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Abstract

Periodically updating Large Language Model001
(LLM)-based recommender systems to adapt002
to dynamic user interests—as is done for tradi-003
tional ones—is impractical due to high training004
costs, even with acceleration methods. This005
work explores the possibility of achieving in-006
terest adaptation without any model-level up-007
dates via In-context Learning (ICL), which en-008
ables adaptation through few-shot examples009
within input prompts. Using new-interest in-010
teractions as ICL few-shot examples, LLMs011
can directly learn the new interest in prompt012
without needing model updates. However, ex-013
isting LLM-based recommenders often lose the014
ICL ability during the recommendation tun-015
ing stage, while the original LLM’s ICL lacks016
recommendation-specific focus. To address017
this, we introduce RecICL, a framework that018
establishes recommendation-oriented ICL. Re-019
cICL operates by performing the recommenda-020
tion tuning stage in an ICL training manner. It021
consistently structures new-interest interactions022
as ICL few-shot examples to enable the use of023
ICL’s ability to capture dynamic interests dur-024
ing data fitting. Extensive experiments across025
multiple benchmarks demonstrate RecICL’s su-026
perior performance, achieving better results027
without model updates. Our implementation028
is publicly available at https://anonymous.029
4open.science/r/RecICL-8003.030

1 Introduction031

In recent years, LLM-based recommendation has032

emerged as a rapidly evolving field, demonstrating033

the substantial potential to transform recommender034

systems across diverse scenarios (Wu et al., 2023;035

Harte et al., 2023). Substantial efforts have been036

dedicated to this area, creating various mechanisms037

to align LLM capabilities with recommendation038

tasks. Among these approaches, instruction tun-039

ing on recommendation data has gained significant040

popularity as it addresses the fundamental limita-041
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User interests shift dynamically with environment and personal factors.

Figure 1: An illustration of user interest shift in real-
world scenarios.

tion that recommendation-specific tasks are inher- 042

ently absent from the original pretraining objectives 043

of LLMs (Zhang et al., 2023a; Bao et al., 2023a; 044

Zheng et al., 2024). 045

Despite progress, existing developments have 046

overlooked dynamic interests, a crucial aspect for 047

real-world applications. As shown in Figure 1, 048

in the real world, user interest can shift rapidly 049

due to the varying instant interest in dynamic en- 050

vironments (Chang et al., 2017; Papagelis et al., 051

2005; Wang et al., 2018). Updating the model pe- 052

riodically with incoming data is typically used to 053

capture timely user interests (Chandramouli et al., 054

2011; Das et al., 2007). However, due to the mas- 055

sive number of parameters in LLMs, such model- 056

level updates incur substantial computational and 057

time costs for LLM-based recommendations, mak- 058

ing them impractical for real-world applications. 059

Recognizing the persistent issue of high update 060

costs, this study explores the possibility of adapt- 061

ing the model to dynamic user interests without any 062

model-level updates after initial training. 063

Among existing techniques, In-context Learning 064

(ICL) seems to be a promising choice for timely 065

learning user shift interests without model updates. 066

Through ICL, LLMs can learn tasks from few- 067

shot task examples being incorporated into their 068

input context, without any updates to their parame- 069

ters (Brown, 2020; Zhao et al., 2023). By incorpo- 070

rating recent user interaction data as few-shot task 071

examples in the input, we can expect that ICL could 072

effectively capture the interest shift from these ex- 073
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amples. In this way, the adaption to user real-time074

