
D(R,O) Grasp: A Unified Representation of Robot
and Object Interaction for Cross-Embodiment

Dexterous Grasping

Zhenyu Wei1,2∗, Zhixuan Xu1∗, Jingxiang Guo1, Yiwen Hou1,
Chongkai Gao1, Zhehao Cai1, Jiayu Luo1, Lin Shao1

1 National University of Singapore, 2 Shanghai Jiao Tong University
Zhenyu Wei@sjtu.edu.cn, linshao@nus.edu.sg

Abstract: Dexterous grasping is a fundamental yet challenging skill in robotic
manipulation, requiring precise interaction between robotic hands and objects. In
this paper, we presentD(R,O) Grasp, a novel framework that models the interac-
tion between the robotic hand in its grasping pose and the object, enabling broad
generalization across various robot hands and object geometries. Our model takes
the robot hand’s description and object point cloud as inputs and efficiently pre-
dicts kinematically valid and stable grasps, demonstrating strong adaptability to
diverse robot embodiments and object geometries. Extensive experiments con-
ducted in both simulated and real-world environments validate the effectiveness
of our approach, with significant improvements in success rate, grasp diversity,
and inference speed across multiple robotic hands. Our method achieves an av-
erage success rate of 87.53% in simulation in less than one second, tested across
three different dexterous robotic hands. In real-world experiments using the Leap-
Hand, the method also demonstrates an average success rate of 89%. D(R,O)
Grasp provides a robust solution for dexterous grasping in complex and varied en-
vironments. The code, appendix, and videos are available on our project website
at https://nus-lins-lab.github.io/drograspweb/.

Keywords: Dexterous Grasping, Robotic Manipulation

1 Introduction

Figure 1: We propose our model
that utilizes configuration-invariant pre-
training, predicts D(R,O) represen-
tation, and obtains grasps for cross-
embodiment from point cloud input.

Dexterous grasping is crucial in robotics as the first step in
executing complex manipulation tasks. However, quickly
obtaining a high-quality and diverse set of grasps re-
mains challenging for dexterous robotic hands due to their
high degrees of freedom and the complexities involved in
achieving stable, precise grasps. Researchers have devel-
oped several optimization-based methods to address this
challenge [1, 2, 3, 4, 5]. Some of these methods, however,
often focus on fingertip point contact, relying on com-
plete object shape, and require significant computational
time to optimize. As a result, data-driven grasp genera-
tion methods have gained attention. These methods aim
to solve the grasping problem using learning-based tech-
niques. We can broadly categorize them into two types:
those that utilize robot-centric representations, such as

Workshop on Morphology-Aware Policy and Design Learning (MAPoDeL) at CoRL 2024

https://nus-lins-lab.github.io/drograspweb/

Grasp
Representation Method Type Cross

Embodiment
Inference

Speed
Sample

Efficiency
Partial Object
Point Cloud

Full-hand
Contact

(not only fingertips)

Optional Grasp
Preference Interface

DFC [2] Joint Values Robot-centric ✓ ✗✗ - ✗ ✓ ✗
UniDexGrasp++ [8] Joint Values Robot-centric ✗ ✓✓ ✗ ✓ ✓ ✗

UniGrasp [9] Contact Point Object-centric ✓ ✗ ✓ ✗ ✗ ✗
GeoMatch [10] Contact Point Object-centric ✓ ✗ ✓ ✗ ✓ ✗

GenDexGrasp [12] Contact Map Object-centric ✓ ✗ ✓ ✗ ✓ ✗
ManiFM [13] Contact Map Object-centric ✓ ✗ ✓ ✗ ✗ Contact Region

DRO-Grasp (Ours) D(R,O) Interaction-centric ✓ ✓ ✓ ✓ ✓ Palm Orientation

Table 1: Dexterous grasp method comparison.

wrist poses and joint values [6, 7, 8], and those that rely on object-centric representations, such
as contact points [9, 10, 11] or contact maps [12, 13, 14, 15].

