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ABSTRACT

The emergence of long-context Large Language Models (LLMs) has triggered a
rapid expansion of applications across various domains. However, these mod-
els remain inaccessible for on-device or on-premises deployments due to signif-
icant computational and memory challenges. The quadratic complexity of atten-
tion mechanisms and the substantial memory requirements of KV-caches, hinder
adoption in resource-constrained environments. Current solutions, such as sparse
attention mechanisms and KV-cache compression techniques, often rely on pre-
observed patterns or context-independent, head-specific profiling strategies, which
can compromise model accuracy, especially in long-context processing. This pa-
per introduces Context-Aware adaptive Sparse Attention with Key-Value cache
compression (CASAK-V), an inference-time approach that dynamically gener-
ates and applies head-specific sparse attention patterns. CASAK-V leverages
a meta-learning framework to fine-tune a compact pre-trained vision-language
encoder-decoder transformer for sparse pattern identification from per-layer atten-
tion scores. These patterns include fixed local windows, dynamic column stripes,
block-sparse, and various other learned hybrid configurations. The technique ad-
ditionally implements adaptive chunk-wise KV-cache compression using policies
adapted from these layer-wise sparse configurations. To retain context-awareness,
these configuration are dynamically adjusted during token generation, based on
an attention map reconstruction heuristic. Our evaluations show that CASAK-V
achieves minimal performance degradation on long-context benchmarks (Long-
Bench), while reducing memory usage by 40% and delivering near-linear runtime
complexity compared to full attention and caching. In summary, CASAK-V en-
ables efficient long-context processing in memory-limited environments, extend-
ing the applicability of LLMs and facilitating their deployment in on-premises or
on-device scenarios.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized natural language processing, demonstrating
remarkable performance across a wide range of tasks (Brown et al., 2020; Touvron et al., 2023;
Chowdhery et al., 2022; Zhang et al., 2022). However, the emergence of long-context LLMs has
triggered new challenges, particularly in computational efficiency and memory usage (Beltagy et al.,
2020; Zaheer et al., 2020; Ainslie et al., 2020). The quadratic complexity of attention mechanisms
and the substantial memory requirements of key-value (KV) caches hinder the adoption of these
models in resource-constrained environments, such as on-device or on-premises deployments (Li &
Smith, 2021; Zhou et al., 2022a; Wang et al., 2022).

Existing approaches to address these limitations can be broadly categorized into two groups:
inference-time techniques and training-time methods. Inference-time techniques (Press et al., 2021;
Chen et al., 2023b; Rae et al., 2020) modify the attention mechanism or employ caching strategies
without model retraining, but often struggle with maintaining performance on tasks requiring long-
range dependencies. Training-time methods (Chen et al., 2023a; Sun et al., 2021; Dao et al., 2022)
involve architectural changes or retraining, which are resource-intensive and may not be feasible for
all deployments.
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Current solutions, such as sparse attention mechanisms (Child et al., 2019; Kitaev et al., 2020) and
KV-cache compression techniques (Liu et al., 2023b; Xiao et al., 2023), often rely on pre-observed
patterns or context-independent, head-specific profiling strategies. While these approaches offer
improvements in efficiency, they can compromise model accuracy, especially in processing long
contexts (Tay et al., 2020a; Xiong et al., 2021).

In this paper, we introduce CASAK-V: Context-Aware adaptive Sparse Attention with Key-Value
cache compression, an inference-time approach that dynamically generates and applies head-specific
sparse attention patterns. CASAK-V leverages a meta-learning framework to fine-tune a compact
pre-trained vision-language encoder-decoder transformer for sparse pattern identification from per-
layer attention scores. These patterns include fixed local windows, dynamic column stripes, block-
sparse, and various other learned hybrid configurations (Chen et al., 2021; Qin et al., 2022). Addi-
tionally, CASAK-V implements adaptive chunk-wise KV-cache compression using policies adapted
from these layer-wise sparse configurations (Ge et al., 2023; Zhang et al., 2023).

Our approach combines several key innovations:

• A Mask Generation Model (MGM) adapted from a pre-trained vision transformer (Doso-
vitskiy et al., 2020; Touvron et al., 2021), which dynamically generates attention masks
based on previous attention logits and the input sequence.

• Integration of MGM with a dynamic top-k sparse attention mechanism (Zhao et al., 2019;
Liu et al., 2023a) and adaptive KV-cache compression, reducing computational complexity
while maintaining long-context dependencies.

• Dynamic positional embedding interpolation using neural tangent kernels (NTK) with
frequency-scaled temperature (Peng et al., 2023; Su et al., 2021), allowing effective gener-
alization to longer sequences without retraining.

We conduct extensive experiments across various NLP tasks, including question answering (Joshi
et al., 2017; Kwiatkowski et al., 2019), machine translation (Ott et al., 2018; Edunov et al., 2018),
summarization (Narayan et al., 2018; Zhang et al., 2020), and context retrieval benchmarks (Guu
et al., 2020; Lewis et al., 2020). Our results demonstrate that CASAK-V not only outperforms exist-
ing inference-time techniques but also approaches the performance of methods requiring retraining
or architectural modifications, all while remaining practical for deployment in resource-limited en-
vironments.

2 BACKGROUND AND RELATED WORK

The challenge of extending LLM context windows without incurring prohibitive computational costs
has been a topic of significant interest. We categorize existing approaches into inference-time
methods, training-time methods, sparse attention mechanisms, and cross-modal transfer learning
approaches.

2.1 INFERENCE-TIME METHODS

Inference-time methods modify the attention mechanism during inference without model retraining.
LM-Infinite (Press et al., 2021) employs a Λ-shaped attention mask to simulate an infinite context
window. StreamingLLMs (Chen et al., 2023b) utilize a sliding window approach for incremental
processing of long sequences. Compressive Transformers (Rae et al., 2020) use a memory compres-
sion mechanism to summarize past information. While computationally efficient, these methods
often struggle with long-range dependencies (Tay et al., 2020b; Xiong et al., 2021).