interests without necessitating model updates.075

However, directly applying ICL to LLM-based076

recommendations is not feasible. Intuitively, there077

seem to be two directed approaches: 1) employ-078

ing ICL with general LLMs and 2) employing ICL079

with LLMs tuned for recommendations. Both ap-080

proaches encounter challenges — the first lacks081

alignment with recommendation tasks, while the082

second often suffers from diminished ICL capabil-083

ities. These challenges would undoubtedly hin-084

der the practical application of these methods.085

Given these challenges, we consider possessing086

recommendation-specific ICL capabilities — align-087

ing the model with recommendation tasks while088

preserving and even enhancing its ICL abilities.089

To achieve this, we propose RecICL, a method090

designed to customize recommendation-specific091

ICL in LLMs for dynamic interest adaptation. Re-092

cICL optimizes the recommendation instruction093

tuning phase to preserve ICL capabilities, follow-094

ing the general ICL-based tuning method: during095

instruction tuning for task alignment, we incorpo-096

rate a few relevant training samples as the few-shot097

examples within the input, rather than providing098

just the single training sample to tune the model.099

However, unlike methods in other domains (Shi100

et al., 2022; Gu et al., 2023) that customize ICL by101

selecting semantically similar samples as few-shot102

examples, we strategically choose new-interest in-103

teractions relative to each training sample. During104

inference, these few-shot examples are replaced105

with real-time user data, allowing the model to106

adapt to evolving user interests in a few-shot man-107

ner. Extensive experiments on real-world datasets108

demonstrate the effectiveness of RecICL in en-109

abling capturing dynamic user interests for LLM-110

based recommender systems.111

The main contributions of our work are:112

• To our knowledge, we are the first to ex-113

plore adapting LLM-based recommenders to dy-114

namic user interests without requiring any further115

model-level updates.116

• We propose RecICL, a novel framework for117

adapting ICL in LLMs to recommendation tasks,118

enabling quick alignment with users’ latest inter-119

ests and personalized recommendation delivery.120

• Experimental results demonstrate that our121

method significantly outperforms existing ap-122

proaches and can also maintain robust perfor-123

mance over extended periods.124

2 Related Work 125

In this section, we introduce two key topics central 126

to our work: Streaming Recommender Systems and 127

LLM-based Recommender Systems. The relevance 128

of streaming recommender systems lies in their fo- 129

cus on addressing dynamic user interest shifts and 130

leveraging real-time user interactions, which aligns 131

with our goal of adapting to evolving user pref- 132

erences. Meanwhile, LLM-based Recommender 133

Systems build upon prior works that explore the 134

application of LLMs in recommender systems. 135

2.1 Streaming Recommender System 136

Streaming recommender systems have gained sig- 137

nificant attention in the past years due to their abil- 138

ity to handle dynamic user interest and item cat- 139

alogs (Das et al., 2007; Song et al., 2008; Wang 140

et al., 2018). Unlike traditional batch-based recom- 141

mender systems which only train and test on static 142

fixed datasets, streaming approaches can efficiently 143

process continuous streams of data and provide 144

up-to-date recommendations (Chandramouli et al., 145

2011; Papagelis et al., 2005; Vinagre et al., 2014). 146

Early work in this area focused on adapting tra- 147

ditional collaborative filtering techniques to stream- 148

ing environments (Vinagre et al., 2014). More re- 149

cently, researchers tend to apply continual graph 150

learning techniques for streaming recommender 151

systems (Wang et al., 2020, 2022; Xu et al., 2020a; 152

He et al., 2023a). Additionally, Graphpro (Yang 153

et al., 2024) leverages pre-training and fine-tuning 154

techniques on the graph to address streaming rec- 155

ommendation tasks on dynamic data. However, 156

they primarily rely on timely updates and iterations 157

of the model parameters, which can be challeng- 158

ing for LLMs due to their high cost. In this paper, 159

we draw inspiration from these previous studies 160

and propose to tackle the challenge of streaming 161

recommendations in the domain of LLMs for rec- 162

ommendation. 163

2.2 LLM-based Recommender System 164

Recently, inspired by the powerful and comprehen- 165

sive capabilities of LLMs, an increasing number 166

of researchers have been exploring various ways 167

to leverage LLMs for recommendation (Wu et al., 168

2023; Lin et al., 2023a; Bao et al., 2024; Fan et al., 169

2023). Some researchers have attempted to effec- 170

tively transfer the knowledge and capabilities of 171

LLMs to traditional recommendation models (Liu 172

et al., 2024; Cui et al., 2024; Xi et al., 2023; Yuan 173
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et al., 2023; Wei et al., 2024). While these methods174

