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Abstract: Learning in multi-agent environments is difficult due to the non-
stationarity introduced by an opponent’s or partner’s changing behaviors. Instead
of reactively adapting to the other agent’s (opponent or partner) behavior, we pro-
pose an algorithm to proactively influence the other agent’s strategy to stabilize –
which can restrain the non-stationarity caused by the other agent. We learn a low-
dimensional latent representation of the other agent’s strategy and the dynamics
of how the latent strategy evolves with respect to our robot’s behavior. With this
learned dynamics model, we can define an unsupervised stability reward to train
our robot to deliberately influence the other agent to stabilize towards a single
strategy. We demonstrate the effectiveness of stabilizing in improving efficiency
of maximizing the task reward in a variety of simulated environments, includ-
ing autonomous driving, emergent communication, and robotic manipulation. We
show qualitative results on our website.
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1 Introduction

Reinforcement learning has shown impressive performance in recent years [1, 2], but much of the
focus has been on single-agent environments. Many real-world scenarios, on the other hand, involve
coordinating with multiple agents whose behavior may change over time, making the task non-
stationary. For example, when playing volleyball, our teammate may play more aggressively over
time if they are hitting the ball well, so we may need to step aside and set the ball for them more
often. Many techniques in multi-agent reinforcement learning (MARL) have been proposed for
dealing with such non-stationarity in the other agent’s strategies [3].

One set of approaches reactively adapts to the other agent’s change in strategy, for example by
simply forgetting past experiences and training on more recent data [4, 5, 6, 7, 8]. Other works try to
learn a model of the other agent and take into account how the robot’s actions affect the other agent’s
strategies over time [9, 10, 11, 12, 13]. With knowledge of the other agent’s strategy dynamics, we
can take actions to influence the other agent in a way that maximizes our long-term reward [10, 13].

Although influencing other agents to maximize reward is a useful approach in principle, it can be
challenging in practice. Indeed, if we have access to a faithful model of the other agent’s strategy
dynamics, then we should choose actions that carefully nudge their high-level strategy to maximize
our long-term reward. However, learning and leveraging such a model of the other agent’s strategy
dynamics can be impractical. For one, even just estimating the other agent’s current strategy is
already difficult with limited data, let alone learning the dynamics between strategies. On top of
that, the robot may have to figure out a best response for a large number of opponent strategies,
making the full learning process extremely sample inefficient.

Instead, we should take into account the difficulty of learning for our ego agent. 1 That is, we would
still like to influence the other agent in a useful way, but in a manner that minimizes the burden of
the ego agent’s learning algorithm. Our key insight is that we can stabilize the other agent’s strategy

in a multi-agent environment to reduce non-stationarity and facilitate learning a best response to

the other agent. Our approach is a specific form of influencing – learning how to stabilize – that
1We refer to the other agent interchangeably as the opponent, regardless of whether they are competitive or

cooperative [3]. Also, we interchangeably refer to our robot as the ego agent.
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Figure 1: Coordination with a partner can be critical to succeeding in a task. In this volleyball game, the red
and green agents both can either dig for the ball or step back for their partner. (Left) A partner that indecisively
switches between digging and staying back can be extremely difficult to coordinate with, potentially costing
the match. (Right) By deliberately stepping back, the red agent can stabilize the partner’s strategy to dig for the
ball, developing a convention that allows for easier learning of how to win the volleyball match.

aims to reduce the non-stationarity of the other agent, and in turn makes learning easier for the ego
agent. Intuitively, stabilizing the other agent’s strategy allows us to avoid learning about complex
high-level strategy dynamics, and focus our efforts on maximizing reward against a fixed strategy.

