
Published as a conference paper at ICLR 2024

MAYFLY: A NEURAL DATA STRUCTURE FOR GRAPH
STREAM SUMMARIZATION

Yuan Feng1,3,† , Yukun Cao1,3,†, Hairu Wang1,3, Xike Xie2,3,∗, and S. Kevin Zhou2,3

1School of Computer Science, University of Science and Technology of China (USTC), China
2School of Biomedical Engineering, USTC, China
3Data Darkness Lab, MIRACLE Center, Suzhou Institute for Advanced Research, USTC, China
{yfung,ykcho,wanghairu}@mail.ustc.edu.cn, xkxie@ustc.edu.cn,
s.kevin.zhou@gmail.com

ABSTRACT

A graph is a structure made up of vertices and edges used to represent complex
relationships between entities, while a graph stream is a continuous flow of graph
updates that convey evolving relationships between entities. The massive volume
and high dynamism of graph streams promote research on data structures of
graph summarization, which provides a concise and approximate view of graph
streams with sub-linear space and linear construction time, enabling real-time
graph analytics in various domains, such as social networking, financing, and
cybersecurity. In this work, we propose the Mayfly, the first neural data structure
for summarizing graph streams. The Mayfly replaces handcrafted data structures
with better accuracy and adaptivity. To cater to practical applications, Mayfly
incorporates two offline training phases, namely larval and metamorphosis phases.
During the larval phase, the Mayfly learns basic summarization abilities from
automatically and synthetically constituted meta-tasks. In the metamorphosis phase,
it rapidly adapts to real graph streams via meta-tasks. With specific configurations
of information pathways, the Mayfly enables flexible support for miscellaneous
graph queries, including edge, node, and connectivity queries. Extensive empirical
studies show that the Mayfly significantly outperforms its handcrafted competitors.

1 INTRODUCTION

Recently, it shows prominence in using neural networks as alternatives for handcrafted data structures
(Cao et al., 2023; Li et al., 2023; Bertsimas & Digalakis, 2021; Rae et al., 2019; Hsu et al., 2019;
Kraska et al., 2018), especially in data stream applications, where neural data structures are designed
by harnessing the abilities of neural networks, providing two key benefits. First, they exploit deep-
level implicit information (e.g., dense vectors), enabling superior summarization capabilities to
handcrafted data structures which maintain explicit counts. Second, they facilitate diversified query
evaluation over data summarization via data streaming patterns captured in deep networks.

One important but under-explored data stream application for neural data structures is graph streams.
A graph stream refers to the continuous sequence of streaming edges, each of which is associated
with two incident nodes and an edge weight. Graph streams represent the evolutionary process of a
dynamic graph and play a vital role in online graphical analytics (McGregor, 2014a; Stanton & Kliot,
2012; Aggarwal et al., 2010; Zou et al., 2022; Kong et al., 2022). For example, in a social network
(Mislove et al., 2007; Zhao et al., 2016), graph streams capture the evolving relation between entities,
where the edge weight is indicative of the strength of social connections. In network traffic analysis
(Guha & McGregor, 2012; D’Alconzo et al., 2019), graph streams highlight the communication
between networking devices aiding in monitoring tasks, such as locating security threats (Hong et al.,
2017; Gou et al., 2022) or identifying network structures (Ahn et al., 2012; Gou et al., 2022).

Ordinary data streams are with two prominent characteristics, massive volume and high dynamism, so
that challenges arise in meeting the space and time constraints on the stream processing. In particular,

† Equal Contribution ∗Corresponding Author

1

Published as a conference paper at ICLR 2024

it requires data streams to be processed in a one-pass fashion with limited space budgets (Charikar
et al., 2002; Cormode & Muthukrishnan, 2005; Babcock et al., 2002; Broder & Mitzenmacher,
2004). Graph streams post the additional variety challenge in sustaining the representation of
complex relationships in-between graph entities, putting heavier burdens on contending with the
space and time challenges. Existing handcrafted solutions (Cormode & Muthukrishnan, 2005; Zhao
et al., 2011; Tang et al., 2016; Gou et al., 2022) summarize graph streams by a small (sub-linear)
summarization structure within linear construction time and allow for the evaluation of graph queries.
Early methods, such as CM-Sketch (Cormode & Muthukrishnan, 2005) and gSketch (Zhao et al.,
2011), hash streaming edges to counters of a 2D storage array. However, they overlook the importance
of graph connectivity which is essential in addressing advanced graph queries. Afterwards, the TCM
(Tang et al., 2016), independently hashes streaming nodes and edges, while preserving the graph
connectivity to support diverse graph queries. GSS (Gou et al., 2022) extends the underlying structure
of TCM with auxiliary storage to improve the query accuracy. Auxo (Jiang et al., 2023) builds upon
GSS and incorporates a prefix embedded tree, to accelerate the process of GSS buffer expansion,
particularly in high-budget scenarios. However, the optimization comes at a cost of increased time
complexity and its linear memory expansion does not meet the low-budget constraints commonly
associated with the majority of existing sketches. In our paper, we emphasize smaller memory budgets
(e.g., below 100KB) (Liu & Xie, 2021; 2023). With such budget constraints, existing structures
falter. TCM, if constrained by budgets, faces severe hash collisions, causing excessive query errors.
Similarly, GSS (Auxo) cannot fetch external storage that exceeds the budgets, thereby resulting in
unacceptable query hit rates.

In this paper, we propose the first neural data structure, called the Mayfly, for graph stream sum-
marization, going beyond state-of-the-art handcrafted solutions, such as TCM and GSS. However,
challenges arise in determining the appropriate design of network structures and training methods,
specifically in meeting the stringent requirements of graph summarization in terms of space and time
efficiency, while supporting diverse graph queries, including edge queries, node queries, connectivity
queries, path queries, and subgraph queries.

Starting from the premises, the Mayfly based on memory-augmented network (Graves et al., 2014;
2016), is trained by one-shot meta-learning (Vinyals et al., 2016; Santoro et al., 2016) based on
two types of auto-generated meta-tasks, larval tasks and metamorphosis tasks, leading to two
corresponding training phases, larval and metamorphosis phases. In the larval phase, the Mayfly
learns the fundamental ability to summarize graph streams based on larval tasks generated from
synthetic data, focusing on the generalization ability. In the metamorphosis phase, the Mayfly
equipped with basic abilities is swiftly adapted to metamorphosis tasks, which are sampled from real
graph streams to enhance the specialization ability. The Mayfly adopts a novel method of jointly
storing edges/nodes information aligning with the workflow of conventional structures of graph
summarization and guaranteeing space efficiency. Moreover, we introduce information pathways
coupled with meta-learning guiding offering full coverage of diverse graph query types, liberating
the model from full retraining for each type. It simultaneously meets the ubiquitous need to execute
multiple query types following one-pass storing in graph streaming scenarios.

Our contributions include: We propose the Mayfly, the first neural graph stream summarization
structure based on memory-augmented networks with a novel storage paradigm and training strategies
tailored for graph stream scenarios. Mayfly takes the graph structure into account and can be rapidly
adapted to real graph stream distributions. It introduces a novel concept of altering information
pathways in memory networks to facilitate the expansion of multiple graph query types, which hold
the potential to facilitate research in other scenarios with diverse query types. Extensive empirical
studies show that our proposal significantly outperforms state-of-the-art methods.

