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Abstract

In the current user-server interaction paradigm001
of prompted generation with large language002
models (LLMs) on cloud, the server fully con-003
trols the generation process, which leaves zero004
options for users who want to keep the gener-005
ated text private to themselves. For privacy-006
aware text generation on cloud, we propose007
LatticeGen, a cooperative protocol in which008
the server still handles most of the computation009
while the client controls the sampling operation.010
The key idea is that the true generated sequence011
is mixed with noise tokens by the client and hid-012
den in a noised lattice. Only the client knows013
which tokens are the true ones. Considering po-014
tential attacks from a hypothetically malicious015
server and how the client can defend against016
it, we propose the repeated beam-search attack017
and the mixing noise scheme. In our exper-018
iments we apply LatticeGen to protect both019
prompt and generation. It is shown that while020
the noised lattice degrades generation quality,021
LatticeGen successfully protects the true gen-022
eration to a remarkable degree under strong at-023
tacks (more than 50% of the semantic remains024
hidden as measured by BERTScore).025

1 Introduction026

Many of the high-performing large language mod-027

els (LLMs) need to be deployed on cloud servers,028

whether they are open-sourced but have an inten-029

sive need for computation (Zhao et al., 2023; Ka-030

plan et al., 2020), or behind a paywall like Chat-031

GPT (OpenAI, 2023). This raises new privacy chal-032

lenges (Li et al., 2021; Yu et al., 2021; Kerrigan033

et al., 2020), since users have to send or receive034

their data to/from cloud providers.035

In this work we focus on a popular interaction036

paradigm between end users and a server hosting an037

LLM on cloud named prompted generation: The038

user sends server a prompt, which is usually an039

instruction (Chung et al., 2022) or the beginning040

of a document (Deng et al., 2022), and the server,041

who fully controls the generation process, sends 042

user back the generated text from the LLM. Both 043

the prompt and the generation are raw texts which 044

are completely transparent and accessible to the 045

server, leaving zero options for users who want to 046

keep the generated text private to themselves. 047

As LLMs become widely deployed in profes- 048

sional and social applications, we argue that in 049

prompted generation, there are many scenarios in 050

which not only the prompts, but also the gener- 051

ated texts need some level of obfuscation, be- 052

cause they can directly affect the user’s real-life 053

private decisions. For example, a customer is 054

likely to go to the restaurant suggested by the LLM, 055

and a writer could take inspiration from outputs 056

provided by the LLM. With the goal of preventing 057

the server from gaining complete knowledge of the 058

generated text and prompt, we propose LatticeGen 059

(Figure 2), a client–server interaction protocol in 060

which the user and client conduct privacy-aware 061

generation token-by-token in a cooperative way. 062

The protocol can be executed by a local client so 063

that the interface is kept simple for the user. We 064

summarize our key contributions below: 065

• The high-level idea of LatticeGen (§3) is that 066

in each time-step, the client sends the sever 067

not one, but N tokens (thus the name lattice), 068

in which one is true and others act as noise. 069

The server does LLM inference and sends 070

client back the next-token distributions for 071

all N tokens, which are used by the client to 072

sample the true and noise tokens for the next 073

time-step. 074

• Considering potential attacks from a hypo- 075

thetically malicious server and how the client 076

can defend against it (§4), we propose the 077

repeated beam-search attack and the mixing 078

noise scheme as defense. 079

• We apply LatticeGen to the task of creative 080

writing (Fan et al., 2018). Our experiments 081
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(§5) show that while the noised lattice de-082

grades generation quality, LatticeGen success-083

fully prevents a malicious server from recover-084

ing the true generation to a remarkable degree085

(more than 50% of the semantic remains un-086

known as measured by BERTScore). 1087

2 Motivation and Preliminaries088

2.1 Generated Text (also) Needs Obfuscation089

In the current user–server interaction paradigm, the090

user sends the server a prompt which is usually091

the beginning of a dialogue, story or instruction,092

then the server generates a complete response au-093

toregressively (§2.3), and sends it back to the user.094

Both the prompt and generation are directly avail-095

able to the server in raw text format.096

This paper contends generated texts, as well as097

user prompts, require a privacy protection mech-098

anism. A key reason is that in various scenarios,099

the generation from the LLM can affect the user’s100

private decisions: e.g., a customer is likely to go101

to the restaurant suggested by the LLM; a writer102

could take inspiration from outputs provided by the103

LLM; an engineer or manager could adopt the ap-104

proach proposed by the LLM. Industry regulations105

do not provide ample protection. Please see §E for106

recent privacy-related incidents with ChatGPT or107

Bard. The goal of our LatticeGen protocol is to108

provide a controlled level of obfuscation for the109

generated text, making it difficult for a hypothet-110

ically malicious server to infer the user’s actions111

after interacting with the LLM.112

2.2 LatticeGen as a Third-Party Client113

Before expanding on the proposed protocol (§3),114

we first clarify that LatticeGen does not compli-115

cate the user interface. Indeed, it is likely that116

most users still want to keep a simple and intu-117

itive interface for prompted generation. In light118

of this, LatticeGen can be implemented as a third-119

party client between the user and the server. As120

Figure 1 depicts, the client takes the prompt from121

the user, conducts the privacy-aware generation122

protocol with the server, and finally returns the gen-123

eration to the user. In this way, the user does not124

need to deal with the complicacy in the protocols.125

The next question is why would the user trust126

the client? One solution is that the client can be127

open-sourced (e.g., as python scripts) and therefore128

vetted by researchers and users worldwide. The129

1Our code and data will be released in the public version
of this manuscript.

