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ABSTRACT

Prediction bias in machine learning models, referring to undesirable model behav-
iors that discriminates inputs mentioning or produced by certain group, has drawn
increasing attention from the research community given its societal impact. While
a number of bias mitigation algorithms exist, it is often difficult and/or costly to
apply them to a large number of downstream models due to the challenges on
(sensitive) user data collection, expensive data annotation, and complications in
algorithm implementation. In this paper, we present a new approach for creat-
ing less biased downstream models: transfer learning from a less biased upstream
model. A model is trained with bias mitigation algorithms in the source domain
and fine-tuned in the target domain without bias mitigation. By doing so, the
framework allows to achieve less bias on downstream tasks in a more efficient,
accessible manner. We conduct extensive experiments with the proposed frame-
work under different levels of similarities between the source and target domain
and the number of factors included for de-biasing. The results are positive, imply-
ing that less biased models can be obtained with our transfer learning framework.1

1 INTRODUCTION

Bias mitigation in machine learning models has drawn increasing attention in the natural language
processing (NLP) community recently (Bolukbasi et al., 2016; Caliskan et al., 2017; Blodgett et al.,
2020). Despite the strong results achieved from recent pretrained language models (PTLM) such as
BERT (Devlin et al., 2019), the downstream classifiers still yield biased predictions for certain user
groups (Zhao et al., 2019). Among many examples, Kurita et al. (2019) demonstrates that models
trained using BERT embeddings for pronoun resolution are gender-biased. The models associate
female entities with certain labels even when the label is associated with the same number female
and male instances in the training set. Kennedy et al. (2020) shows that hate speech classifiers fine-
tuned from BERT spuriously correlate certain group name mentions with “hate” label, resulting in
false positive model predictions when group identifiers (e.g., “muslim”, “black”) are present–e.g.,
misclassifying non-hate speech text such as “I am a Muslim” as hate speech.

More recently, several bias-mitigation methods have been proposed (Park et al., 2018; Zhang et al.,
2018; Beutel et al., 2017) to make a downstream classifier less biased in order to avoid discrim-
ination (Mehrabi et al., 2019). However, these algorithms are designed specifically for training
downstream classifiers: the bias mitigation algorithm applies repeatedly at the time of training each
downstream classifier. It is costly in practice especially when there are often a number of down-
stream classifiers, as it is often difficult and/or costly to collect and annotate (sensitive) user data,
and implementing mitigation algorithms. A potential solution is to look into the upstream models
(e.g., PTLMs), where a large number of downstream classifiers are derived. However, while there
exist works on mitigating bias in PTLMs (Liang et al., 2020; Bhardwaj et al., 2020), they study bias
in the representation space (e.g., examining representational distances between gender and stereo-
typical words) or on downstream tasks while keeping representations are frozen; few study the
capability of bias mitigation in fine-tuned downstream classifiers by manipulating upstream models.

In this paper, we propose the framework of upstream bias mitigation in transfer learning: an up-
stream model (source model) is trained with bias mitigation objectives in a source domain; then any
downstream classifier can be built upon the encoder of the upstream model via fine-tuning without

1Link to code and data: https://anonymous.4open.science/r/7e1ac8a0-d89a-4dca-8da8-30c03490fa42/
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additional bias mitigation process. The frameworks fits in the practice of fine-tuning from PTLMs,
and allows to achieve less biases in downstream classifiers in a more light-weight, accessible man-
ner. However, whether mitigation of bias is preserved in fine-tuning is not certain: downstream
classifiers may ignore any prior knowledge about bias mitigation in the source model and pick up
bias from data at fine-tuning.

We conduct a series of experiments on diverse settings and datasets to validate the capability of the
framework: (1) in the most straightforward setting, the target domain consists of new examples from
the same distribution as the source domain, which corresponds to fine-tuning a less biased model
over emerging new examples; (2) in a more challenging setting, the source and the target domain
have different data distributions (e.g., different datasets); (3) furthermore, we perform multi-task
learning to reduce different kinds of bias in the source domain, so that fine-tuned classifiers are less
biased in term of multiple bias factors. We achieve overall positive empirical results, evidencing the
capability of learning less biased models with the proposed upstream bias mitigation framework.

2 RELATED WORKS

Bias, in our setting, refers to undesirable model behaviors, such as spuriously correlated mentions
of certain group names with labels (Kiritchenko & Mohammad, 2018; Zhang et al., 2020) or differ-
ential performance on data produced by different social groups (Shen et al., 2018; Sap et al., 2019)
that causes harm to certain social groups. Several recent studies (Mehrabi et al., 2019; Blodgett
et al., 2020; Shah et al., 2020) provide a taxonomy for prediction bias. A number of works propose
algorithms to mitigating bias (e.g., Park et al. (2018); Zhang et al. (2018)). We focus on related
works attempting to learn de-biased data representations and mitigating bias in pretrained models.