As an example of stabilizing the other agent, imagine again that we are playing beach volleyball
with a teammate. When the ball comes perfectly in between our teammate and us, it is not obvious
which of us should dig for the ball (see Fig. 1 (left)). In principle, it is possible to carefully model
the dynamics of how our teammate’s strategy changes based on our actions and precisely predict
who should get the next ball that falls in between us. However, it can take many interactions before
we learn a good model of our opponents, and constantly switching roles between digging for the ball
and staying back can make learning difficult. Instead, we can stabilize our teammate by making our
intentions clear: we actively take a step away from the ball so our teammate knows to dig for the ball,
as in Fig. 1 (right). This simplifies the learning process by reducing the need to learn complicated
strategy dynamics, and making the task more stationary.

In particular, our method combines the robot’s task reward with a stabilizing reward, where stability
is measured with respect to the other agent’s strategies learned in an unsupervised way. The task
reward pushes the robot to do well in the environment, while the stabilizing reward aims to make
the learning process easy and sample efficient. We demonstrate the strength of our approach in
7 different tasks, including autonomous driving, an emergent communication task, and simulated
robot environments.

Our main contributions in this paper are as follows:

• We propose augmenting our robot’s reward function with a stability reward in order to
explicitly encourage the robot to influence the other agent towards a stable strategy.

• We demonstrate that the stability reward can be defined as an unsupervised reward using
learned representations of the other agent’s strategy.

• We perform experiments in simulated environments demonstrating that stabilizing the other
agent’s strategy improves our robot’s ability to coordinate and maximize the task reward.

2 Related Work

Multi-Agent Reinforcement Learning. Learning in multi-agent environments can be extremely
difficult when the other agents have non-stationary behavior [14, 15, 16]. Hernandez-Leal et al.
[3] provide a taxonomy of existing methods that attempt to deal with this non-stationarity issue in
multi-agent environments. Some works seek to forget about previous experiences with old opponent
strategies and improve adaptation by only training on more recent data [4, 5, 6, 7, 8, 17]. Further,
centralized training has shown promise in multi-agent environments [18, 19]. Some works design
explicit communication channels in which agents can share their policy parameters or gradient up-
dates [20, 21]. However, these methods require that there exists some centralized method in which
agents can communicate or share parameters. We are mainly interested in the decentralized setting
where we train an ego agent to interact with other agents that we do not have control over.
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Opponent Modeling. Instead of ignoring the opponent’s changing strategies, prior opponent mod-
eling works design agents that estimate their opponent’s policies or parameter updates [22, 9, 23,
11, 12, 24, 25] in a potentially recursive manner. Peer-rewarding has also emerged as a method of
encouraging cooperative behavior [26, 27, 16], but requires the assumption that an agent’s reward
function can be externally modified. Several works recognize that the ego agent’s policy can directly
induce change in the opponent’s policies [13, 28, 29, 30]. In [10], the ego agent learns not only a
representation of the opponents’ strategies, but also learns a dynamics model for how the opponent’s
strategies change conditioned on the ego agent’s behavior.

Representation Learning of Latent Strategies. Representation learning is critical to the tractabil-
ity of opponent modeling. It may be computationally inefficient to learn all opponent intentions or
explicitly learn the parameters of the opponent’s policies. Instead, we recognize that there is often
some underlying structure in the opponent policy space, which can be captured by a low-dimensional
latent strategy. Prior works learn latent context variables to help distinguish between separate tasks,
which could correspond to different opponents [31, 32, 33, 34, 35]. Representation learning has
been shown to be useful in developing a dynamics model of the opponent’s policy in multi-agent
environments [36, 10]. In our work, we show that it can be beneficial to cluster latent strategy repre-
sentations into a discrete latent space [37, 38] to identify shared structure among similar strategies.

Stability and Surprise in Reinforcement Learning. To mitigate the difficulty of learning in a non-
stationary environment, we seek to stabilize the opponent’s strategy – or minimize the surprise in the
opponent’s strategy. Recent works in reinforcement learning seek to do the opposite of designing
maximum entropy methods to improve exploration [39, 40, 41]. Stability in the opponent’s strategy
can reduce the non-stationarity in the environment and improve efficiency of learning a best response
[42]. Surprise minimizing reinforcement learning (SMiRL) trains an agent to seek predictable and
repeatable states to counteract the environment’s entropy [43]. SMiRL considers a long horizon
notion of stability in which the state should be of high likelihood with respect to the distribution
of states encountered so far. Our work is similar in principle to SMiRL; however, we consider a
pairwise notion of stability between consecutive latent strategies, as we recognize that an opponent
that unpredictably switches between a few strategies is highly non-stationary, yet each individual
strategy can be high likelihood with respect to the overall distribution of previously seen strategies.