Figure 1: LatticeGen can be implemented as a third-
party client handling the protocol for the user.

user only need to download the script and set the 130

hyper-parameters (e.g., random seed). 131

2.3 Preliminaries 132

We will start by reviewing the traditional autore- 133

gressive LM generation, and then move on to intro- 134

duce necessary components of LatticeGen. 135

Traditional Autoregressive LM Generation 136

We assume the server-side LLM is an autoregres- 137

sive LM, i.e., it generates tokens one at a time 138

and from left to right (Mikolov, 2012; Cho et al., 139

2014; Huszár, 2015; Welleck et al., 2020; Dai et al., 140

2019; Keskar et al., 2019). We denote the LLM 141

as PM with parameter set θ, the vocabulary as V , 142

the generated token at time-step t as wt, and the 143

given prompt as p. For convenience we regard the 144

prompt as part of generation, therefore, wt := pt 145

for 1 ≤ t ≤ len(p). In traditional autoregressive 146

generation, on each time-step t > len(p), the next 147

token wt is sampled from PM (·|w0..t−1) by call- 148

ing a sampling algorithm such as top-k (Fan et al., 149

2017) or nucleus sampling (Holtzman et al., 2020). 150

w0 is the <bos> token. 151

The Lattice Structure A simple but key concept 152

in our proposed framework is the lattice. In a width- 153

N lattice (or an N -lattice for short), each time-step 154

contains N token options and we denote them as 155

{w1
t , ..., w

N
t }. Therefore, a N -lattice of length T 156

(denoted as WN
T ) represents NT possible sequence 157

combinations. An example with N = 2 is shown 158

in the left part of Figure 2. 159

In our proposed LatticeGen protocols (§3.1), for 160

each time-step t, only the client knows which token 161

is the “true” one, denoted by wtrue
t . And the other 162

N−1 tokens {wnoise(1)
t , ..., wnoise(N-1)

t } are referred 163

to as “noise” tokens. Therefore we will also refer to 164

it as the noised lattice. To prevent the server from 165

knowing which one is the true token, the client will 166

randomly shuffle the list before attaching it to the 167

lattice and sending to the server. 168

LM Finetuning and Inference with the Lin- 169

earized Lattice Format As a prerequisite for 170

LatticeGen, we need the server-side LLM (Vaswani 171

et al., 2017) to be able to do inference based on 172

a given lattice and we achieve that by finetuning 173

the base LLM PM to make next-token prediction 174
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Figure 2: Client-Server interaction under LatticeGen for time-step t. The server controls the LLM PL, conducts the
inference computation and sends client the next-token prediction distribution for each received token. The client
conducts the sampling of the true and noise token(s), and sends server a randomly permutated list of tokens for the
next time-step. The server does not know which tokens are the true ones. The task is creative writing, and the
prompt part is omitted in this figure for brevity.

with the linearized lattice format. Below we first175

introduce this format, and describe the finetuning176

objective.177

As the name suggests, we conduct a simple lin-178

earization operation before feeding the lattice to the179

LM, in which the token options on each time-step180

are linearized and concatenated into a sequence of181

length T ×N (see Figure 2 for an example):182

linearize(WN
T ) = [<bos>]+concatTt=1([w

1
t , ..., w

N
t ]). (1)183

To simplify notation, when the lattice appears as184

part of the history in an LLM inference, we assume185

it is linearized. We use the terminology position to186

refer to the index of a token in the linearized lattice.187

We use the notation PL(·|WN
T [wi

t]) with T ≥ t188

to refer to the next-token prediction distribution189

outputted by PL on the position of token wi
t in the190

linearized lattice.191

In §A we describe a simple objective to finetune192

a LLM to accept a linearized lattice as input, and193

give the next-token prediction for every token in194

the linearized lattice. Here we provide a high-level195

description. For each data sample wdata, we con-196

struct and linearize a noised lattice by applying a197

simple synonym noise scheme (also see §3.1). Dur-198

ing training, the next-token targets for the positions199

of true data tokens {PL(·|WN
T [wdata

t ])}t are set to200

its next true token wdata
t+1, while all noise tokens do201

not get training signal (Figure 5, §A). 2 We denote202

the lattice-finetuned LLM as PL.203

3 LatticeGen204

To prevent the server from gaining full knowledge205

of the generation and prompt, LatticeGen makes206

several core changes to the client–server interac-207

tion. On a high level, the server who possesses208

2Since the true and noise tokens are shuffled, the LLM
learns to predict the next token for every position.

the lattice-finetuned LLM PL (the finetuning is de- 209

tailed in §A) still handles most of the computation, 210

while the client controls the token sampling opera- 211

tions and expands the lattice to the next time-step. 212

In particular, the client will sample one true token 213

and N−1 noise tokens, where N ≥ 2 is a hyperpa- 214

rameter controlling the width of the lattice. In the 215

end, both the sever and client obtain the same 216

noised lattice WN
T , but only the client knows 217

which token is the true one for each time step. 218

In the beginning, the server needs to share the 219

vocabulary V with the client, but all other param- 220

eters or configurations of the LLM are not shared. 221

We describe the protocol below. 222

3.1 Protocol 223

For simplicity, we first ignore the prompt part and 224

assume the generation starts at the first token. In 225

the beginning t = 0, both the server and client 226

begin with an empty local lattice, and the client 227

sends N <bos> tokens to the server. We divide 228

the client–server interaction at each time-step t ≥ 1 229

into a server step and a client step, illustrated by 230

Figure 2 (also see Algorithm 1). 231

Server Step From the last time-step, the server 232

receives from client N tokens {w1
t−1, ..., w

N
t−1} 233

and expands its local lattice to WN
t−1. The server 234

does not know which received token is the true to- 235

ken because the list is shuffled by the client, and 236

computes the respective next-token prediction dis- 237

tribution for all N tokens with the LLM. More 238

concretely, the lattice WN
t−1 is linearized and fed to 239

PL, which outputs {PL(·|WN
t−1[w

i
t−1])}Ni=1. 240

With a properly finetuned LLM, this can be done 241

efficiently with one pass of model inference. We 242

defer the details of finetuning and inference (both 243

conducted by the server) to §A. The server repre- 244

sents the distributions as N length-|V | vectors, and 245
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sends them back to the client.246

Client Step Upon receiving the list of distribu-247

tion vectors from the server, the client applies248

the reverse permutation mapping (saved from249

the last time-step) and obtains PL(·|WN
t−1[w

true
t−1]),250

from which the client samples wtrue
t . The251

client also generates N − 1 “noise” tokens252

{wnoise(1)
t , ..., wnoise(N-1)