Mitigating Bias in Representations. Towards mitigating bias in models, a popular approach is to
interfere with the internal representations of the models. Zhang et al. (2018); Beutel et al. (2017)
jointly train a classifier with sensitive attribute predictors with shared representations within an ad-
versarial learning framework. Madras et al. (2018); Elazar & Goldberg (2018) further study the task
of learning re-usable de-biased data representations by removing sensitive attributes from data rep-
resentations. This way, new downstream classifiers (potentially with a different classification task)
trained over these de-biased data representations, would not rely on sensitive attributes for predic-
tion. However, because only frozen data representations are transferred (instead of the model), the
framework cannot generate (de-biased) predictions for new data (e.g., new examples from the same
of different domains).

Mitigating bias in Pretrained Models. Another line of work analyzes bias in pretrained mod-
els (Zhou et al., 2019; May et al., 2019; Bhardwaj et al., 2020) (e.g., word vectors, BERT). Most of
these study measures bias in the representation space only (e.g. representational distances between
gender and stereotypes). A few study the propagation of bias to downstream classifiers: Zhao et al.
(2019) show models trained over contextualized word embeddings are more gender-biased in coref-
erence resolution tasks (e.g., by associating gendered pronouns with stereotypical words); Liang
et al. (2020); Ravfogel et al. (2020) study algorithms to mitigate bias in representations by these
pretrained models. However, these work keeps the pretrained model frozen. The key unanswered
question with these works is whether mitigating bias in PTLMs leads to downstream models that are
similarly less biased in the fine-tuning process.

Unlike the previous line of works, our work does not analyze or mitigate representational bias that
originally exists in PTLMs; rather, we study whether by fine-tuning from less biased upstream mod-
els benefit downstream classifiers so that they are less biased (potentially by learning to pick up more
essential clues (instead of bias) from the data). A few existing works study related research prob-
lems, with important differences to our work: Schumann et al. (2019) studies this problem; however,
they assume data from the source and the target domain are available at the same time, which is a
dissimilar setting to fine-tuning; Shafahi et al. (2020) study transfer learning of adversarial robust-
ness and is related to our study in terms of the methodology, but does not study bias mitigation. In
summary, no previous works study the capability of learning less biased downstream classifiers by
transferring from a less bias upstream model.

3 BACKGROUND

We first introduce important concepts, such as transfer learning, prediction bias, and bias mitigation
algorithms. We also introduce our problem formulation in this section.
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3.1 TRANSFER LEARNING VIA FINE-TUNING

Fine-tuning is a practice of transfer learning which has become common in NLP. A significant
advantage is the simplicity of fine-tuning: model developers simply load pretrained weights and
take advantage of powerful inductive bias in the source model to obtain a powerful model without
the burden of training them from scratch (Qiu et al., 2020).

Formally, we assume a model f : Rm → {0, 1, ..., C} maps an input sentence x to a class label
y. The model f = g ◦ h is composed by a text encoder g : Rm → Rd (e.g., Transformers in
RoBERTa (Liu et al., 2019)) which maps an input sentence x to a hidden representation z ∈ Rd in
the representation space; and a classifier head h : Rd → {0, 1, ..., C}, which maps the representation
z to the label space. The (upstream) source model fs = gs ◦ hs, is first trained in a source domain
Ds. Then, for transfer learning in a target domain Dt, the encoder gt in the target (downstream)
model ft = gt ◦ ht is initialized as gs, while the classifier head ht is randomly initialized. The full
target model ft is trained on the target domain Dt.

3.2 PREDICTION BIAS AND BIAS MITIGATION

Definition of Prediction Bias. Our definition of prediction bias in models follows equal opportu-
nities in previous literature (Hardt et al., 2016): a model f is biased if it yields a higher prediction
error rates on a subset S over the rest for a certain label, where S typically refers to a sub-population
that is either mentioned or authors the data in question. There can be multiple bias factors, in-
dexed with j ∈ {0, 1, ...,K}: for example, the subset S(j) may consist of all examples produced
by African American English speakers, or all input examples that contain a certain group identifier
mention (e.g., gendered pronouns); we use a binary attribute indicator ai ∈ {0, 1}K , where each
item a

(j)
i ∈ {0, 1} indicates whether an example (xi, yi) belongs to the set S(j). We focus on false

positive error rates for disadvantaged outcomes (e.g., sentences misclassified as spam or offensive)
in this paper: in all tasks that we experiment with, we consider false positives to be more harmful;
however, the framework also applies to other bias, e.g., where false negative rates are equally impor-
tant. For simplicity of notations, we use label y = 1 to refer to disadvantaged outcomes, and y = 0
for others. The bias is formally quantified as the false positive rate differences (FPRD), where,

FPRD(j) = P (ŷ = 1|a(j) = 1, y = 0)− P (ŷ = 1|a(j) = 0, y = 0) (1)

where ŷ is the model prediction. The term P (ŷ = 1|y = 0, a(j)) is the false positive rate (FPR), i.e.,
the probability of predicting a label as positive when the ground truth is negative, conditioned on the
value of the attribute a(j).

