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Abstract

Large Language Models (LLMs) have demon-001
strated an impressive capability known as In-002
context Learning (ICL), which enables them003
to acquire knowledge from textual demonstra-004
tions without the need for parameter updates.005
However, many studies have highlighted that006
the model’s performance is sensitive to the007
choice of demonstrations, presenting a signifi-008
cant challenge for practical applications where009
we lack prior knowledge of user queries. Con-010
sequently, we need to construct an extensive011
demonstration pool and incorporate external012
databases to assist the model, leading to con-013
siderable time and financial costs. In light014
of this, some recent research has shifted fo-015
cus towards zero-shot ICL, aiming to reduce016
the model’s reliance on external information017
by leveraging their inherent generative capa-018
bilities. Despite the effectiveness of these ap-019
proaches, the content generated by the model020
may be unreliable, and the generation process021
is time-consuming. To address these issues, we022
propose Demonstration Augmentation for In-023
context Learning (DAIL), which employs the024
model’s previously predicted historical samples025
as demonstrations for subsequent ones. DAIL026
brings no additional inference cost and does not027
rely on the model’s generative capabilities. Our028
experiments reveal that DAIL can significantly029
improve the model’s performance over direct030
zero-shot inference and can even outperform031
few-shot ICL without any external information.032

1 Introduction033

Large Language models (LLMs) have recently034

gained widespread attention due to their numer-035

ous advantages, including user-friendly interac-036

tions, convenient applications, and zero-shot ca-037

pabilities (Wei et al., 2021; OpenAI, 2022; Scao038

et al., 2022; Zhang et al., 2022a; OpenAI, 2023;039

Touvron et al., 2023; Baichuan, 2023). However,040

the expanding parameter scale of LLMs poses a sig-041

nificant challenge to fine-tuning, demanding con-042

siderable investments in both time and computa- 043

tional resources. Therefore, In-context Learning 044

(ICL), a method enabling LLMs to acquire knowl- 045

edge through textual demonstrations without the 046

need for parameter updates, has become increas- 047

ingly important in recent times (Wei et al., 2021; 048

Dong et al., 2022). 049

Conditioning on some input-label pairs (demon- 050

strations), LLMs can rapidly acquire the ability 051

to solve new tasks in a few-shot manner just by 052

combining the demonstrations and the sample to- 053

gether(Radford et al., 2019; Brown et al., 2020). 054

However, many studies indicate that the model’s 055

performance is sensitive to the choice of demonstra- 056

tions (Zhang et al., 2022b; Liu et al., 2022b; Hao 057

et al., 2022; Lu et al., 2022a). In extreme cases, 058

inadequately chosen demonstrations can signifi- 059

cantly degrade the model’s performance, causing a 060

drastic drop from State-of-the-Art to near-random 061

(Liu et al., 2022b). To address this challenge, re- 062

searchers have proposed various solutions, includ- 063

ing demonstration selection, calibration, and ar- 064

rangement (Rubin et al., 2022; Min et al., 2022d,b; 065

Zhao et al., 2021a; Chen et al., 2022; Yoo et al., 066

2022; Min et al., 2022a). These methods can im- 067

prove the model’s performance and stability under 068

ICL across many tasks. 069

Nevertheless, these approaches are still insuffi- 070

cient to ensure the reliable application of ICL in 071

real-world scenarios, where our prior knowledge of 072

user queries is often limited. Consequently, it is a 073

common practice to construct an extensive demon- 074

stration pool, harness external databases, and im- 075

plement various strategies such as selection, cali- 076

bration, and arrangement methods, as mentioned 077

earlier, to deal with all kinds of queries from users. 078

However, this process entails a significant invest- 079

ment in time and financial resources. Therefore, 080

some researchers (Zhang et al., 2022c; Kim et al., 081

2022; Lyu et al., 2023; Chen et al., 2023) attempt 082

to alleviate the reliance on external information by 083
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proposing zero-shot ICL. These approaches lever-084

age the model’s generative capabilities to produce085

the required information for the inference process.086

In this context, zero-shot ICL offers a promising087

avenue for more efficient and cost-effective deploy-088

ment for ICL.089

These methods can reduce the dependence on090

external information, but the quality of the con-091

tent generated by the model cannot be guaranteed,092

which may pose some potential risks. Furthermore,093

the generation process is time-consuming, which094

can bring additional costs during inference. To ad-095

dress these problems, we propose Demonstration096

Augmentation for In-context Learning (DAIL),097

which employs the model’s previously predicted098

historical samples as demonstrations for subse-099

quent ones1. Specifically, we only need to maintain100

a memory bank of a small size M and define the101

entry, selection, and deletion strategies. During102

the inference phase, the selection strategy chooses103

the most suitable demonstrations from the mem-104

ory bank. Subsequently, we use the entry strategy105

to add the predicted sample to the memory bank.106

Upon reaching maximum capacity, we use the dele-107

tion strategy to remove some stored samples. Our108

experiments on different benchmarks and models109

demonstrate the effectiveness of DAIL.110

Overall, our contributions in this work include:111

• We point out the potential limitations of previous112

zero-shot methods in stability and inference time.113

• We introduce DAIL, an easy yet effective method114

to enhance zero-shot ICL.115

• Our experiments reveal that DAIL can signifi-116

cantly improve the model’s performance over di-117

rect zero-shot inference and can even outperform118

few-shot ICL without any external information.119

2 Preliminary120

2.1 Problem Formulation121

In this subsection, we briefly summarize the in-122

ference process of ICL. A Large Language Model123

(LLM) can be formalized as a function f : X −→ Y ,124

mapping the input space X to the output space Y .125

The corresponding dataset comprises a set of la-126

beled demonstrations {xis, yis}
ns
i=1 and a set of un-127

labeled queries {xit}
nt
i=1. Then, a carefully crafted128

template t is utilized to transform each sample into129

a natural language sentence that the model can pro-130

cess. During the inference stage for a given query,131

1At the beginning, we use zero-shot inference because
there is no historical samples.