t } with a noise scheme.253

How to generate noise tokens is a key part of254

making the noised lattice robust to potential attacks255

from the server side. For now, we assume a simple256

synonym noise scheme in which we use synonyms257

of the true token. Concretely, wnoise
t is randomly258

sampled from S tokens having the closest embed-259

ding with wtrue
t measured by cosine similarity. In260

our experiments we set S = 5. 3 In practice this261

simple noise scheme will be vulnerable to attacks262

from a malicious server. See §4 for discussions on263

attacks and our proposed advanced noise schemes264

for defense.265

With a private random seed, the client permu-266

tates the token list and sends it to the server. The267

reverse mapping of the permutation is saved by268

the client for the next time-step and is not shared269

with the server. This concludes the client–server270

interaction in time-step t.271

Incorporating Prompts (Client) The incorpora-272

tion of prompts is quite straightforward by regard-273

ing it as a prefix of the generation, and the content274

in the prompt can also be noised and protected by275

LatticeGen. See §B.1 for implementation details.276

We summarize the LatticeGen protocols as277

pseudo-code in Algorithm 1. The discussion on278

the network communication cost between client279

and server is deferred to §B.3 to save space.280

3.2 Comparison with Standard LM: History281

Noised While Locally Sharp282

It is helpful to formulate a comparison between283

LatticeGen (PL) and generation from a standard284

autoregressive LM PM . For simplicity, we ignore285

the noise generation (i.e., lattice-building) part, and286

only care about how the true tokens are generated287

with PL. Under this simplification, the probability288

of generating a true sequence w is:289

logPL(w) ≈
T∑

t=1

logPL(wt|WN
t−1[wt−1]), (2)290

291
3In practice, we exclude the first ten closest token in V ,

as their surface forms are usually very close to the true to-
ken, making the obfuscation useless (e.g., only different in
capitalization).

Algorithm 1 Pseudo-code for LatticeGen (Unigram)
Input (Server): Lattice-finetuned LLM PL, lattice width N , generation length
T .

Input (Client): Prompt p, a noise generation scheme S, a private large prime
number for random seed.
Client sets wi

0 := <bos> for 1 ≤ i ≤ N . And initialize the reverse
permutation as the identity mapping.
Both the server and client begin with an empty lattice.
The client sends [w1

0, ..., w
N
0 ] to server indicating the beginning of genera-

tion.
for t = 1 . . . T do

# Server Steps Below
Receives [w1

t−1, ..., w
N
t−1] from client and use it to extend the lattice

to WN
t−1.

Input linearize(WN
t−1) to PL and obtain {PL(·|WN

t−1[w
i
t−1])}

N
i=1.

Send the distributions to the client as N length-|V | vectors.
# Client Steps Below
Receives the next-token distributions {PL(·|WN

t−1[w
i
t−1])}

N
i=1 from

server.
Apply the saved reverse permutation mapping to get the respective next-

token distributions for wtrue
t−1 and wnoise(i)

t−1 for 1 ≤ i ≤ N − 1.
if t ≤ len(p) then

Set wtrue
t := pt.

else
Sample wtrue

t from PL(·|WN
t−1[w

true
t−1]).

end if
Generate N − 1 noise tokens {wnoise(1)

t , ..., wnoise(N-1)
t } with scheme S.

Set the current private random seed to be t multiplied by the private prime
number.

Obtain the permuted list [w1
t , ..., w

N
t ] using the current random seed.

Save the reversing permutation for next time-step.
Extend the local lattice, and send [w1

t , ..., w
N
t ] to the server.

end for
Output (Server): Lattice WN

T .
Output (Client): True sequence {wtrue

t }N
t=1, and lattice WN

T .

where the forming process of WN
t−1 (noise to- 292

kens and permutation) at each time-step is omitted. 293

For comparison, the log-probability of generat- 294

ing w with the standard model PM is: 295

logPM (w) =

T∑
t=1

logPM (wt|w0...t−2, wt−1). (3) 296

297Comparing the above two equations with simi- 298

lar structure, it should be clear that what Lattice- 299

Gen does is essentially blurring the token history 300

w0...t−2 by the noised lattice WN
t−2. Therefore, in- 301

creasing the number of noise tokens gives better 302

protection for the true token sequence, but at the 303

same time degrades the LM’s performance. 304

While the history is blurred, the local sharp- 305

ness (Khandelwal et al., 2018) is preserved by 306

LatticeGen: From Equation 2, the exact last to- 307

ken wt−1 is provided to the model. Therefore, in 308

the worst-case scenario (zero utilization of non- 309

immediate history), LatticeGen is at least as strong 310

as a bigram LM (or a trigram LM when we use 311

bigram units, see §3.3). 312

3.3 Incorporating Bigram Units 313

In the formulations described above, when the 314

server is doing LLM inference on time-step t, only 315

the last token wt−1 is locally “exact” or “sharp” 316

(explained in §3.2) while all other context tokens 317
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are noised by the lattice. In other words, the infer-318

ence unit is unigram-level. Naturally, this would319

lead to serious degradation of generation quality.320

To alleviate it, we explore a variant in which321

we expand the unit from unigram (one token) to322

bigram (two adjacent tokens). While the lattice is323

still one token per time-step, the client enumer-324

ates all N2 potential bigram combinations of wt−2325

and wt−1 and asks the server LLM to return the326

next-token prediction distribution for each bigram.327

The formulations for the bigram variant are highly328

similar to the unigram case and we defer them to329

§B.2 (also see Figure 7).330

4 Attack and Defense331

In this section, we discuss potential attack algo-332

rithms from a hypothetically malicious server to333

decode the true token sequence {wtrue
t }Tt=1 hidden334

in the lattice WN
T , and the client’s noise generation335

schemes as defense. We first establish metrics to336

measure the strength of attacks.337

Metrics Given a lattice WN
T , the attacker’s target338

is to decode a hypothesis sequence ŵ with ŵt ∈339

{w1
t , ..., w

N
t } having biggest overlap with the true340

generation wtrue. We define a simple true-ratio341

metric to measure the strength of the attack:342

true-ratio(ŵ, wtrue) =

∑T
t=1 1ŵt=wtrue

t

T
. (4)343

344 In the repeated beam search attack described be-345

low, the result of the attack algorithm is not only346

one but N sequences {ŵi}Ni=1 which spans the347

whole lattice (i.e., {ŵi
t}Ni=1 = {wi

t}Ni=1). In this348

case, we argue that the defending noise scheme349

should prevent any of the hypothesis from having350

a high overlap with the true sequence, and measure351

it with the max-true-ratio: 4352

max-true-ratio({ŵ}Ni=1, w
true) = max

i

∑T
t=1 1ŵi

t=wtrue
t

T
.

