− γ + ES

[
ln
∑
n

S−1n

]
(19)

= − ln
1

N

∑
n

exp (−#n − λdn)− γ + ES

[
ln

1

N

∑
n

S−1n

]
(20)

= − ln
1

N

∑
n

exp (−#n − λdn) + ψN (21)

Here, γ is the Euler-Mascheroni constant, Gn = lnS−1n ∼ Gumbel(0, 1) are Gumbel distributed
random variables, and we used the fact that the maximum of identically scaled Gumbels is again
Gumbel distributed,

max
n

(µn +Gn) ∼ Gumbel

(
log
∑
n

exp(µn), 1

)
. (22)

APPENDIX B
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Figure 2: Left: Rate-distortion loss (Eq. 10, λ = 0.003125) of a deep model using a hyperprior
with (SC) and without (IWAE) taking into account the overhead ΨN . Right: Rate-distortion curves
for a deep model using universal quantization with and without softmin coding with up to 4096
samples.

APPENDIX C

Following Agustsson and Theis (2020), we trained a linear and a deep model with uniform encoders
for a VAE loss. The loss corresponds to the coding cost if universal quantization (UQ) is used.
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In addition, we trained the same models using an IWAE loss. After adding a term for the over-
head (ΨN ), this loss to the coding cost if universal quantization is combined with softmin coding
(UQ+SC). Linear models were trained with 32 samples, deep models were trained with 16 sam-
ples. We used batch sizes of 512/N to make comparisons between UQ and UQ+SC fair in terms of
computational resources. Models were trained on images of size 256 by 256 pixels.

The linear model independently transforms 8x8 pixel blocks into 192 coefficients each. The
marginal distribution of each coefficient is modeled independently by a flexible univariate distri-
bution.

The deep model’s encoder uses 4 strided convolutional layers with a kernel sizes of 5. Each convolu-
tion is followed with downsampling by a factor of 2 and a generalized divisive normalization (GDN;
Ballé et al., 2016). The decoder similarly uses 4 transposed convolutions and upsampling by a factor
of 2, each followed by an inverse GDN operation. Like the linear encoder, the deep encoder outputs
192 channels. The distribution of these coefficients is modeled with a “mean and scale hyperprior”
(Ballé et al., 2018; Minnen et al., 2018).

The linear model was applied to 8x8 images patches before applying softmin coding. The deep
model was used to independently encode 64x64 image patches of an image using softmin coding.
For each target λ, we used the number of samples N which minimized the coding cost (Fig. 1,
middle), up to a number of samples of 4096.
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