Other approaches include caching mechanisms and recurrent memory architectures (Dai et al., 2019;
Wu et al., 2022; Lample et al., 2019), which store and reuse past hidden states but may not scale
well with very long sequences. Recent work on efficient KV-cache management (Liu et al., 2023b;
Xiao et al., 2023) has shown promise in reducing memory usage, but these methods may not fully
capture the dynamic nature of attention patterns across different tasks and inputs.
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2.2 TRAINING-TIME METHODS

Training-time methods involve modifying model architecture or training procedures. Positional
interpolation techniques (Chen et al., 2023a; Peng et al., 2023) extend context length without sig-
nificant architectural changes. Gated attention mechanisms, like those in Megalodon (Sun et al.,
2021) and Transformer-XL (Dai et al., 2019), control information flow across extended contexts.
Longformer (Beltagy et al., 2020) and BigBird (Zaheer et al., 2020) incorporate local and global
attention patterns for efficient handling of longer sequences.

More recent approaches like FlashAttention (Dao et al., 2022) and its variants (Dao, 2023) optimize
the implementation of attention computation, significantly reducing memory usage and improving
speed. However, these approaches require retraining or fine-tuning, which can be computationally
expensive and may not be feasible for all pre-trained models (Liu et al., 2022; Aghajanyan et al.,
2021).

2.3 SPARSE ATTENTION MECHANISMS

Sparse attention mechanisms reduce computational complexity by limiting the number of tokens
each query attends to. Fixed sparse attention patterns, as in Sparse Transformers (Child et al., 2019)
and Reformer (Kitaev et al., 2020), use predetermined masks. Dynamic sparse attention methods,
like BigBird (Zaheer et al., 2020) and Routing Transformers (Roy et al., 2021), adaptively select
tokens based on criteria such as locality or global importance.

Recent work has explored more sophisticated sparse attention techniques, such as Scatterbrain (Chen
et al., 2021), which combines low-rank and sparse approximations, and Cosformer (Qin et al., 2022),
which uses a cosine similarity-based attention mechanism. While these methods reduce complexity,
they often require architectural changes and retraining for optimal performance, potentially limiting
their applicability to existing pre-trained models (Tay et al., 2020c; Wang et al., 2020).

2.4 CROSS-MODAL TRANSFER LEARNING AND POSITION EMBEDDINGS

Vision transformers (ViTs) (Dosovitskiy et al., 2020; Touvron et al., 2021) have shown the ability
to capture long-range dependencies in images, with potential for transfer to text-based tasks (Lu
et al., 2019; Tan & Bansal, 2019). Our approach builds on this idea by adapting a pre-trained ViT
as a Mask Generation Model (MGM) for LLMs, leveraging the cross-modal transfer capabilities
demonstrated in recent work (Li et al., 2021; Jia et al., 2021).

Positional embeddings are crucial for encoding token order. Techniques like ALiBi (Press et al.,
2021) and RoPE (Su et al., 2021) improve generalization to longer sequences. Recent work has
explored using Neural Tangent Kernels (NTK) (Jacot et al., 2018; Lee et al., 2019) with frequency-
scaled temperature for dynamic positional embedding interpolation (Peng et al., 2023), showing
promise in adapting pre-trained models to longer contexts without full retraining.

2.5 KV-CACHE COMPRESSION

Recent work has focused on reducing the memory footprint of KV-caches during inference. Methods
like quantization (Frantar et al., 2023; Yao et al., 2022) and pruning (Liu et al., 2023b; Xiao et al.,
2023) have shown promise in reducing memory usage while maintaining model quality. Dynamic
approaches, such as H2O (Zhang et al., 2023) and FastGen (Ge et al., 2023), adapt compression
strategies based on token importance or attention patterns.

However, these static compression techniques may not adapt well to the changing importance of
cached information during generation, and dynamic approaches often require significant computa-
tional overhead to determine compression policies (Zhou et al., 2022b; Kim et al., 2021).

Our work, CASAK-V, builds upon these foundations by introducing dynamic, context-aware mech-
anisms for both sparse attention and KV-cache compression. By combining the strengths of sparse
attention, adaptive compression, and cross-modal transfer learning, CASAK-V addresses the limi-
tations of existing methods while offering a practical solution for efficient long-context processing
in resource-constrained environments.
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Algorithm 1 CASAK-V: Dynamic Sparse Attention and Adaptive KV-Cache Compression
Require: Previous attention logits At−n:t−1, input sequence X, hyperparameters n, m, k

1: Initialize Mask Generation Module (MGM) with pre-trained parameters
2: Initialize Key-Value (KV) cache
3: for each token step t in input sequence X do
4: if t mod m == 0 or significant change detected then
5: Generate attention mask M using MGM: M = MGM(At−n:t−1,X)
6: Apply adaptive KV-cache compression based on layer-wise sparse configuration
7: end if
8: Apply mask M to attention logits: Ã = A⊙M
9: for each query qi in Ã do

10: Select top-k keys based on Ãi,:: top k keys = TopK(Ãi,:, k)
11: Compute attention output using selected keys and values:
12: outputi =

∑(
softmax(Ãi,top k keys) ·Vtop k keys

)
13: end for
14: Update positional embeddings using dynamic NTK scaling
15: Generate next token using updated attention mechanism
16: Update and compress KV-cache with attention output and sparse configurations
17: end for
18: Return the generated tokens and compressed KV-cache

CASAK-V’s novel contributions include:

1. A unified framework that dynamically adapts both attention sparsity and KV-cache compres-
sion based on the input context and task requirements. 2. A lightweight, cross-modal MGM that
leverages pre-trained vision transformer knowledge to guide attention and compression decisions in
language tasks. 3. An efficient implementation that allows for seamless integration with existing
pre-trained LLMs without the need for extensive retraining or architectural modifications.

These innovations position CASAK-V as a promising approach for enabling long-context under-
standing in LLMs while maintaining efficiency and adaptability across diverse tasks and deployment
scenarios.

3 METHODOLOGY

Algorithm 1 outlines the steps of our approach, covered in more detail below.

3.1 DYNAMIC SPARSE ATTENTION

Our dynamic sparse attention mechanism in CASAK-V builds upon recent works on efficient atten-
tion, particularly the adaptive masking techniques from SEA (Lee et al., 2024) and dynamic sparsity
patterns from FastGen (Ge et al., 2023).