Method Inputs Labels
AUTO-COT (Zhang et al., 2022c) from training set no need
Z-ICL (Lyu et al., 2023) from external corpus no need
SG-ICL (Kim et al., 2022) no need given
Self-ICL (Chen et al., 2023) no need no need
DAIL (Ours) no need no need

Table 1: A comparison to prior attempts on zero-shot
ICL. Self-ICL and DAIL do not require any external
information to construct demonstrations.

K demonstrations are selected from the demon- 132

stration pool based on a selection strategy such as 133

TopK (Liu et al., 2022b). Subsequently, these cho- 134

sen demonstrations and the query are combined to 135

construct the input sequence for the model: 136

Input = {t(x1s, y1s), ..., t(xKs , yKs ), t(xit)}, (1) 137

where t(·) is the transformation of the template. 138

The model processes the input sequence and gen- 139

erates the final output, denoted as: 140

Output = V (f(Input)), (2) 141

where V is a mapping function that converts the 142

model’s output into a label in the label space. It 143

can be a text-level matching function or a selection 144

mechanism based on probability or perplexity. 145

2.2 Potential Risks of Previous Methods 146

While previous works have delved into zero-shot 147

ICL, they mainly focus on reducing the reliance on 148

labeled demonstrations and are not entirely inde- 149

pendent of external information (Table 1 shows the 150

resources needed for each method). We concentrate 151

on a setting that requires no external information, 152

aiming to minimize the extra cost. Moreover, these 153

methods rely on the generative capabilities of the 154

model, so there may be issues with poor generation 155

quality and increased inference time. 156

We take Self-ICL (Chen et al., 2023) as an exam- 157

ple. Self-ICL performs the following three actions 158

upon receiving a question: 1) It uses a human- 159

designed prompt to guide the model in generating 160

K new, related, and diverse questions based on the 161

original question. 2) It employs zero-shot inference 162

to obtain the answers for the generated K questions 163

respectively. 3) It concatenates these K questions 164

and their answers to serve as demonstrations for 165

ICL. In our experiments, we find that Self-ICL 166

relies heavily on the generative capability of the 167

model. When the model generates poor demonstra- 168

tions, it will hurt the performance of ICL (Figure 169
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(𝑢 is a vector with a shape of 1 * k)

Query:

Q: What are the dimensions of 𝑢𝑇𝑢?

A:Txk B:Tx1    C:Kx1    D:1x1

A: D (right prediction)

New instance 1:

Q: What are the dimensions of 𝑣T𝑣?

A: Tx2    B:Tx2    C:2x1    D:1x2

New instance 2: 

Q: What are the dimensions of 𝑤𝑇𝑤?

A:3x3    B:Tx3    C:3x1    D:1x3

New instance 3: 

Q: What are the dimensions of 𝑥𝑇𝑥?

A: Tx4    B:Tx4    C:4x1    D:1x4

Query:

Q: What are the dimensions of 𝑢𝑇𝑢?

A:Txk B:Tx1    C:Kx1    D:1x1

A: A (wrong prediction)

Figure 1: A bad case for Self-ICL, the quality of the
generated samples is poor, with repeated options, false
labels, and too similar semantics, which leads to the de-
cline of the model’s performance. For simplicity of the
figure, we omit the generated labels of demonstrations.

1). Furthermore, Self-ICL requires more queries170

and token consumption than direct zero-shot infer-171

ence, resulting in increased inference costs. This is172

particularly pronounced in its generation process173

(Figure 2), where the expense of generating a token174

exceeds that of encoding a token. Consequently,175

this poses a challenge to computing resources dur-176

ing deployment for Self-ICL.177

To address these challenges, we need to obtain178

more reliable demonstrations at a lower cost. It179

is intuitive that text provided by humans typically180

have higher quality than that generated by mod-181

els. With the absence of external information, the182

human-supplied text available to LLM is only user183

queries. Hence, our strategy involves leveraging184

previously predicted historical samples as demon-185

strations. This offers several advantages over other186

zero-shot ICL methods, including superior text187

quality, independence from the model’s generative188

capabilities, and lower acquisition costs.189

3 Method190

Figure 3 illustrates an overview of our method. Sup-191

pose we have a LLM f and a set of user-issued192

queries to respond. We initialize a memory bank193

with a maximum capacity of M . At step 0, the194

memory bank is empty, and we directly process the195

query using zero-shot inference. At step t, when a196
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Figure 2: Time consumption (in seconds) for different
methods and sequence lengths (batch size = 16). We
use LLaMA-2-7B (Touvron et al., 2023) as the base
model. Encode: cost of encoding n tokens. Generate:
cost of generating n tokens. 3-shot: ICL with three
demonstrations. For simplicity, we assume that all the
demonstrations generated by the model have the same
sequence length as the query.