2 RELATED WORKS

2.1 NEURAL DATA STRUCTURE

Mayfly draws inspiration from two recent neural data structures: NBF (Neural Bloom Filter) (Rae
et al., 2019) and MS (Meta-Sketch) (Cao et al., 2023). While NBF filters redundant streaming items
and MS counts streaming item frequencies, Mayfly introduces significant innovations. Primarily, it is
custom-designed for graph stream scenarios, emphasizing separate compressed storage for node and
edge weights, to capture graph structural information. In contrast, NBF and MS do not account for

2

Published as a conference paper at ICLR 2024

this structural information, making them less apt for such contexts. Additionally, the Mayfly solves
the NBF and MS’s dependencies on specific datasets by employing randomized IDs for pre-training.
A notable addition from Mayfly in neural data structures is the information pathway. Modifying these
pathways in the memory network facilitates the extension of query types in graph stream contexts.

2.2 GRAPH STREAM SUMMARIZATION

As outlined in Section 1, current methods for graph stream summarization primarily hinge on
summarization structures. Tracing back, graph stream summarization has evolved from traditional
graph summarization, with methods such as Sparsification (Li et al., 2022), Bit compression (Zhou
et al.), Tensor factorization (Fernandes et al., 2021), and GNN-based techniques (Shabani et al., 2023)
having been proposed. But the majority of these methods are designed for static graphs (Liu et al.,
2018). If one attempts to customize other dynamic graph methods to support graph streams, restricted
query capabilities and significantly reduced efficiency can not be avoided. For example, the classic
TimeCrunch (Shah et al., 2015) fails to support basic accumulated weight queries in stream contexts,
while the advanced Mosso (Ko et al., 2020) and its variant (Ma et al., 2021) suffer from significantly
throughput delays in handling stream tasks, performing at a rate approximately 103 times slower than
GSS (Gou et al., 2022). In contrast, the Mayfly’s primary focus lies in improving and advancing
summarization structures within the context of graph streams.

3 CONCEPTS

We formalize graph streams and define atomic queries supported by graph stream summarization to
clarify conceptual barriers. A graph stream SG (Definition 1) is represented by the directed graph
G(V,E), where V denotes the node set and E the edge set. Thus, for an arbitrary edge ej ∈ E, there
exist one or more streaming edges in SG with origin node o(ej) and destination node d(ej), so that
the weight of ej is equal to the summation of the weights of all corresponding streaming edges.

Definition 1 (Graph Streams (McGregor, 2014b; Gou et al., 2022)). A graph stream SG :
{x1, x2, . . .} is a time-evolving sequence, where each item xi represents a streaming edge from
origin node o(xi) to destination node d(xi) with incremental weight ∆wi at time i.

The technique stack of graph stream summarization builds upon three atomic query types: edge, node,
and connectivity queries (Tang et al., 2016; Gou et al., 2022). Among these, the edge query, which
retrieves the weight of a specified edge (Definition 2), is of paramount importance, since it serves
as the basis for evaluating other query types. Mayfly is primarily trained on meta-tasks related to
edge queries. Once trained, the Mayfly can be swiftly transited to the processing of node queries and
connectivity queries (Definition 3 and 4). More complex queries, such as path and subgraph queries,
can be disassembled to a series of atomic queries. For simplicity, we investigate the Mayfly training
guided by edge queries in Section 4 and study the extensions to other query types in Section 6.

Definition 2 (Edge Queries). An edge query, denoted as Qw(ej), aims to retrieve the cumu-
lative weight of a given edge ej on graph G(V,E) rendered by graph stream SG: Qw(ej) =∑

i|xi∈S,o(xi)=o(ej),d(xi)=d(ej)
∆wi.

Definition 3 (Node Queries). Given a node vm of graph G(V,E) rendered by graph stream SG, a
node query aims to retrieve either the sum of the cumulative weights of vm’s outgoing edges or its
incoming edges: Qnout

(vm) =
∑

i|xi∈S,o(xi)=vm
∆wi or Qnin

(vm) =
∑

i|xi∈S,d(xi)=vm
∆wi.

Definition 4 (Connectivity Queries). Given two nodes vm and vm′ in a graph G(V,E) represented
by graph stream SG, a connectivity query determines if there’s a directed edge ej from node vm to
node vm′ . Formally, Qc(vm, vm′) = True if ej ∈ E and False otherwise.

4 METHODOLOGY

4.1 OVERVIEW

Overall, the Mayfly framework utilizes a storage matrix M as the foundation for summarizing
graph streams by writing sequentially arriving streaming edges into it in one pass. Built upon the

3

Published as a conference paper at ICLR 2024

Graph Stream

Graph at

Graph at

Additive
Storing

Mayfly Framework

Store & Query
Only Store
Only Query

Streaming
edges

Larval Tasks

Subimago

Imago

Metamorphosis
Tasks

Larval Phase

Metamorphosis
Phase

Extended Query Types

Mayfly Training

≈ ≈

Figure 1: Mayfly Overview

storage matrix, the framework consists of three functional modules, namely Representation (R),
Addressing (A), and Decoding (D), as shown in Figure 1. Similar to traditional summarization
structures, we define two types of operations for the Mayfly in association with the three modules,
which are a unified Store operation and a customizable Query operation. Specifically, the Store
operation first inputs each incoming streaming edge intoR for representation learning, considering
the joint information of the two incident nodes of the incoming edge. Then, based on the address
obtained fromA, the representation vector and corresponding weights are written intoM. The Query
operation can be instantiated for different types of graph stream queries via the specific configuration
of information pathways. Remarkably, different Query operation instances generally follow a similar
process, where they utilize the address from A to read information vectors fromM and decode the
retrieved information through D to get the query result.

The Mayfly adopts the idea of meta-learning, which involves learning the ability to solve a class of
domain tasks from auto-generated meta-tasks, rather than memorizing a specific task. To satisfy the
one-pass processing for graph streams, we employ a one-shot meta-training strategy (Rae et al., 2019;
Vinyals et al., 2016), which enables efficient meta-optimization within a single base learning episode
(Hospedales et al., 2021). Moreover, the Mayfly benefits from the paradigm of “pre-training and
fine-tuning”, consisting of two training phases, the larval phase and the metamorphosis phase, to
gracefully handle the complex real-world graph stream applications. In the larval phase, the Mayfly
learns the fundamental techniques of summarizing graph streams by undergoing the training with
larval tasks, to reach the subimagio state. In the metamorphosis phase, the subimago form of the
Mayfly quickly transforms to the imago state, by rapid adapting to the metamorphosis tasks, to gain
the ability on the real graph streams.

