Spectral-Topology-Aware KG-MARL for 5G V2V
Sidelink

Vehicular-to-Vehicular (V2V) communication is a cornerstone for enabling cooperative safety, real-
time traffic management, and autonomous driving. A key enabler in the 5G NR standard is sidelink
mode-2, where vehicles autonomously select transmission resources without centralized scheduling.
While this approach ensures scalability, its baseline mechanism—Semi-Persistent Scheduling (SPS)—
underperforms in dense or highly mobile environments. SPS suffers from slow reselection, hidden-
terminal collisions, and lacks adaptability to diverse QoS requirements such as latency, reliability, and
throughput. These shortcomings compromise safety-critical applications where packet reception ratio
(PRR), low delay, and high reliability are crucial.

To address these limitations, we propose a Koopman-augmented Graph Multi-Agent Rein-
forcement Learning (KG-MARL) framework for decentralized V2V sidelink resource allocation.
Unlike SPS, KG-MARL empowers each vehicular link to dynamically select both its subchannel and
transmit power using a richer representation of the environment. The framework combines: (i)
spectrogram-based spectral maps via short-time Fourier transform (STFT), capturing temporal and
frequency-domain interference dynamics; (ii) Graph Attention Network (GAT) embeddings, model-
ing the interference topology among neighboring links; and (iii) Koopman operator-based prediction,
which linearizes nonlinear state dynamics to enable stable and sample-efficient prediction of short-
horizon interference evolution. Each agent optimizes a reward shaped as a potential game, align-
ing local and global objectives. The per-link reward (utility) is The per-link utility is R; = U; =

aPRR; + Blog(1l + SINR;) — vInt; — AP;, SINR, = oSS ;ig“ P where PRR; is the packet
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reception ratio, Int; the measured interference, P; the transmit power, g;; and g;; the desired and
interfering channel gains, Ny the noise power, and «, 3,7, A weighting factors for reliability, spectral
efficiency, interference mitigation, and power cost.

The framework follows a Soft Actor-Critic (SAC)-style actor—critic architecture with centralized train-
ing and decentralized execution. Koopman operators accelerate value updates by approximating state
transitions linearly, while GAT embeddings enhance coordination via graph-structured observations.
Once trained, vehicles execute decisions autonomously with minimal overhead, ensuring practicality for
real deployment.

Algorithm 1: KG-MARL Training Table 1: Results
1: Initialize actor my, critic Qg, GAT fy,, Koopman IC, replay buffer D Scheme PRR Collisions ~ Avg. Power
2: for each episode and frame do .
3: Agents sense spectrum — STFT heatmap KG-MARL 93-95% 15% 0.22 W
4: Build interference graph — GAT embedding z; GAT-A2C 90% 18% 0.25 W
5: Form state s;, sample action a; = (r;, P;) ~ g
6: Execute, observe reward R;, next state s/, store in D BIRNAL Zi? 3?3 ggg %
7 Update step: Koopman prediction ®(s’) ~ K®(s) Q 0 0 :
8: Update critic with target; update actor (SAC objective); update SPS 75-85% 30% 0.30 W

GAT and K

Simulations show that KG-MARL consistently outperforms all considered baselines, as summarized
in Table I. The comparisons include Semi-Persistent Scheduling (SPS), which is the standard 3GPP
mode-2 mechanism; Deep Q-Network (DQN), a single-agent reinforcement learning method for resource
allocation; Distributed Resource Allocation using Multi-Agent Reinforcement Learning (DIRAL), a
decentralized MARL-based approach; and Graph Attention Network—based Advantage Actor—Critic
(GAT-A2C), which leverages graph neural representations for policy learning. Against these bench-
marks, KG-MARL achieves notable gains: it improves median SINR by 5-7 dB, halves collision probabil-
ity in dense scenarios, sustains packet reception ratio (PRR) above 90-95% for safety-critical messages,
and reduces average transmit power by 20-25%.
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