3 Problem Statement

We consider two-player multi-agent settings, where there is an ego agent that we have control over
and another agent that we do not have direct control over. Since we only control the ego agent, we
can consider our problem formulation in terms of a single-agent Markov decision process where the
opponent policy is absorbed as part of the environment transitions and rewards. Non-stationarity in
the opponent policy then corresponds to non-stationarity in the environment transitions and rewards.

Hidden Strategies. The agents repeatedly interact with each other across multiple interactions, with
each interaction lasting multiple timesteps. We assume that the opponent policy z is fixed within
each interaction but can change across interactions. We consider environments with no hidden
states, so that if the ego agent can observe the exact opponent strategy, then we can formulate the
ego agent’s task as a fully observable MDP. However, since the ego agent does not directly observe
the opponent’s strategy, we consider a Hidden Parameter MDP (HiP-MDP).

Hidden Parameter Markov Decision Process. We formulate the interactions as a variant of a
HiP-MDP, which is a tuple M = hS,A,Z, T , T z

,R, H, �i [44], which includes an additional T z

that governs the dynamics of the opponent’s strategies. We let zj 2 Z be the opponent strategy
for the j-th interaction. At each timestep t, the ego agent is in state st 2 S . The ego agent takes
action at 2 A and the environment transitions to st+1 with probability T (st+1|st, at, zj). The ego
agent receives the task reward Rtask(st, at, zj). The interaction ends after H timesteps and � is
the discount factor. Both the transition and reward function are unknown. During interaction j, the
ego agent observes the trajectory ⌧

j = {(s1, a1, Rtask(s1, a1, zj)), . . . (sH , aH , Rtask(sH , aH , z
j))}.

Notice that the ego agent does not observe the opponent’s strategy z
j in the trajectory, which makes

learning the value of an observation and action difficult – the reward of an observation and action
can change significantly as the opponent’s strategy changes across interactions.

We consider the setting where the opponent’s change in strategy is governed by the trajectory of the
previous interaction. At the end of interaction j, the opponent’s strategy transitions to z

j+1 based
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on strategy dynamics T z(zj+1|zj , ⌧ j). Namely, the ego agent’s behavior during interaction j can
directly influence the opponent’s strategy for interaction j + 1. Next, we define a notion of stability
between interactions j and j + 1 as follows:

Definition 1 Let z
j
, z

j+1 2 Z be two opponent strategies. The strategies z
j
, z

j+1
are pairwise

✏-stable with respect to a metric space (Z, d) if and only if d(zj+1
, z

j) < ✏.

Stabilizing Opponent Strategies by Influencing Across Repeated Interactions. Over repeated in-
teractions, the ego agent explores HiP-MDP M over a sequence of opponent strategies (z1, z2, . . .).
The ego agent’s objective is to maximize the cumulative discounted sum of rewards over all inter-
actions, shown in Eq. 1. The ego agent’s ability to maximize the reward within each interaction is
heavily dependent on their ability to estimate the opponent strategy z

j for that interaction. Without
knowing the opponent’s strategy, the ego agent will have significant difficulty taking an action that
is a best response to the opponent’s actions. It can be prohibitive to learn a model of all the oppo-
nent’s strategies and form a general policy for the ego agent that can react to any opponent strategy;
however, if the ego agent can stabilize the opponent strategy to a fixed point, i.e., 9zk such that
T z(zj+1|zj , ⌧ j) > 0 if and only if d(zj , zj+1) < ✏, 8j 2 {k . . . N} (where N is the total number
of interactions), then the ego agent can more easily learn a best response to the opponent strategy in
a stationary environment.