Robot-centric representations (e.g., joint values), as used in methods like UniDexGrasp++ [8], di-
rectly map observation to control commands for fast inference but suffer from low sample efficiency
and poor generalization across different robot embodiments. The learned mappings are specific to
the training data and do not quickly adapt to new robot designs or geometries. Object-centric rep-
resentations (e.g., key points, contact points, affordances) effectively capture the geometry and con-
tacts of objects, allowing for generalization across different shapes and robots, as demonstrated by
methods like UniGrasp [9] and GenDexGrasp [12]. However, these methods are often less efficient
as they typically require an additional optimization step—such as solving fingertip inverse kine-
matics (IK) or fitting the predicted contact maps under penetration-free and joint limit constraints
to translate the object-centric representation into actionable robot commands. This optimization
process is time-consuming due to its complexity and nonconvexity [16, 17, 18].

To overcome the limitations of both paradigms, we propose D(R,O), a unified representation that
captures the relationship between the robotic hand’s grasp shape and the object. D(R,O) encap-
sulates both the articulated structure of the robot hand and the object’s geometry, enabling direct
inference of kinematically valid and stable grasps that generalize across various shapes and robot
embodiments.

Given the point clouds of both an open robotic hand and the object, our network architecture predicts
the D(R,O) representation. This matrix encodes the relative distances between the point clouds of
the object and the robotic hand in the desired grasping pose[19, 20]. Using this representation, we
apply a multilateration method [21] to estimate the robot’s point cloud at the predicted pose, allowing
us to compute the 6D pose of each hand link in the world frame and ultimately determine the joint
configurations. To encode robotic hands, we propose a configuration-invariant pretraining method
that learns the inherent alignment between various hand configurations, promoting grasp generation
performance and cross-embodiment generalization. We validate the effectiveness of our approach
through extensive experiments in both simulation and real-world settings. Our model achieves an
average success rate of 87.53% in simulation across three dexterous robotic hands and in real-robot
experiments, demonstrating its robustness and versatility.

In conclusion, our primary contributions are as follows:

1. We introduce a novel representation, D(R,O) for dexterous grasping tasks. This interaction-
centric formulation facilitates robust generalization across diverse robotic hands and objects.

2. We propose a configuration-invariant pretraining approach with contrastive learning to align
features across different hand configurations, enabling effective grasp generation and cross-
embodiment generalization.

3. We perform extensive experiments in both simulation and real-world settings, validating the
efficacy of our proposed model in grasping novel objects with multiple robotic hands.

2 Method

Given the object point cloud and the robot hand URDF file, our goal is to generate dexterous and
diverse grasping poses that generalize across various objects and robot hands. Fig. 2 provides an
overview of our proposed method.

2

Figure 2: Overview of D(R,O) framework: We first pretrain the robot encoder with the proposed
configuration-invariant pretraining method. Then, we predict the D(R,O) representation between
the robot and object point cloud. Finally, we extract joint values from the D(R,O) representation.

Method Overview. First, we design an encoder network to learn representations from the point
clouds of both the robot and the object. The robot encoder network is pretrained using our proposed
configuration-invariant pretraining method (Sec. 2.1), which facilitates the learning of efficient robot
embedding. Next, a CVAE model is used to predict the D(R,O) representation, a point-to-point
distance matrix between the robotic hand at its grasp pose and the object, to implicitly present the
grasp pose (Sec. 2.2). From the D(R,O) representation, we derive the 6D pose for each link,
which serves as the optimization target for determining the joint values. This optimization process
is notably straightforward and efficient (Sec. 2.3).

2.1 Configuration-Invariant Pretraining with Contrastive Learning

Figure 3: Motivation for
configuration-invariant
pretraining.

Learning dexterous grasping involves understanding the spatial relation-
ships between the robot hand and the object. The objective is to match
the robot hand in a specific configuration with the object. However, this
matching process is challenging because the local geometric features of
a point in the open-hand configuration may not align with those in the
grasp configuration due to huge variations during articulation.