Bias Mitigation Approaches. Bias mitigation algorithms have been studied to reduce bias in mod-
els. Given a labeled datasets with attribute annotations {(xi, yi,ai)}Ni=1, the model is trained by
jointly optimizing a main learning objective `c with a bias mitigation objective `b(x, y,a), which
penalizes biased behaviors of models. For example, in adversarial learning, the loss terms coerce
attribute a to be predictable from the data representation z = g(x). Note that while x or y can be
excluded for computing the loss `b, the ground truth attribute indicator a is almost always required.

Bias mitigation algorithms face two major challenges in practice: (1) Attribute annotations ai are
usually not provided in datasets (e.g., we might not have access to social media users’ demographics)
and may be difficult to collect due to privacy concerns. (2) The bias mitigation process is applied
repetitively to each downstream application, resulting in increased running time and human labor.

3.3 PROBLEM FORMULATION

The limitation of de-biasing algorithms motivates us to set up a new problem formulation that sep-
arates out the de-biasing phase from downstream classifier training. Formally, we consider the
problem of reducing bias in (potentially a large number of) downstream classifiers ft = gt ◦ ht in
target domains Dt with a training set {(xt

i, y
t
i)}Ni=1. The attribute annotations ai are not available in

the target domain. The target model ft can be fine-tuned from a model fs trained in a source domain
{(xi, yi,ai)}Ni=1, where it capable of running bias mitigation algorithms. We further consider two
dimensions of settings, divided by: (1) the similarity between the source and the target domain, and
(2) the number of bias factors considered. We illustrates different settings in Figure 1 (left).
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Figure 1: Proposed settings and the framework of upstream bias mitigation in transfer learning.

Same or Different Source and Target Domains. In the simplest setting, we have Ds = Dt.
Practically, it corresponds to training a de-biased model over examples from the same domain. In a
more challenging setting, we have Ds 6= Dt, which is a more popular case in practice.

Dealing with One or Multiple Bias Factors. The source model fs can be de-biased for either one
or multiple bias factors (e.g., both the gender bias and the racial bias).

4 UPSTREAM BIAS MITIGATION IN TRANSFER LEARNING

In this section we illustrate our framework of upstream bias mitigation in transfer learning. The
framework involves two phases: (1) Bias Mitigation phase (Sec. 4.1). a source model fs = gs ◦ hs
is trained on the source data, with bias mitigation objectives; then, the text encoder gs (i.e., the
classifier head hs is discarded) is provided to a target domain. (2) Fine-tuning phase (Sec. 4.2). The
target model ft = gt ◦ ht use gs as weight initialization and fine-tune for the in-domain prediction
performance only in the target domain. Figure 1 (right) illustrates the proposed framework.

4.1 BIAS MITIGATION ALGORITHMS

We consider two approaches for model de-biasing in the de-biasing phase: explanation regulariza-
tion (Kennedy et al., 2020) and adversarial de-biasing (Elazar & Goldberg, 2018; Xia et al., 2020).
The explanation regularization approach applies when there are a set of lexicons that models may be
overly sensitive to: for example, the model may be spuriously correlate labels with group identifier
mentions, or terms frequently used by a certain demographic group in the input sentence, which may
result in higher FPRD on examples that contain these lexicons. The adversarial de-biasing approach
is more general and does not require a predefined set of lexicons.

Explanation Regularization. Explanation regularization approaches assign an importance score
φ(w,x) for each word w in a predefined lexicon set S that is present in the input example x, and
regularize the importance score jointly with the main learning objective. The jointly learning objec-
tive is written as,

min
f

`c + α||φ(w,x)||2 (2)

where `c is the classification loss and α||φ(w,x)||2 penalizes the importance attributed cumulatively
to all w ∈ S . α is a hyperparameter controlling the strength of the regularization. While a variety
of explanation algorithms can be applied here, we focus on the most simple input occlusion algo-
rithm (Zintgraf et al., 2017), where the importance is measured as the model prediction change when
the term w is removed from the input x.