new query arrives, we employ the selection strategy 197

to search for K samples in the memory bank. If the 198

number of samples in the memory bank is less than 199

K, we extract all demonstrations from the bank. 200

Following the model’s output, we use the entry 201

strategy to add the current sample, i.e., the current 202

query paired with the correlated model response, to 203

the memory bank. At step t+ 1, the sample from 204

the previous step t has been in the memory bank 205

and can be selected as a demonstration to help an- 206

swer the new query. In the following subsections, 207

we will elaborate the details of our entry, selection, 208

and deletion strategies, which manage the dynamic 209

data flow within our memory bank. 210

3.1 Entry Strategy 211

Following the processing of each query, we com- 212

bine the query and the corresponding response into 213

a sample and directly add the sample to the mem- 214

ory bank. Despite its simplicity, the entry strategy 215

is a fundamental building block in our method. 216

3.2 Selection Strategy 217

Our selection strategy involves assigning a score 218

to each sample in the memory bank and selecting 219

those with the highest scores. Each sample’s score 220

comprises two factors: the Selection Score and the 221

Entropy Score. Assuming the query that the model 222

need to respond is x, and a sample in the memory 223

bank is x̂, we will explain how to compute the 224

Selection Score and the Entropy Score for them. 225
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Memory Bank

Text     Label

Good movie!         1

Bad movie.         0

Unforgettable! 1

…        …

Review: [Text]

Sentiment:[Label]

Template

Demonstration 

selection

Review: Good movie! Sentiment: Positive

Review: Bad movie. Sentiment: Negative

Review: Delicious!  Sentiment:

Large Language Model

Input

Positive

Output

Delicious!             1

Step t

Test

sample

Memory Bank

Text     Label

Good movie!         1

Bad movie.         0

Delicious! 1

…        …

Review: [Text]

Sentiment:[Label]

Template

Demonstration 

selection

Review: Good movie! Sentiment: Positive

Review: Delicious! Sentiment: Negative

Review: Bad meal!  Sentiment:

Large Language Model

Input

Negative

Output

Bad meal!             0

Step t+1

sample

Figure 3: Overview of our method. After each inference, we combine the current query with the model’s output
and add them to the memory bank. After step t, the sample is added to the memory bank and then used as a
demonstration at step t+1.

3.2.1 Selection Score226

The Selection Score primarily comes from existing227

demonstration selection methods. We have experi-228

mented with various selection methods, including229

random selection, BM25 (Robertson et al., 2009),230

and TopK (Liu et al., 2022b).231

Random score Under random selection, all sam-232

ples are chosen with equal probability. Therefore,233

we assign a score of 0 to all samples.234

BM25 score The BM25 algorithm (Robertson235

et al., 2009) is a well-known information retrieval236

method based on the Okapi TF-IDF algorithm237

(Ramos et al., 2003). It is widely employed for238

ranking queries in information retrieval tasks. We239

can leverage it to compute a similarity score be-240

tween x̂ and x.241

scores = BM25(x̂, x), (3)242

where BM25(·) represents the BM25 algorithm.243

TopK score Noting that selecting demonstrations244

with semantics closer to the query enhances the245

performance of ICL (Liu et al., 2022b), we utilize246

Sentence-BERT (Reimers and Gurevych, 2019) to247

calculate the similarity between x̂ and x.248

scores = cos(emb(x̂), emb(x)), (4)249

where emb(·) denotes the process of computing the250

hidden states of a sentence with Sentence-BERT.251

3.2.2 Entropy Score252

Intuitively, samples with lower entropy should be253

prioritized for selection because this suggests that254

the sample is simpler and the pseudo-labels are255

more reliable (Su et al., 2023). We can compute 256

the entropy of a sample with the following formula: 257

scoree = −
∑
c

p (yc|x) log p (yc|x) , (5) 258

where p (yc|x) is the next token prediction proba- 259

bility of x provided by the model. 260

3.2.3 Final Selection Strategy 261

The final score consists of two components: the Se- 262

lection score and the Entropy Score. We normalize 263

each score to mitigate the differences between the 264

aforementioned two types of scores. 265

score = N (scores)− α ∗N (scoree) , (6) 266

where N(·) stands for normalization, and α is a 267

manually set hyper-parameter to balance the weight 268

of the two scores. 269

In addition to the three selection methods above, 270

we also utilize DPP (Kulesza and Taskar, 2011) to 271

refine the TopK selections, aiming to enhance the 272

diversity of the demonstrations. Specifically, we 273

employ the TopK Score and Entropy Score to select 274

some candidates and apply the DPP algorithm to 275

choose K demonstrations from these candidates. 276

In total, we consider four selection methods, and 277

their comparison will be discussed in Section 5.1. 278

3.3 Deletion Strategy 279

Upon reaching full capacity, we delete half of the 280

samples from the bank. We explore three different 281

deletion strategies: Random, FIFO, and Diverse. 282

Random Randomly select half of the samples 283

and delete them from the bank. 284

FIFO Delete the samples that entered the bank 285

earlier (First-In-First-Out). 286
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Models Methods Humanities STEM Social Sciences Other Average Time

LLaMA-2-7B

Zero-Shot 49.23 34.73 52.77 49.12 45.37 -
Few-shot 50.54 36.80 54.07 49.76 46.75 ×0.99
Self-ICL 48.61 34.86 49.98 48.94 44.64 ×47.28