can address the issue of user interest shift through175

the iterative process of traditional models, such176

methods often require fine-tuning LLMs on static177

data to optimize embeddings, which can signifi-178

cantly impact the model’s representational capabil-179

ities when data is updated or user interests change.180

Another group of people focuses on harnessing181

the generative power of LLMs to produce recom-182

mendations directly (Lin et al., 2023b; Liao et al.,183

2024; Wang et al., 2023; Zhang et al., 2023b; Tan184

et al., 2024; Yang et al., 2023; He et al., 2023b).185

In detail, those researchers have noted that LLMs186

are exposed to limited recommendation data dur-187

ing their training phase, necessitating an alignment188

approach to learning recommendation tasks. Al-189

though achieving great success, these methods fo-190

cus on static and fixed datasets where user interest191

is stable. However, in real-world scenarios, data is192

constantly updated, user interests are changing, and193

new user feedback is continually generated (Chang194

et al., 2017; Papagelis et al., 2005; Wang et al.,195

2018). Therefore, in this paper, we will delve into196

discussing how LLM recommendations perform197

in scenarios with user interest shift and explore198

methods to mitigate this issue by utilizing newly199

generated user feedback.200

3 Preliminary201

In this section, we first present the problem formu-202

lation (§ 3.1) for the studied user interest shift prob-203

lem. Next, we present preliminary studies (§ 3.2) to204

illustrate the importance of timely adapting LLM-205

based recommenders to new user interests and ana-206

lyze the potential of applying ICL to address this207

problem (§ 3.3).208

3.1 Problem Defination209

In recommendation, users are expected to continu-210

ously interact with the system, making the interac-211

tion data streamingly coming. We represent the212

streaming data T as {D0, . . . , Dt, . . . , }, where213

D denotes a set of recommendation data points.214

and Dt denotes the data collected at t-time pe-215

riod. During the process, their interest could evolve.216

To ensure the recommendation performance, we217

usually update the recommenders using the newly218

collected data to capture the new interest. How-219

ever, updating LLM-based recommender models is220

costly. Therefore, we usually need to train a model221

with {D0, . . . , DT } (denoting the trained model as222

fT ), but need it to serve for many periods, e.g., K 223

periods, form DT+1 to DT+K . In this work, we 224

consider developing a method that could capture 225

the user’s new interest from the new data without 226

requiring further model updates after the initial 227

trained1. 228

3.2 Importance of Adapting to New Interests 229

We conduct preliminary experiments using two rep- 230

resentative LLM-based models, TALLRec (Bao 231

et al., 2023b) and BinLLM (Zhang et al., 2024), 232

to verify the importance of adapting LLM-based 233

recommenders to users’ evolving interests. Our 234

analysis is based on Amazon-Books and Amazon- 235

Movies datasets. Specifically, we uniformly di- 236

vide the data according to the timestamp and use 237

{D0, . . . , DT } to train TALLRec and BinLLM, ob- 238

taining the trained model fT . Additionally, we train 239

the model on {D0, . . . , DT+K} to obtain more up- 240

dated model, fT+K . We then compare the perfor- 241

mance of the models on DT+1 and DT+K+1. We 242

define two metrics according to the performance 243

difference between models to demonstrate the im- 244

portance of capturing users’ new interests: 245

• PDT : This metric evaluates the performance 246

gap of the same model across two distinct test- 247

ing periods, where smaller differences indicate 248

stronger robustness to user interest shift. We 249

compute PDT as: 250

PDT = AUC(fT ;DT+1)−AUC(fT ;DT+K+1). (1) 251

• PDM : This metric measures the gap between 252

the model and its upper bound (obtained by re- 253

training with all the data before the test period) 254

using a fixed test set. It aligns with real-world 255

scenarios where retraining models with new data 256

is a common practice (Yang et al., 2024; Xu et al., 257

2020b). Performance differences before and after 258

retraining provide the potential benefits of model 259

updates. A smaller gap suggests strong adaptabil- 260

ity to new test environments, reducing the need 261

for frequent updates. We compute PDM as: 262

PDM = AUC(fT+K ;DT+K+1)−AUC(fT ;DT+K+1),
(2) 263

where AUC(f ;D) represents the AUC evalu- 264

ated for model f on dataset D. 265

Results. Figure 2 summarizes the results, with 266

a traditional recommender model (HashGNN) in- 267

cluded as a reference. From the figure, we can 268

1In all our experiments, we set T = 4 and K = 4.
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Figure 2: A comparative analysis of TALLRec, Bin-
LLM, and HashGNN models using both Amazon-Book
and Amazon-Movie datasets for performance assess-
ment. A higher “PDM” indicates a greater benefit of up-
dating the model. A higher “PDT” signifies a more sig-
nificant impact of shifts in user interests on the model’s
performance.

make the following observations: 1) Both TALL-269

Rec and BinLLM exhibit positive values on met-270

ric PDT , indicating that as the testing data shifts271

from DT+1 to DT+K+1, the model fT experiences272

a noticeable performance decline. 2) TALLRec273

and BinLLM also show positive values on met-274

ric PDM , meaning that the more updated model275

(fT+K) outperforms the less updated model (fT )276

when tested on DT+K+1. This demonstrates that277

updating the model leads to improved results. The278

results of LLM-based recommenders are generally279

consistent with those of traditional models. All280

the results confirm that LLM-based recommenders281

also need to adapt to users’ evolving interests; oth-282

erwise, they risk sub-optimal performance.283

3.3 The Potential of ICL284

ICL is promising for addressing user interest shift.285

It enables LLMs to quickly adapting to new tasks286

using few-shot examples without changing their287

parameters. Thus, we can expect integrating user288

feedback as few-shot examples can enhance the289

model’s ability to recommend based on new inter-290

ests.291

However, applying ICL to existing LLM-based292

recommenders may not work well, as they can293

lose ICL capabilities during tuning. We compare294

ICL capabilities between these models and gen-295

eral LLMs by evaluating the performance improve-296

ments that ICL brings. Specifically, following the297

setting in §3.2, we train BinLLM and TALLRec298

on{D0, . . . , DT }, comparing their performance299

(AUC) with and without ICL to measure improve-300

ments, noted as Delta AUC. A higher value of this301

metric indicates greater improvement brought by302

ICL to the model. Figure 3 summarizes the results303

on DT+K+1. The findings indicate that TALLRec304
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Figure 3: Performance improvement brought by using
in-context learning of TALLRec, BinLLM, and General
LLM on each dataset, where in-context learning refers
to selecting the four most recent interactions for each
user to formulate the few-shot examples.

Data Construction ICL-based Tuning

Dynamic Interest Adaption

You are a smart book 
recommendation system that 
predicts whether a user will 
enjoy a book based on their 
preferences. Below are a few 
examples:
<SampleN-4>,No 
<SampleN-3>,Yes 
<SampleN-2>,Yes
<SampleN-1>,No
<SampleN>

Question: A user has given high
 ratings to the following books: 
<ItemTitleList>.Leverage the 
information to predict whether
 the user would enjoy the book 
titled <TargetItemTitle>?
 Answer with "Yes" or "No". 
Answer:

LLMs

Sample N
Sample N - 1

Sample N - 2

Construct ICL Instruction with Real-Time Feedback
Yes/No？

RecICL

Yes/No

ICL-based data

Figure 4: Overview of our RecICL pipeline, primar-
ily consists of three stages: Data Construction, Model
Training, and Dynamic Interest Adaption. Here we de-
fine the few-shot number as 4.