Adversarial De-biasing. Adversarial de-biasing algorithms reduce information about the attributes
a encoded in the intermediate representations by the encoder g. During training, an adversarial
classifier head (an MLP) hadvi : Rn → [0, 1] is built upon the encoder g for each attribute a(j) ∈ a.
The classifier is trained to predict the attribute a by optimizing the cross entropy loss `adv(g ◦
hadv(x), a). A gradient reversal layer (Ganin et al., 2016) is added between the encoder g and
hadv , so that the encoder g is optimized to generate representations that do not encode information
about the attribute a. The adversarial learning objective is optimized jointly with the classification

4



Under review as a conference paper at ICLR 2021

objective at training. Formally, the optimization problem is written as,

min
g,h

max
hadv
1:K

`c +

K∑
j=1

`adv(g ◦ hadvj (x), aj) (3)

while the adversarial loss `adv can take other forms as in Madras et al. (2018), we did not observe
significant differences empirically.

We train a de-biased classifier with either explanation regularization or adversarial de-biasing in the
source domain. The text encoder gs is then extracted from the full model fs = gs ◦ hs provided to
the target domain to perform fine-tuning.

4.2 MODEL FINE-TUNING ALGORITHMS

In the second phase, we train a downstream classifier ft = gt ◦ ht in the target domain Dt without
de-biasing algorithms, where gt is initialized with gs from the source model. We assume that the full-
model is fine-tuned, i.e., both gt and ht are trained jointly. We additionally consider two approaches:
(1) the encoder gt is frozen while only ht is trained, and when (2) the gt is penalized for deviating
from gs with a regularization term. We use the `2-sp regularizer (Li et al., 2018), which penalizes
the distance between the weights and the initial point of fine-tuning. Formally, let w0 be the initial
weight of the encoder g before fine-tuning, and w be the current weight of g. The `2-sp regularizer
is written as Ω(w) = β||w − w0||22, where β is a hyperparameter controlling the strength of the
regularization, set to 1 by default.

5 EXPERIMENTS

In this section we describe the general experimental framework and in each sub-section we report
each variation of this setup. We consider two bias factors in our study, namely the group identifier
bias and the African American English (AAE) dialect bias.

Group Identifier Bias in Hate Speech Detection. The bias refers to sentences containing group
identifiers that are more likely to be misclassified as hate speech over others. This behavior is
harmful to certain demographic groups by misclassifying innocuous text with the group identifier
mentions (e.g., I am a muslim) as the hate speech. We include two datasets for study, namely the Gab
Hate Corpus (GHC) (Kennedy et al., 2018) and the Stormfront corpus (de Gibert et al., 2018). Both
datasets contain binary labels for hate and non-hate instances. We use the explanation regularization
approach with the 25 group identifier lexicons provided in (Kennedy et al., 2020).

AAE Dialect Bias. Sap et al. (2019) show offensive and hate speech classifiers yield a higher false
positive rate on the text written in African American English (AAE). This bias brings significant
harm to the community that uses AAE, for example, by leading to the disproportionate removal of
the text written AAE (that is presumed to be hateful or offensive) in social media platforms, and ad-
ditionally reinforces negative perceptions of AAE. We include two datasets for study: FDCL (Founta
et al., 2018), which is a four-way classification dataset among normal, abusive, hateful, and spam;
DWMW (Davidson et al., 2017), which is a three-way classification dataset among normal, abusive,
and hateful. The models are trained to perform four-way and three-way classification respectively;
while to evaluate the prediction bias, we treat abusive, hateful and spam together as disadvantaged
outcomes. We use an off-the-shelf AAE dialect predictor (Blodgett et al., 2016) to identify examples
written in AAE for the bias mitigation phase. We report the results of both explanation regularization
and adversarial learning. See appendix for details of regularization methods.

Metrics. We expect a model to be unbiased while maintaining in-domain classification performance.
To evaluate the in-domain classification performance, we report F1-scores for GHC and Stormfront,
and the accuracy scores for FDCL and DWMW. Following Zhang et al. (2018), we use the equal
error rate (EER) threshold for prediction, i.e., we set the prediction threshold so that the overall false
positive rates and the false negative rates are the same on the validation set.

To evaluate the group identifier bias on GHC and Stormfront, the FPRD metrics defined in Eq. 1 can
be directly applied on the in-domain test set, where the subset S consists of examples containing
one of 25 group identifiers provided by Kennedy et al. (2020). In addition, in order to experiment
on examples that contained group identifiers but were not hate speech, we followed Kennedy et al.
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Method / Datasets GHC Stormfront

Metrics In-domain
F1 (↑)

In-domain
FPRD (↓)

IPTTS
FPRD (↓)

NYT
Acc (↑)

In-domain
F1 (↑)

In-domain
FPRD (↓)

IPTTS
FPRD (↓)

NYT
Acc (↑)

Single dataset Single dataset

Vanilla 49.60 ± 1.0 46.43 ± 2.5 20.01 ± 5.7 72.08 ± 7.3 53.74 ± 2.8 18.09 ± 2.7 11.51 ± 5.1 73.06 ± 10
Expl. Reg. 43.37 ± 1.8 29.29 ± 1.2 4.2 ± 1.6 81.22 ± 11 51.53 ± 1.1 13.43 ± 1.5 3.8 ± 0.4 83.73 ± 8.0

Stf. → GHC GHC→ Stf.