To address this, we break the problem into two simpler components: (1)
self-articulation matching, which implicitly determines the joint values
for the grasp configuration, and (2) wrist pose estimation. As shown in
Fig. 3, leveraging configuration-invariant pretraining, we train the neu-
ral network to understand the self-articulation alignment across differ-
ent configurations, thereby facilitating the matching process between the
robot hand and the object.

Specifically, for each robot hand, we begin by uniformly sampling points
on the surface of each link at the canonical pose, storing the resulting
point clouds denoted as {Pℓi}

Nℓ

i=1, where Nℓ is the number of links. We

define a point cloud forward kinematics model, FK
(
q, {Pℓi}

Nℓ

i=1

)
to map joint configurations to

point clouds at new poses. For example, given a close-hand qA and an open-hand configuration qB,
where the wrist pose is the same or nearly identical, we obtain two point clouds PA,PB ∈ RNR×3,
representing these two joint configurations. Here, NR is the number of points in the robot point
cloud, set to 512 in practice.

These point clouds are passed through the encoder network (as described in Sec. 2.2) to produce
point-wise features ϕA,ϕB ∈ RNR×D, where D = 512 is the feature dimension. The model
applies point-level contrastive learning, aligning embeddings of positive pairs—points with the same
index in both clouds—while separating negative pairs, weighted by the Euclidean distance in PB.
This process ensures that the features corresponding to the same positions on the robot hand remain

3

consistent across different joint configurations. We define the resulting contrastive loss as:

Lp = − 1

Nℓ

∑
i

log

 exp
(〈
ϕA

i ,ϕ
B
i

〉
/τ
)

∑
j ωij exp

(〈
ϕA

i ,ϕ
B
j

〉
/τ
)
 , (1)

ωij =

tanh(λ∥pB

i −pB
j ∥2)

max(tanh(λ∥pB
i −pB

j ∥2))
, if i ̸= j

1, if i = j
, (2)

where ⟨·, ·⟩ denotes the cosine similarity between two vectors, pBi represents the i-th point position
in PB. For the hyperparameters, we set τ = 0.1 and λ = 10 in practice. Note that the learned
features are finger configuration-invariant but dependent on the wrist pose.

2.2 D(R,O) Prediction

Denote an open-hand configuration as qinit, of which the wrist pose can be either user-specified
or randomly generated. Let the robot point cloud under qinit be PR = FK

(
qinit, {Pℓi}

Nℓ

i=1

)
∈

RNR×3, and the object point cloud be PO ∈ RNO×3, where NO represents the number of points in
the object point cloud, also set to 512 in practice. The objective of our neural network is to predict
the point-to-point distance matrix D(R,O) ∈ RNR×NO .

Point Cloud Feature Extraction We begin by extracting point cloud embeddings using two en-
coders, fθR(PR) and fθO (P

O), which share the same architecture. Specifically, we use a modified
DGCNN [22] to better capture local structures and integrate global information (see Appendix). The
robot encoder is initialized with pretrained parameters, using the method described in Sec. 2.1, and
remains frozen during training. These encoders extract point-wise features, ϕR and ϕO from the
robot and object point clouds:

ϕR = fθR(PR) ∈ RNR×D, ϕO = fθO (P
O) ∈ RNO×D. (3)

To establish correspondences between the robot and object features, we apply two multi-head cross-
attention transformers [23] (see Appendix), gθR(ϕR,ϕO) and gθO (ϕ

O,ϕR). These transformers
integrate the relationships between the two feature sets, embedding correspondence information.
This process maps the robot and object features to two sets of correlated features, ψR and ψO:

ψR = gθR(ϕR,ϕO) + ϕR ∈ RNR×D, ψO = gθO (ϕ
O,ϕR) + ϕO ∈ RNO×D. (4)

CVAE-based D(R,O) Prediction To achieve cross-embodiment grasp diversity, we employ a
Conditional Variational Autoencoder (CVAE) [24] network to capture variations across numerous
combinations of hand, object, and grasp configurations. The CVAE encoder fθG takes the robot
and object point clouds under the grasp pose PG ∈ R(NR+NO)×3, along with the learned features
(ψR,ψO) , resulting in an input shape of (NR + NO) × (3 +D). The encoder outputs the latent
variable z ∈ Rd, set as d = 64 in practice. We concatenate z with extracted features ψR and ψO,

converting the feature to ψ̂
R
i , ψ̂

O
j ∈ RNO×(D+d).