and BinLLM gain little to no performance boost 305

with ICL, indicating a loss of ICL capabilities in 306

LLM-based recommenders. Moreover, we cannot 307

rely on the ICL abilities of general LLMs alone 308

for recommendations as they lack sufficient capa- 309

bility (Bao et al., 2023b). This motivates us to 310

preserve the ICL abilities when equipping LLMs 311

with recommendation capabilities. 312

4 RecICL 313

4.1 Overview 314

With the insight of keeping the ICL abilities when 315

tuning LLMs to recommendation tasks, we pro- 316

posed RecICL for achieving adaptive personalized 317

recommendation. The core lies in directly organiz- 318

ing the training example in an ICL format, making 319

the ICL usable during tuning while capturing users’ 320

dynamic interests. As Figure 4 shows, our total Re- 321

cICL framework includes three main components: 322

(1) Data Construction (2) ICL-based Tuning, and 323

(3) Dynamic Interest Adaption. 324

4.2 Data Construction 325

In our framework, each user interaction would be 326

formatted as an instruction, as shown on the left 327

side of Figure 4, where the task is described using 328
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language text. Let (hu, i, y) denote an interaction329

between a user u and item i in the dataset, where y330

is the interaction label, and hu denotes the user’s331

interaction history (including both interacted items332

and their labels). Next, we use the prompt template333

outlined in the “Data Construction” part of Figure334

4 — feeding hu and i into the ‘<ItemTitleList>’335

field and ‘<TargetItemTitle>’ field in the prompt336

template, respectively. Let x represent the prompt337

generated for the interaction (hu, i, y); it can finally338

be expressed as (x, y).339

For each user, we convert her/his all interactions340

as above, obtaining a series of transformed data341

points:342

[(x0, y0), . . . , (xn, yn), . . . , (xN , yN )], (3)343

where (xn, yn) represents the n-th interaction and344

N is the total number of interactions for the user.345

Here, the interaction are organized in chronological346

order based on the interaction timestamps.347

4.3 ICL-based Tuning348

To maintain the model’s ICL abilities while tun-349

ing it on recommendation data, we propose a new350

ICL-based tuning method. Instead of tuning the351

model to predict yn based solely on xn for each352

interaction (xn, yn), we incorporate several of the353

most recent interactions for each user to help the354

predictions. These data points are integrated in an355

ICL format. Specifically, for each (xn, yn), we con-356

catenate xn with the M 2 most recent interactions357

(denoted as {(xn−1, yn−1), . . . , (xn−M , yn−M )})358

as few-shot examples to construct the ICL instruc-359

tion data, following the prompt template shown in360

the "ICL-based Tuning" section of Figure 4. Let361

x′n represent the resulting prompt. Formally,362

x′
n = PICL({(xn−1, yn−1), . . . , (xn−M , yn−M )};xn),

(4)363

where PICL(·) denotes the process for construct-364

ing the ICL instruction. Then each training data365

point can be represented by (x
′
n, yn).366

After generating all the ICL instruction data, we367

use it to tune the model, ensuring that it retains its368

ICL capabilities while learning the recommenda-369

tion task. Specifically, we fine-tune the LLM by370

minimizing the following optimization objective:371

minimize
θ

∑
(x′

k,yk)

ℓ(f(x′k; θ), yk), (5)372

where θ represents the LLM’s parameters, f(x′k; θ)373

2Without explicit statement, we set M=4 in our experi-
ments.

denotes the model’s prediction for x′k, and ℓ is the 374

commonly used cross-entropy loss. 375

By adopting this approach, we can achieve two 376

goals simultaneously. On the one hand, we can 377

align the LLM with recommendation scenarios by 378

training it on user interaction data. On the other 379

hand, we can prevent the LLM from experiencing 380

catastrophic forgetting of ICL ability. More im- 381

portantly, this method teaches the model how to 382

leverage the users’ most recent interests from the 383

few-shot examples during the training process, en- 384

abling it to capture users’ real-time interests at the 385

inference stage. 386

4.4 Dynamic Interest Adaption 387

During recommendation period, the tuned LLM, 388

with its ICL abilities preserved, can capture a user’s 389

new interests without requiring model updates. 390

During the decoding time, we use the most-recent 391

user feedback data as the few-shot example in ICL, 392

allowing the model to access the user’s newest in- 393

terests. The process of constructing ICL instruction 394

data for inference is identical to that used in train- 395

ing. Let x′ represent a test data point represented in 396

ICL instruction format; the final prediction is made 397

as 398

ŷ = f(x′, θ∗), (6) 399

where θ∗ are the LLM model parameters tuned 400

according to Equation (5). 401

5 Experiments 402

In this section, we will introduce the experiment 403

setting and answer the following research ques- 404

tions: RQ1: How does RecICL perform under 405

the user interest shift setting, and does it have any 406

advantages compared to models updated with the 407

full datasets? RQ2:Whether RecICL performance 408

more stable across all time periods when compar- 409

ing with other baselines? RQ3: What’s the effect 410

of few-shot selection 3 of RecICL?RQ4: How does 411

RecICL perform in the most extreme user interest 412

shift scenarios (User is not present in the training 413

set)? 414

5.1 Experimental Settings 415

5.1.1 Datasets 416

We conduct our experiments on the following two 417

real-world datasets4: (1) Amazon-Books refers 418

3We also analysis the impact of few-shot number in Ap-
pendix §C

4We also conduct experiments on the additional two
datasets in Appendix §D
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Table 1: Overall performance comparison on the Amazon-Book and Amazon-Movie datasets on the D9. ↑ indicates
higher values are better, while ↓ indicates lower values are better. “Rel Imp” denotes the relative improvement
of RecICL compared to baselines on the AUC metric. “Collab.” refers to the traditional collaborative methods.
“LLMRec (ICL)” refers to the use of in-context learning with corresponding methods. Note that, ICL-LLM does
not have PDM value since the general LLM is no need to update. All LLM methods employing Llama3.1-8B are
indicated with a footnote; otherwise, Qwen1.5-0.5B is used. The best performance for each metric is bolded.