Van. Transfer 47.83 ± 2.1 47.51 ± 4.6 18.03 ± 3.9 66.71 ± 11 55.79 ± 1.3 17.83 ± 2.2 7.27 ± 1.7 76.98 ± 1.1
Expl. Reg. Transfer 49.94 ± 1.0 42.71 ± 3.8 12.23 ± 3.3 75.34 ± 4.8 56.43 ± 0.6 18.03 ± 2.5 6.86 ± 1.1 81.18 ± 1.1

Stf. + FDCL→ GHC GHC+ FDCL→ Stf.

Van. + Van. Trans. 49.71 ± 0.3 45.84 ± 3.8 12.43 ± 2.5 72.37 ± 7.4 56.78 ± 1.6 14.26 ± 0.8 11.04 ± 0.7 77.06 ± 5.1
Expl. Reg + Expl. Reg-Trans. 50.21 ± 1.4 47.63 ± 0.7 12.29 ± 2.7 68.44 ± 8.6 53.87 ± 1.2 15.92 ± 1.2 8.4 ± 1.4 83.71 ± 3.2
Expl. Reg + Adv-Trans. 49.89 ± 1.7 47.85 ± 1.2 21.25 ± 2.0 65.78 ± 5.7 53.63 ± 0.7 15.52 ± 2.2 8.9 ± 1.6 84.87 ± 1.1

Table 1: Cross-domain transfer learning of less biased models with GHC and Stormfront as target
domains. In-domain FPRD, IPTTS FPRD and NYT Accuracy (Acc.) measures prediction bias. The
preferred outcomes for each metric are marked with arrows.

(2020) in using a corpus of New York Times articles (NYT), which is a collection of 12.5k all
non-hate sentences from New York Times articles where each sentence include one of 25 group
identifiers. This corpus specifically provides an opportunity to measure FPR, given that models
are often biased towards false positives when one of 25 group identifiers are present. We report
the accuracy (NYT Acc.) i.e., 1-FPR. Additionally, following the evaluation protocol of Dixon et al.
(2018) and Zhang et al. (2020), we also incorporate the Identity Phrase Templates Test Sets (IPTTS),
which consists of 77k hate and non-hate examples with group identifier mentions generated with
templates2.

To evaluate the AAE dialect bias on FDCL and DWMW, given that only a small number of examples
in the datasets are written in AAE and these labels themselves are noisy outputs from a classifier,
the in-domain FPRD metrics can be very noisy. Therefore, following previous study, we incorporate
the BROD (Blodgett et al., 2016) dataset, which is a large unlabeled collection of twitter posts
written by AAE speakers. We sample 20k examples with the confidence of AAE speaker larger
than 80%. Following Xia et al. (2020), considering that hateful, abusive and spam posts only take a
small portion, we treat all twitter posts from the BROD dataset as the label normal, and report the
accuracy (which equals 1-FPR) on the dataset, noted as BROD Acc.

Compared Methods. For comparison, we report the results when (1) the downstream classifier
is directly trained without any regularization (noted as Vanilla); and (2) the downstream classifier
is trained in the target domain with explanation regularization or adversarial de-biasing (noted as
Expl. Reg. or Adv. Learning). We also report (3) a model fine-tuned from a naively trained model
in the source domain(noted as Van-Transfer); and finally, we report the results of the proposed
framework, where the model is fine-tuned from a less biased model in the source domain (noted
as Expl. Reg-Transfer or Adv-Transfer). The Van-Transfer serves as a baseline and dissects the
benefit of bias mitigation performed in the source domain. We expect that our framework achieves a
similar in-domain performance (In-domain F1 or In-domain Accuracy), and less bias (lower FPRD
in the in-domain test sets and IPTTS; higher accuracy on NYT and BROD) compared to Vanilla and
Van-Transfer. Note that we do not expect our framework to achieve a lower bias compared to directly
mitigating bias in target domain; the focus of our study is to reduce bias when bias mitigation is not
practical in the target domain, as discussed in Sec. 3.2.

Implementation Details. We use RoBERTa-base as our text encoder (i.e., the model in the bias
mitigation phase itself is fine-tuned from RoBERTa-base). See Appendix for more details.

5.1 CROSS-DOMAIN TRANSFER LEARNING OF LESS BIASED MODELS

As one of the main part in our study, we first show the results when the source and the target
domains are different. For notations, we show the source and the target domains in the left and the
right-hand side of the arrow respectively. We perform transfer learning from GHC to Stormfront
(GHC→ Stf.), from Stormfront to GHC (Stf. → GHC); and perform transfer learning from FDCL
to DWMW (FDCL→ DWMW). We do not use DWMW as the source domain: as a great portion
of offensive text are in AAE for the dataset, bias mitigation algorithms make a marginal effect even
when it is directly applied on the dataset — which is also observed by Xia et al. (2020).