The same kernel function K as Eisner et al. [25] is adopted, which possesses the properties of non-

negativity and symmetry, to predict pair-wise distance rij = K(ψ̂
R
i , ψ̂

O
j) ∈ R+ under the grasp

pose:

K(ψ̂
R
i , ψ̂

O
j) = σ

(
1

2
Nθ

(
ψ̂

R
i , ψ̂

O
j

)
+

1

2
Nθ

(
ψ̂

O
j , ψ̂

R
i

))
, (5)

where σ denotes the softplus function, andNθ is an MLP, which takes in the feature of RNO×(2D+2d)

and outputs a positive number (see Appendix). By calculating on all (ψ̂
R
i , ψ̂

O
j) pairs, we obtain the

complete D(R,O) representation:

D(R,O) =

K(ψ̂

R
1 , ψ̂

O
1) · · · K(ψ̂

R
1 , ψ̂

O
NO

)
...

. . .
...

K(ψ̂
R
NR

, ψ̂
O
1) · · · K(ψ̂

R
NR

, ψ̂
O
NO

)

 . (6)

4

2.3 Grasp Configuration Generation from D(R,O)

Given the predicted D(R,O), we discuss how to generate the grasp joint values to grasp the object.
We first calculate the robot grasp point cloud, then estimate each link’s 6D pose based on the joint
clouds. The system calculates the joint values by matching each link’s 6D pose.

Robotic Grasp Pose Point Cloud Generation For a given point pRi , the i-th row of D(R,O)
denotes the distances from this robot grasp point to all points in the object point cloud. Given the
object point cloud, the multilateration method [21] positions the robot point cloud. This positioning
technique determines the location of a point p′Ri by solving the least-squares optimization problem
based on distances from multiple reference points:

p′Ri = argmin
pR
i

NO∑
j=1

(
∥pRi − pOj ∥22 −D(R,O)

2
ij

)2
. (7)

As shown in Zhou [26], this problem has a closed-form solution, and by using the implementa-
tion from Eisner et al. [25], we can directly compute p′Ri . Repeating this process for each row of
D(R,O) yields the complete predicted robot point cloud PP in the grasp pose. In 3D space, we
can determine a point’s position by measuring its relative distances to just three other points. Our
D(R,O) representation provides NO(= 512) relative distances, enhancing robustness to prediction
errors.

6D Pose Estimation of Links Directly solving inverse kinematics and getting the joint values from
a point cloud is not a trivial task. We first compute the 6D pose of each link in the world frame.
As described in Sec. 2.1, we store the point cloud for each link, {Pℓi}

Nℓ

i=1. Given the predicted
grasp point cloud

{
PP

ℓi

}Nℓ

i=1
, we calculate the 6D pose of each link using rigid body registration

techniques:
T ∗ = (x∗

i ,R
∗
i) = argmin

(xi,Ri)

∥PP
ℓi −Pℓi(xi,Ri)∥2, (8)

where xi and Ri represent the translation and rotation of the i-th link, respectively.

Joint Configuration Optimization After predicting the 6D pose for each link, our objective is to
optimize the joint values to align the translation of each link with the predicted result. Starting from
an initial value qinit, we iteratively solve the following optimization problem using CVXPY [27]:

min
δq

(
Nℓ∑
i=1

∥∥∥∥xi +
∂xi(q)

∂q
δq − x∗

i

∥∥∥∥
2

)
s.t. q + δq ∈ [qmin, qmax], |δq| ≤ εq. (9)

In each iteration, the system computes the delta joint values δq by minimizing the objective func-
tion and updates the joint values as q ← q + δq. Here, xi represents the current link translation,
[qmin, qmax] denotes the joint limits, and εq = 0.5 is the maximum allowable step size. The opti-
mization process can be efficiently parallelized, typically achieving convergence within one second,
even for a 6+22 DoF ShadowHand.