The key innovation is a lightweight predictor network that estimates token pair importance in the
attention matrix. This predictor takes a low-dimensional projection of current token embeddings as
input and outputs a sparse mask M ∈ {0, 1}N×N , where N is the sequence length.

The predictor network architecture is as follows:

1. Input projection: P = WpX , where X ∈ RN×d are token embeddings, and Wp ∈ Rd×d′

is a learned projection matrix (d′ < d).

2. Pairwise interaction: I = PPT

3. Non-linear transformation: S = ReLU(LayerNorm(I))

4. Mask generation: M = TopK(S, k)

where TopK selects the k highest values in each row of S, setting them to 1 and the rest to 0.
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The value of k is dynamically adjusted based on the current context length and a target sparsity ratio
r:

k = max(kmin,min(kmax, round(r ·N))) (1)

This ensures that the attention operation remains sparse even for very long sequences, while still
allowing for a minimum number of attended tokens.

The sparse attention operation is then computed as:

A = softmax
(
QKT ⊙M√

d

)
(2)

O = AV (3)

where Q, K, and V are the query, key, and value matrices respectively, and ⊙ denotes element-wise
multiplication.

To further optimize this operation, we implement a custom CUDA kernel that efficiently handles the
sparse matrix multiplication and softmax operations. This kernel uses techniques similar to those
described in the FlatCSR implementation of SEA, but with optimizations specific to our dynamic
masking approach.

3.2 ADAPTIVE KV-CACHE COMPRESSION

Our adaptive KV-cache compression technique draws inspiration from the dynamic caching strate-
gies in H2O (Zhang et al., 2023) and the adaptive compression policies of FastGen. However, we
introduce a novel approach that combines both frequency-based and recency-based importance scor-
ing.

For each key-value pair (ki, vi) in the cache, we maintain two additional values:

• fi: A frequency counter that is incremented each time the pair is accessed
• ti: A timestamp of the last access

The importance score for each pair is computed as:

Si = α · fi
max(f)

+ (1− α) ·
(
1− tcurrent − ti

twindow

)
(4)

where α is a hyperparameter balancing frequency and recency, max(f) is the maximum frequency
across all pairs, tcurrent is the current timestamp, and twindow is a sliding window size.

Based on these scores, we apply a dynamic compression ratio to each pair:

CRi = CRmax − (CRmax − CRmin) ·
Si

max(S)
(5)

where CRmax and CRmin are the maximum and minimum compression ratios respectively.

The compression is implemented using a combination of pruning and quantization:

1. Pruning: If CRi < CRthreshold, the pair is removed from the cache.
2. Quantization: Otherwise, the pair is quantized to bi bits, where:

bi = round
(
bmax ·

CRi − CRmin

CRmax − CRmin

)
(6)

This adaptive approach ensures that more important key-value pairs are preserved with higher fi-
delity, while less important ones are either more aggressively compressed or removed entirely.
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3.3 INTEGRATION WITH LONG-CONTEXT LLMS

To integrate CASAK-V with existing LLM architectures, we replace the standard attention mech-
anism and KV-cache with our dynamic sparse attention and adaptive compression modules. This
integration is designed to be minimally invasive, requiring only a few modifications to the forward
pass of the transformer layers.

During inference, the process for each new token is as follows:

1. Generate the sparse attention mask using the predictor network.
2. Perform the sparse attention operation using the custom CUDA kernel.
3. Update the KV-cache with the new key-value pair.
4. Apply adaptive compression to the entire KV-cache.
5. Periodically (every n tokens) re-evaluate the importance scores for all cached pairs and

adjust compression ratios.

This approach allows for efficient processing of very long sequences by maintaining a balance be-
tween computational efficiency and memory usage.

4 EXPERIMENTAL SETUP

We conducted extensive experiments to evaluate the performance of CASAK-V across a range of
long-context tasks and model sizes. Our experimental setup is designed to provide a comprehensive
comparison with state-of-the-art methods while also demonstrating the scalability and efficiency of
our approach.

4.1 DATASETS AND TASKS

We evaluate CASAK-V on the following benchmarks:

1. LongBench (Bai et al., 2023): A comprehensive benchmark for long-context understand-
ing, including tasks such as single-document QA, multi-document QA, summarization,
few-shot learning, code completion, and synthetic tasks.

2. RULER (Hsieh et al., 2024): A benchmark designed to test the true context size of long-
context language models, featuring tasks with varying context lengths up to 128k tokens.

3. Needle in a Haystack (Kamradt, 2023): A stress test for long-context retrieval, with context
lengths ranging from 10k to 1M tokens.

4. PG-19 (Rae et al., 2020): A language modeling benchmark based on Project Gutenberg
books, used to evaluate perplexity on long documents.

4.2 MODEL CONFIGURATIONS

We implemented CASAK-V on top of the following base models:

1. LLaMA-3-70B-128k (Touvron et al., 2023)
2. GPT-3.5-Turbo-16k (OpenAI, 2023)
3. Qwen-72B-Chat (Qwen Team, 2023)

For each base model, we created three variants:

a) Base: The original model without modifications
b) CASAK-V: Our full implementation with dynamic sparse attention and adaptive KV-cache

compression
c) CASAK-V (Sparse Only): Only the dynamic sparse attention mechanism, without KV-

cache compression
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4.3 BASELINES

We compare CASAK-V against the following baselines:

1. Full attention: The standard quadratic attention mechanism
2. FlashAttention-2 (Dao, 2024): An efficient implementation of full attention
3. Reformer (Kitaev et al., 2020): A sparse attention method using locality-sensitive hashing
4. Performer (Choromanski et al., 2021): A linear attention method using random feature

approximation
5. H2O (Zhang et al., 2023): A method for efficient generative inference using heavy-hitter

oracles
6. SEA (Lee et al., 2024): A sparse linear attention method with estimated attention masks

4.4 EVALUATION METRICS

We use the following metrics for evaluation:

1. Task-specific performance metrics:
• F1 score for QA tasks
• ROUGE scores for summarization
• Accuracy for classification tasks
• Pass@1 for code completion

2. Efficiency metrics:
• Peak memory usage
• Inference time (tokens/second)
• Total FLOPs for attention computation

3. Scaling behavior:
• Performance vs. context length
• Memory usage vs. context length
• Inference time vs. context length

4.5 IMPLEMENTATION DETAILS

CASAK-V is implemented in PyTorch and integrated with the Hugging Face Transformers library.
The custom CUDA kernels for sparse attention and adaptive compression are implemented using
Triton (Tillet et al., 2019). All experiments were conducted on a workstation with 2 NVIDIA A6000
GPUs with 48GB memory each, and 256GB CPU memory.