4.2 MODULES

Representation (R). The main function of module R is to learn representations for an incoming
streaming edge xi, while edges are represented in the same way during the Query operation. We
use a set of representation vectors for node o(xi) and d(xi), denoted as {no(xi), nd(xi)}, to represent
streaming edge xi. The information of a streaming edge is implicitly encoded in these representation
vectors (i.e., “representing” function), which also serve as the basis for deriving the certain read/write
addresses (i.e., “addressing” function). Specifically,R contains a network component, the represen-
tation network fn. For a streaming edge xi, its out/in nodes o(xi), d(xi) ∈ V is numerically encoded
and then input to fn to get {no(xi), nd(xi)} ∈ Rln . The out/in bidirectional representation adequately
represents the stacked edges while avoiding confusion in both the outgoing and incoming directions.

R[xi]→R[{o(xi), d(xi)}]→ {fn(o(xi)), fn(d(xi))} → {no(xi), nd(xi)} (1)

We adopt a unified encoding for nodes of a graph stream, where for each node a unique numerical
ID (e.g., 1, 2, . . .) is assigned and then converted to binary encoding. The unified encoding strategy
allows the Mayfly to be independent of node information in a graph stream, conducting pre-training
independent of real dataset. By establishing the same encoding mapping for various streams, the
Mayfly can be trained once and deployed for multiple applications without being retrained.

Addressing (A). The moduleA aims to derive the read/write addresses on storage matrixM for each
streaming edge xi. To reconcile the conflict between the “representing” and “addressing” functions of
the representation vectors and increase the diversity of network pathways, we extract the intermediate

4

Published as a conference paper at ICLR 2024

representations (i.e., output results of a specific hidden layer in fn) of {fn(o(xi)), fn(d(xi))},
denoted as {no(xi)

′
, nd(xi)

′}, and input them into a network component fr to obtain the refined vector
set {fr(no(xi)

′
), fr(nd(xi)

′
)} → {ro(xi), rd(xi)} ∈ Rlr as the basis of addressing,

A[{no(xi)
′
, nd(xi)

′
}]→ SparseMax({β · (fr(no(xi)

′
))TN , β · (fr(nd(xi)

′
))TN})→ {ao(xi), ad(xi)} (2)

Here, N ∈ Rlr×ls is an addressing matrix with learnable parameters, which can be viewed as a
differentiable simulation of the hashing process used in traditional summarization structures (Rae
et al., 2019). Then, the matrix multiplication of N and the transpose of {ro(xi), rd(xi)} results in the
addresses ao(xi) and ad(xi). The two addresses, corresponding to out/in direction, jointly determine
the storage positions of the representation vectors (i.e., {no(xi), nd(xi)}) of a streaming edge within
ls

2 slots in the memory matrixM∈ Rls×ls×2ln . Specifically, we treat ao(xi) as the row address and
ad(xi) as the column address, and determine the specific storage positions ao(xi),d(xi) ∈ Rls×ls of
{no(xi), nd(xi)} inM. In combination with the out/in bidirectional representation vectors of length
2ln in one slot for different edges, M provides a joint compression storage for nodes and edges.
This efficient and interpretable novel storage paradigm not only provides sufficient information for
decoding, but also lays the foundation for the extension of multiple graph query types as shown in
Section 6. Moreover, we utilize a Sparse SoftMax (Laha et al., 2018; Martins & Astudillo, 2016) for
the normalization of addresses to reduce the noise in information stacking 1. The β is a learnable
scale value that controls the sparsity of addresses, which is verified in Appendix A.6.

Decoding (D). Given a query edge ej , the module D aims to decode the stacked information of ej
read fromM based on address ao(ej),d(ej) to obtain the corresponding query result. The module has
one network component fd,

D[ao(ej),d(ej)�M, no(ej)⊕nd(ej),W (SG)]→ fd(ao(ej),d(ej)�M, no(ej)⊕nd(ej),W (SG))→Q̂w(ej) (3)

Here, the representation vectors no(ej) and nd(ej) for ej , along with the total sum of all incremental
weights of the graph stream W (SG), are fed into fd as auxiliary decoding information, where symbol
⊕ denotes the vector concatenation operation. The ao(ej),d(ej) � M represents the operation for
reading ej’s information from matrix M. In this paper, the implementation of � adheres to the
classical content-based read mechanism (Wu et al., 2018; Rae et al., 2019; Graves et al., 2016; 2014),
and incorporates an auxiliary MinGain term:

ao(ej),d(ej) �M → ao(ej),d(ej) ⊗M︸ ︷︷ ︸
Content-Based Read

+ min(|ao(ej),d(ej) ⊗M|
n
o(ej)⊕n

d(ej))︸ ︷︷ ︸
MinGain Term

(4)

Here, the⊗ represents the summation of all slots inMweighted by address ao(ej),d(ej). The MinGain
term1 represents the minimum value in ao(ej),d(ej)⊗M after normalization based on no(ej)⊕nd(ej),
aiming to extract the crucial low numerical value bits for decoding but are easily overshadowed by
stacked noise from other large value bits. The detailed formalization is outlined in Appendix A.1.

4.3 OPERATIONS

• Operation Store is executed by feeding an incoming streaming edge xi intoR and A to obtain rep-
resentation vectors {no(xi), nd(xi)} and address ao(xi),d(xi). Then, concatenation vector is additively
stored toM after being multiplied by incremental weight ∆wi,

M =M+ ao(xi),d(xi) � (no(xi) ⊕ nd(xi)) ·∆wi (5)

Here, � represents element-wise matrix multiplication. Additive storing (Rae et al., 2019) is an
efficient and commonly used method in memory networks. Note that the out/in bidirectional storage
of origin node information no(xi) and destination node information nd(xi) are independent in one
memory slot(i.e., first ln bits are for no(xi) and last ln bits are for nd(xi)).

• Operation Query estimates the cumulative weight of a given query edge ej after storing a graph
stream SG. Firstly, representation vectors {no(ej), nd(ej)} and the address ao(ej),d(ej) are obtained,
following a similar process of the Store operation. Then, {ao(ej),d(ej) �M}, no(ej) ⊕ nd(ej) and the
summation of all weights W (SG) are jointly input into D to obtain the estimated weight Q̂w(ej).
For detailed description about operations, please refer to Appendix A.1.

1Relevant ablation experiments can be found in Appendix A.7

5

Published as a conference paper at ICLR 2024

4.4 TRAINING

The Mayfly employs a meta-learning training algorithm to endow effective parameters in all learnable
network modules, fn, fa,A, and fd. Adhering to the standard setup of meta-learning, the fundamental
unit of the Mayfly training is the meta-task, which guides the latent optimization direction. In our
paper, the Mayfly consists of two offline training phases in correspondence to two types of meta-tasks,
larval tasks and metamorphosis tasks. Both phases share the same training algorithm. And the formal
algorithms for training and generating meta tasks are discribed in Appendix A.2.