2.4 Loss Function

The training objectives of the whole network include four parts, including the prediction ofD(R,O)
and T , the suppression of penetration, and the KL divergence of the CVAE latent variable:

L = λDLL1

(
D(R,O),D(R,O)GT

)
+ λT

1

Nℓ

Nℓ∑
i=1

Lℓi

+ λP
∣∣LP(P

T ,PO)
∣∣+ λKLDKL

(
fθG (P

G ,ψR,ψO) ∥ N (0, I)
)
,

(10)

where λD, λT , λP , λKL are hyperparameters for loss weights.The superscript ‘GT’ refers to the
ground truth annotations. N (0, I) is a standard Guassian distribution, and PT is the robot point

5

cloud under the T ∗ described in 2.3. LP computes the sum of the negative values of the signed
distance function (SDF) of PT to PO to penalize any penetration between the robot hand and the
object, and Lℓ computes the difference between two 6D poses:

Lℓi = ∥x∗
i − xGT

i ∥2 + arccos

(
tr(R∗T

i RGT
i)− 1

2

)
. (11)

Notably, the computation from D(R,O) representation to the 6D pose T ∗ shown in Eqn. 8 is en-
tirely matrix-based, ensuring differentiability for loss backpropagation and computational efficiency.

3 Experiments

In this section, we perform a series of experiments aimed at addressing the following questions
(Q1-Q6):

Q1: How successful are our generated grasps?
Q2: Does our unified model train on multi-embodiment outperform models trained on single em-
bodiments?
Q3: How diverse are our generated grasps?
Q4: How well does our pretraining learn configuration-invariant representations, and can this be
transferred across different embodiments?
Q5: How robust is our approach with partial object point cloud input?
Q6: How does our method perform in real-world settings?

3.1 Evaluation Metric

Success Rate: We evaluate the success of grasping by determining whether the force closure con-
dition is satisfied. To implement this evaluation criterion, we used the Isaac Gym simulator [28]. A
simple PD controller is applied to execute the predicted grasps in the simulation. Certain forces are
applied sequentially along six orthogonal directions, following the approach in Li et al. [12]. We
apply each force for a duration of 1 second. We consider the grasp successful if the object’s resultant
displacement stays below 2 cm after applying the six directional forces.

Diversity: Grasp diversity is quantified by calculating the standard deviation of the joint values
(including 6 floating wrist DoF) across all successful grasps.

Efficiency: The computational time required to achieve a grasp is measured, encompassing both
network inference and the subsequent optimization steps.

3.2 Dataset

We utilized a subset of the MultiDex dataset [12] (See Appendix for the filtering process). After
filtering, 24,764 valid grasps remained. We adopt three robots from the dataset: Barrett (3-finger),
Allegro (4-finger), and ShadowHand (5-finger). Each grasp defines its associated object, robot, and
grasp configurations. We retain the same training and test dataset splits as in the MultiDex dataset.

3.3 Overall Performance

Baselines To answer Q1, we present a detailed comparison of D(R,O) against DFC [2], GenDex-
Grasp [12], and ManiFM [13], as shown in Tab. 2. This comparison includes diverse methods to

Figure 4: Visualization of all methods.
6

Method Success Rate (%) ↑ Diversity (rad.) ↑ Efficiency (sec.) ↓
Barrett Allegro ShadowHand Avg. Barrett Allegro ShadowHand Barrett Allegro ShadowHand

DFC [2] 86.30 76.21 58.80 73.77 0.532 0.454 0.435 >1800 >1800 >1800
GenDexGrasp [12] 67.00 51.00 54.20 57.40 0.488 0.389 0.318 14.67 25.10 19.34

ManiFM [13] - 42.60 - 42.60 - 0.288 - - 9.07 -
DRO-Grasp (w/o pretrain) 87.20 82.70 46.70 72.20 0.532 0.448 0.429 0.49 0.47 0.98

DRO-Grasp (Ours) 87.30 92.30 83.00 87.53 0.513 0.397 0.441 0.49 0.47 0.98

Table 2: Overall comparison with baselines.