With z fixed across interactions, the HiP-MDP is reduced to a fully observable MDP parameterized
by z. At a high level, we are encouraging the agent to learn how to explore the HiP-MDP in a subset
of the state space, where the hidden opponent strategy is kept stable between interactions. Thus, the
ego agent is effectively learning in a fully observable MDP, given that the fixed – but unknown –
opponent strategy z is not changing. In terms of the exploration-exploitation tradeoff, stabilizing the
opponent strategy would reduce the ego agent’s required exploration in order to find a best response
to the opponent’s fixed strategy.

We note that it is not always easy or possible to stabilize the opponent’s strategy. Stabilizing requires
that the dynamics of the opponent’s strategy are defined such that the ego agent can form an inter-
action ⌧

j where T z(zj+1|zj , ⌧ j) > 0 if and only if zj and z
j+1 are pairwise ✏-stable. In general, as

long as there is a fixed point zk where the optimal value function satisfies V ⇤(s1, zk) � V
⇤(s1, z)

for any other z 2 Z , then stabilizing should not hinder the task reward in the long run.

4 Stable Influencing of Latent Intent (SILI)

Figure 2: Stable Influencing of Latent Intent (SILI). (Left) We learn a dynamics model of the opponent’s
strategies conditioned on the ego agent’s past trajectory. The latent strategy is learned in an unsupervised way
by jointly learning a decoder to predict the state transitions and task rewards. (Right) We combine a stability
reward with the task reward to train our policy using RL. The stability reward is unsupervised and defined by
minimizing the pairwise distance between the previous two predicted latent strategies.

In this section, we present our approach of influencing the latent strategy of our opponent towards
a stable strategy. At a high level, the ego agent learns an encoder that predicts the opponent’s next
latent strategy given the previous trajectory. The ego agent then conditions its policy for the next
interaction on the predicted latent strategies of the opponent. But, since we never observe the ground
truth latent strategies, we must learn the latent strategy representations in an unsupervised way. To
do so, we follow the setup in [10], where we jointly learn a decoder that reconstructs the task rewards
and transitions for the next interaction using the predicted latent strategy. Using this predicted latent
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strategy, we can measure the stability of the opponent’s latent strategy, and optimize for a weighted
combination of the task reward and a stability reward.

Learned Latent Strategies. First, we describe the representation learning component of our
method shown in Fig. 2 (left). Recall that we assume that the latent strategy dynamics follow
T z(zj+1|zj , ⌧ j). We can approximate these latent strategy dynamics by learning an encoder E�
that maps trajectories ⌧

j�1 to a latent representation z
j of dimension k (chosen as a hyperparam-

eter). Here, we model the encoder as f(zj |⌧ j�1) instead of f(zj |zj�1
, ⌧

j�1), as in [10]. This
simplification, which often works well in practice, assumes that the previous trajectory ⌧j already
has enough information to reconstruct zj+1.

Although we do not observe the ground truth latent strategies, we can still learn them in an un-
supervised way, since we know that they should be predictive of the task reward and transitions.
Thus, we jointly train a decoder that predicts the task reward and transitions from the encoded latent
representation. In particular, for interaction j and timestep t, the decoder D takes as input states
and actions sj

t
, a

j

t
as well as the latent strategy embedding z

j , and reconstructs the next state s
j

t+1

and task reward r
j

t
. To train the encoder and decoder, we use the following maximum-likelihood

objective: max
�, 

P
N

j=2

P
H

t=1 log p�, (s
j

t+1, r
j

t
|sj

t
, a

j

t
, ⌧

j�1).