Training Algorithm. During training process, the Mayfly iterates over the set of larval tasks or
metamorphosis tasks. We can view the training process on a single task as simulating the storing and
querying of a graph stream instance while computing the error for optimizing the learnable modules.
Therefore, a (larval or metamorphosis) task tk consists of two parts, a support set sk and a query set
qk. The support set sk:{x(k)1 , x

(k)
2 , . . .} represents a graph stream instance S(k)G with streaming edges

{x(k)i }, while the query set qk:{e(k)1 : Qw(e
(k)
1), . . .} represents the edges {e(k)j } to be queried along

with their query results {Qw(e
(k)
j)}. We use the balanced (relative) mean squared error as the loss

function L with learned parameters λ1 and λ2 (Kendall et al., 2018),

L → (Qw(ej)− Q̂w(ej))
2/2λ2

1 + |Qw(ej)− Q̂w(ej)|/(2λ2
2Qw(ej)) + log λ1λ2 (6)

Larval Task Generation. In the larval phase, the target of larval tasks is to train the Mayfly with
basic abilities to summarize graph streams while maintaining generality to different graph streams. In
practical applications, the distribution of edge weights in a graph often follows skewed distributions,
especially the Zipf distributions (Kali, 2003; Chen & Wang, 2010; Aiello et al., 2002). So, we
constitute larval tasks by making the edge weights follow a wide range of Zipf distributions with
varied parameter α. The family of Zipf distributions constitute a distribution pool P . Note that
the Mayfly does not rely on the clumsy memorization of larval tasks. The basic summarization
capabilities learned in this phase apply for diverse graph streams beyond the larval tasks.

A larval task tk is generated through three steps, which essentially synthesize a graph stream S(k)G .
First, we synthesize streaming edges {x(k)i } with the stream length |S(k)G | ∈ [1, γ], where the two
nodes of a streaming edge are randomly sampled and encoded from a unified numerical ID space.
Second, a distribution instance p(k) is sampled from the distribution pool P . For each x(k)i , a weight
is assigned, which is obtained by the product of a total weight sum W (S(k)G) and a sample from the
distribution p(k). Finally, the synthetic graph stream S(k)G serves as the support set sk, and the query
result Qw(e

(k)
j) for all e(k)j s constitutes the query set qk.

Metamorphosis Task Generation. In the metamorphosis phase, the metamorphosis task aims to
capture and reflect typically skewed patterns found in real graph streams. If the empirical weight
distribution is available (e.g., from historical records or sampled episodes of real graph streams),
it can be used to generate the metamorphosis tasks. To generate metamorphosis tasks, we extract
consecutive portions of different lengths from the real stream. In addition, we intentionally blur the
relationship between edges and their weights in these extracted portions. This deliberate blurring
allows the metamorphosis tasks to effectively represent the concept drift characteristics of the stream
(see extra experiments in Appendix A.9).

5 EXPERIMENTS

5.1 SETUP

Datasets. We use four commonly used public graph stream datasets, comprising two medium-sized
datasets (Lkml, Enron) and two large-scale datasets (Coauthor, Twitter). The Lkml (Gou et al., 2022;
Xu & Zhou, 2018) and Enron Shin et al. (2020); Lee et al. (2020) pertain to communication/social
networks. Specifically, Lkml contains 1,096,440 communication records exchanged among 63,399
Linux kernel mail network nodes, and Enron captures 475,097 email exchanges across 17,733
addresses. Coauthor (Newman, 2001) represents the co-authorship social network among researchers,
embodying 2,668,965 streaming edges. The original Twitter dataset is static with no duplication,
encompassing 52,579,682 nodes and 1,963,263,821 edges. We follow the setting of (Gou et al., 2022),

6

Published as a conference paper at ICLR 2024

Table 1: Results in Lkml & Enron Dataset
Lkml Dataset Enron Dataset

Model Length 20K 80K 200K 800K 20K 40K 200K 400K
TCM
(B=64KB)

ARE 1.26±0.09 6.11±0.22 15.89±0.48 66.30±0.13 1.77±0.02 3.71±0.03 16.01±0.02 25.07±0.01
AAE 1.93±0.14 9.84±0.25 26.11±0.88 110.56±0.38 2.08±0.02 4.56±0.03 24.13±0.03 45.06±0.01

Subimago
(B=64KB)

ARE 6.24±1.97 11.21±4.07 18.12±5.83 42.96±1.18 3.80±0.03 4.13±0.03 7.51±0.05 10.00±0.01
AAE 9.05±3.20 18.33±7.19 31.16±11.14 77.07±2.35 4.30±0.03 4.91±0.03 11.13±0.04 17.73±0.01

Imago
(B=64KB)

ARE 0.94±0.05 1.33±0.06 2.07±0.07 5.86±0.01 1.00±0.01 1.10±0.01 2.37±0.01 3.42±0.01
AAE 1.57±0.08 2.62±0.12 3.92±0.12 9.62±0.03 1.18±0.01 1.43±0.01 3.72±0.00 6.14±0.01

TCM
(B=128KB)

ARE 0.52±0.05 2.77±0.10 7.34±0.19 31.34±0.05 0.66±0.01 1.50±0.01 6.90±0.01 10.82±0.01
AAE 0.81±0.08 4.55±0.11 12.34±0.29 53.44±0.16 0.79±0.01 1.87±0.02 10.57±0.01 19.82±0.01

Subimago
(B=128KB)

ARE 2.43±0.37 4.30±0.60 6.46±0.86 16.89±0.20 2.58±0.02 3.22±0.02 4.93±0.02 6.37±0.01
AAE 3.36±0.62 6.78±1.13 10.76±1.68 29.03±0.36 2.89±0.03 3.80±0.03 7.34±0.02 11.43±0.01

Imago
(B=128KB)

ARE 0.50±0.02 0.77±0.03 1.00±0.03 2.51±0.00 0.31±0.01 0.60±0.01 1.67±0.01 2.42±0.01
AAE 0.96±0.03 1.86±0.08 2.63±0.08 5.17±0.02 0.50±0.01 0.93±0.01 2.88±0.01 4.70±0.01

which assigns weights to all edges using Zipf distributions, resulting in 10,929,205,002 streaming
edges. These datasets exhibit varying degrees of deviation from the ideal Zipf distributions. Please
refer to the Appendix A.4 for the visualization of dataset statistics. In addition, each node in the four
datasets is assigned a numerical ID in binary encoding.

Baselines. We have chosen TCM and GSS as the competitors, which are SOTA under small budgets.
Two commonly accepted metrics, average absolute error (AAE) and average relative error (ARE), are
adopted for evaluation. The code for Mayfly has been included in the supplementary materials. GSS
and TCM, utilize the open-source code provided alongside their papers.

Parameters. We have implemented fn and fr in MLP with 5-layer and 2-layer of size 32, followed
by the batch normalization. The intermediate representation of the third layer of fn is fed into fr
as inputs. The fd is implemented in a 3-layer MLP with residual connections, where each layer is
of size 64. Relu function is chosen for layer connections. The space budget (B) of the Mayfly is
allocated to matrixM following the common setting of neural data structures (Rae et al., 2019).
Further parameter details, including module sizes and settings ofM, can be found in Appendix A.5.

Larval Phase. We set γ = 60, 000 and use the Zipf distributions with α ranging from 0.3 to 0.8 to
build the distribution pool P . The total weight sum is ranging from 5 to 50 times of the edges in
graph. The number of training steps is 500,000 and the learning rate is 0.0005.