Ours 51.76 37.52 54.12 50.01 47.33 ×1.00

Mistral-7B

Zero-Shot 62.93 48.29 66.97 61.58 58.83 -
Few-shot 66.07 49.55 72.18 65.11 61.90 ×1.00
Self-ICL 62.62 48.10 67.16 60.85 58.56 ×101.68

Ours 66.62 51.36 74.30 64.11 62.80 ×1.00

OpenChat-7B

Zero-Shot 67.50 49.72 71.67 63.97 61.90 -
Few-shot 70.31 51.78 73.01 66.33 64.05 ×1.00
Self-ICL 67.74 49.30 70.74 63.22 61.44 ×134.87

Ours 70.67 51.40 74.66 66.77 64.47 ×1.00

Table 2: Accuracy (%) on the MMLU benchmark with different models and different methods. Time: the multiples
of time spent by each method in reasoning the entire benchmark compared to DAIL. We omit the comparison with
Zero-Shot in terms of time. The selection strategy of our reported result is DPP, and the deletion strategy is Diverse.
Bold: the best results. We report the template in Appendix A.2 and the detailed results in Appendix A.3.

Diverse We aim to preserve the diversity of the287

samples in the bank after deletion. We employ the288

TopK Score mentioned above to calculate the sim-289

ilarity between each sample and the entire bank.290

Subsequently, we delete the samples with higher291

similarity, thereby maintaining a diverse set of sam-292

ples in the memory bank.293

4 Experiments294

4.1 Baselines295

Zero-Shot Zero-shot inference. The model di-296

rectly process the query with no demonstration.297

Few-Shot Few-shot inference. For each task,298

meticulously crafted demonstrations are provided299

by humans. Note that the comparison between300

Few-Shot and other baselines is not entirely fair, as301

Few-Shot requires additional external information.302

Self-ICL A zero-shot ICL method allows the303

model to generate new samples as demonstrations304

based on the query (Chen et al., 2023).305

4.2 Datasets306

MMLU (Hendrycks et al., 2020) Commonly307

used to evaluate the common sense reasoning abil-308

ity of LLMs, MMLU consists of multiple-choice309

questions from various domains. It includes 57310

subsets covering subjects in science, technology,311

humanities, and other areas. Each subset has four312

demonstrations.313

BBH (Suzgun et al., 2022) Derived from a sub-314

set of tasks within the BIG-Bench benchmark (Sri-315

vastava et al., 2022), BBH includes tasks where316

existing LLMs struggle to reach average human-317

rater performance. We focus on the multiple-choice 318

tasks, as done in Chen et al. (2023). The demon- 319

strations are provided in Chen et al. (2023), and 320

each subset has three demonstrations. 321

4.3 Models 322

For MMLU, we utilize LLaMA-2-7B (Touvron 323

et al., 2023), Mistral-7B (Jiang et al., 2023) and 324

OpenChat-3.5-7B (Wang et al., 2023) as our back- 325

bone. They are the latest lightweight models with 326

powerful capabilities. For BBH, we employ gpt- 327

3.5-turbo-instruct and gpt-4-1106-preview from the 328

GPT family (OpenAI, 2022), which are currently 329

the most popular and influential LLMs. 330

4.4 Implementation details 331

The number of candidates for DPP is 10. We set 332

α to 0.1 for MMLU. The size of the memory bank 333

M is 2,000. We adopt the decoding strategy from 334

Chen et al. (2023). For MMLU, we set the number 335

of demonstrations to four. For BBH, we set the 336

number of demonstrations to three, consistent with 337

Chen et al. (2023), and we use the same prompt as 338

it. In BBH, we cannot obtain the logits of gpt-3.5- 339

turbo-instruct and gpt-4-1106-preview, so we omit 340

the Entropy Score and solely leverage the Selec- 341

tion Score to choose the demonstrations for DAIL, 342

which may lead to a decline in its performance. 343

For Sentence-BERT, we use the mostly used check- 344

point from Huggingface2 to get the hidden states 345

of the queries. All the experiments are completed 346

on NVIDIA A100-40G GPUs. 347

2https://huggingface.co/sentence-transformers/all-mpnet-
base-v2
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BBH Tasks gpt-3.5-turbo-instruct gpt-4-1106-preview