(5)353

354 It should be clear that 1
N is a lower bound355

for max-true-ratio for any noise scheme, which356

provides an intuition of why larger N would357

better protect the true sequence.358

Albeit intuitive, a big weakness of the true-ratio359

metric is that it only considers exact matches and360

does not reflect the semantic similarity between the361

hypothesis and the true generation. Therefore, in362

our experiments we will also use an embedding-363

based metric BERTScore (Zhang* et al., 2020) to364

4The average of the true-ratio will always be 1
N

because
each true token is in one of the N hypotheses.
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Figure 3: Illustration of different noise schemes under
(repeated) beam-search attack. For convenience, the
lattice is not shuffled on each time-step. An illustration
with a width-3 lattice is given in Figure 6 (§B).

measure the leaked information on semantics. Sim- 365

ilar to true-ratio, BERTScore is larger than zero 366

and has a maximum value of 1 (we refer readers to 367

its paper for details). We define max-BERTScore 368

in the same fashion as max-true-ratio and we omit 369

the formulation for brevity. 370

4.1 The Repeated Beam-Search Attack 371

In this section, we motivate and describe the re- 372

peated beam-search attack which is the major at- 373

tack algorithm considered in this work. It is a 374

stronger version of the beam-search attack de- 375

scribed below. 376

The Beam-Search Attack (Server) Assuming 377

unigram unit, a natural objective for the attacker 378

is to find the sequence ŵ with ŵt ∈ {w1
t , ..., w

N
t } 379

which is mostly likely to be generated by PL: 380

argmax
ŵ

logPL(ŵ|WN
T ) =

argmax
ŵ

T∑
t=1

logPL(ŵt|WN
t−1[ŵt−1]).

(6) 381

382Since for unigram, the inference for ŵt only de- 383

pends on which token is chosen for ŵt−1, this op- 384

timization problem can be efficiently solved by 385

dynamic programming which maintains the most 386

probable sequence ending with each wi
t on time- 387

step t. The time complexity is O(N2T ). 5 Due to 388

the high similarity with the classical beam-search 389

algorithm, we term it as the beam-search attack. 390

Our experiments (§5) show that the simple syn- 391

onym noise scheme discussed in §3 is highly vul- 392

nerable to the beam-search attack. We show some 393

5The attacker can reuse saved prediction distributions dur-
ing generation, and therefore does not need to redo LLM in-
ference. In the bigram case, the time complexity is O(N3T ).
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Config N = 2 (LG only) N = 3 (LG only)

Metric PPL PMI True-Ratio BERTScore PPL PMI True-Ratio BERTScore
Attack BS RBS BS RBS BS RBS BS RBS

Vanilla (PM ), w.o. noise 28.378 .340 1.0 1.0 1.0 1.0 / / / / / /
Synonym, w.o. lattice 229.616 .058 / / / / / / / / / /
Syn-50%, w.o. lattice 199.621 .058 / / / / / / / / / /

LG, unigram, synonym 33.167 .279 .923 .923 .824 .824 38.267 .279 .886 .886 .756 .756
LG, unigram, parallel 80.071 .160 .121 .878 .129 .821 105.723 .141 .146 .555 .133 .409
LG, unigram, mixing 81.487 .190 .564 .596 .395 .415 105.405 .175 .353 .426 .210 .252

LG, bigram, synonym 33.998 .298 .989 .989 .979 .979 35.122 .285 .977 .977 .959 .959
LG, bigram, parallel 52.475 .230 .124 .876 .177 .831 62.364 .163 .089 .714 .122 .625
LG, bigram, mixing 51.515 .236 .601 .642 .492 .514 65.288 .183 .417 .473 .321 .349

Gen-only, bigram, mixing 49.711 .278 .544 .664 .474 .564 66.725 .221 .334 .502 .287 .392

Table 1: Main results when LatticeGen (LG) is applied to both the generation and the prompt. All metrics are the
lower the better except PMI. While the generation quality and alignment are degraded, LatticeGen with the proposed
mixing scheme successfully protects the true generation from RBS attack to a remarkable degree (measured by
max-true-ratio/BERTScore).

intuition in the upper part of Figure 3: There does394

not exist a direct link between the noise tokens.395

The log-probability of the true sequence will likely396

be much higher than any combination of the noise397

tokens, and is therefore revealed by the attack.398

The Parallel Noise Scheme (Client) There is an399

intuitive way to defend against the beam-search400

attack: The client can sample a noise sequence in-401

dependent of the true sequence, and make it have402

higher log-probability than the true sequence by403

tuning the hyper-parameter of the sampling algo-404

rithm. We term it the parallel noise scheme and405

illustrate in the middle of Figure 3.406

More concretely, at time-step t, the i-th noise407

token is sampled from PL(·|WN
t−1[w

noise(i)
t−1 ]). In408

this way, the noise sequences wnoise(i) are parallel409

and independent of the true sequence wtrue. We also410

assume the adoption of popular sampling hyper-411

parameter for the generation of the true sequence412

(e.g., k = 50 for top-k or p = 0.96 for nucleus),413

which enables the adoption of a more radical hyper-414

parameter (Caccia et al., 2020; Nadeem et al., 2020)415

for the sampling of the noise sequences: In our416

experiments we use k = 5.417

Our experiments show that the parallel noise se-418

quences can very effectively hide the true sequence419

from the beam-search attack. This motivates our420

proposed repeated beam-search attack.421

The Repeated Beam-Search (RBS) Attack422

(Server) We propose a simple but more powerful423

attack algorithm based on the beam-search attack:424

Given a N -lattice, we do beam-search N −1 times.425

After obtaining the resulting hypothesis sequence426

of the i-th beam-search (denoted as ŵi), we re- 427

move the tokens in ŵi from the lattice, resulting in 428

a (N−i)-lattice. After the (N−1)-th beam-search, 429

only one sequence is left in the lattice, which be- 430

comes the N -th hypothesis ŵN . We term it the 431

repeated beam-search (RBS) attack. 432

The intuition of why the RBS attack is effective 433

against the parallel noise scheme is shown in the 434

middle of Figure 3. Since the noise sequences are 435

of high probability and independent of each other, 436

it is likely that the N − 1 times of beam-search 437

would obtain all the noise sequences as hypotheses 438

which are removed from the lattice in turn, and the 439

remaining true sequence is therefore revealed in 440

the end as ŵN . This would result in a high max- 441

true-ratio. 442

4.2 The Mixing Noise Scheme for Defense 443

We propose the mixing noise scheme to defend 444

against the RBS attack, with the intuition that 445

the true and noise sequences should somehow be 446

mixed. This scheme can be regarded as a variant 447

of the parallel noise scheme. Again we adopt a rad- 448

ical hyper-parameter for the sampling of the noise 449

sequences (top-k with k = 5). At time-step t, with 450

a random ratio determined by a hyper-parameter 451

mix-ratio, the i-th noise token is sampled from 452

PL(·|WN
t−1[w

true
t−1]), which is the next-token dis- 453

tribution for the true sequence. 6 Otherwise we 454

sample from PL(·|WN
t−1[w

noise(i)
t−1 ]), same as in the 455

parallel scheme. 456

6We will re-sample if the sampled token is the same as the
true token.
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We illustrate this at the bottom of Figure 3. In457