Metamorphosis Phase. We split each dataset intoDtrain andDtest, using a 2:8 based on timestamps.
By doing so, there must be a large population of streaming edges in Dtest that never appear in Dtrain,
for examining the generality of the Mayfly. Dtrain is used for metamorphosis task generation, and
Dtest is used for testing. The number of training steps is only 10% of that in the larval phase.

5.2 RESULTS ON REAL DATASETS

We extract a set of sub-streams with different lengths from Dtest of two medium-sized real dataset,
Lkml and Enron, for testing how the data summarization technique scales. Table 1 shows the
performance on Lkml and Enron, where imago dominates TCM in all testing cases. For example,
the AAE of TCM is about 45 (Enron, B=64KB, length=400K), and the AAE of imago is only 6,
which is 6.5 times lower. Also, it shows that all methods degrade w.r.t. the stream length, while the
performances of imago and subimago are quite stable, compared to the dramatic degrading of TCM.
For example, when increasing the stream length from 20K to 800K (Lkml, B=64KB), the AAE value
of TCM increases about 52 times, while the AAE of imago only increases about 5 times, which is an
order of magnitude lower. An interesting point is that subimago outperforms TCM, when the stream
length is higher than 200K, demonstrating the strong zero-knowledge generality of Mayfly.

We evaluate the Mayfly’s performance on two large-scale datasets. For million-scale Coauthor, we
deploy a 256KB-sized Mayfly. For billion-scale Twitter dataset, we adopt a pragmatic approach
to circumvent the extensive training time of a higher-budgeted Mayfly. Specifically, we employ a
simple hash function, which evenly maps the streaming edges over a cluster of 128KB-sized Mayfly
instances. The space budget is 0.5GB, a reasonable but relatively small allocation, as in previous
settings (Tang et al., 2016; Gou et al., 2022). Table 2 shows Mayfly consistently outperforms TCM.

We proceed to compare the performance of our method with another SOTA, GSS. We find that GSS
incurs considerable missing hits when the budget is tight, so that the result is often not found for
low-weight querying edges. For example, in Figure 2, the hit rate of GSS is less than 20% in all
cases, while the hit rates of TCM and imago are 100%. To force the comparison happen, we consider

7

Published as a conference paper at ICLR 2024

Table 2: Results in Coauthor & Twitter Dataset
Model TCM Subimago Imago
Dataset ARE AAE ARE AAE ARE AAE
Coauthor(B=256KB,Length=2,000K) 13.41±0.01 61.70±0.01 4.51±0.01 19.32±0.01 1.54±0.01 8.81±0.01
Twitter(B=0.5GB,Length=10,000,000K) 63.02±0.12 245.25±0.51 16.30±0.08 63.53±0.37 2.18±0.01 8.50±0.05

Table 3: Results in Synthetic Datasets
B 64KB 128KB

Zipf 0.2 0.6 1 0.2 0.6 1

TCM ARE 15.45±0.02 18.12±0.02 20.70±0.06 6.71±0.01 7.61±0.01 8.36±0.01
AAE 33.13±0.09 77.50±0.08 41.21±0.08 38.58±0.03 32.54±0.03 16.66±0.02

SubImago ARE 1.23±0.01 2.05±0.01 5.31±0.24 1.01±0.01 1.72±0.01 4.45±0.03
AAE 6.92±0.01 8.48±0.02 10.58±0.44 5.61±0.01 7.14±0.01 8.80±0.08

ImagoLkml ARE 0.44±0.01 0.97±0.03 4.82±1.47 0.39±0.01 0.38±0.01 2.28±0.56
AAE 2.54±0.04 4.68±0.13 10.41±2.92 2.40±0.01 2.83±0.03 5.55±1.13

ImagoEnron ARE 0.48±0.01 1.06±0.01 3.37±0.01 0.17±0.01 0.60±0.01 2.21±0.05
AAE 2.66±0.01 4.82±0.02 7.17±0.07 1.05±0.01 3.21±0.01 4.92±0.09

the heavy edge query (Tang et al., 2016), a variant of the edge query which considers high-weight
edges. We compute the top 5% and top 10% heavy edges from the original data as the ground truth.
For each of the heavy edges, we retrieve its weight from imago, TCM, and GSS, and compare them
with the ground truth. The results on Lkml and Enron are shown in Figure 2 (a) and (b), respectively.
The result shows that the performance of imago dominates those of TCM and GSS. For example,
the AAE value of imago is about 14.5, while the AAE values of GSS and TCM are 23.9 and 55.6,
respectively (Enron, B=64KB, length= 400K).

200K 400K 600K 800K
Stream_length

0
2
4
6
8

AR
E

Top5%Imago
Top5%GSS
Top5%TCM
Top10%Imago
Top10%GSS
Top10%TCM

0
20
40
60
80
100

Hi
t_

ra
te

(%
)

Imago_hit
GSS_hit
TCM_hit

100K 200K 300K 400K
Stream_length

0
10
20
30
40
50
60

AA
E

Top5%Imago
Top5%GSS
Top5%TCM
Top10%Imago
Top10%GSS
Top10%TCM

0
20
40
60
80
100

Hi
t_

ra
te

(%
)

Imago_hit
GSS_hit
TCM_hit

(a) Lkml (b) Enron

Figure 2: Heavy Edge Queries and Hit Rates

10

0 500 1000 1500 20000

2

Adaption_step

AR
E

TCM
Mayfly

7.0

7.5

8.0

0 500 1000 1500 20000.0

0.5

1.0

Adaption_step

AR
E

TCM
Mayfly

(a) zipf:1.0 (b) zipf:0.4

Figure 3: Concept Drifts

5.3 RESULTS ON SYNTHETIC DATASET

To investigate Mayfly’s performance in potential data stream concept drift (i.e., distributional shift)
scenarios, we evaluate subimago on synthetic graph streams of length 500K, where the accumulative
weight of an edge follows Zipf distributions with α ∈ {0.2, 0.6, 1.0}. Note that 0.2 and 1.0 are not
covered by the distribution pool P in the larval phase, for testing the generalization. We also examine
the performance of imagos, which have been adapted to Lkml and Enron, on synthetic datasets. Table
3 demonstrates the result on synthetic graph streams, where subimago outperforms TCM in all testing
cases, highlighting its robust zero-knowledge generalization capabilities. For example, when Zipf
parameter α is 0.2 with 64KB budget, the ARE of subimago is 1.23, whereas the ARE of TCM is
15.45. Furthermore, the performance of imago remains impressive, indicating that Mayfly retains its
robust generalization capabilities, even after adapting to specific distributions.

To delve deeper into concept drifts, we show the real-time performance of imago on several different
distributions, when adapting to a specific Zipf distribution α=1.0. The Figure 3 along with the
Figure 12 in Appendix A.12 shows a significant improvement with the adapted Zipf distribution
α=1.0. Meanwhile there is a slight fluctuation with other distributions α ∈ {0.4, 0.6, 0.8}, imago
still exhibits superior performance. For more analysis of concept drifts, please refer to Appendix A.9.