Dataset Amazon-Books Amazon-Movies
Methods AUC(↑) Rel Imp(↑) PDM (↓) AUC(↑) Rel Imp(↑) PDM (↓)

Collab.
MF 0.6193 35.65% 0.0882 0.5901 57.30% 0.1565

SASRec 0.5734 46.51% 0.1125 0.6554 41.62% 0.1029
HashGNN 0.7396 13.59% 0.0285 0.6628 40.04% 0.1100

LLMRec (ICL)

ICL-LLM 0.7133 17.77% - 0.7434 24.58% -
ICL-LLMLlama 0.5821 44.32% 0.0214 0.7101 30.56% 0.0285
ICL-TALLRec 0.7290 15.24% 0.0214 0.7763 19.56% 0.0285
ICL-BinLLM 0.7708 8.99% 0.0053 0.7835 18.64% 0.0604

LLMRec

TALLRec 0.7005 19.92% 0.0428 0.7415 25.18% 0.0392
TALLRecLlama 0.6905 21.67% 0.0127 0.7648 21.37% 0.0328

BinLLM 0.7787 7.88% 0.0145 0.7658 21.21% 0.0547
BinLLMLlama 0.7809 7.58% 0.0191 0.7639 21.51% 0.0737

Ours

RecICL-TALLRec 0.8401 - 0.0031 0.9145 - 0.0057
RecICL-TALLRecLlama 0.8399 - 0.0030 0.9282 - 0.0043

RecICL-BinLLM 0.8353 - 0.0104 0.9055 - 0.0143
RecICL-BinLLMLlama 0.8197 - 0.0164 0.9212 - 0.0028

to the “book” subset of Amazon Review datasets419
5. This dataset consists of user reviews of book420

products from the Amazon platform between 1996421

and 2018, with rating scores ranging from 1 to 5.422

We chose 4 as the threshold. Those with scores423

higher than 4 are labeled as “Yes”; otherwise, they424

are labeled “No”. (2) Amazon-Movies refers to425

the “movie” subset of Amazon Review datasets.426

Similar to the Amazon-Book datasets, we choose427

the threshold as 4.428

To better simulate real-world scenarios that pre-429

vent data leakage (Ji et al., 2023) while modeling430

user interest shifts, we divided the dataset into 10431

parts similar to §3.2. Consistent with our setup432

in the preliminary experiments, by default, we433

set T = 4 and K = 4, which means we use434

Dtrain = {D0, . . . , D4} as the training set. The435

last 5,000 samples from D4 are separated to form436

the validation set and we randomly select 5,000437

samples from D9 to serve as the test set for user438

interest shift. Specifically, for Amazon-Books, we439

preserved user interactions from the year 2017, and440

for Amazon-Movies, we preserved user interac-441

tions from the year 2014 to 2016. Besides, fol-442

lowing the setting in BinLLM (Zhang et al., 2024),443

we filtered out users and items with fewer than 20444

interactions to ensure data quality. 6445

5https://cseweb.ucsd.edu/~jmcauley/datasets/
amazon_v2/.

6The detailed data statistics are shown in Table 2.

5.1.2 Evaluation and Metrics 446

To demonstrate the effectiveness of our approach, 447

we compared it with a range of methods, including 448

traditional recommendation models (MF (Koren 449

et al., 2009), SASRec (Kang and McAuley, 2018), 450

and HashGNN (Tan et al., 2020)) and current LLM- 451

based recommendation models (TALLRec (Bao 452

et al., 2023b) and BinLLM (Zhang et al., 2024)). 7 453

For evaluation metrics, we use AUC, a common 454

metric in recommender systems quantifying the 455

overall prediction accuracy, and PDM , as we de- 456

fined in Equation (2), to evaluate our model’s per- 457

formance. As for PDM , similar to §3.2, we define 458

it as the model’s performance between the fully 459

updated model and the less updated model testing 460

on D9, which indicates how close we are to the 461

upper bound of performance. 462

5.2 Main Results (RQ1) 463

Table 1 presents the overall performance of our 464

method on two datasets following significant user 465

interest shifts. From this table, we can draw the 466

following conclusions: 467

• Compared to all other methods, RecICL signif- 468

icantly improves the AUC metric compared to 469

other methods, enhancing model performance 470

7The default approach for all LLM methods is to use
Qwen1.5-0.5B with full-finetuning and use Llama3.1-8B com-
bined with LoRA for training. More details and implementa-
tions for all baselines are described in the Appendix §A and
§B.
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during user interest shifts. Moreover, when ex-471