Method Success Rate (%) ↑ Diversity (rad) ↑
Barrett Allegro ShadowHand Barrett Allegro ShadowHand

Single 84.80 88.70 75.80 0.505 0.435 0.425
Multi 87.30 92.30 83.00 0.513 0.397 0.441
Partial 84.70 87.60 81.80 0.511 0.401 0.412

Table 3: Comparison under different conditions. “Single” trains on one hand, “Multi” trains on all
hands, and “Partial” trains and tests on partial point clouds.

address the challenge of cross-embodiment grasping from various perspectives. They were evalu-
ated on 10 previously unseen test objects using the Barrett, Allegro, and ShadowHand robotic hands.
DFC is an optimization-based approach that searches for feasible grasp configurations through it-
erative optimization. GenDexGrasp predicts contact heatmaps and uses optimization to determine
grasp poses. ManiFM supports cross-embodiment grasping but employs a point-contact approach,
which was not suitable for training on our dataset that emphasizes surface-contact methods. As a
result, we can only evaluate its pretrained model of Allegro Hand for ManiFM.

Our experiments demonstrate that D(R,O) significantly outperformed all baselines regarding suc-
cess rate across the robots by a large margin, highlighting the effectiveness of our approach. For
successful grasps of our method, the average displacement remains under 2 mm, with an average ro-
tation below 1◦, highlighting the firmness of our generated grasps. Fig. 4 visualizes grasps generated
by our method alongside typical failure grasp poses from baselines. DFC often results in unnatural
poses. GenDexGrasp struggles with objects of complex shapes, frequently encountering significant
penetration issues. Although ManiFM produces visually appealing grasps, its point-contact method
lacks stability, lowering its success rate in simulation.

From the first two rows of Tab. 3, we can see a slight improvement in success rates when training
across multiple robots compared to training on a single hand, demonstrating the cross-embodiment
generalizability of our method (Q2).

Our method significantly improves grasp generation speed. While DFC is slow in producing results
and learning-based methods like GenDexGrasp and ManiFM take tens of seconds per grasp due to
their complex optimization processes, our approach can generate a grasp within 1 second. This fast
computation is crucial for dexterous manipulation tasks.

3.4 Diverse Grasp Synthesis

Grasping diversity includes two key aspects: the wrist pose and the finger joint values. Since the
input and grasp rotations in the training data are correspondingly aligned, the model learns to implic-
itly map these rotations. This alignment enables the model, during inference, to generate appropriate
grasps based on the specified input orientation. Fig. 5 illustrates the grasp results for six different
input directions, showing that our model consistently produces feasible grasps, demonstrating the
controllability of our method. Additionally, by sampling the latent variable z ∈ R64 from N (0, I),

Figure 5: Diverse and pose-controllable grasp generation. The arrow refers to the input palm orien-
tation. Arrows and hands of the same color represent corresponding input-output pairs.

7

our model can generate multiple grasps in the same direction, addressing Q3. As shown in Tab. 2,
the diversity of our method is highly competitive.

3.5 Configuration Correspondence Learning

As described in Sec. 2.1, our proposed configuration-invariant pretraining method learns an inherent
alignment across varying robotic hand configurations. To answer Q4, we visualize the learned cor-
respondence in Fig. 6, where each point in the closed-hand pose is colored according to the highest
cosine similarity with its counterpart in the open-hand pose. The excellent color matching within the
same hand demonstrates that the pretrained encoder successfully captures this alignment. Further-
more, strong matching across different hands highlights the transferability of features. As shown
in Tab. 2, removing the pretraining parameters and training the robot encoder directly results in
performance degradation across robotic hands, confirming the effectiveness of the pretrained model.