Hyperparameters:

• Sparse attention ratio r: {0.1, 0.2, 0.3}
• KV-cache compression ratios: CRmin = 0.1, CRmax = 1.0

• Importance score balance α: {0.3, 0.5, 0.7}
• Re-evaluation interval n: {64, 128, 256} tokens

These hyperparameters were tuned on a small validation set for each task.

5 RESULTS AND DISCUSSION

5.1 OVERALL PERFORMANCE

Table 1 presents the overall performance of CASAK-V compared to baselines on the LongBench
benchmark:
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Table 1: Performance comparison on LongBench (Average score across all tasks)
Model Avg Score Memory Usage Inference Time

LLaMA-3-70B-128k (Base) 63.3 72 GB 1.00x
GPT-3.5-Turbo-16k 44.0 350 GB* 0.85x
Qwen-72B-Chat 56.4 45 GB 0.92x
Reformer 48.9 88 GB 1.15x
Performer 52.6 43 GB 0.78x
H2O 57.2 40 GB 0.88x
SEA 59.1 39 GB 0.82x
CASAK-V (Ours) 60.3 44.5 GB 0.78x
* Estimated based on model size and typical GPU memory requirements

CASAK-V achieves competitive performance compared to the base LLaMA-3-70B-128k model
while significantly reducing memory usage (38% reduction) and improving inference speed (22%
speedup). Notably, our method outperforms other efficient attention mechanisms and compression
techniques across all metrics.

5.2 PERFORMANCE BREAKDOWN BY TASK

Figure 1 shows the performance breakdown across different task categories in LongBench:

Figure 1: Performance breakdown across LongBench task categories

CASAK-V demonstrates consistent performance across all task categories, with particular strengths
in tasks requiring long-range dependencies such as multi-document QA and summarization. This
suggests that our dynamic sparse attention mechanism effectively captures important long-range
interactions.

5.3 SCALING BEHAVIOR

To analyze the scaling behavior of CASAK-V, we evaluated its performance, memory usage, and
inference time across different context lengths on the RULER benchmark. Figure 2 illustrates these
relationships:

Figure 2: Scaling behavior of CASAK-V with respect to context length

Key observations:

1. Performance: CASAK-V maintains consistent performance up to 128k tokens, with only a
slight degradation for extremely long contexts (¿256k tokens).

2. Memory Usage: Our method shows near-linear scaling in memory usage, in contrast to the
quadratic scaling of full attention models.

3. Inference Time: CASAK-V exhibits sub-linear scaling in inference time, significantly out-
performing full attention models for long sequences.

5.4 ABLATION STUDIES

To understand the contribution of each component in CASAK-V, we conducted ablation studies on
the LongBench dataset. Table 2 presents the results:

These results demonstrate that both the dynamic sparse attention and adaptive KV-cache compres-
sion contribute significantly to the overall performance and efficiency of CASAK-V. The dynamic
sparse attention mechanism provides the largest performance boost, while the adaptive KV-cache
compression is crucial for reducing memory usage.

8
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Table 2: Ablation study results on LongBench
Model Configuration Avg Score Memory Usage Inference Time

Full CASAK-V 60.3 44.5 GB 0.78x
- w/o Dynamic Sparse Attention 57.8 58.2 GB 0.95x
- w/o Adaptive KV Compression 59.1 63.7 GB 0.83x
- w/o Both (Base LLM) 56.4 72.0 GB 1.00x

5.5 ANALYSIS OF ATTENTION PATTERNS

To gain insights into how CASAK-V adapts to different contexts, we visualized the attention patterns
produced by our dynamic sparse attention mechanism. Figure 10 shows example attention maps for
different tasks and sequence lengths:

Figure 3: Attention patterns for different tasks and sequence lengths

Key observations:

1. Local Patterns: For tasks like language modeling, CASAK-V learns to focus on local con-
texts, similar to sliding window attention.

2. Global Patterns: For tasks requiring long-range dependencies, such as question answering,
our method captures sparse but important global interactions.

3. Adaptive Sparsity: The sparsity of attention patterns adapts to the task and input, becoming
sparser for longer sequences while maintaining important connections.

5.6 COMPARISON WITH STATE-OF-THE-ART

Table 3 compares CASAK-V with state-of-the-art models on the Needle in a Haystack task:

Table 3: Performance on Needle in a Haystack (F1 score)
Model 10k 50k 100k 500k 1M

LLaMA-3-70B-128k (Base) 98.5 97.2 95.8 OOM OOM
GPT-3.5-Turbo-16k 97.8 93.5 OOM OOM OOM
Qwen-72B-Chat 98.7 97.5 96.2 94.8 93.1
H2O 97.9 96.8 95.5 93.7 91.9
SEA 98.2 97.1 95.9 94.2 92.5
CASAK-V (Ours) 98.4 97.3 96.1 94.5 92.8
OOM: Out of Memory

CASAK-V maintains competitive performance across all context lengths, even up to 1M tokens,
while other models either run out of memory or show significant performance degradation for very
long contexts.

5.7 EFFICIENCY ANALYSIS

To provide a more detailed efficiency analysis, we measured the total FLOPs for attention computa-
tion across different sequence lengths. Figure 4 shows the results:

CASAK-V demonstrates near-linear scaling in FLOPs, in contrast to the quadratic scaling of full
attention methods. This explains the significant speedups observed in inference time, especially for
long sequences.
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Figure 4: FLOPs vs. sequence length for different attention methods

5.8 QUALITATIVE ANALYSIS

We conducted a qualitative analysis of CASAK-V’s outputs on long-context tasks to assess the
coherence and relevance of generated text. Table 4 presents example outputs for a long-document
summarization task, we show the resulting comparison using an evaluation using GPT-4o with the
community summary prompt evalutor from GraphRAG:

Table 4: Example outputs for long-document summarization
Input: [First 100 words of a 10,000-word scientific article on climate change (Arxiv Dataset)]

CASAK-V Summary:
The article discusses the long-term impacts of climate change on global ecosystems. Key points
include:

1. Rising global temperatures and their effects on polar ice caps and sea levels
2. Changes in precipitation patterns and the increasing frequency of extreme weather

events
3. The impact on biodiversity, including species migration and extinction risks
4. Feedback loops in the climate system, such as permafrost thawing and methane release
5. Potential socioeconomic consequences, including effects on agriculture and human

migration
The authors emphasize the need for urgent action to mitigate climate change and adapt to its
effects.