2Following these works, for IPTTS we compute FPRD as
∑

z |FPRz − FPRoverall|, where FPRz is false
positive rate on sentences with the group identifier z, and FPRoverall is the overall FPR.
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Method / Datasets DWMW

Metrics In-domain
Acc. (↑)

BROD
Acc. (↑)

Single dataset

Vanilla 91.46 ± 0.1 78.77 ± 0.3
Expl. Reg. 91.38 ± 0.1 76.61 ± 1.5
Adv. Learning 91.11 ± 0.3 77.53 ± 0.9

FDCL→ DWMW

Van. Transfer 91.27 ± 0.2 78.98 ± 1.1
Expl. Reg. Transfer 91.39 ± 0.0 80.27 ± 0.2
Adv. Transfer 91.60 ± 0.1 79.98 ± 1.7

GHC + FDCL→ DWMW

Van. + Van. 91.65 ± 0.1 80.98 ± 0.4
Expl. Reg + Expl. Reg. 91.79 ± 0.4 81.36 ± 0.8
Expl. Reg + Adv. 91.33 ± 0.1 81.09 ± 0.4

Stf. + FDCL→ DWMW

Van. + Van. 91.64 ± 0.2 81.12 ± 0.1
Expl. Reg + Expl. Reg. 91.66 ± 0.2 80.05 ± 0.1
Expl. Reg + Adv. 91.55 ± 0.2 81.14 ± 1.5

Table 2: Cross-domain transfer with DWMW
as the target domain.

Method / Datasets FDCL (Half-)B

Metrics In-domain
Acc. (↑)

BROD
Acc. (↑)

Single dataset

Vanilla 75.72 ± 0.2 73.57 ± 1.2
Expl. Reg. 77.30 ± 0.2 76.72 ± 1.1
Adv. Learning 75.28 ± 0.2 77.12 ± 1.2

FDCL A→ FDCL B

Van. Transfer 76.33 ± 0.6 70.35 ± 2.4
Expl. Reg. Transfer 76.22 ± 0.5 69.29 ± 1.8
Adv. Transfer 75.88 ± 0.4 71.11 ± 1.6

GHC A + FDCL A→ FDCL B

Van. + Van. 77.34 ± 0.4 72.96 ± 1.5
Expl. Reg + Expl. Reg. 76.21 ± 0.4 73.10 ± 1.4
Expl. Reg + Adv. 76.94 ± 0.4 76.55 ± 0.7

Stf. A + FDCL A→ FDCL B

Van. + Van. 77.18 ± 0.5 71.12 ± 1.2
Expl. Reg + Expl. Reg. 77.13 ± 0.3 72.17 ± 1.6
Expl. Reg + Adv. 76.64 ± 0.6 76.55 ± 0.6

Table 3: Same-domain transfer with the second
half of FDCL as the target domain.

Tables 1 and 2 show the results of the cross-domain transfer between GHC and Stormfront and from
FDCL to DWMW. We summarize our findings below.

Reduced bias compared to vanilla training on a single dataset. From the results of cross-domain
transfer learning when only one dataset is included in the source domain (i.e., Stf.→Gab, Gab→Stf.,
FDCL→DWMW), we see reduced bias in the target domain by transferring from a less biased model
compared to Vanilla: FPRD on IPTTS has decreased from 20.01 to 12.23 for GHC and from 11.51
to 6.86 for Stormfront; Accuracy on NYT has increased from 72.08 to 75.34 for GHC, and from
73.06 to 81.18 for Stormfront; Accuracy on BROD has increased from 78.77 to 80.27 (Expl. Reg-
Transfer) for DWMW. Meanwhile, the in-domain prediction accuracy has also increased (on GHC
and Stormfront) or preserved (on DWMW). It is notable that on directly running bias mitigation
algorithms on DWMW is not effective; while transferring from FDCL improves BROD Acc. The
In-domain FPRD on Stromfront is an only exception: however, as discussed in our metrics section,
the in-domain FPRD is computed over a much smaller set of examples compared to NYT and IPTTS,
which make the score less reliable.

Transfer learning itself makes a positive impact, while mitigating bias the source model further
reduces bias. We notice transfer learning itself has an overall positive impact on reducing bias from
the comparison between Vanilla and Van-Transfer. The observation aligns with Tu et al. (2020),
where the authors show multi-task learning improves models’ robustness to spurious correlations.
We have shown the conclusion extends to the transfer learning case in bias mitigation. Nevertheless,
transfer learning from a less biased model almost always further reduce the bias.