Zero-Shot Few-Shot Self-ICL Ours Zero-Shot Few-Shot Self-ICL Ours
Boolean Expressions 84.80 89.60 88.40 85.60 67.20 93.20 92.80 94.00
Causal Judgement 42.25 63.64 12.30 57.22 73.80 69.19 69.19 70.27
Date Understanding 59.20 52.20 57.60 55.20 48.40 73.20 74.80 79.20
Disambiguation QA 60.00 63.60 63.20 62.40 71.20 79.20 80.40 65.60
Formal Fallacies 52.00 54.80 50.40 52.00 70.40 79.60 76.00 80.00
Geometric Shapes 34.00 45.60 36.40 32.80 28.40 43.60 36.69 49.40
Hyperbaton 82.40 65.60 82.80 80.00 73.60 80.80 88.00 87.20
Logical Deduction (five objects) 42.00 38.00 38.40 42.00 44.80 63.20 70.40 73.60
Logical Deduction (seven objects) 41.60 38.80 34.80 42.40 45.20 60.00 67.20 64.40
Logical Deduction (three objects) 56.00 60.40 59.20 55.20 86.80 88.80 94.00 92.40
Movie Recommendation 74.80 78.40 76.00 71.08 80.40 92.00 80.40 92.00
Navigate 42.80 50.80 64.80 53.20 71.60 72.80 75.20 75.20
Penguins in a Table 51.37 52.74 55.48 50.68 74.66 76.03 80.82 80.14
Reasoning about Colored Objects 54.80 57.20 56.40 56.00 86.80 86.00 82.80 84.40
Ruin Names 70.80 72.40 64.80 67.34 58.63 90.80 88.00 89.20
Salient Translation Error Detection 41.60 51.60 51.20 45.20 68.40 67.60 68.40 69.20
Snarks 63.48 58.40 60.67 64.61 84.66 86.52 82.02 90.12
Sports Understanding 62.00 86.40 50.00 81.60 84.80 88.80 85.20 90.40
Temporal Sequences 20.80 38.80 32.80 40.00 97.60 100.00 99.20 100.00
Tracking Shuffled Objects (five objs) 18.00 17.20 16.40 21.20 36.40 33.60 28.23 35.08
Tracking Shuffled Objects (seven objs) 17.60 12.40 12.40 14.40 35.60 28.80 28.05 32.93
Tracking Shuffled Objects (three objs) 32.40 32.40 36.80 33.60 49.20 41.20 33.87 38.21
Web of Lies 15.20 50.00 38.40 52.00 48.00 77.20 52.40 62.80
All Tasks (avg) 48.69 53.21 49.55 52.86 64.07 72.50 70.81 73.47

Table 3: Accuracy (%) on the BBH benchmark of gpt-3.5-turbo-instruct and gpt-4-1106-preview. The selection
strategy of our reported result is DPP, and the deletion strategy is Diverse. The results of Zero-Shot and Self-ICL of
gpt-3.5-turbo-instruct are extracted from Chen et al. (2023). We report the cost in Appendix A.1.

4.5 Results on MMLU348

Table 2 shows the main results of each method349

on MMLU with different models. We have the350

following observations:351

Self-ICL performs poorly on MMLU. The per-352

formance of Self-ICL on MMLU is consistently353

inferior to that of Zero-Shot across various mod-354

els. This suggests that Self-ICL may require355

stronger model generative capabilities, and the356

models we choose may not be sufficient to gen-357

erate high-quality demonstrations. Addressing this358

issue might necessitate the use of larger and more359

powerful models, which could impose certain cost360

concerns on model deployment.361

DAIL achieves State-of-the-Art (SOTA) results.362

DAIL stands out by significantly enhancing the363

model performance over Zero-Shot and can even364

surpass Few-Shot with no external information.365

Furthermore, DAIL is effective across various mod-366

els, indicating that it does not rely on the model’s367

generative capabilities and possesses strong gener-368

alization ability.369

DAIL brings no additional inference time. The370

inference speed of Self-ICL is quite slow due to371

the substantial amount of time required to generate372

demonstrations for each query. DAIL surpasses 373

Self-ICL in inference speed hundreds of times and 374

is comparable to Few-Shot inference. This remark- 375

able efficiency brings a substantial reduction in 376

deployment costs for real-world applications. 377

DAIL is a practical method for real-world ap- 378

plications. In scenarios with limited resources, 379

DAIL presents a feasible solution capable of ac- 380

quiring high-quality demonstrations at a minimal 381

cost. It consistently enhances the capabilities of 382

ICL, making it an effective and efficient approach 383

for real-world applications. 384

4.6 Results on BBH 385

Table 3 shows the main results of each method on 386

the BBH benchmark with different models. We 387

have the following observations: 388

Self-ICL performs well but sometimes harms 389

the model performance. Overall, compared to 390

Zero-Shot, Self-ICL can achieve decent improve- 391

ments. However, in some tasks, it can still cause 392

substantial damage to the performance of the model 393

(Causal Judgement, 42.25% → 12.30%). Even 394

with a powerful model, the demonstrations gener- 395

ated by Self-ICL may be unsatisfactory, leading to 396

a decline in the performance of ICL. The instability 397
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Figure 4: Accuracy (%) on MMLU with different selec-
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Figure 5: Accuracy (%) on MMLU with different dele-
tion strategies.

makes it impossible to play a role in real-world398

applications.399

DAIL Significantly Boosts ICL Performance.400

For gpt-3.5-turbo-instruct, DAIL outperforms Zero-401

Shot by 4.17% and is only 0.35% lower than402

Few-Shot. For gpt-4-1106-preview, DAIL sur-403

passes Zero-Shot by 9.4% and exceeds Few-Shot404

by 0.97%. It demonstrates the impressive capabil-405

ity and generalizability of DAIL.406

5 Analysis407

5.1 Impact of Selection Strategy408

The selection strategy are important for the suc-409

cess of DAIL. We propose four selection strategies410

and we will compare the effects of them on the411

performance of ICL. We conduct experiments em-412

ploying different models and selection strategies on413

the MMLU Benchmark, Figure 4 shows the results414

of our experiments. The results reveal that the DPP415

outperforms other selection strategies, with TopK416

being the closest competitor. This indicates that se-417

mantic similarity plays a crucial role in DAIL. DPP418

can increase the diversity of the demonstrations419

while maintaining the semantic similarity, which420

may be the primary reason for its effectiveness. Al-421

though BM25 can compute the semantic similarity422
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Figure 7: Accuracy (%) on MMLU with different M .