comparison to the parallel scheme, the goal is to458

make the sequence with the highest log-probability459

be a mix between the true and noise sequences.460

And the key is to make the true sequence “branch”461

out to the noise sequences, which breaks the con-462

tinuity of the noise sequences. Although broken,463

the radical sampling used for the noise sequence464

would still attract the repeated beam-search attack,465

and the true and noise sequences are mixed by the466

branching connections. Our experiments show that467

with a tuned mix-ratio, the mixing noise scheme468

achieves the best max-true-ratio under RBS attack.469

5 Experiments470

5.1 Experiment Setting471

Model & Noise Schemes We use the OPT-1.3B472

(Zhang et al., 2022) model as our base LLM, from473

which both PL and PM are finetuned. In our imple-474

mentation, for convenience we simulate the client–475

server interaction protocols on a single machine.476

For sampling of the true sequence, we use top-477

k (Fan et al., 2017) sampling with k = 50. For478

the noise token sampling in the parallel or mixing479

noise scheme, k = 5 is used. It should be clear480

that LatticeGen can also be applied to other sam-481

pling algorithms with proper hyper-parameters. We482

limit the maximum generation length to 60 tokens.483

For the mixing noise scheme, we use a mix-ratio484

of 0.12 for N = 2, and 0.1 for N = 3, for the485

generation part. For the prompt part, we use a mix-486

ratio of 0.7. They are found to achieve the lowest487

max-true-ratio on the dev set.488

Dataset & Lattice Finetuning Since the word489

history is noised (discussed in §3.2), LatticeGen490

is not recommended for tasks with high require-491

ments for consistency or factuality (Pagnoni et al.,492

2021). In this work we focus on the task of cre-493

ative writing (Martin et al., 2017; Yao et al., 2018;494

Fan et al., 2019), and utilize the WritingPrompts495

dataset (Fan et al., 2018). The dataset is com-496

posed of stories and the corresponding high-level497

descriptions as prompts. The average length of498

prompts/stories is 29/674. We use 200/500 samples499

from the valid/test set for development/evaluation.500

The training set (10,000 samples) is used for fine-501

tuning of PL and PM , and we defer details to §A.502

Metrics We use a larger LLM, OPT-2.7B, to mea-503

sure the generation’s quality or alignment with the504

prompt. For quality, we use the popular perplexity505

metric. For alignment, we use pointwise mutual506

Prompt: Prompt: Aliens have arrived, and ask for a single
human to plead humanity’s case and save them from extinc-
tion. The human is selected through a lottery of the entire
human race, and on the day of the drawing, your name is
picked.. Story:
Generated Text (PM ): “ And that’s when we realized they
were not alone. ” The door in the control room of the Alien
spaceship closed with a dull metallic hum as the hum began
to ascend to an annoyed and confused screech.
Generated Text (LG): The Great Hunt. That’s for the One.
No man or beast can hold us or make us retreat. for the sins
we have committed. No man or beast can save us from the
darkness...
First Round RBS: Prompt: You have arrived on earth and
for a recount of who did humanity’s crimes and save them
from extinction. The human is willing to a lottery, the entire
human race, and on the run of our Lord, your name is ulJack..
Story: The Great Hunt. That’s for the One, the only thing that
can stop us, not even the divine wrath. for the sins we have
committed. No man or beast can save us from the darkness
Second Round RBS: Mur Votes ascent Aliens land invaded,
and ask the the single human to plead the worst Artists case
against explain their world. Humanity has no answer se-
lected through an system of choosing.. Story: is the they’day
we the drawing. sins are picked and youORED, butler, The
Hunt for the Holy Grail.. No man or beast can hold us or
make us retreat, the divine wrath that have been forgiven, the
divine wrath, not even god can our people, for

Figure 4: An example of text generation with Lattice-
Gen, using the configuration of bigram, N=2 and the
mixing scheme. The true tokens are italicized in both
rounds of RBS, and the underline indicates that the noise
token is mixed from the previous true token. Note that
the prompt is also noised by LG.

information (PMI) (Shi et al., 2023): 507

PMIOPT(x; y) =
logPOPT(x|y)− logPOPT(x)

len(x)
, (7) 508

where x and y denote the generation and prompt. 509

To compare between different noise schemes and 510

measure the (semantic) overlap between the attack 511

hypothesis (ŵ) and the true sequence (wtrue) under 512

RBS attack, we use the true-ratio or BERTScore 513

discussed in §4. We will report true-ratio for the 514

BS attack and max-true-ratio under RBS attack, 515

and the same applies to BERTScore. 516

5.2 Experiment Results 517

Table 1 includes the main results when LatticeGen 518

(LG) is applied to both generation and prompt. The 519

standard vanilla model (PM ) enjoys the best gen- 520

eration quality (PPL and PMI), while having zero 521

obfuscation (100% true-ratio). 522

LatticeGen sacrifices generation quality (due to 523

noised history) for obfuscation. The empirical be- 524

havior of the three noise schemes aligns with their 525

respective intuitions discussed in §4: The synonym 526
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scheme has relatively better PPL&PMI, but is com-527