5.2 DEALING WITH MULTIPLE BIAS FACTORS

We also show the results where we include more than one datasets and simultaneously remove both
the group identifier bias and the AAE dialect bias in the source domain with two different datasets.
We apply multi-task learning (MTL), where two datasets share the same text encoder g but use
different classification heads h1t and h2t and trained jointly. We train the source model with the
combination of GHC and FDCL (GHC+FDCL) or Stormfront and FDCL (Stf. + FDCL), and fine-
tune the model on Gab, Stormfront, or DWMW. The results are shown in Table 1 under the rows
Stf. + FDCL → GHC and GHC + FDCL → Stf., and in Table 2 under the rows Stf. + FDCL →
DWMW, GHC + FDCL→ DWMW. We summarize the observations below.

Transfer learning from less biased models on GHC + FDCL reduces both kinds of bias. We find
fine-tuning from Expl. Reg + Adv. and Expl. Reg + Expl. Reg (trained on GHC+FDCL) reduces
group identifier bias in Stormfront in FDCL, compared to both Vanilla and Van. + Van-Transfer
(measured with IPTTS and NYT). On DWMW, we see that transfer learning itself (Van.+Van-
Transfer) has already improved the accuracy score on BROD from 79.77 to 80.98, and Expl. Reg
+ Adv-Transfer and Expl. Reg + Expl. Reg-Transfer has slightly improved the accuracy further to
81.09 and 81.36 respectively.
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Transferring from less biased models on Stf. + FDCL does not further improve over Van.+Van-
Transfer. Similarly, fine-tuning from vanilla models trained on Stormfront and FDCL improves bias
metrics compared to vanilla training on GHC or FDCL. However, we see mitigating bias in source
models does not bring further improvements. The results imply different tasks may interfere with
each other when applied for mitigating bias in upstream models. We leave further study and solution
to such interference as a future work.

5.3 TRANSFER LEARNING WITH THE SAME SOURCE AND TARGET DOMAINS

We further show the results when the target domain consists of new emerging examples from the
same data distribution as the source domain, which is a simpler setting than the cross-domain setup.
The experiments allows us to solely focus on whether learned bias mitigation in the source domain is
preserved in fine tuning and discard the challenge of domain dissimilarity. We set up the experiments
by partitioning GHC, Stormfront and FDCL to two subsets with equal sizes, noted as subsets A and
B of corresponding datasets. Subsets A and B are regarded as the source domain and the target
domain respectively. Similar to the cross domain setting, we show the results when the models are
only trained in the target domain, when a single bias factor is reduced from the source model, and
when two bias factors are reduced.

The similarity between the source and the target domain enables better transfer learning of
less biased models. Table 3 resent the results on FDCL. We also include the results for GHC and
Stormfront in Appendix (Table 5). By comparing between Van-Transfer or Van.+Van-Transfer and
transfer learning from regularized models, we see a clear effect of mitigating bias in the source
model compared to the cross-domain transfer learning setup.

In the experiments above, we have shown that mitigating bias in the source model provides inductive
bias to target model that is preserved in the fine-tuning. Next, we study whether freezing the weights
or discouraging the weight change allows better mitigation of bias in the target domain.

5.4 FREEZING OR REGULARIZING MODEL WEIGHTS

Metrics In-domain
F1 (↑)

In-domain
FPRD (↓)

IPTTS
FPRD (↓)

NYT
Acc. (↑)

Stf. → GHC

Freeze 45.42 37.71 7.82 84.45
`2-sp 49.31 47.03 14.24 71.88
Fine-tune 49.94 42.71 12.23 75.34

GHC→ Stf.

Freeze 47.32 25.02 8.24 64.60
`2-sp 55.80 19.75 6.72 80.42
Fine-tune 56.43 18.03 6.86 81.88

(a) GHC to Stf. and Stf. to GHC

Metrics In-domain Accuracy. (↑) BROD Accuracy (↑)
FDCL→ DWMW

Freeze 83.25 64.80
`2-sp 91.38 79.95
Fine-tune 91.60 79.98

(b) FDCL to DWMW

Table 4: Transferring from explanation regular-
ized models (GHC, Stf) or adversarially debiased
models (FDCL) while keeping the encoder frozen
(Freeze), fine-tuning with `2-sp regularizer, or
vanilla fine-tuning (Fine-tune).

Intuitively, freezing or discouraging the
changes on the encoders may help to retain
the knowledge in the encoder and reduce bias
in the target domain. However, we show a
counter-intuitive conclusion: most of times
freezing or discouraging weight changes does
not contribute to bias mitigation (while also
decreasing the in-domain classification per-
formance). Table 4 show the results when we
keep the weights frozen (Freeze), regularized
from changing (`2-sp), or unregularized at
fine-tuning (fine-tune). In Stf. → GHC,
freezing the weights contributed to reducing
the bias, while `2-sp failed to help. We tried
also other regularization strengths β but did
not observe better results. In GHC → Stf and
FDCL → DWMW, both freezing the weight
and `2-sp increases the bias. A possible reason
is that when the encoder is frozen, we are
training a linear model; simple models are
known to more biased because they can only
make use of superficial clues in the inputs that
may spuriously correlate with the labels.

