
Spectral–Topology-Aware KG-MARL for 5G V2V
Sidelink

Vehicular-to-Vehicular (V2V) communication is a cornerstone for enabling cooperative safety, real-
time traffic management, and autonomous driving. A key enabler in the 5G NR standard is sidelink
mode-2, where vehicles autonomously select transmission resources without centralized scheduling.
While this approach ensures scalability, its baseline mechanism—Semi-Persistent Scheduling (SPS)—
underperforms in dense or highly mobile environments. SPS suffers from slow reselection, hidden-
terminal collisions, and lacks adaptability to diverse QoS requirements such as latency, reliability, and
throughput. These shortcomings compromise safety-critical applications where packet reception ratio
(PRR), low delay, and high reliability are crucial.

To address these limitations, we propose a Koopman-augmented Graph Multi-Agent Rein-
forcement Learning (KG-MARL) framework for decentralized V2V sidelink resource allocation.
Unlike SPS, KG-MARL empowers each vehicular link to dynamically select both its subchannel and
transmit power using a richer representation of the environment. The framework combines: (i)
spectrogram-based spectral maps via short-time Fourier transform (STFT), capturing temporal and
frequency-domain interference dynamics; (ii) Graph Attention Network (GAT) embeddings, model-
ing the interference topology among neighboring links; and (iii) Koopman operator-based prediction,
which linearizes nonlinear state dynamics to enable stable and sample-efficient prediction of short-
horizon interference evolution. Each agent optimizes a reward shaped as a potential game, align-
ing local and global objectives. The per-link reward (utility) is The per-link utility is Ri = Ui =
αPRRi + β log(1 + SINRi) − γ Inti − λPi, SINRi = Pigii

N0+
∑
j ̸=i, rj=ri

Pjgji
, where PRRi is the packet

reception ratio, Inti the measured interference, Pi the transmit power, gii and gji the desired and
interfering channel gains, N0 the noise power, and α, β, γ, λ weighting factors for reliability, spectral
efficiency, interference mitigation, and power cost.

The framework follows a Soft Actor–Critic (SAC)-style actor–critic architecture with centralized train-
ing and decentralized execution. Koopman operators accelerate value updates by approximating state
transitions linearly, while GAT embeddings enhance coordination via graph-structured observations.
Once trained, vehicles execute decisions autonomously with minimal overhead, ensuring practicality for
real deployment.

Algorithm 1: KG-MARL Training

1: Initialize actor πθ, critic Qϕ, GAT fψ , Koopman K, replay buffer D
2: for each episode and frame do
3: Agents sense spectrum → STFT heatmap
4: Build interference graph → GAT embedding zi
5: Form state si, sample action ai = (ri, Pi) ∼ πθ
6: Execute, observe reward Ri, next state s′i, store in D
7: Update step: Koopman prediction Φ(s′) ≈ KΦ(s)
8: Update critic with target; update actor (SAC objective); update

GAT and K

Table 1: Results

Scheme PRR Collisions Avg. Power

KG-MARL 93–95% 15% 0.22 W
GAT-A2C 90% 18% 0.25 W
DIRAL 88% 22% 0.30 W
DQN 85% 25% 0.30 W
SPS 75–85% 30% 0.30 W

Simulations show that KG-MARL consistently outperforms all considered baselines, as summarized
in Table I. The comparisons include Semi-Persistent Scheduling (SPS), which is the standard 3GPP
mode-2 mechanism; Deep Q-Network (DQN), a single-agent reinforcement learning method for resource
allocation; Distributed Resource Allocation using Multi-Agent Reinforcement Learning (DIRAL), a
decentralized MARL-based approach; and Graph Attention Network–based Advantage Actor–Critic
(GAT-A2C), which leverages graph neural representations for policy learning. Against these bench-
marks, KG-MARL achieves notable gains: it improves median SINR by 5-7 dB, halves collision probabil-
ity in dense scenarios, sustains packet reception ratio (PRR) above 90–95% for safety-critical messages,
and reduces average transmit power by 20–25%.
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