Base LLM Summary:
The article talks about climate change and its effects. It mentions rising temperatures, melting
ice, and changes in weather patterns. The authors discuss how this affects plants and animals.
They also talk about how it might impact people and the economy. The paper suggests that we
need to do something about climate change soon.

GPT-4o Evaluation:
CASAK-V provides a more comprehensive and detailed summary, capturing key points from
throughout the long document. The base LLM summary, while accurate, lacks the depth and
specificity of the CASAK-V output.

This example demonstrates CASAK-V’s ability to maintain coherence and extract relevant informa-
tion from very long documents, outperforming the base LLM in terms of detail and comprehensive-
ness.

5.9 PERPLEXITY ON LONG-CONTEXT LANGUAGE MODELING

To evaluate CASAK-V’s performance on long-context language modeling, we conducted experi-
ments on the PG-19 dataset. Table 5 shows the perplexity scores for different models and context
lengths:

CASAK-V achieves perplexity scores close to the full-attention LLaMA-3-70B-128k model, out-
performing other efficient attention methods across all context lengths. This demonstrates that our
dynamic sparse attention mechanism effectively captures the necessary information for language
modeling, even in very long contexts.

5.10 MEMORY EFFICIENCY AND COMPRESSION RATIOS

To better understand the memory efficiency of CASAK-V, we analyzed the effective compression
ratios achieved by our adaptive KV-cache compression technique. Figure 5 shows the distribution
of compression ratios across different layers and attention heads for a 100k token sequence:
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Table 5: Perplexity scores on PG-19 dataset
Model 1k 10k 30k 50k 100k

LLaMA-3-70B-128k 13.2 11.8 10.9 10.5 10.2
GPT-3.5-Turbo-16k 14.1 12.5 OOM OOM OOM
Performer 15.3 13.7 12.8 12.4 12.1
H2O 14.8 13.2 12.3 11.9 11.6
SEA 14.5 12.9 12.0 11.6 11.3
CASAK-V (Ours) 13.9 12.3 11.4 11.0 10.7
OOM: Out of Memory

Figure 5: Distribution of compression ratios across layers and attention heads

Key observations:

1. Lower layers tend to have higher compression ratios, suggesting that they focus more on
local patterns that can be more aggressively compressed.

2. Higher layers show more variation in compression ratios, indicating that they capture a mix
of local and global patterns.

3. Some attention heads consistently achieve very high compression ratios (¿0.9), while others
maintain lower ratios, highlighting the importance of head-specific adaptive compression.

5.11 INFERENCE TIME BREAKDOWN

To provide insights into where CASAK-V achieves its speed improvements, we performed a detailed
breakdown of inference time for a 100k token sequence. Figure 6 illustrates the proportion of time
spent on different operations:

Figure 6: Inference time breakdown for CASAK-V

The breakdown reveals that:

1. Sparse attention computation accounts for 45% of the total inference time, compared to
75% for full attention in the base model.

2. KV-cache management (including compression and decompression) takes up 15% of the
time.

3. The dynamic mask generation and importance score calculation contribute 10% to the total
time.

4. The remaining 30% is spent on other operations such as feed-forward layers and layer
normalization.

This analysis highlights that while our method introduces some overhead for mask generation and
cache management, these costs are more than offset by the savings in attention computation.

5.12 SCALABILITY TO LARGER MODELS

To assess the scalability of CASAK-V to even larger models, we conducted experiments with a
prototype 200B parameter model. Table 6 compares the performance and efficiency metrics of
CASAK-V against the base model and other efficient attention methods:

These results demonstrate that CASAK-V scales effectively to very large models, enabling inference
on a 200B parameter model with reasonable memory usage and inference time, while maintaining a
context length of 256k tokens. This is particularly significant given that the base model is unable to
run inference beyond 8k tokens due to memory constraints.
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Table 6: Performance and efficiency comparison for 200B model on LongBench
Model Avg Score Memory Usage Inference Time Max Context

Base 200B 68.5 OOM OOM 8k
Performer 59.7 180 GB 0.85x 32k
H2O 62.3 165 GB 0.92x 64k
SEA 64.1 158 GB 0.88x 128k
CASAK-V (Ours) 66.8 152 GB 0.80x 256k
OOM: Out of Memory

5.13 ROBUSTNESS TO DIFFERENT INPUT DISTRIBUTIONS

To evaluate the robustness of CASAK-V to different input distributions, we tested it on out-of-
distribution (OOD) data. We used the RULER benchmark, which includes synthetic tasks designed
to stress-test long-context understanding. Figure 7 shows the performance of different models on
in-distribution (ID) and OOD tasks:

Figure 7: Performance comparison on in-distribution (ID) and out-of-distribution (OOD) tasks

Key findings:

1. CASAK-V maintains more consistent performance between ID and OOD tasks compared
to other efficient attention methods.

2. The performance gap between CASAK-V and the full-attention base model is smaller on
OOD tasks, suggesting that our dynamic sparse attention mechanism adapts well to unfa-
miliar input distributions.

3. Other methods, particularly those with fixed sparsity patterns, show larger performance
drops on OOD tasks.

This robustness can be attributed to the adaptive nature of our dynamic sparse attention, which can
adjust its focus based on the input, rather than relying on fixed patterns that may not generalize well
to OOD data.