pletely defenseless against the BS attack; The par-528

allel scheme is most effective against BS with true-529

ratio lower than 20%, but is vulnerable under the530

stronger RBS attack.531

The mixing scheme, which is our main rec-532

ommended scheme, achieves the best protection533

under the RBS attack. For N = 2, The max-534

true-ratio/BERTScore is close to or lower than535

60%/50%. It indicates that around half of536

the semantic is hidden from the attacker, and537

is close to the theoretical best max-true-ratio538

( 1
N = 50%). The protection is better with N = 3539

(45%/30%), but with worse generation quality.540

Comparing to unigram unit, the quality degra-541

dation (especially PPL) is alleviated to a large542

degree by using bigram units. One could also try543

trigram or even 4-gram units for further improve-544

ment. However, the computational cost would grow545

exponentially and we leave it to future work due546

to limited resources. We also report a generation-547

only variant where the prompt is not noised, which548

improves alignment (reflected by PMI).549

What if we directly apply noise to generation550

but without the lattice structure? We add an addi-551

tional non-lattice baseline with the same synonym552

scheme used in LatticeGen: On every time-step, the553

client gets next-token distribution from the server554

and generates a true token, but sends a synonym555

of it back to the server. The finetuning is modified556

accordingly with details given in §B.4.557

As shown in Table 1, we apply the synonym558

scheme to 100% or 50% of the tokens. The syn-559

onym noise without lattice results in drastically560

degraded PPL and PMI. In comparison, LatticeGen561

provides a trade-off between quality degradation562

and privacy protection. This implies that for de-563

cent generation performance, the true tokens564

have to be revealed to the server in some way.565

Table 2 (§D) compares generation speed of dif-566

ferent systems. On the single V100 GPU we use,567

LG with bigram (N = 2) units has a 2x slow-568

down comparing to PM . Since inference with trans-569

former model benefits from parallel computing, the570

slowdown should be less significant on servers with571

stronger computing power.572

We show a generation example with RBS attack573

outputs in Figure 4. LG is able to generate a sample574

with decent quality. More importantly, around half575

of the story semantics remains hidden from the576

RBS attack by the mixing noise scheme. More577

examples and analysis are deferred to §D. 578

6 Related Work 579

Existing work in privacy-aware natural language 580

processing (NLP) (Qu et al., 2021; McMahan et al., 581

2017) mostly focuses on protecting user data for 582

training (e.g., federated learning (Huang et al., 583

2020)) or inference, and the majority of works fo- 584

cus on natural language understanding (NLU) tasks 585

(Feyisetan et al., 2020). To the best of our knowl- 586

edge, our work is the first to consider privacy-aware 587

text generation on cloud. 588

Lattice in NLP Lattice (Young et al., 2006) is a 589

graphical structure widely used in structured pre- 590

diction problems to represent a range of hypothe- 591

ses. In this work we adopt a simple linear-graph 592

form of lattice which is known as the confusion 593

network (Mangu et al., 1999). The lattice structure 594

has found interesting applications in neural NLP 595

models. As a pioneering work, Su et al. (2017) 596

proposes lattice-based RNN encoders for machine 597

translation, where the lattice is generated by merg- 598

ing results from different segmenters. Buckman 599

& Neubig (2018) proposes a neural lattice lan- 600

guage model, which constructs a lattice of possible 601

paths (segmentations) through a sentence in order 602

to model multiple granularities. Lattice-BERT (Lai 603

et al., 2021) trains LLM to predict a masked por- 604

tion of a lattice representing possible segmentations 605

of a sentence. To the best of our knowledge, our 606

work is the first to utilize the lattice structure for 607

privacy-aware generation. 608

Due to lack of space, we discuss related work on 609

differential privacy, homomorphic encryption, 610

and prompt anonymization in §C. 611

7 Conclusion 612

LatticeGen aims for an ambitious and seemingly 613

conflicting goal: The server still does most compu- 614

tation for the generation but does not know what 615

exactly is generated. This is achieved by our pro- 616

posed noised lattice structure, and a cooperative 617

generation protocol between the server and client. 618

While the noised lattice degrades generation 619

quality and inference speed, LatticeGen with our 620

proposed mixing noise scheme successfully pre- 621

vents a malicious server from recovering the true 622

generation to a remarkable degree (more than 50% 623

of the semantic remains unknown as measured by 624

BERTScore). We hope our work could inspire 625

more research into this under-studied yet important 626

field of privacy-aware LLM generation on cloud. 627
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8 Limitations628

LatticeGen sacrifices generation quality and speed629

for obfuscation of generated contents. While we630

show the quality degradation can be alleviated to631

some degree by using larger m-gram unit, it would632

also cause the inference computation to grow ex-633

ponentially. An interesting future direction is that,634

instead of running an inference for all Nm grams,635

we only select a small portion strategically.636

On the other hand, in this work we focus on637

protecting the user and the (repeated) beam-search638

attack from server. There could be other forms of639

interesting or stronger attacks on the server side640

(e.g., manual inspection from a human). On the641

other hand, sharing generation control with client642

could also endanger the server (e.g., jailbreaking)643

(Liu et al., 2023; Li et al., 2023).644

Finally, in the current implementation, we lattice-645

finetune a seperate OPT model for every different646

lattice configuration, which is space unfriendly. As647

future work, it would be interesting to explore a uni-648

fied format of linearized lattice by which a single649

LLM can process different lattice configurations.650

9 Broader Impact651

As stated in §1, in the current user–server interac-652

tion paradigm, both the prompt and the generation653

are raw texts which are completely transparent and654

accessible to the server. This leaves zero options655

for users who want to keep the generated text to656

themselves. On the other hand, the privacy protec-657

tion offered by today’s LLM providers’ data usage658

and retention policies is far from enough (detailed659

in §E). We propose LatticeGen as a novel proto-660

col for privacy-aware generation with a controlled661

level of obfuscation. We hope our work could raise662

awareness for the privacy considerations of gener-663

ated contents.664
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Supplemental Materials1003

A Model Training and Inference with1004

Lattice (Server)1005

Finetuning with Linearized Lattice Format1006

We now describe how PL is obtained by finetuning1007

a standard autoregressive LM PM parameterized1008

by θ to accept and make next-token predictions1009

on a linearized N -lattice. We assume access to a1010

public corpus D for finetuning. For simplicity, we1011

focus on the training objective for one length-T1012

sentence wd ∈ D and we also assume N = 2 (the1013

process for N > 2 is highly similar) and unigram1014

units.1015

We first construct the lattice W 2
T for wd with1016

a given noise generation scheme. The tokens in1017

the data sample wd will be used as the true tokens1018

wtrue
t := wd

t and we need to generate the noise1019

tokens wnoise(1)
t ̸= wtrue

t for each time-step t. In1020

our experiments we use a simple synonym scheme1021

(§3.1).1022

The noise generation scheme used by server in1023

the finetuning stage might be different from the1024

scheme used by client in the actual generation, but1025

empirically we find this misalignment does not1026

affect the generation performance drastically. To1027

be consistent with the actual generation protocols1028

for LatticeGen, the tokens on each time-step are1029

shuffled and the positions of the true tokens need1030

to be saved.1031

The goal is to finetune the LLM to do next-token1032

prediction for tokens in the linearized lattice. The1033

challenge is that we do not have ground-truth next1034

token for the noise tokens. Instead of generating1035

pseudo training data, we utilize the property that1036

the lattice is shuffled on each time-step, and simply1037

omit the labels (no training signal) for the noise1038

tokens. The intuition is that since the token posi-1039

tions are randomly shuffled, after training the LLM1040

will be able to predict the next token for any posi-1041

tion in the lineazried lattice and we find this simple1042

finetuning strategy works well in practice.1043

In summary, we only train the LLM to predict1044

the next token for the true tokens wtrue
t = wd

t in1045

W 2
T (illustrated in Figure 5). We summarize it into1046

the following objective:1047

Llattice-FT(w
d,W 2

T ; θ) =
1

T

T∑
t=1

logPθ(w
true
t |W 2

t−1[w
true
t−1 ]).