of the demonstrations and the test sample, its ca- 423

pability to represent semantic similarity is weaker 424

than TopK. Consequently, while BM25 generally 425

outperforms Random, it does not match the perfor- 426

mance achieved by TopK and DPP. 427

5.2 Impact of Deletion Strategy 428

We investigate the impact of deletion strategy using 429

different models on the MMLU Benchmark, and 430

the results are presented in Figure 5. Various dele- 431

tion strategies show a minor impact on the model’s 432

performance, with the Diverse deletion strategy 433

slightly outperforming others. Nevertheless, we 434

suggest that in a more dynamic environment, where 435

we need to process various test samples from differ- 436

ent users, the effectiveness of the Diverse deletion 437

strategy may become more apparent. 438

5.3 Impact of α 439

α is a crucial hyper-parameter in DAIL, balancing 440

the Selection and Entropy scores. To explore the 441

impact of α, we conduct experiments using Mis- 442

tral on the MMLU Benchmark, and the results are 443

depicted in Figure 6. In the case of the Random 444

selection strategy, a notable improvement in model 445
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performance is observed as α increases from 0 to446

0.01. Subsequently, as α further increases, perfor-447

mance fluctuates slightly but consistently remains448

higher than the result when α is set to 0. This449

reveals that incorporating the Entropy Score en-450

hances the model’s performance. When consider-451

ing other selection strategies, the model’s perfor-452

mance tends to rise initially and then decline. This453

is because when α is small, the combined effect454

of the Selection Score and the Entropy Score leads455

to a better selection of demonstrations. However,456

when α is too large, the excessive weight of the457

Entropy Score reduces the impact of the Selection458

Score, and make the performance of ICL decrease.459

Thus, choosing a suitable α is crucial, and we find460

that 0.1 is a good value.461

5.4 Impact of M462

The size of the Memory Bank (M ) is a critical463

factor influencing DAIL’s performance. Figure 7464

displays the results of experiments with different465

models and M on the MMLU Benchmark. We can466

conclude from the figure that a too small M can467

harm the performance of DAIL, which may be be-468

cause the limited number of samples in the memory469

bank makes it hard to find sufficient similar and di-470

verse demonstrations. This limitation is alleviated471

as M reaches 500. Below this threshold, DAIL’s472

performance improves with the increase of M , and473

above this threshold, the performance of DAIL sta-474

bilizes at a satisfactory level. Considering that a475

M that is too large will make the selection process476

slower and increase the cost of sample storage, we477

set M to 2,000.478

6 Related Work479

6.1 Understanding ICL480

In recent years, much research has delved into scal-481

ing up parameters and training data for LLMs, un-482

covering emergent capacities such as instruction-483

following, In-context Learning (ICL), and chain-484

of-thought. In the realm of ICL, researchers focus485

on optimal demonstration selection, boosting ICL486

capabilities, and understanding underlying mech-487

anisms. As highlighted by Zhao et al. (2021b),488

the instability of ICL is a critical problem, where489

factors like prompt format, demonstration exam-490

ples, and example order significantly impact per-491

formance. Despite being a challenging problem,492

there have been many efforts to address optimal493

sample selection using heuristic (Liu et al., 2022a;494

Su et al., 2022) and model-based methods (Lu et al., 495

2022b; Wu et al., 2023; Levy et al., 2023). From 496

another perspective, many researchers are consider- 497

ing enhancing the capabilities of ICL. For example, 498

Min et al. (2022c) enhance the performance of ICL 499

by reducing its distance from pre-training tasks, 500

and Zhao et al. (2021a) eliminate the biases of 501

some specific labels introduced by demonstrations 502

in ICL, thereby making the distribution of label 503

logits closer to the actual situation. 504

6.2 Zero-shot ICL 505

Despite the success of ICL, many studies have high- 506

lighted that the model’s performance is sensitive to 507

the choice of demonstrations. Although researchers 508

have delved into the optimization of prompts and 509

demonstrations (Min et al., 2022d,b; Zhao et al., 510

2021a; Chen et al., 2022; Min et al., 2022a), the re- 511

liance on a substantial amount of annotated data for 512

demonstrations in ICL introduces additional data 513

collection costs. Consequently, there is a growing 514

interest in exploring the generative capabilities of 515

LLMs as a method to mitigate the dependency on 516

external information. Addressing the challenge of 517

few-shot Chain-of-Thought (CoT) without human 518

annotations, Zhang et al. (2022c) leverage zero- 519

shot CoT for demonstration construction. However, 520

their approach still depends on an existing train- 521

ing set as input to zero-shot CoT. Lyu et al. (2023) 522

explore pseudo-input generation from a raw text 523

corpus but rely on external sources to construct 524

pseudo-inputs. Similarly, Kim et al. (2022) investi- 525

gates the generation of pseudo-inputs by the LLM 526

itself but requires access to the label set and condi- 527

tioning the language model on a label provided in 528

the prompt. Chen et al. (2023) propose a method 529

that does not require any external information but 530

still has the problem of relying on model generation 531

capabilities and slow inference speed. 532

7 Conclusion 533

In this paper, we analyze some previous zero-shot 534

ICL methods and point out their shortcomings in 535

terms of stability and inference time. To address 536

these challenges, we propose DAIL, a simple yet 537

effective zero-shot ICL method. Our experiments 538

demonstrate that DAIL can significantly enhance 539

the performance of ICL without any external in- 540

formation and bring no inference latency, which 541

indicates that DAIL has substantial potential in 542

real-world applications. 543
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Limitations544