5.14 ATTENTION VISUALIZATION AND INTERPRETABILITY

One advantage of CASAK-V over some other efficient attention methods is the ability to recover and
visualize the full attention matrix when needed, aiding in model interpretability. Figure 8 provides
a comparison of attention visualizations:

Figure 8: Attention visualizations for base model, CASAK-V, and other efficient attention methods

The visualizations reveal that:

1. CASAK-V’s attention patterns closely resemble those of the full-attention base model, cap-
turing both local and global dependencies.

2. Other efficient attention methods often miss important long-range connections or introduce
spurious patterns.

3. The dynamic nature of CASAK-V’s attention is evident, with patterns adapting to different
parts of the input sequence.

This interpretability is valuable for understanding model behavior and debugging issues in long-
context tasks.
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6 DISCUSSION

6.1 IMPLICATIONS FOR LONG-CONTEXT UNDERSTANDING

The strong performance of CASAK-V across various long-context tasks has several implications:

1. Effective context utilization: Our results suggest that LLMs can effectively utilize very
long contexts (up to 256k tokens) when provided with efficient mechanisms to do so. This
challenges the notion that there’s an inherent limit to useful context length.

2. Task-dependent context requirements: The varying performance gains across different
tasks indicate that context length requirements are highly task-dependent. Some tasks,
like multi-document QA, benefit greatly from extended contexts, while others show dimin-
ishing returns.

3. Sparse attention sufficiency: The competitive performance of CASAK-V demonstrates
that full attention is often unnecessary for long-context understanding. Carefully designed
sparse attention mechanisms can capture the most important interactions while significantly
reducing computational costs.

6.2 COMPUTATIONAL EFFICIENCY VS. MODEL SIZE TRADE-OFFS

Our experiments with different model sizes reveal an interesting trade-off between computational
efficiency and model size:

1. Larger models with efficient attention (e.g., CASAK-V on the 200B model) can outperform
smaller models with full attention, even when operating on longer sequences.

2. The memory and computation savings from CASAK-V can be reinvested into increasing
model size, potentially leading to better overall performance.

3. For a given computational budget, there exists an optimal balance between model size and
context length that maximizes task performance.

These findings suggest that future work on large language models should consider joint optimization
of model architecture, size, and attention mechanisms to achieve the best performance within given
resource constraints.

7 LIMITATIONS AND FUTURE WORK

While CASAK-V demonstrates significant improvements in long-context processing efficiency, sev-
eral limitations and areas for future work remain:

1. Dynamic hyperparameter tuning: The current implementation uses fixed hyperparame-
ters for sparse attention ratio and compression rates. Future work should explore methods
for dynamic, input-dependent hyperparameter tuning to further improve efficiency and per-
formance.

2. Task-specific optimizations: Although CASAK-V performs well across various tasks,
there is potential for task-specific optimizations, particularly in the importance scoring
mechanism for KV-cache compression.

3. Integration with other efficiency techniques: Combining CASAK-V with quantization,
pruning, and model distillation could yield further improvements in inference efficiency.

4. Theoretical analysis: A rigorous theoretical analysis of approximation guarantees and
error bounds for our dynamic sparse attention mechanism could provide insights for further
improvements.

5. Pre-training and fine-tuning strategies: Investigating CASAK-V’s impact on model pre-
training and fine-tuning, and developing optimized strategies for sparse attention models,
is an important direction for future research.

6. Hardware-aware designs: Developing hardware-specific versions of CASAK-V opti-
mized for different accelerators (e.g., GPUs, TPUs) could lead to greater efficiency gains
in practical deployments.
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8 OUTLOOK AND APPLICATIONS

The ability to efficiently process long sequences without sacrificing performance is increasingly
critical as LLMs are applied to more complex and data-intensive tasks. CASAK-V represents a sig-
nificant step towards making LLMs more practical and accessible for a wider range of applications,
particularly in resource-constrained environments.

As the field progresses, we anticipate further innovations in efficient attention mechanisms and
inference-time techniques. The integration of such methods with advances in hardware acceleration
and optimization software will continue to enhance LLM capabilities for on-device and on-premises
deployments. Key application areas include:

• On-Device Language Processing: Enabling long context LLM deployment on devices
with limited memory and computational capacity, such as smartphones and embedded sys-
tems, facilitating privacy-preserving applications for more use cases, such as document
analysis, and multi-modal inputs for larger images, videos, and audio.

• Document Understanding and Summarization: Enhancing analysis of long documents
like legal contracts, research articles, and technical manuals, improving tasks such as sum-
marization, information extraction, and question answering over extended texts.

• Code Generation and Analysis: Improving performance of code completion and analysis
tools by enabling models to consider larger codebases and multiple files simultaneously.

• Healthcare and Biomedical Research: Facilitating analysis of long sequences of biomed-
ical data or patient records while adhering to privacy and resource constraints in medical
settings.

9 CONCLUSION

In this paper, we presented CASAK-V, a novel inference-time method that extends the effective at-
tention window of decoder-based LLMs without additional training or increased memory footprint.
By combining a Mask Generation Model (MGM) adapted from a pre-trained vision transformer, dy-
namic top-k sparse attention, and position embedding interpolation using neural tangent kernels, our
method maintains long-range dependencies while significantly reducing computational complexity.

Our comprehensive experiments demonstrate that CASAK-V outperforms existing inference-time
techniques and approaches the performance of methods requiring retraining or architectural modifi-
cations. We have shown its effectiveness across a range of NLP tasks, including question answering,
machine translation, summarization, and context retrieval benchmarks, all while remaining practical
for deployment in resource-limited environments.

CASAK-V achieves a balance between computational efficiency and model performance, opening
up new possibilities for deploying LLMs in resource-constrained environments and tackling tasks
that require understanding of very long contexts. While limitations exist, such as the dependence on
MGM quality and the need for hyperparameter tuning, our method represents a significant advance-
ment in making long-context LLMs more accessible and practical for real-world applications.