(8)1048

The implementation is similar to the standard fine-1049

tuning of autoregressive LMs, and we only need to1050

Figure 5: An illustration of the lattice-finetuning objec-
tive described in §A. The input is a linearized 2-lattice
permutated on each time-step. The noise tokens do not
get training signal.

make modifications to the inputs and the labels. 1051

Inference We now discuss how the server can 1052

do efficient LLM inference at time-step t. Since 1053

linearize(WN
t−2) from the previous time-step t− 2 1054

is a prefix of linearize(WN
t−1), the server can reuse 1055

the saved LLM hidden states7 from the last time- 1056

step for the inference of {PL(·|WN
t−1[w

i
t−1])}Ni=1. 1057

In this way, none of the computations on the server- 1058

side are repeated and the computation cost remains 1059

reasonable. 1060

Implementation Details Our model implementa- 1061

tion, training and inference utilize the HuggingFace 1062

transformers library (Wolf et al., 2020). We fine- 1063

tune PL with learning rate of 10−4 and a batch size 1064

of 8 for 3 epochs using the PyTorch (Paszke et al., 1065

2019) implementation of the AdamW (Loshchilov 1066

& Hutter, 2017) optimizer. We perform finetuning 1067

of the model under various configurations on one 1068

Nvidia V100 GPU. 1069

B Auxiliary Framework Description 1070

An illustration of various noise schemes with a 1071

width-3 lattice is provided in Figure 6. 1072

B.1 Incorporating the Prompt (Client) 1073

The prompt p can be easily incorporated by the 1074

following. At all time-steps t with t ≤ len(p), 1075

instead of sampling wtrue
t from PL(·|WN

t−1[w
true
t−1]), 1076

the client directly sets wtrue
t := pt. All other steps 1077

in the protocols including the noise token genera- 1078

tion continue as normal. In this way, the prompt is 1079

also embedded and noised in the lattice. 1080

B.2 Incorporating Bigram Units 1081

We explore an important variant in which we ex- 1082

pand the unit from unigram (one token) to bigram. 1083

While the lattice is still one token per time-step, 1084

7The past_key_values in HuggingFace transformers
library.
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Figure 6: Illustration of different noise schemes under
(repeated) beam-search attack. For convenience, the
lattice is not shuffled.

the client enumerates all N2 potential bi-gram com-1085

binations of wt−2 and wt−1 and ask the server LLM1086

to return the next-token prediction distribution for1087

each bigram. We illustrate it in Figure 7. Accord-1088

ingly, the finetuning stage (§A) needs to be mod-1089

ified so that the model treats bigram instead of1090

unigram as the unit.1091

In this way, the approximate probability of gen-1092

erating a true sequence w is (following §3.2):1093

logPL-bg(w) ≈
T∑

t=1

logPL-bg(wt|WN
t−1[wt−2wt−1]),

(9)1094

where PL-bg can utilize the exact bigram context1095

(to be compared with Equation 2). In experiments,1096

we observe big improvement in generation quality1097

comparing to the unigram version. However on1098

each time-step, the server needs to inference the1099

LLM on input of length 2N2, instead of length1100

N in the unigram case. The inference speed is1101

traded for better generation quality.1102

We end this section by emphasizing that the bi-1103

gram variant mostly affects LLM inference and1104

does not change the lattice structure. Therefore it1105

does not affect the noise schemes to be discussed1106

in §4.1107

B.3 Communication Cost1108

At each time-step, the server needs to send client1109

N (or N2 in the bigram case) length-|V | vectors,1110

which could be slow if |V | is large. This can be1111

largely alleviated if the client and server can agree1112

upon a sampling algorithm beforehand. For exam-1113

ple, if top-k sampling with k = 50 is used, then 1114

only the logits and indices of the top-50 tokens are 1115

needed. 1116

B.4 The Non-Lattice Baseline 1117

The training for the non-lattice baseline is a bit 1118

similar to the lattice finetuning process described 1119

in §A, with the difference that the true tokens are 1120

not included in the input. Following the notations 1121

in §A with wd as the data sample, the training 1122

objective is formulated as: 1123

Lnon-lattice,syn.(w
d; θ) =

1

T

T∑
t=1

logPθ(w
d
t |wnoise

0..t−1),

(10) 1124

where wnoise
t is randomly set to a synonym of wd

t . 1125

Basically, the model is trained to predict the next 1126

true token with a ratio of input tokens noised. 1127

C Related Work 1128

This section continues from §6. 1129

Differential Privacy (DP) for LM Training and 1130

Inference There are numerous existing works on 1131

how to train LLMs with differential privacy (Li 1132

et al., 2021; Yu et al., 2021), which mostly rely on 1133

DP-SGD (Abadi et al., 2016) and limits leakage of 1134

private data during training. More related to Lat- 1135

ticeGen is a line of work with local DP (Xu et al., 1136

2020; Meehan et al., 2022), which applies discrete 1137

noise onto text and can be used to synthesize pri- 1138

vate text data (Yue et al., 2023; Mireshghallah et al., 1139

2023). 1140

It is not directly clear how these techniques can 1141

be adapted for our setting of privacy-aware autore- 1142

gressive text generation. In comparison, Lattice- 1143

Gen provides a totally different and cooperative 1144

approach with the lattice structure and novel de- 1145

fense and attack schemes. 1146

Homomorphic Encryption There is also a line 1147

of work (Chen et al., 2022) applying techniques 1148

from homomorphic encryption (Gentry, 2009) to 1149

transformer LM. While they enjoy nice crypto- 1150

graphic guarantees, the induced computational cost 1151

is usually huge. 1152

Prompt Anonymization Contemporary and in- 1153

dependent of our work, Chen et al. (2023) proposes 1154

to anonymize the named entities (e.g., change USA 1155

to <GPE>) in the prompt, and de-anonymize after 1156

receiving the generated text from server. In com- 1157

parison, LatticeGen offers a more general option 1158

in that all types of tokens, especially the generated 1159

tokens, can be noised. 1160
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Figure 7: Client–Server interaction under LatticeGen with bigram units for time-step t.