Reinforcement Learning with Stable Latent Strategies. As the opponent’s strategy changes,
the ego agent’s policy should change in response. Naturally, we should condition the ego agent’s
policy on the opponent’s latent strategies. When considering the goal of keeping the opponent’s
strategy pairwise stable, it is important that the ego agent conditions their policy on at least the most
recent two predicted latent strategies since the stability reward depends on the distance between the
consecutive latent strategies, as shown in Fig. 2 (right). Concretely, the ego agent’s policy is defined
as ⇡✓(at|st, zj , zj�1), where z

j = E�(⌧ j�1).

We have defined the environment reward to be Rtask. We then define the stability reward to be the
distance between consecutive predicted opponent strategies, where d can be any generic distance
metric over the latent space Z as follows: Rstable = �d(zj , zj�1).

Here, we abuse notation and use z
j to refer to the prediction of the opponent’s strategy since we

never observe the ground truth. Finally, our new reward function is defined as a weighted average
of these objectives, parameterized by stability weight �: Rtotal = (1� �) · Rtask + � · Rstable. With
� = 1, the ego agent’s entire objective is to stabilize the opponent strategy, and with � = 0, the ego
agent greedily maximizes the environment reward.

Optimizing Rewards Across Interactions. Our ego agent seeks to influence the opponent towards
desirable latent strategies. With the encoder E�, the ego agent can deliberately take actions in tra-
jectory ⌧

j in order to influence the opponent to a stable z
j+1.

To learn how to influence across repeated interactions, we train our ego agent’s policy ⇡✓ to maxi-
mize rewards across the repeated interactions

max
✓

1X

j=1

�
jE

zj ,zj�1,⌧j⇠⇢j⇡✓

"
HX

t=1

Rtotal(s, a, z
j
, z

j�1)

#
, (1)

where ⇢
j

⇡✓
is the trajectory distribution induced by ⇡✓ under the transition function

T (st+1|st, at, zj). With the total reward including the stability reward, the ego agent learns to
take interactions such that the opponent follows a stable latent strategy so the ego agent can easily
learn a best response to in turn maximize the task reward.

Modeling Latent Strategies. We examine three methods to model and measure distances between
the changing latent strategies: continuous latent variables, discrete latent variables, and partial ob-
servations of the opponent’s strategy. The ego agent never directly observes the opponent’s strategy.

1) Continuous Latent Variables. In the most general case, the latent strategy space is allowed to
be continuous. This enables the latent strategy space to represent an infinite number of possible
opponent strategies. With the continuous latent variables Z , we use the Euclidean norm for the
stability reward: Rstable = �d(zj , zj�1) = �||zj � z

j�1||2
2) Discrete Latent Variables. In this setting, we constrain the latent strategy space to be discrete
categorical variables by using the Gumbel-Softmax distribution [37, 38]. Intuitively, we cluster the
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continuous latent variable representations to filter the noise of measuring distance in the latent space.
Further details of the discretization method can be found in Appendix A. With these categorical
latent variables Z , we use the discrete distance metric for the stability reward:

Rstable = �d(zj , zj�1) =

⇢
�1 z

j 6= z
j�1

0 z
j = z

j�1 (2)

We found empirically that discrete latent variables improve the consistency of the stability reward
signal compared to continuous representations, despite the decrease in expressivity and granularity
provided by the distance metric. Intuitively, it is easier to identify whether or not a strategy is
similar enough to be clustered with another strategy than it is to exactly identify the distance between
predicted strategies in a latent space.

3) Partial Observations of Changing Strategy. In this setting, we assume that the ego agent is able
to observe if their opponent’s strategy changes between timesteps, so no representation learning is
necessary to stabilize. We shed the assumption that the latent strategies are fixed within an interac-
tion, so we denote the latent strategy at a timestep t as zt. Thus, the stabilizing reward can be defined
as Rstable = ct = � [zt 6= zt�1], which indicates whether the opponent strategy has changed. This
corresponds to settings where it may be easy to estimate when an opponent’s strategy has changed,
but it may be difficult to estimate their exact strategy [12].