amining PDM performance, we observe that the472

benefit of updating the RecICL model is minimal473

(0.0031 and 0.0057 for each dataset). It demon-474

strates stability and maintains high performance475

over extended periods without updates.476

• When comparing traditional recommender sys-477

tems with LLM-based recommender systems,478

a notable performance gap in their ability to479

adapt to changing user interests. In detail, tradi-480

tional models are more sensitive to user interest481

shift, with PDM metrics near 0.1 (except for the482

hashGNN model on the Amazon-book dataset),483

indicating a need for frequent updates. In con-484

trast, LLMs show robustness against such shifts,485

suggesting their potential as a solution to the486

challenge of evolving user interests.487

• In our comparison of two datasets, we observe488

that baseline models are more adversely affected489

by the Amazon-Movie dataset. This effect is par-490

ticularly pronounced in HashGNN, where per-491

formance metrics significantly change due to492

the dataset’s broader time span and the resulting493

user interest shift. Addressing this shift is vital494

for enhancing the effectiveness of recommenda-495

tion systems. Furthermore, when evaluating the496

two LLM-based methods across both datasets,497

we find that BinLLM is less impacted on the498

Amazon-Books dataset. We speculate that this499

is because BinLLM is heavily influenced by its500

collaborative models.501

• When comparing RecICL-TALLRec and502

RecICL-BinLLM, we observe that their per-503

formance is remarkably similar. Contrary to504

expectations, the advantage of BinLLM’s use505

of collaborative information is not clearly506

evident within the RecICL framework. This507

unexpected outcome may be attributed to two508

factors: (1) The global collaborative information509

provided by the collaborative model may not510

accurately reflect user interests as effectively as511

the user’s most recent interactions. (2) There512

might be an ongoing issue with the collaborative513

model’s performance degradation. Despite these514

observations, it’s important to note that when515

comparing RecICL-BinLLM with the standalone516

BinLLM, we still see a significant performance517

improvement. This contrast underscores the518

effectiveness and high adaptability of our519

proposed RecICL method.520

5 6 7 8 9
Test Set

0.70

0.75

0.80

0.85

AU
C

(a) Amazon-Books

RecICL BinLLM TALLRec LLM ICL HashGNN

5 6 7 8 9
Test Set

0.7

0.8

0.9

(b) Amazon-Movies
Figure 5: The performance of the model on different test
sets after training on Dtrain. The x-axis represents prac-
tical data partitions, with larger subscripts indicating a
greater shift in user interests compared to the training
set. The y-axis shows the corresponding AUC metric
for each data partition.

Next, we will further analyze the RecICL 521

method, our subsequent experiments will be based 522

on RecICL-TALLRec since it shows the best per- 523

formance in our main experiment. 524

5.3 Robust Analysis (RQ2) 525

To show the robustness of RecICL, validate its per- 526

formance across different time periods, we present 527

the results of several methods trained on Dtrain and 528

evaluated on datasets D5, D6, D7, D8, and D9 in 529

Figure 5, respectively. For the sake of convenience, 530

we utilize Qwen1.5-0.5B in our experimental anal- 531

ysis. The main findings are as follows: 532

• In terms of comparative performance, RecICL 533

demonstrates consistent advantages across all 534

periods, further validating the effectiveness of 535

our approach. Even more encouraging is that 536

when tested on D5, where user interests have not 537

undergone dramatic changes, our method still 538

shows significant improvements over baseline ap- 539

proaches. We attribute this to the fact that while 540

employing ICL, we essentially provide more per- 541

sonalized user input (each user’s most recent in- 542

teraction and its feedback), enabling the model 543

to better model the user. This effectively person- 544

alizes the input prompt, leading to substantial 545

improvements. 546

• When comparing all other LLM-based meth- 547

ods, we found that ICL performance remains 548

relatively stable. Although ICL yields the low- 549

est performance, it does not overfit user prefer- 550

ences from specific periods due to the absence 551

of domain-specific fine-tuning. This further ex- 552

plains the stable performance of RecICL. 553

• Furthermore, by examining the performance of 554

HashGNN and BinLLM in both datasets, we ob- 555

7
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Figure 6: Performance comparison of TALLRec, Re-
cICL, and RecICL using random select few-shot sam-
ples on D5 and D9.

serve that BinLLM is more susceptible to the556

influence of the collaborative models it relies557

on, i.e., HashGNN. When the collaborative mod-558

els are significantly affected by shifts in user in-559

terests, BinLLM is also substantially impacted.560

Nevertheless, BinLLM still demonstrates greater561

stability compared to HashGNN, underscoring562

the robustness of LLM-based approaches.563

5.4 In-depth Analysis (RQ3)564

Few-shot Selection. Wse first delve into the few-565

shot selection strategy of RecICL, and aim to566

answer the following question: How impactful567

is leveraging users’ recent interactions and feed-568

back? Specifically, we fist present a ablation study,569

which compare the performance ammong TALL-570

Rec, RecICL-random using four randomly selected571

interactions as few-shot examples, and RecICL. As572

shown in the figure 6, we observe that with random573

interactions, RecICL-random does not always show574

performance improvement compared with TALL-575

Rec, demonstrating the importance of choosing the576

most recent interaction as few-shot examples. This577

further verified that when using RecICL, we need578

to perform instance-level personalization to capture579

the user’s dynamic interest thereby improving the580

recommendation accuracy.581

Performance on Unseen Users. Apart from the582

ablation study, we also consider the most extreme583

scenario of user interest shift is when models have584

never seen a user during their training phase. Con-585

sequently, this user’s interests are entirely unknown586

to the model, and we can only learn about the user’s587

preferences through their real-time feedback. To588

validate that RecICL is also effective on this sce-589

nario, we divided the interactions in the test set590

into two categories based on whether the user has591

appeared in the training set. We then calculated the592

recommendation performance for each category593

separately. The results are illustrated in Figure 7.594

Amazon-Books Amazon-Movies
(a) Unseen

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

LLM+ICL
TALLRec

BinLLM
RecICL

Amazon-Books Amazon-Movies
(b) Seen

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

LLM+ICL
TALLRec

BinLLM
RecICL

Figure 7: Performance comparison on seen (right) and
unseen (left) users on Amazon-Books and Amazon-
Movies datasets.