6 CONCLUSIONS

In this paper, we proposed a transfer learning
framework for learning less biased downstream models. We experimented with various settings,
when single or multiple attributes are included for de-biasing, and when the source and the target
domains are the same or different, and obtain overall positive results. For future works, we would
study algorithms to learn more transferable less biased upstream models.
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Method / Datasets GHC (Half-)B Stormfront (Half-)B

Metrics In-domain
F1 (↑)

In-domain
FPRD (↓)

IPTTS
FPRD (↓)

NYT
Acc (↑)

In-domain
F1 (↑)

In-domain
FPRD (↓)

IPTTS
FPRD (↓)

NYT
Acc (↑)

Single dataset Single dataset

Vanilla 37.91 ± 2.5 36.54 ± 2.2 21.50 ± 2.8 68.55 ± 20 55.56 ± 0.5 20.81 ± 4.9 10.99 ± 5.6 66.28 ± 8.1
Expl. Reg. 38.09 ± 2.7 18.68 ± 0.3 4.82 ± 1.1 84.05 ± 3.0 53.05 ± 1.0 15.97 ± 1.1 3.36 ± 3.3 65.23 ± 10

GHC A→ GHC B Stf. A→ Stf. B

Van-Transfer 42.41 ± 1.0 37.44 ± 1.5 17.67 ± 2.1 75.35 ± 4.2 58.43 ± 1.2 17.96 ± 3.6 11.58 ± 4.8 74.12 ± 4.2
Expl. Reg-Transfer 43.79 ± 1.9 34.34 ± 3.1 10.02 ± 1.1 81.4 ± 1.4 58.56 ± 1.0 16.42 ± 0.9 7.51 ± 2.4 69.45 ± 4.0

GHC A + FDCL A→ GHC B Stf. A + FDCL A→ Stf. B

Van. + Van. 44.30 ± 0.7 41.06 ± 3.9 19.75 ± 6.9 74.60 ± 6.3 57.58 ± 2.7 13.97 ± 2.0 11.33 ± 2.2 75.72 ± 7.5
Expl. Reg + Expl. Reg-Trans. 42.96 ± 2.0 33.98 ± 3.0 9.30 ± 2.1 86.05 ± 1.9 56.72 ± 1.7 17.91 ± 1.0 8.05 ± 0.6 77.40 ± 0.3
Expl. Reg + Adv-Trans. 42.44 ± 3.5 33.96 ± 1.5 16.58 ± 1.7 81.79 ± 9.0 55.63 ± 2.5 17.14 ± 0.5 13.78 ± 4.3 70.37 ± 10

Table 5: Same-domain transfer with the second half of GHC and Stormfront as the target domain.

A IMPLEMENTATION DETAILS

Training. In the bias mitigation phase, the models are trained with a learning rate 1e−5, and the
checkpoint with the best validation F1 or accuracy score is provided to the fine-tuning phase. We
train Gab, FDCL, and DWMW for maximum 5 epochs and Stormfront for maximum 10 epochs. In
the fine-tuning phase, we try the learning rate 1e−5 and 5e−6, and report the results with a higher
validation F1 or accuracy.

Bias mitigation algorithms. For explanation regularization algorithm, we set the regularization
strength α as 0.03 for Gab and Stormfront experiments, and 0.1 for FDCL and DWMW experi-
ments. We regularize importance score on 25 group identifiers in Kennedy et al. (2018) for Gab
and Stormfront. These group identifiers the ones that have the largest coefficient in a bag-of-words
linear classifier. For FDCL, we extract 50 words with largest coefficient in the bag-of-words linear
classifier with a AAE dialect probability higher than 60% (given by the off-the-shelf AAE dialect
predictor Blodgett et al. (2016)) on its own. For adversarial de-biasing, the adversarial loss term has
the same weight as the classification loss term.

B COMPLETE ANALYSIS OF SAME-DOMAIN TRANSFER

Table 5 show the results of same-domain transfer with the second half of GHC and Stormfront
datasets as the target domain. Similar to the cross-domain setup, transfer learning from a less bi-
ased model overall reduces the bias compared to Vanilla and Vanilla-Transfer. The observation is
consistent when multiple bias factors are reduced in the source domain. We find the NYT accuracy
on Stormfront is an exception, which is not improved even when we directly run explanation regu-
larization in the target domain. We reason that the Half-Stormfront dataset is small and the average
length of the sentences are quite different between Stormfront and NYT, so that a model trained on
Stormfront hardly generalizes to NYT.
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