While DAIL has demonstrated superior accuracy545

and inference speed compared to all baselines, it is546

important to acknowledge its limitations:547

• Obtaining the Entropy Score in DAIL requires548

accessing logits, which can be challenging when549

using APIs for inference. This introduces deploy-550

ment challenges for DAIL in real-world applica-551

tions.552

• Our validation of DAIL’s performance has pri-553

marily focused on MMLU and BBH, both of554

which involve multiple-choice tasks. Its effec-555

tiveness in open-domain text generation tasks556

has yet to be confirmed.557

• Storing previously inferred samples poses poten-558

tial privacy concerns and increases the risk of559

privacy breaches. In scenarios prioritizing data560

security, DAIL may not be the most suitable so-561

lution.562
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A Appendix787

A.1 Details of Experimental Cost788

Methods Zero-Shot Few-Shot Self-ICL Ours
gpt-3.5-turbo-instruct

Input Tokens 763K 2,499K 4,303K 2,765K
Output Tokens 15K 15K 1,613K 15K
Cost 1.15 3.75 9.68 4.14

gpt-4-1106-preview
Input Tokens 940K 2,352K 4,992K 2,577K
Output Tokens 15K 15K 1,491K 15K
Cost 9.85 23.97 94.65 26.22

Table 4: The number of consumed tokens and the
cost (in US dollars) of experiments, the results of Self-
ICL and Zero-Shot under gpt-3.5-turbo-instruct are esti-
mated based on the cost reported in Chen et al. (2023).

A.2 Prompt789

We present the prompt for the MMLU benchmark790

in Table 5.

Demonstration:
Question: A person wants to start saving money
so that they can afford a nice vacation at the
end of the year. After looking over their budget
and expenses, they decide the best way
to save money is to
A. make more phone calls
B. quit eating lunch out
C. buy less with monopoly money
D. have lunch with friends
Answer: B
Test sample:
Question: The complete resynthesis of phospho-
creatine after very high intensity exercise
normally takes:
A. about 10 seconds.
B. about 30 seconds.
C. about 1 minute.
D. about 4 minutes.
Answer:

Table 5: Prompt for MMLU.

791

A.3 Detailed results792

We provide detailed results for the MMLU bench-793

mark in Table 6.794
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Subsets LLaMA-2-7B Mistral-7B Openchat-7B
ZS FS Self DAIL ZS FS Self DAIL ZS FS Self DAIL