Figure 6: Visualization of the pretrained point matching.
3.6 Grasping with Partial Object Point Cloud Input

A common challenge in real-world experiments is the noise and incompleteness of point clouds from
depth cameras. Object-centric methods that rely on full object visibility often suffer performance
degradation under such conditions. In contrast, the relative distance feature of D(R,O) allows our
method to infer the robot point cloud even from partial observation. We validated this approach by
conducting experiments, removing 50% of the object point cloud in a contiguous region during both
training and validation. This setup simulates the incomplete data commonly encountered in practice.
As shown in the third row of Tab. 3, even with partial point clouds, our model can successfully
predict feasible grasps (Q5), indicating robustness when faced with incomplete input.

3.7 Real-Robot Experiments

Figure 7: Real-world exper-
iment setting.

We conducted real-world experiments with a uFactory xArm6 robot,
equipped with the LEAP Hand [29] and the overhead Realsense D435
camera, as illustrated in Fig. 7. As shown in Tab. 4, our method
achieved an average success rate of 89% across 10 novel objects,
showcasing its effectiveness in dexterous grasping and its general-
izability to previously unseen objects (Q6). For experiment videos,
please visit our website https://drograsp.github.io/.

Apple Bag Brush Cookie Box Cube Cup Dinosaur Duck Tea Box Toilet Cleaner
9/10 10/10 9/10 10/10 9/10 7/10 9/10 8/10 8/10 10/10

Table 4: Real-world experiment results on unseen objects.

4 Conclusion

This work presents a new method for improving dexterous grasping by introducing the D(R,O)
representation, which captures the essential interaction between robotic hands and objects. Unlike
existing methods that rely heavily on either object or robot-specific representations, our approach
bridges the gap by using a unified framework that generalizes well across different robots and ob-
ject geometries. Additionally, our pretraining approach enhances the model’s capacity to adapt to
different hand configurations, making it suitable for a wide range of robotic systems. Experimen-
tal results confirm that our method delivers notable improvements in success rates, diversity, and
computational efficiency.

8

https://drograsp.github.io/

References
[1] M. A. Roa and R. Suárez. Grasp quality measures: review and performance. Autonomous

robots, 38:65–88, 2015.

[2] T. Liu, Z. Liu, Z. Jiao, Y. Zhu, and S.-C. Zhu. Synthesizing diverse and physically stable grasps
with arbitrary hand structures using differentiable force closure estimator. IEEE Robotics and
Automation Letters, 7(1):470–477, 2021.

[3] S. Chen, J. Bohg, and C. K. Liu. Springgrasp: An optimization pipeline for robust and com-
pliant dexterous pre-grasp synthesis. arXiv preprint arXiv:2404.13532, 2024.

[4] A. Patel and S. Song. GET-Zero: Graph embodiment transformer for zero-shot embodiment
generalization, 2024. URL https://arxiv.org/abs/2407.15002.

[5] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one
minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023.

[6] Y. Xu, W. Wan, J. Zhang, H. Liu, Z. Shan, H. Shen, R. Wang, H. Geng, Y. Weng, J. Chen, et al.
Unidexgrasp: Universal robotic dexterous grasping via learning diverse proposal generation
and goal-conditioned policy. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4737–4746, 2023.

[7] W. Xu, W. Guo, X. Shi, X. Sheng, and X. Zhu. Fast force-closure grasp synthesis with learning-
based sampling. IEEE Robotics and Automation Letters, 8(7):4275–4282, 2023.

[8] W. Wan, H. Geng, Y. Liu, Z. Shan, Y. Yang, L. Yi, and H. Wang. Unidexgrasp++: Improving
dexterous grasping policy learning via geometry-aware curriculum and iterative generalist-
specialist learning. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3891–3902, 2023.

[9] L. Shao, F. Ferreira, M. Jorda, V. Nambiar, J. Luo, E. Solowjow, J. A. Ojea, O. Khatib, and
J. Bohg. Unigrasp: Learning a unified model to grasp with multifingered robotic hands. IEEE
Robotics and Automation Letters, 5(2):2286–2293, 2020.