Our findings indicate that RecICL demonstrates 595

significant performance improvements compared 596

to the baseline for users not present in the training 597

set. This can be attributed to RecICL’s ability to 598

effectively leverage recent interactions from new 599

users to model their interests. Besides, for Re- 600

cICL, we also observed that in addition to smaller 601

performance gains among user groups previously 602

encountered by the model, the overall performance 603

was also slightly lower compared to unseen users. 604

This phenomenon may be caused by the fact that 605

new users tend to have more focused interest pref- 606

erences closely related to their recent interactions, 607

while old users might have more complex, long- 608

term interests that are not fully captured by our ICL 609

input. 610

6 Conclusion and Future Work 611

In this paper, we highlight the challenges faced by 612

LLMs in recommender systems when dealing with 613

user interest shift. Unlike traditional models, LLMs 614

cannot timely update their parameters due to high 615

training costs. To address this issue, we propose 616

RecICL, which ensures that the LLM aligns with 617

the recommendation scenario while preserving and 618

enhancing its in-context learning capabilities in the 619

recommendation context. During deployment, it 620

can utilize the user’s most recent feedback by in- 621

putting this feedback as few-shot examples to the 622

model, allowing it to capture the user’s dynamic 623

interests. Extensive experimental results also illus- 624

trate the effectiveness and adaptability of RecICL, 625

successfully adapting to dynamic user interest with- 626

out any model-level updates. In the future, we aim 627

to delve deeper into this research direction. We’d 628

like to explore ways to enable LLMs to better uti- 629

lize collaborative information from updated tradi- 630

tional models, aligning with existing incremental 631

learning methods. 632

8



Limitations633

This paper primarily focuses on the issues and chal-634

lenges that arise when deploying LLMs for dy-635

namic user interest adaption, particularly focusing636

on strengthening the ICL capabilities of LLMs in637

recommendation scenarios.638

However, our study has several limitations: 1)639

The experiments conducted in this study are solely640

based on the Qwen1.5-0.5B and Llama3.1-8B641

model, lacking validation with a broader range of642

models. In the future, we aim to expand experi-643

ments accordingly. 2) While the method proposed644

in this paper provides parameter options that can645

balance inference time and performance8, it still646

encounters efficiency challenges when applied to647

real-world recommendation scenarios. A potential648

solution to address the inference efficiency issue649

is to leverage techniques such as employing pre-650

fill (Kwon et al., 2023) methods to mitigate these651

challenges. However, due to the limitations of our652

experimental setup, further exploration of this ap-653

proach remains constrained.654

Ethical Considerations655

In this paper, we introduce RecICL to enhance the656

recommendation-specific ICL capability to timely657

capture the user’s dynamic interest. We utilize pub-658

licly accessible data while diligently steering clear659

of sensitive information. Additionally, the imple-660

mentation of LLMs could unintentionally reinforce661

hidden societal biases. We advise conducting thor-662

ough risk assessments and caution users about the663

possible risks involved in deploying the model.664
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A Baselines. 902

To fully investigate the performance of our RecICL, 903

we mainly consider two types of baseline models, 904

one is conventional recommender systems, and an- 905

other is the recommender systems based on LLM. 906

In detail, we select the following baselines: 907

• MF (Koren et al., 2009) refers to Matrix Factor- 908

ization, which is a popular collaborative filtering 909

technique, which works by decomposing the user- 910

item interaction matrix and representing latent 911

factors for users and items for predictions. 912

• SASRec (Kang and McAuley, 2018) refers 913

to Self-Attentive Sequential Recommendation, 914

which leverages the self-attention mechanism to 915

capture long-term user preferences and item rela- 916

tionships, allowing it to model complex sequen- 917

tial patterns in user behavior. 918

• HashGNN (Tan et al., 2020) refers to Hashing 919

with GNNs, which consists of a GNN encoder 920

and a hash layer for encoding representations to 921

hash codes. It can be viewed as a representa- 922

tion of the GNN-based method for collaborative 923

filtering. 924

• ICL refers to how we directly apply the in- 925

context learning techniques to prompt the LLM 926

to determine whether the user will enjoy the item 927

by giving the most recent interactions and the 928

feedback of the user. 929

• TALLRec (Bao et al., 2023b) is a representa- 930

tion of LLM-based recommender systems that di- 931

rectly use instruction-tuning to finetune the LLM 932

on recommendation data and achieve moderate 933

performance. 934

• BinLLM (Zhang et al., 2024) is currently a state- 935

of-the-art (SOTA) method for aligning LLMs 936

with recommendation. It introduces collaborative 937

information to LLMs by compressing the embed- 938

ding from traditional recommender systems to 939

32-bit binary sequences and feeding it into the 940

LLMs. 941

B Implementation Details 942

Similar to BinLLM (Zhang et al., 2024), for tradi- 943

tional recommender systems, we employ Binary 944

Cross-Entropy (BCE) as the optimization loss and 945

use the Adam optimizer (Kingma and Ba, 2015), 946

unless otherwise specified by the original paper. 947
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Figure 8: The performance of RecICL trained with vary-
ing numbers of few-shot samples (left) and its inference
overhead on the entire test set (right). Note that when
the number of few-shot samples is 0, it is equivalent to
TALLRec.