6 EXTENSION

6.1 EXTENSION TO ATOMIC QUERIES BY CONSTRUCTING NEW INFORMATION PATHWAY

After the metamorphosis phase, the imago form of the Mayfly has acquired the capability in summa-
rizing graph streams and handling edge queries, laying down a foundation for other types of queries.
We study on extending the Mayfly to two other new types of atomic queries on graph streams, node
queries and connectivity queries by constructing new information pathways coupled with adding new
decoding modules, rather than starting the entire training process from scratch.

8

Published as a conference paper at ICLR 2024

20K 40K 60K 80K 100K
Stream_length

0.5
0.6
0.7
0.8
0.9
1.0

AC
C

Imago
TCM
Imago10

Imago30
Imago50

Figure 4: Connectivity Query

5K 10K 15K 20K 25K
Stream_length

0
50

100
150
200
250

AA
E

128KB_TCM
128KB_Imago
64KB_TCM
64KB_Imago

Figure 5: Node Query

1 2 3 4 5
Path_length

0.0
0.5
1.0
1.5
2.0
2.5
3.0

AA
E

128KB_TCM
128KB_Imago
64KB_TCM
64KB_Imago

Figure 6: Path Query

2 4 6 8 10
Scale_ratio()

0
50

100
150
200
250

AA
E

128KB_TCM
128KB_Imago
64KB_TCM
64KB_Imago

Figure 7: Subgraph Query

Firstly, we craft new information pathways for the new atomic queries, which determine how the
information inM is utilized. Subsequently, we introduce new Decoding modules trained on relevant
meta-tasks for new atomic queries. This approach enables Mayfly to adapt to new atomic query types
by solely updating the new Decoding modules while keeping other module parameters unchanged.

We elaborate this extension strategy using node queries which have significantly different information
pathways from the edge queries. Firstly, for a given query node vm, we derive vector nvm and
address avm using the representation and addressing modules. As described in Section 4.3, the
source and destination node information of streaming edges are stored separately within a single
slot ofM. Specifically, the source node information occupies the first ln positions of the slot, while
the destination node information occupies the remaining ln positions. Therefore, Qnout

(vm) is
relevant to the sliceMo ∈ Rls×ls×ln constituted by the first ln of 2ln positions for all slots inM,
and Qnin

(vm) is relevant to the slice constituted by the rest ln positions,Md =M−Mo. Next,
the retrieved information avm �Mo (or avm �Md), along with the auxiliary information nvm and
W (SG), are jointly input into the decoding module to obtain the estimated Q̂nout

(or Q̂nin
):

D[avm �Mo/d, nvm ,W (SG)]→ fd(avm �Mo/d, nvm ,W (SG))→ Q̂nout/in
(7)

Figure 5 shows the performance of the imago on Qnout
on Lkml, which significantly outperforms

that of TCM, especially when the length of the graph stream increases.

The operation of connectivity queries is similar to that of edge queries with the sole distinction being
that the output of the decoding module takes the form of binary classification labels indicating the
connectivity. In addition, we examine the query accuracy for high-weight edges, which are more
significant in the graph (Tang et al., 2016). We use edges with top 50%, 30%, and 10% weights
as positive samples in test tasks. Figure 4 shows the accuracy of the extended imago form of the
Mayfly on the test tasks, based on Dtest of the Lkml dataset. It demonstrates that imago exhibits a
more stable performance, especially for high-weight connectivity queries over varied stream lengths.
Conversely, TCM exhibits insensitivity to edge weights and incurs a notable performance drop.

6.2 EXTENSION TO MISCELLANEOUS QUERIES BY INVOKING ATOMIC QUERIES

Consistent with TCM and GSS, we could amalgamate multiple invocations of the above atomic
queries to cater to a diverse range of graph queries. We construct and evaluate the path queries
and subgraph queries (Tang et al., 2016) using edge queries and connectivity queries as the main
building blocks. The graph path queries aim to find the maximum flow along a given path which is a
sequence of directed edges. The subgraph queries retrieve the aggregated weight for the edges within
the subgraph. For detailed information about these query semantics, please refer to Appendix A.10.
Figures 6 and 7 demonstrate the results of two queries (Lkml, length = 20K). It shows that imago
outperforms TCM on path queries in all cases. Also, imago exhibits superior performance to TCM in
subgraph queries, showing much better stability as the size of the subgraph increases.

7 CONCLUSION

In this paper, we propose the first neural data structure for graph stream summarization, called the
Mayfly. The Mayfly is based on memory-augmented networks and meta-learning, allowing it to be
pretrained through automatic and synthetic meta-tasks, and rapidly adapt to real data streams. With
specific configurations of information pathways, the Mayfly enables flexible support for a broad
range of graph queries, including edge, node, path, and subgraph queries. We conduct extensive
experiments and detailed analysis to demonstrate the superiority of the Mayfly compared to its
handcrafted competitors and gain insights into our proposals.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work is supported by NSFC (No.61772492, 62072428).

REFERENCES

Charu C Aggarwal, Yao Li, Philip S Yu, and Ruoming Jin. On dense pattern mining in graph streams.
Proceedings of the VLDB Endowment, 3(1-2):975–984, 2010.

Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measure-
ments. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pp. 459–467. SIAM, 2012.

William Aiello, Fan Chung, and Linyuan Lu. Random evolution in massive graphs. Handbook of
massive data sets, pp. 97–122, 2002.

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models and
issues in data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pp. 1–16, 2002.

Dimitris Bertsimas and Vassilis Digalakis. Frequency estimation in data streams: Learning the
optimal hashing scheme. IEEE Transactions on Knowledge and Data Engineering, 2021.

Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A survey. Internet
mathematics, 1(4):485–509, 2004.

Yukun Cao, Yuan Feng, and Xike Xie. Meta-sketch: a neural data structure for estimating item
frequencies of data streams. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 6916–6924, 2023.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
Automata, Languages and Programming: 29th International Colloquium, ICALP 2002 Málaga,
Spain, July 8–13, 2002 Proceedings 29, pp. 693–703. Springer, 2002.

Lei Chen and Changliang Wang. Continuous subgraph pattern search over certain and uncertain
graph streams. IEEE Transactions on Knowledge and Data Engineering, 22(8):1093–1109, 2010.

Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the count-min
sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

Alessandro D’Alconzo, Idilio Drago, Andrea Morichetta, Marco Mellia, and Pedro Casas. A survey
on big data for network traffic monitoring and analysis. IEEE Transactions on Network and Service
Management, 16(3):800–813, 2019.

Sofia Fernandes, Hadi Fanaee-T, and João Gama. Tensor decomposition for analysing time-evolving
social networks: An overview. Artificial Intelligence Review, 54:2891–2916, 2021.

Xiangyang Gou, Lei Zou, Chenxingyu Zhao, and Tong Yang. Graph stream sketch: Summariz-
ing graph streams with high speed and accuracy. IEEE Transactions on Knowledge and Data
Engineering, 2022.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, 2016.

Sudipto Guha and Andrew McGregor. Graph synopses, sketches, and streams: A survey. Proceedings
of the VLDB Endowment, 5(12):2030–2031, 2012.

Jin B Hong, Dong Seong Kim, Chun-Jen Chung, and Dijiang Huang. A survey on the usability and
practical applications of graphical security models. Computer Science Review, 26:1–16, 2017.