5 Experiments

We perform experiments in a range of environments across different latent strategy space settings:
continuous latent variables, discrete latent variables, and partial strategy observations. We compare
our approach, Stable Influencing of Latent Intent (SILI) to various multi-agent learning baselines
with implementation details described in Appendix A:

Oracle. Oracle is given the true opponent’s strategy as an observation.

Learning and Influencing Latent Intent (LILI) [10]. LILI combines soft actor-critic (SAC) [45]
with a representation learning component to model the opponent’s strategy dynamics. LILI does not
explicitly optimize for stabilizing the opponent’s strategy.

Surprise Minimizing RL (SMiRL) [43]. SMiRL optimizes for a different notion of stability, where
the reward is proportional to the likelihood of a state given the history of previously visited states.

Stable. We refer to Stable as the variant of SILI with � = 1, only optimizing for stability.

SAC [45]. SAC does not model the opponent’s strategy and is the base RL algorithm for SILI.

5.1 Simulated Environments

The environments and trajectories of stabilizing behavior are shown in the left column of Fig. 3.
Across all figures, the ego agent’s trajectory is drawn in blue, and grey corresponds to the opponent.

Circle Point Mass. In this environment, the ego agent is trying to get as close to the opponent as
possible in a 2D plane, inspired by pursuit-evasion games [46]. The opponent moves between loca-
tions along the circumference of a circle. The ego agent never observes the true location (strategy)
of the opponent. If the ego agent ends an interaction inside the circle, the opponent jumps coun-
terclockwise to the next target location. If the ego agent ends an interaction outside the circle, the
opponent stays at the red target location for the next interaction. We examine four variants: Circle
(3 Goals), Circle (8 Goals), Circle (Continuous), Circle (Unequal). In Circle (Continuous), there are
infinite possible opponent strategies, so we use continuous latent variables. In Circle (Unequal), the
ego agent begins closer to two unstable opponent goals, but there is a stable goal farther away.

Driving. A fast ego agent is attempting to pass a slow opponent driver [10]. There are 3 lanes and
a road hazard upcoming in the center lane, so both the ego agent and opponent need to merge to a
new lane. If the ego agent merges to the left lane before the red line (giving the opponent enough
reaction time), then the opponent merges to the right lane during the next interaction, understanding
the convention of faster vehicles passing on the left. Otherwise, the opponent will aggressively try
to cut off the ego agent by merging into the lane that the ego agent previously passed in.
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Sawyer-Reach. The opponent can choose between three goals on a table with their intent hidden
from the robot. The ego agent is the Sawyer robot that is trying to move their end effector as close as
possible to the opponent’s chosen goal in 3D space without ever directly observing the opponent’s
strategy [47]. If the end-effector ends the interaction above a fixed plane on the z-axis, the opponent’s
strategy stays fixed. Otherwise, the opponent’s strategy changes. Semantically, we consider a robot
server trying to place food on a dish for a human and needing to move its arm away from the dish
by the end of the interaction to avoid intimidating the human retrieving the food.

Detour Speaker-Listener. In this environment, the agents must communicate to reach a goal, which
has been a popular setting to explore emergent communication [18]. The speaker (opponent) does
not move and observes the true goal of the listener (ego agent). The ego agent cannot speak, but must
navigate to the correct goal. The speaker utters a message to refer to the goal, which the ego agent
then observes. If the ego agent goes near the speaker (within some radius), the speaker follows the
same communication strategy during the next interaction. Otherwise, the speaker chooses a random
new strategy, or mapping of goal landmarks to communications. Critically, in this environment, the
opponent’s strategy is the communication strategy, not the true goal location.

Oracle        SILI (Ours)        LILI         SMiRL        Stable          SAC
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Figure 3: Task and stability rewards across all environments. SILI achieves comparable performance to Oracle.
Compared to the other baselines, SILI significantly outperforms them in task reward (left plots) by learning to
stabilize the opponent’s strategy (right plots).
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5.2 Results

Across all environments, without observations of the opponent’s strategy, SILI achieves a compa-
rable task reward to Oracle, as seen in Fig. 3. Further analysis is available in the Appendix and at
https://sites.google.com/view/stable-marl/ with qualitative analysis of trajectories.