For hyperparameter tuning, we explore the learning948

rate in [1e−2, 1e−3, 1e−4] and tune the weight de-949

cay in the range of [1e−2, 1e−3, . . . , 1e−7]. For950

embedding size, we perform tuning within the951

range of [16, 32, 64, 128, 256,952

512]. For SASRec, we set the maximum length of953

historical interaction sequences according to the954

average user interaction count in the training data,955

as specified in the original paper. For all LLM-956

based methods, we employ the AdamW optimizer957

and adjust the learning rate within the range of958

[1e−3, 1e−4, 1e−5]. We set up 200 to the warm-959

up steps in our training process. Regarding the960

input interaction sequence length, we follow the961

TALLRec (Bao et al., 2023b) approach by setting962

the maximum sequence length to 10. For BinLLM,963

we utilize the optimal HashGNN and adapt it for964

binary sequence embedding. As for the backbone,965

we opt for Qwen1.5-0.5B (Bai et al., 2023), con-966

sidering its convenience and efficiency and we also967

apply Llama3.1-8B (Dubey et al., 2024) with lora-968

tuning to further validate the method’s effective-969

ness.970

C Influnce of Few-shot Number971

We first analyze the number of few-shot samples972

when applying RecICL, as shown in Figure 8. The973

figure illustrates the model’s performance on D5974

and D9 and the inference time changes for all 5000975

samples. We can draw the following conclusions:976

• When considering the overall performance, re-977

gardless of the number of few-shot samples cho-978

sen, the model’s performance shows a qualita-979

tive improvement compared to zero samples (i.e.,980

TALLRec). When considering Table 1, even Re-981

cICL with just one few-shot sample demonstrates982

a clear performance advantage over the previous983

SOTA method, BinLLM, which further demon-984

strates the effectiveness of our approach. 985

• Besides, we found that as the number of few- 986

shot samples increases, the model continues to 987

improve its recommendation performance. How- 988

ever, the most significant performance boost oc- 989

curs when the number of few-shot samples in- 990

creases from 0 to 1. This further indicate the im- 991

portance of user’s most recent interaction which 992

directly reflect their current preference. 993

• When looking at the right figure, we observed 994

that the inference time grows approximately 995

linearly with the increase in few-shot samples, 996

mainly due to the increased input length. This is- 997

sue could potentially be addressed through prefill 998

optimization. 999

In summary, there is a trade-off between the per- 1000

formance gains and the increased inference time 1001

brought by few-shot samples. When prioritizing 1002

performance, more few-shot samples can be used; 1003

when seeking balance, using 1 or 2 few-shot sam- 1004

ples can bring noticeable performance improve- 1005

ments. 1006

D Performance on Other Datasets 1007

We conducted additional experiments on the 1008

Amazon-CDs and Amazon-Sports datasets using 1009

the Qwen 1.5-0.5B model. The data process- 1010

ing pipeline follows a similar pipeline to that of 1011

Amazon-Books and Amazon-Movies. For the CDs 1012

dataset, we utilize data from 2008, while for the 1013

Sports dataset, we use data starting from 2014, 1014

ensuring a comparable scale with the datasets in 1015

our main experiments. Following the approach de- 1016

scribed in Section §5, we employ {D0, . . . , D4} as 1017

the training set. The last 5,000 samples from D4 1018

are reserved for validation, and we randomly select 1019

5,000 samples from D9 to construct the test set for 1020

evaluating user interest shift. On these datasets, we 1021

compare two LLM-based methods, TALLRec and 1022

BinLLM, as baselines. Similar to our analysis ex- 1023

periments, we focus on RecICL-TALLRec due to 1024

its superior performance in the main experiments. 1025

The results, summarized in Table 3, demonstrate 1026

that consistent with the findings on the Books and 1027

Movies datasets, TALLRec and BinLLM exhibit 1028

significant performance degradation as user inter- 1029

ests shift, as reflected by higher PDM values. In 1030

contrast, our method not only maintains strong 1031

performance but also shows greater resilience to 1032

changes in user interest. This further validates that 1033

12



Table 2: Data statistics of the datasets.

Dataset #Interaction #User #Item
Amazon-Books 775,635 22,127 34,076
Amazon-Movies 378,329 11,799 14,632

Amazon-CDs 310,904 9,782 14,680
Amazon-Sports 253,972 10,968 24,731

Table 3: Performance Comparison on CDs and Sports
Datasets

Methods CDs Sports

AUC(↑) PDM(↓) AUC(↑) PDM(↓)

TALLRec 0.5948 0.0410 0.5725 0.0864
BinLLM 0.5815 0.1280 0.5781 0.0802
RecICL 0.8162 0.0088 0.7592 0.0329

our approach effectively adapts to dynamic user1034

interests and provides personalized recommenda-1035

tions based on users’ most recent preferences.1036

1037
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