[10] M. Attarian, M. A. Asif, J. Liu, R. Hari, A. Garg, I. Gilitschenski, and J. Tompson. Geometry
matching for multi-embodiment grasping. In Conference on Robot Learning, pages 1242–
1256. PMLR, 2023.

[11] S. Li, Z. Li, K. Han, X. Li, Y. Xiong, and Z. Xie. An end-to-end spatial grasp prediction model
for humanoid multi-fingered hand using deep network. In 2021 6th International Conference
on Control, Robotics and Cybernetics (CRC), pages 130–136. IEEE, 2021.

[12] P. Li, T. Liu, Y. Li, Y. Geng, Y. Zhu, Y. Yang, and S. Huang. Gendexgrasp: Generalizable dex-
terous grasping. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 8068–8074. IEEE, 2023.

[13] Z. Xu, C. Gao, Z. Liu, G. Yang, C. Tie, H. Zheng, H. Zhou, W. Peng, D. Wang, T. Chen,
Z. Yu, and L. Shao. Manifoundation model for general-purpose robotic manipulation of contact
synthesis with arbitrary objects and robots, 2024.

[14] D. Morrison, P. Corke, and J. Leitner. Closing the loop for robotic grasping: A real-time,
generative grasp synthesis approach. arXiv preprint arXiv:1804.05172, 2018.

[15] J. Varley, J. Weisz, J. Weiss, and P. Allen. Generating multi-fingered robotic grasps via deep
learning. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS),
pages 4415–4420. IEEE, 2015.

[16] A. Wu, M. Guo, and C. K. Liu. Learning diverse and physically feasible dexterous grasps with
generative model and bilevel optimization. arXiv preprint arXiv:2207.00195, 2022.

9

https://arxiv.org/abs/2407.15002

[17] A. Goyal, V. Blukis, J. Xu, Y. Guo, Y.-W. Chao, and D. Fox. Rvt2: Learning precise manipu-
lation from few demonstrations. RSS, 2024.

[18] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y.-W. Chao, and D. Fox. Rvt: Robotic view transformer
for 3d object manipulation. CoRL, 2023.

[19] Y. Huang, C. Agia, J. Wu, T. Hermans, and J. Bohg. Points2plans: From point clouds to
long-horizon plans with composable relational dynamics. arXiv preprint arXiv:2408.14769,
2024.

[20] W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei. Rekep: Spatio-temporal reasoning of
relational keypoint constraints for robotic manipulation. arXiv preprint arXiv:2409.01652,
2024.

[21] A. Norrdine. An algebraic solution to the multilateration problem. In Proceedings of the
15th international conference on indoor positioning and indoor navigation, Sydney, Australia,
volume 1315, 2012.

[22] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. Dynamic graph
cnn for learning on point clouds. ACM Transactions on Graphics (tog), 38(5):1–12, 2019.

[23] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017.

[24] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. Advances in neural information processing systems, 28, 2015.

[25] B. Eisner, Y. Yang, T. Davchev, M. Vecerik, J. Scholz, and D. Held. Deep se (3)-equivariant
geometric reasoning for precise placement tasks. arXiv preprint arXiv:2404.13478, 2024.

[26] Y. Zhou. An efficient least-squares trilateration algorithm for mobile robot localization. In
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 3474–
3479. IEEE, 2009.

[27] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex opti-
mization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[28] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox. Gpu-accelerated
robotic simulation for distributed reinforcement learning. In Conference on Robot Learning,
pages 270–282. PMLR, 2018.

[29] K. Shaw, A. Agarwal, and D. Pathak. Leap hand: Low-cost, efficient, and anthropomorphic
hand for robot learning. Robotics: Science and Systems (RSS), 2023.

10

	Introduction
	Method
	Configuration-Invariant Pretraining with Contrastive Learning
	D(R, O) Prediction
	Grasp Configuration Generation from D(R, O)
	Loss Function

	Experiments
	Evaluation Metric
	Dataset
	Overall Performance
	Diverse Grasp Synthesis
	Configuration Correspondence Learning
	Grasping with Partial Object Point Cloud Input
	Real-Robot Experiments

	Conclusion