Continuous Latent Variables. We perform an experiment with continuous latent variables in the
Circle (Continuous) environment (row 6, Fig. 3). Both SILI and Oracle learn to stabilize in this
environment, although Oracle incurs various dips in stability reward at little to no cost to the task
reward because Oracle knows the true opponent’s strategy. While these results are promising, we
observe in other environments that continuous latent variables and a smooth distance metric over the
latent space lead to more noisy rewards, which hinder the ego agent’s ability to learn effectively.

Discrete Latent Variables. We further show our results in a variety of environments with discrete
latent variables. In Circle (3 Goals), SILI achieves the highest reward along with Oracle, but Oracle
does not require stabilizing the opponent’s strategy (row 1, Fig. 3). In Circle (8 Goals), we demon-
strate that with more opponent strategies, SILI still learns to stabilize and outperforms the baselines
(row 2, Fig. 3), where we set the latent dimension hyperparameter to be an overestimate of the true
number of opponent strategies. In Circle (Unequal), SILI avoids trying to optimize for nearby, un-
stable opponent strategies, whereas the other baselines do not learn to stabilize since they greedily
try to track the nearby, unstable opponent strategies (row 3, Fig. 3). In Driving, the task reward is
based on the number of collisions with the opponent, and our method is the only one that learns to
safely avoid all collisions (row 4, Fig. 3). In Sawyer-Reach, SILI and Oracle achieve comparable
performance, but again, Oracle does not need to learn to stabilize (row 5, Fig. 3).

Partial Observations of Changing Strategy. To test our method in a setting without representation
learning, the ego agent observes whether the opponent’s strategy has changed between timesteps.
We perform this experiment in the Detour Speaker-Listener environment, where the assumption that
the opponent’s strategy is kept fixed throughout an interaction is broken (row 7, Fig. 3).

SILI learns to stabilize and significantly outperforms all other baselines in task reward, including
Oracle. In this environment, although Oracle can observe the true opponent strategy, the Oracle still
needs to learn the association of the opponent’s strategy and opponent’s communication with the
true goal. Further, the communication and strategy can change frequently between timesteps while
the true goal stays constant, making learning difficult. The baseline Stable learns to stabilize but
does not optimize for the task reward at all. The rest of the baselines learn to move towards the
centroid of the goal locations since they cannot accurately decipher the opponent’s strategy.

Notice that around interaction 250, SILI learns to stabilize, which requires moving in a detour away
from the true goals, but SILI maintains the stability and learns to maximize task reward well. On the
contrary, LILI temporarily learns to stabilize at around interaction 1250, but incurs a corresponding
decrease in task reward, which discourages LILI from maintaining the stable opponent strategy.

6 Discussion

Summary. We propose a framework for learning in multi-agent environments that learns the dy-
namics of the opponent’s strategies in a latent space. We then leverage this latent dynamics model to
design an unsupervised stability reward, which can be augmented with the task reward to explicitly
encourage the ego agent to learn how to stabilize and then more easily maximize the task reward.

Limitations and Future Work. In this work, we define a notion of pairwise stability that considers
consecutive changes in the strategy. However, it may be interesting to consider smoother, longer
horizon stability metrics, such as average change over a window of time. We compare our method to
SMiRL, which optimizes for a probabilistic notion of state stability relative to states in an experience
replay buffer, but show that SMiRL often does not learn to stabilize in a consistent manner. We
plan to compare these different metrics of stability and their effects in future work. In addition,
our experiments were mainly done in simulation. In the future, we plan to consider robot-robot and
human-robot interactions, where we are required to learn much more complex dynamics that capture
the non-stationarity of humans who adapt their strategies over repeated interactions. Stabilizing a
human’s strategy can greatly improve the efficiency in which a robot learns the best way to perform
a task, but the exact method in which to stabilize human behavior should be further explored.
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