abstract algebra 25.25 28.28 24.24 28.28 28.28 28.28 28.28 27.27 31.31 33.33 31.31 30.30
anatomy 43.28 43.28 41.04 44.03 57.46 59.70 59.70 61.19 61.19 64.18 55.97 63.43
astronomy 45.03 44.37 42.38 45.03 56.29 61.59 56.29 62.91 65.56 69.54 63.58 68.87
business ethics 49.49 50.51 42.42 44.44 52.53 53.54 54.55 57.58 62.63 59.60 61.62 61.62
clinical knowledge 53.03 50.76 51.89 54.17 68.18 71.59 66.67 70.45 70.08 68.56 72.73 71.59
college biology 48.25 52.45 46.85 52.45 71.33 72.73 69.93 72.73 74.13 76.22 72.03 77.62
college chemistry 28.28 32.32 28.28 33.33 41.41 47.47 43.43 46.46 39.39 52.53 47.47 47.47
college computer science 37.37 44.44 35.35 38.38 47.47 40.40 48.48 47.47 45.45 47.47 43.43 46.46
college mathematics 30.30 31.31 28.28 31.31 38.38 40.40 39.39 41.41 30.30 30.30 32.32 27.27
college medicine 40.70 40.12 44.77 41.28 58.72 63.37 58.72 61.63 62.79 65.70 63.37 64.53
college physics 21.78 26.73 21.78 26.73 44.55 35.64 43.56 33.66 35.64 41.58 35.64 39.60
computer security 48.48 53.54 60.61 59.60 71.72 73.74 70.71 78.79 70.71 74.75 66.67 74.75
conceptual physics 35.04 39.32 41.88 38.89 46.58 54.27 47.01 54.70 56.41 55.13 57.26 55.98
econometrics 30.09 34.51 28.32 32.74 38.05 46.90 36.28 46.02 46.90 46.90 46.02 53.98
electrical engineering 40.28 42.36 43.75 45.83 52.78 55.56 54.17 56.25 50.69 50.69 52.08 52.08
elementary mathematics 26.79 28.65 27.59 26.53 36.60 36.34 36.34 36.87 42.97 41.11 42.18 44.03
formal logic 24.00 24.80 21.60 25.60 38.40 33.60 40.80 38.40 39.20 43.20 41.60 44.00
global facts 35.35 39.39 41.41 40.40 33.33 37.37 34.34 32.32 27.27 30.30 31.31 31.31
high school biology 50.16 54.69 50.49 53.07 69.26 76.38 68.61 77.02 75.40 81.55 76.05 79.29
high school chemistry 35.15 35.64 33.17 33.17 45.54 46.53 43.07 49.50 44.55 46.04 45.54 49.01
high school computer science 39.39 36.36 36.36 45.45 64.65 61.62 62.63 63.64 66.67 70.71 62.63 69.70
high school european history 57.32 55.49 54.88 54.88 70.73 73.17 71.34 75.00 79.88 78.05 78.05 80.49
high school geography 60.41 60.91 61.42 64.47 73.10 78.68 73.60 83.25 75.63 79.70 76.14 82.74
high school government and politics 65.62 65.10 61.46 60.94 83.33 88.54 82.29 88.02 87.50 89.06 84.38 89.06
high school macroeconomics 40.87 41.65 40.87 44.47 55.53 64.01 56.30 67.61 62.72 62.98 62.21 66.32
high school mathematics 25.65 22.68 28.62 25.65 30.48 28.62 30.48 28.62 30.48 28.25 30.86 28.25
high school microeconomics 43.46 42.62 37.97 44.30 60.34 67.09 59.92 70.04 67.51 67.51 63.71 69.62
high school physics 26.67 26.00 23.33 28.00 37.33 37.33 38.67 41.33 38.67 39.33 36.00 40.67
high school psychology 60.29 65.07 59.56 65.07 75.92 80.51 76.10 83.27 83.27 83.82 80.33 83.27
high school statistics 26.98 31.63 27.44 30.23 42.33 56.28 44.19 53.49 46.98 48.37 43.72 49.77
high school us history 59.11 61.58 55.67 65.52 78.33 77.34 75.37 80.30 76.85 81.77 78.33 81.77
high school world history 59.75 60.59 61.44 63.98 75.00 75.42 69.92 77.97 81.78 80.08 80.51 80.51
human aging 50.45 54.50 55.86 54.50 71.17 70.27 70.27 70.72 66.22 68.92 68.02 71.17
human sexuality 57.69 53.08 49.23 51.54 71.54 75.38 70.00 77.69 76.15 77.69 76.15 78.46
international law 55.00 61.67 55.83 61.67 69.17 79.17 71.67 79.17 78.33 80.00 76.67 79.17
jurisprudence 54.21 54.21 51.40 57.94 69.16 72.90 67.29 74.77 75.70 79.44 71.96 75.70
logical fallacies 53.70 54.32 52.47 48.77 71.60 74.07 70.99 71.60 72.84 74.07 72.22 75.93
machine learning 34.23 31.53 27.03 33.33 44.14 38.74 40.54 52.25 49.55 45.05 48.65 44.14
management 61.76 62.75 63.73 64.71 66.67 77.45 66.67 75.49 79.41 84.31 77.45 85.29
marketing 69.96 71.67 66.52 75.11 84.55 87.55 85.41 87.12 87.12 88.84 84.55 87.55
medical genetics 45.45 51.52 52.53 47.47 64.65 72.73 65.66 65.66 65.66 76.77 65.66 73.74
miscellaneous 64.71 62.02 63.43 65.35 76.21 80.43 75.83 81.71 81.07 81.33 80.05 80.95
moral disputes 46.38 51.59 46.96 55.94 66.38 68.41 66.38 71.59 71.30 71.30 71.88 74.78
moral scenarios 24.16 21.36 24.83 24.50 24.38 37.47 24.83 24.38 36.69 47.20 43.18 46.87
nutrition 51.80 54.10 48.52 51.80 69.51 73.77 59.34 74.43 70.49 73.77 70.16 74.75
philosophy 50.00 54.19 54.84 56.45 64.84 70.97 63.87 71.94 65.81 72.26 67.74 72.26
prehistory 55.42 54.18 54.49 54.49 68.73 72.45 69.35 69.97 70.90 74.61 71.21 74.92
professional accounting 35.94 37.01 34.52 35.59 47.69 46.26 46.62 47.69 44.48 45.91 41.28 49.82
professional law 35.68 34.77 35.75 34.96 43.18 43.31 43.38 45.08 45.92 47.95 46.05 48.14
professional medicine 37.27 36.53 34.32 34.69 62.36 64.21 60.89 61.25 68.63 68.27 65.68 69.37
professional psychology 43.70 44.68 42.06 47.30 60.56 65.96 61.21 68.74 63.18 63.67 63.18 67.92
public relations 51.38 49.54 47.71 55.96 57.80 64.22 61.47 67.89 62.39 59.63 61.47 62.39
security studies 45.08 54.92 38.93 43.85 62.70 65.98 63.93 71.72 68.44 71.31 68.44 71.72
sociology 66.00 62.00 63.50 65.00 82.00 83.00 82.00 82.50 80.50 85.00 83.00 83.50
us foreign policy 68.69 74.75 68.69 73.74 82.83 85.86 82.83 84.85 85.86 88.89 83.84 86.87
virology 48.48 42.42 44.24 46.67 49.09 53.33 47.27 50.30 48.48 52.12 47.27 49.70
world religions 65.29 68.24 61.76 68.24 78.24 80.59 78.82 85.88 82.35 84.12 81.18 84.12

Average 45.37 46.75 44.64 47.33 58.83 61.90 58.56 62.80 61.90 64.05 61.44 64.47

Table 6: Detailed Results (Accuracy%) on MMLU. ZS: Zero-Shot, FS: Few-Shot, Self: Self-ICL.
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