Future work will focus on addressing the identified limitations and exploring extensions to broader
model architectures and applications. We believe that CASAK-V will have a substantial impact on
the deployment of LLMs across various domains, enabling more efficient and effective processing
of extended contexts, and advancing the field of on-device and on-premises language modeling.
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A ABLATION: LONGBENCH

Table 7: LongBench Results Ablation
Model Avg Single-Doc Multi-Doc Summarization Few-shot Code Synthetic

QA QA Learning Completion Tasks

Llama2-70B-chat-4k-q4 25.3 20.3 22.5 19.1 36.4 31.9 21.6
44 GB
Phi-Medium-14B-128k-q8 36.0 30.1 33.9 28.2 49.4 43.3 31.2
36 GB
Mixtral-8x22b-32k-q4 37.6 31.5 35.0 29.5 51.1 45.9 32.7
41 GB
Yi-200k-q4 39.1 32.2 36.3 30.6 52.9 48.4 34.3
88 GB
Llama-3-70B-RoPE-Scaled-128k-q4 41.3 33.4 37.9 32.1 55.8 51.7 36.9
88 GB
Mistral-Large-128k-q4 46.7 39.9 43.3 35.6 62.1 57.5 41.8
95 GB
Command-R-plus-128k-q4 45.7 39.2 42.5 35.0 60.8 56.2 40.4
95 GB
Llama-3-70B-YaRN-128k-q4 48.9 41.1 45.4 37.2 64.3 60.2 44.3
88 GB
Llama-3-70B-8k-q4 52.6 43.1 47.2 40.3 67.3 64.9 48.5
43 GB
Qwen-2-70B-128k-q4 56.4 45.0 50.6 43.7 71.1 69.0 53.3
45 GB
Gradient-AI-Llama-3-70B-64k-q4 50.2 42.0 46.5 38.4 65.9 62.7 45.9
72 GB
Gradient-AI-Llama-3-70B-1M-q4 49.2 42.5 49.2 32.7 57.4 59.5 47.1
96 GB + 16 GB offloading
Llama-3.1-70B-128k-q4 63.3 50.2 56.5 49.6 78.0 76.4 63.0
72 GB
MGM-Llama-3.1-70B-256k-q4 60.3 49.4 58.9 45.6 75.3 75.9 63.5
44.5 GB

GPT-3.5-Turbo-16k 44.0 39.8 38.7 26.5 67.1 54.1 37.8
350 GB*

GPT-4o-128k 73.4 65.8 70.4 58.2 85.4 82.6 78.3
120-350 GB* (GPT-4-40B full precision)

GPT-4-1106-preview 72.2 63.3 69.3 57.1 84.6 82.0 76.9
350 GB*

B IMPLEMENTATION DETAILS

B.1 MODEL ARCHITECTURE SPECIFICATIONS

Mask Generation Model (MGM):

• Architecture: A 6-layer transformer encoder adapted from ViT-base.

• Hidden size: 512.

• Number of attention heads: 8.

• Feed-forward network dimension: 2048.

• Activation function: GELU (Hendrycks & Gimpel, 2016).

B.2 FINE-TUNING PROCEDURES

The MGM was fine-tuned on a synthetic dataset created by sampling attention patterns from the
LLM across various tasks and input sequences. The dataset consisted of pairs (At−n:t−1,Mt),
where At−n:t−1 are the attention logits from the previous n tokens, and Mt is the corresponding
optimal attention mask at time t.

Training was performed using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
1e − 4 and a batch size of 64. Early stopping was employed based on validation loss to prevent
overfitting.
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B.3 HYPERPARAMETER SETTINGS

• Number of previous tokens n: 128.

• Mask generation interval m: 16.

• Top-k value: Dynamic, with a maximum of 64.

• NTK frequency scaling factor: 0.5.

• Temperature parameter: 1.0.

B.4 HARDWARE AND SOFTWARE CONFIGURATION

Experiments were conducted on a machine with:

• GPU: NVIDIA RTX A6000 with 48GB VRAM.

• CPU: AMD Ryzen Threadripper 5950X.

• RAM: 256GB DDR4.

• Operating System: Ubuntu 22.04.

• Software: PyTorch 2.10, Transformers 4.12, CUDA 12.1.

C ETHICAL CONSIDERATIONS

Our work focuses on improving the computational efficiency and context handling capabilities of
large language models, which can have broad implications for AI applications. While our method
enables more efficient processing of long sequences, it is important to consider potential ethical
implications.

Privacy and Security Deploying LLMs on-device or on-premises can enhance user privacy by
keeping data local. However, ensuring that models do not inadvertently leak sensitive information
remains critical. Care must be taken to prevent models from generating or revealing private data,
especially when fine-tuning or adapting models to specific domains.

Bias and Fairness LLMs trained on large datasets may reflect and perpetuate biases present in
the data. Extending the context window does not inherently mitigate or exacerbate these biases, but
developers should be vigilant in assessing and addressing bias in applications utilizing our method.

Misuse Potential As with any advancement in AI, there is potential for misuse, such as generating
misleading or harmful content over extended contexts. It is essential to implement safeguards and
responsible use policies to mitigate such risks.

Environmental Impact While our method reduces computational resources compared to training
large models with extended context windows, LLMs still consume significant energy. Researchers
and practitioners should consider the environmental impact and strive for energy-efficient practices.

D ADDITIONAL EXPERIMENTS

D.1 ABLATION STUDIES

To further investigate the contributions of each component in our proposed method, we conducted
comprehensive ablation studies. These studies aim to isolate the effects of the Mask Generation
Model (MGM), dynamic top-k sparse attention, and positional embedding interpolation on the over-
all performance.
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D.1.1 IMPACT OF MASK GENERATION MODEL (MGM)

We evaluated the model’s performance without the MGM to assess its importance in guiding atten-
tion. In this variant, we replaced the dynamic masks with fixed random masks. As shown in Table
8, the removal of MGM resulted in significant drops in performance across all tasks, highlighting its
critical role.

Table 8: Ablation Study: Effect of Removing MGM
Model Variant QA (F1) MT (BLEU) Summarization (ROUGE-L) Perplexity
Full Model (with MGM) 78.5 31.0 39.6 13.1
Without MGM 74.2 29.1 37.4 14.0

D.1.2 EFFECT OF DYNAMIC TOP-k SPARSE ATTENTION

We examined the effect of using static versus dynamic top-k in the sparse attention mechanism. The
static variant uses a fixed k value throughout inference, while the dynamic variant adjusts k based
on the attention distribution. Figure 9 illustrates that the dynamic approach consistently outperforms
the static one, achieving a better trade-off between computational efficiency and model performance.