10

Published as a conference paper at ICLR 2024

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019.

Zhiguo Jiang, Hanhua Chen, and Hai Jin. Auxo: A scalable and efficient graph stream summarization
structure. Proceedings of the VLDB Endowment, 16(6):1386–1398, 2023.

Raja Kali. The city as a giant component: a random graph approach to zipf’s law. Applied Economics
Letters, 10:717 – 720, 2003.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7482–7491, 2018.

Jihoon Ko, Yunbum Kook, and Kijung Shin. Incremental lossless graph summarization. In Proceed-
ings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 317–327, 2020.

Deyu Kong, Xike Xie, and Zhuoxu Zhang. Clustering-based partitioning for large web graphs. In
2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 593–606. IEEE, 2022.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proceedings of the 2018 international conference on management of data, pp.
489–504, 2018.

Anirban Laha, Saneem Ahmed Chemmengath, Priyanka Agrawal, Mitesh Khapra, Karthik Sankara-
narayanan, and Harish G Ramaswamy. On controllable sparse alternatives to softmax. Advances
in neural information processing systems, 31, 2018.

Dongjin Lee, Kijung Shin, and Christos Faloutsos. Temporal locality-aware sampling for accurate
triangle counting in real graph streams. The VLDB Journal, 29:1501–1525, 2020.

Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza Zafarani. Graph
sparsification with graph convolutional networks. International Journal of Data Science and
Analytics, pp. 1–14, 2022.

Yi Li, Honghao Lin, Simin Liu, Ali Vakilian, and David Woodruff. Learning the positions in
countsketch. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=iV9Cs8s8keU.

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods and
applications: A survey. ACM computing surveys (CSUR), 51(3):1–34, 2018.

Yongqiang Liu and Xike Xie. Xy-sketch: on sketching data streams at web scale. In Proceedings of
the Web Conference 2021, WWW ’21, pp. 1169–1180, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3449984. URL
https://doi.org/10.1145/3442381.3449984.

Yongqiang Liu and Xike Xie. A probabilistic sketch for summarizing cold items of data streams.
IEEE/ACM Transactions on Networking, 2023.

Ziyi Ma, Jianye Yang, Kenli Li, Yuling Liu, Xu Zhou, and Yikun Hu. A parameter-free approach for
lossless streaming graph summarization. In Database Systems for Advanced Applications: 26th
International Conference, DASFAA 2021, Taipei, Taiwan, April 11–14, 2021, Proceedings, Part I
26, pp. 385–393. Springer, 2021.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International conference on machine learning, pp. 1614–1623.
PMLR, 2016.

Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20, 2014a.

11

https://openreview.net/forum?id=iV9Cs8s8keU
https://doi.org/10.1145/3442381.3449984

Published as a conference paper at ICLR 2024

Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20, 2014b.

Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby Bhattacharjee.
Measurement and analysis of online social networks. In Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement, pp. 29–42, 2007.

Mark EJ Newman. The structure of scientific collaboration networks. Proceedings of the national
academy of sciences, 98(2):404–409, 2001.

Jack Rae, Sergey Bartunov, and Timothy Lillicrap. Meta-learning neural bloom filters. In International
Conference on Machine Learning, pp. 5271–5280. PMLR, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In International conference on machine
learning, pp. 1842–1850. PMLR, 2016.

Nasrin Shabani, Jia Wu, Amin Beheshti, Quan Z. Sheng, Jin Foo, Venus Haghighi, Ambreen Hanif,
and Maryam Shahabikargar. A comprehensive survey on graph summarization with graph neural
networks, 2023.

Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. Timecrunch: Inter-
pretable dynamic graph summarization. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 1055–1064, 2015.

Kijung Shin, Sejoon Oh, Jisu Kim, Bryan Hooi, and Christos Faloutsos. Fast, accurate and provable
triangle counting in fully dynamic graph streams. ACM Transactions on Knowledge Discovery
from Data (TKDD), 14(2):1–39, 2020.

Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large distributed graphs. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 1222–1230, 2012.

Nan Tang, Qing Chen, and Prasenjit Mitra. Graph stream summarization: From big bang to big crunch.
In Proceedings of the 2016 International Conference on Management of Data, pp. 1481–1496,
2016.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Yan Wu, Greg Wayne, Alex Graves, and Timothy Lillicrap. The kanerva machine: A generative
distributed memory. arXiv preprint arXiv:1804.01756, 2018.

Yulin Xu and Minghui Zhou. A multi-level dataset of linux kernel patchwork. In Proceedings of the
15th international conference on mining software repositories, pp. 54–57, 2018.

Peixiang Zhao, Charu C Aggarwal, and Min Wang. gsketch: On query estimation in graph streams.
arXiv preprint arXiv:1111.7167, 2011.

Peixiang Zhao, Charu Aggarwal, and Gewen He. Link prediction in graph streams. In 2016 IEEE
32nd international conference on data engineering (ICDE), pp. 553–564. IEEE, 2016.

Houquan Zhou, Shenghua Liu, Kyuhan Lee, Kijung Shin, Huawei Shen, and Xueqi Cheng. DPGS:
Degree-Preserving Graph Summarization, pp. 280–288. doi: 10.1137/1.9781611976700.32. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611976700.32.

Kai Zou, Xike Xie, Qi Li, and Deyu Kong. Gx-plug: a middleware for plugging accelerators to
distributed graph processing. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE), pp. 2682–2694, 2022. doi: 10.1109/ICDE53745.2022.00246.

12

https://epubs.siam.org/doi/abs/10.1137/1.9781611976700.32

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 DETAILS OF MAYFLY OPERATIONS

Algorithm1 describes the details of Mayfly’s operations on a (stream) edge xi or ej , including
dimensions conversion operations and broadcast operations.

Algorithm 1: Details of Mayfly Operations
Operation Store(o(xi), d(xi), ∆wi,M):

no(xi), no(xi)
′
, nd(xi), nd(xi)

′
← Representation(R)(o(xi), d(xi))

ao(xi), ad(xi) ← Addressing(A)(no(xi)
′
, nd(xi)

′
)

ao(xi),d(xi) ← ao(xi)(ad(xi))T

nxi ← no(xi) ⊕ nd(xi)

nxi ← ChangeShape(nxi ,R2ln ,Rls×ls×2ln)

ao(xi),d(xi) ← ChangeShape(ao(xi),d(xi),Rls×ls ,Rls×ls×2ln)

M =M+ ao(xi),d(xi) � nxi ·∆wi

Operation Query(o(ej), d(ej),M, W (SG)):
no(ej), no(ej)

′
, nd(ej), nd(ej)

′
← Representation(R)(o(ej), d(ej))

ao(ej), ad(ej) ← Addressing(A)(no(ej)
′
, nd(ej)

′
)

ao(ej),d(ej) ← ao(ej)(ad(ej))T

Q̂w(ej)← Decoding(D)({ao(ej),d(ej) �M}, no(ej) ⊕ nd(ej),W (SG));
return Q̂w(ej);

Module Representation(R)(o(xi), d(xi)):
no(xi), no(xi)