(a) Max-true-ratio under different mix-ratio for
N=2.

(b) Max-true-ratio under different mix-ratio for
N=3.

Figure 8: How tuning of mix-ratio affects the result
from RBS attack. Bigram units are used.

D Auxiliary Results1161

Figure 8 shows the impact of mix-ratio on max-true-1162

ratio under RBS attack. When mix-ratio = 0, it is1163

reduced to the parallel scheme and the true-ratio1164

from the 1st BS is very low but the max-true-ratio is1165

high. As mix-ratio increases, more true tokens are1166

mixed in to the 1st beam. The mix-ratio achieving1167

the best max-true-ratio is around 0.1.1168

Similar to Figure 4, Figure 9 shows an example1169

using a different prompt using bigram N = 2, and1170

Figure 10 shows an example of generation using1171

N = 3. Both examples contain a portion of the1172

lattices of prompt tokens, and the time-steps are1173

Speed (second/token) N=1 N=2 N=3

PM .061 / /
LG, Unigram / .088 (1.44x) .125 (2.04x)
LG, Bigram / .127 (2.08x) .186 (3.04x)

Table 2: Generation speed comparison between different
systems. For LG, the mixing noise scheme is used. Our
implementation is run on a single V100 GPU.

separated by a vertical bar. 1174

On the single V100 GPU we use, LG with bi- 1175

gram units (N = 2) has a 2x slowdown comparing 1176

to PM (Table 2, §D). Since inference with trans- 1177

former model benefits from parallel computing, the 1178

slowdown should be less significant on servers with 1179

stronger computing power. 1180

E The Current Privacy Protection 1181

Practices in Industry 1182

The privacy protection offered by today’s LLM 1183

providers’ data usage and retention policies is far 1184

from enough. 8 For example, OpenAI’s consumer- 1185

facing ChatGPT used to train its models with user 1186

input, and also shares user input with third-party 1187

providers, and Google’s Bard retains user activ- 1188

ity for at least 3 months. As a striking example, 1189

employees in Samsung reportedly shared sensitive 1190

code with OpenAI during their interaction with 1191

ChatGPT. 9 More recently, some of the users’ con- 1192

versations with Bard are mistakenly indexed and 1193

8https://opaque.co/announcing-
opaqueprompts-hide-your-sensitive-data-
from-llms/

9https://gizmodo.com/chatgpt-ai-
samsung-employees-leak-data-1850307376
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Prompt: Prompt: It is believed that the cure for cancer has
been discovered on Mars, astronauts have only one chance
to bring it home where they hope to duplicate its properties
for mass distribution. Story:
Generated Text (PM ): The quick spreading of disease was
what excited the scientist most about the data he had brought
the team back from the brink of extinction. A species capable
of living for hundreds of thousands of years using a system
of biological engineering had finally proved the impossible,
he was excited. Cancer could be cured. It was
Sample Linearized Lattice of Prompt: ... | atom Write:
Write: It atom It | Write’It is It’Write is | is the’the is be-
lieved’believed | believed that the belief believed belief the
that | ...
Generated Text (LG): “ You’ve got to save... my crew
shouted. We had done everything possible in the best medical
attention. We trained our astronauts as best science. “ Yeah,
the best in the world could even the journalists asked the
President can ever be brought back. ” asked “ No.
First Round RBS: Prompt: It is believed belief of a for
cancer has been lost over the last astronauts are on one
month to get it home planet to hope to save its people. Story:.
Story: “ The last chance to make it. ” It was a group of
seven. We left the planet available to us in the best. We had
the best medical team on the best in the press said. “ The
best can ever be brought back. ” “ No.
Second Round RBS: Ukrainiansb atom Write’the
that the cure is a that will discovered on Mars, and have only
been chance left bring the cure where they can it duplicate.
properties for mass distribution “Prompt: You’ve got to
save... my crew shouted. We had done everything possible in
the best medical attention. We trained our astronauts as best
science. “ Yeah, Mars. ” a world could even the journalists
asked the President cancer cure in Mars? ” We asked “ Why

Figure 9: Another example of text generation with Lat-
ticeGen, using the configuration of bigram, N=2 and
the the mixing scheme. The true tokens are italicized in
both rounds of RBS, and the underline indicates that the
noise token is mixed from the previous true token. Note
that the prompt is also noised by LG.
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Prompt: Prompt: You live in a world where light helps you
retain and regain memory while darkness makes you forget
everything. One day.... Story:
Sample Linearized Lattice of Prompt: ... | You are You
story The are A live You live A are A story The live The story
| areasia live under liveasia story in live in are in are under
story under storyasia | in a under Madagascar under aasia
the in the in Madagascar under theasia aasia Madagascar |
the world a city the, Madagascar world Madagascar, the city
Madagascar city a world a, | ...
Generated Text (LG): I had become thin. They could barely
visible in the further than before. The buildings that surround
me like a surround me. I could feel my brain cells lining the
walls and outside me, as my brain putting the whole society
would be it. I would never get used to the outside world, my
First Round RBS: Prompt: You live in a world where people
are people, and can consciousness while sleeping and dream-
ing forgetful. One day,you.. Story: The air was thick with
the city far, far more clearly than before. The buildings and
emotions, like a surround me. I could feel my brain cells
lining the inside me, as if I was surrounded by so many
thoughts, not just. I could feel my body, or at least. My
Second Round RBS: guilt: A The story under the, in order
helps you retain consciousness- memory, darkness makes
you see everything that The night.. You do nically trained
my eyes. They could barely visible from my vision, as I felt
my mind had become one would in a shell. I could see the
thoughts firing up in a massive wall. It had been this way of
thinking and acting. I never get used to this coldness, my
Third Round RBS: ief :990 A are asia Madagascar city
that light to us and can regain their of asleep surrounds sure
a. from You man your You go Finch POLIT I had become
thin to see what was in in the further then my surroundings.
Darkness that surround me I was hurricane around me- It
had become a starting becoming more walls and outside me,
as my brain putting the whole society would be it one way
would could feel my brain the outside world that again

Figure 10: An example of text generation with Lattice-
Gen, using the configuration of bigram, N=3 and the
the mixing scheme. The true tokens are italicized in
all rounds of RBS, and the underline indicates that the
noise token is mixed from the previous true token. Note
that the prompt is also noised by LG.
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