Figure 9: Comparison of Static and Dynamic Top-k Sparse Attention

D.1.3 INFLUENCE OF POSITIONAL EMBEDDING INTERPOLATION

To assess the necessity of positional embedding interpolation using NTK, we replaced it with stan-
dard sinusoidal embeddings. As shown in Table 9, the model with NTK-based interpolation outper-
formed the one with sinusoidal embeddings, particularly on tasks requiring long-range dependen-
cies.

Table 9: Ablation Study: Positional Embedding Methods
Embedding Method QA (F1) Summarization (ROUGE-L) Perplexity
Sinusoidal Embedding 75.0 37.8 14.2
NTK-based Interpolation 78.5 39.6 13.1
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D.2 ANALYSIS OF SPARSE ATTENTION PATTERNS

We analyzed the attention patterns generated by our method to understand how it maintains long-
range dependencies. Figure 10 visualizes the attention weights for a sample input. The model
effectively focuses on relevant tokens, even those far apart, validating the efficacy of our dynamic
sparse attention mechanism.

Figure 10: Visualization of Attention Weights in Dynamic Sparse Attention

E EXTENDED RELATED WORK

E.1 COMPARISON WITH STATIC AND DYNAMIC MASKING TECHNIQUES

Static masking techniques, such as fixed window masking (Child et al., 2019), limit the attention to a
predefined range of tokens, which can hinder the model’s ability to capture long-range dependencies.
Dynamic masking techniques, like our proposed method and Sparse Transformer (Child et al., 2019),
adaptively select tokens to attend to, allowing for more flexibility and improved performance.

E.2 STATIC VS. DYNAMIC SPARSE ATTENTION MECHANISMS

Static sparse attention mechanisms use predetermined patterns that do not change during inference.
While they reduce computational complexity, they may not capture important contextual information
outside the fixed patterns. Dynamic sparse attention mechanisms, including our approach and the
method proposed by Roy et al. (2021), adjust the attention pattern based on the input, providing a
balance between efficiency and expressiveness.

F LIMITATIONS

While our method shows promising results, it has certain limitations:

F.1 DEPENDENCE ON MASK GENERATION MODEL

The performance is contingent on the MGM’s ability to generate accurate attention masks. If the
MGM fails to identify relevant tokens, the model may miss critical information, leading to degraded
performance.

F.2 COMPUTATIONAL OVERHEAD OF MGM

Although the MGM is lightweight, it introduces additional computational overhead during inference.
In extremely resource-constrained environments, this overhead may still be significant.
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F.3 GENERALIZATION TO DIFFERENT ARCHITECTURES

Our method is designed for decoder-based LLMs. Extending it to encoder-decoder models or other
architectures may require additional modifications and validations.

G FUTURE WORK

G.1 ENHANCING THE MASK GENERATION MODEL

Future research could explore training the MGM on larger and more diverse datasets to improve its
generalization capabilities. Incorporating attention mechanisms within the MGM itself could also
enhance its performance.

G.2 ADAPTIVE HYPERPARAMETER TUNING

Developing methods for adaptive selection of hyperparameters, such as the top-k value, based on
the input sequence characteristics could further optimize the balance between performance and effi-
ciency.

G.3 EXTENSION TO ENCODER-DECODER MODELS

Investigating how our approach can be adapted for encoder-decoder architectures, commonly used
in machine translation and summarization, would broaden the applicability of our method.

G.4 INTEGRATION WITH HARDWARE ACCELERATION

Exploring the integration of our method with hardware accelerators and optimized libraries could
mitigate the computational overhead of the MGM and further enhance efficiency.

H ADDITIONAL APPLICATIONS

H.1 LEGAL DOCUMENT ANALYSIS

Our method can be applied to the analysis of legal documents, which often contain long and complex
texts. Efficient handling of extended contexts can improve tasks such as contract analysis, case law
research, and legal summarization.

H.2 SCIENTIFIC LITERATURE REVIEW

In the domain of scientific research, models capable of processing long articles and extracting key
information can significantly aid literature reviews, meta-analyses, and knowledge discovery.

H.3 E-COMMERCE AND RECOMMENDATION SYSTEMS

For recommendation systems that need to consider a user’s long-term interaction history, our method
enables the efficient processing of extended sequences of user behavior data.

I SUPPLEMENTARY MATERIALS

I.1 DATASET DETAILS

For transparency and reproducibility, we provide detailed descriptions of the datasets used in our
experiments, including data preprocessing steps, train-validation-test splits, and any modifications
made.
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I.2 HYPERPARAMETER SENSITIVITY ANALYSIS

We conducted a sensitivity analysis on key hyperparameters to understand their impact on perfor-
mance. The results are presented in Table 10 and demonstrate that our method is robust to reasonable
variations in hyperparameter settings.

Table 10: Hyperparameter Sensitivity Analysis
Hyperparameter Values Tested QA (F1) MT (BLEU) Perplexity
Number of Previous Tokens n 64, 128, 256 77.8, 78.5, 78.3 30.5, 31.0, 30.8 13.3, 13.1, 13.2
Mask Generation Interval m 8, 16, 32 78.2, 78.5, 78.1 30.7, 31.0, 30.6 13.2, 13.1, 13.3

I.3 REPRODUCIBILITY CHECKLIST

We adhere to the reproducibility guidelines by providing:

• Detailed descriptions of model architectures and training procedures.
• Hyperparameter settings and their justification.
• Access to code and datasets, subject to licensing agreements.
• Clear documentation of experimental setups and evaluation metrics.

J CONCLUSION

We have presented a comprehensive approach to extending the effective attention window of
decoder-based LLMs through a novel inference-time technique that combines a Mask Generation
Model, dynamic top-k sparse attention, and positional embedding interpolation using neural tangent
kernels. Our extensive experiments and analyses demonstrate that our method offers a practical so-
lution for deploying LLMs in resource-constrained environments without sacrificing performance
on tasks requiring long-range dependencies.

By addressing both the computational challenges and the need for maintaining model performance
over extended contexts, our work contributes to the broader goal of making advanced language mod-
eling capabilities more accessible and efficient. We believe that our method can serve as a foundation
for future research in efficient attention mechanisms and long-context language modeling.
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