′
← fn(o(xi))

nd(xi), nd(xi)
′
← fn(d(xi))

return no(xi), no(xi)
′
, nd(xi), nd(xi)

′

Module Addressing(A)(no(xi)
′
, nd(xi)

′
):

ro(xi) ← fr(o(xi)
′); rd(xi) ← fr(d(xi)

′)

ao(xi) ← β · (ro(xi))TN ; ad(xi) ← β · (rd(xi))TN
ao(xi) ← SparseMax(ao(xi)); ao(di) ← SparseMax(ao(di))

return ao(xi), ad(xi)

Module Decoding(D)({ao(ej),d(ej)�M}, no(ej) ⊕ nd(ej),W (SG)):
nej ← no(ej) ⊕ nd(ej)

cej ← ContentBasedRead(M, ao(ej),d(ej))

ce
′
j ←MinGain(cej , nej)

info← Concatenate(cej , ce
′
j ,W (SG))

Q̂w(ej)← fd(info)

return Q̂w(ej)

Function ChangeShape(Vector, Rn,Rm):
Change shape of a vector from Rn to Rm

return vector
Function ContentBasedRead(M , ao(ej),d(ej)):

ao(ej),d(ej) ← ChangeShape(ao(ej),d(ej),Rls×ls ,R1×(ls)
2

)

M′ ← ChangeShape(M,Rls×ls×2ln ,R(ls)
2×2ln)

cej = ao(ej),d(ej)M′
cej ← ChangeShape(mj ,R1×2ln ,R2ln)
return cej

Function MinGain(cej ,nej):
n
ej
1 ← where(nej > ε, nej , ε)
n
ej
2 ← where(nej < ε,MAX, 0)

ce
′
j = [(cej + n

ej
2)/n

ej
1].min()

return ce
′
j

13

Published as a conference paper at ICLR 2024

A.2 DETAILS OF TRAINING ALGORITHM FOR MAYFLY

We give a detailed training algorithm of Mayfly in Algorithm 2.

Algorithm 2: Mayfly Training Framework

Data: Mayfly (R,A,D) with all learnable parameters θ, larval task set T L or metamorphosis
task set T M ;

for each task tk : (sk, qk) ∈ T L/T M do
Initialize W (S

(k)
G) = 0;

for x(k)i ∈ sk do
Store(o(x(k)i), d(x

(k)
i), ∆w

(k)
i ,M);

W (S
(k)
G)+ = ∆w

(k)
i

for e(k)j , Qw(e
(k)
j) ∈ qk do

Q̂w(e
(k)
j)← Query(o(e(k)j), d(e

(k)
j),M, W (S

(k)
G));

L+ = LossFunc(Qw(e
(k)
j), Q̂w(e

(k)
j));

Backprop through queries and stores: dL/dθ;
Update learnable parameters: θ ← Optimizer(θ, dL/dθ);
Normalize N ;
ClearM;

A.3 DETAILS OF ALGORITHM FOR LARVAL/METAMORPHOSIS TASK GENERATION

The detailed generating algorithms for larval/metamorphosis meta-tasks are shown in Algorithm 3
and Algorithm 4, respectively.

Algorithm 3: Generating a Larval Task
Data: Zipf distribution pool P; Stream length range [1, γ];
Result: A larval task tk;
Sample a stream length |S(k)

G | from [1, γ];

Sample a total weight sum W (S
(k)
G) from

[
5× |S(k)

G |, 50× |S(k)
G |

]
;

Sample a distribution instance p(k) ∼ P ;

for i ∈
[
1, |S(k)

G |
]

do

Systhesize a streaming edge x(k)i ;
Sample p(k)i ∼ p(k) and ∆w

(k)
i ←W (S

(k)
G)× p(k)i ;

add x(k)i to the tk’s store set (sk) with weight ∆w
(k)
i ;

Construct tk’s query set (qk) with all (e
(k)
j , Qw(e

(k)
j));

return a larval task tk;

Table 4: Hyper-parameters Considered

Learning rate 1E-4,5E-4,1E-3
Hidden size of fn 32,64
Hidden size of fr 32,64
Hidden size of fd 32,64,128

A.4 VISUALIZATION OF DATASETS

Table 6 shows the statistics of each datasets. We also present the distributional characteristics of
Enron, LKML and Coauthor datasets on a log-log scale in Figure 8. These datasets exhibit varying

14

Published as a conference paper at ICLR 2024

Algorithm 4: Generating a Metamorphosis Task
Data: Training set Dtrain;
Result: A metamorphosis meta-task tk;
Sample a stream length |S(k)

G | from [1, |Dtrain|];
Extract a continuous substream from Dtrain with length |S(k)

G | as support set sk;
Shuffle the correspondence between edges and their weights in support set sk;
Multiply all weight ∆wi in support set sk by a multiplier y ∈ [1, 10];
Construct tk’s query set qk with all (e

(k)
j , Qw(e

(k)
j));

return a metamorphosis task tk;

Table 5: Settings of N andM

B ls ln lr
64KB 32 8 16
128KB 45 8 16

degrees of deviation from the ideal Zipf distribution, which is typically represented as a straight line
in the figure.

A.5 DETAILED SETTINGS OF EXPERIMENT

We did not deliberately tune the parameters of the Mayfly. Instead, we tried a few conventional neural
network settings in Table 4 (best parameters are bolded) on an early instance of Mayfly and settled
on one that strikes a balance between accuracy and efficiency. All the other experiments just simply
followed the same setup. In addition, the default settings of N ∈ Rlr×ls andM∈ Rls×ls×2ln under
different budgets are shown in Table 5. Table 7 below presents a detailed breakdown of parameters
for each network module, alongside the classic networks AlexNet and VGG16 for comparison.
They are all small-scale neural networks with relatively low storage and training overheads. In
addition, according to the consensus in neural data structures, the overheads of other modules can be
amortized across different applications (Rae et al., 2019; Cao et al., 2023). After training, they can be
copied to multiple application scenarios, analogous to the overhead of loading hash function libraries
dynamically in TCM.

All of our experiments run at a NVIDIA DGX workstation with CPU Xeon-8358 (2.60GHz, 32
cores), and 4 NVIDIA A100 GPUs (6912 CUDA cores and 80GB GPU memory on each GPU).

A.6 ADDRESSING MECHANISM

We gain insights into the addressing mechanism of the Mayfly by observing key variables in the
addressing module during the larval phase. According to the properties of Sparse SoftMax (Laha
et al., 2018; Martins & Astudillo, 2016), the 2-norm of β continuously changes to control the sparsity
of addresses (i.e., the proportion of non-zero bits in the vector), while the 2-norms of other variables,
such as representation vectors and refined vectors, remain stable, as shown in Figure 9 (a). It is also
evident that the 2-norm of β increases progressively to encourage the sparsity of addresses, ultimately
converging to 1, as shown in Figure 9 (a) and (b). It indicates that the Mayfly tends to allocate
the cumulative information of an edge to only one slot ofM, thus alleviating information overlap.
Moreover, Figure 9 (c) shows that the variance of the number of stored edges across multiple slots

Datasets Lkml Enron Coauthor Twitter
Number of Nodes 63,399 17,733 40,421 52,579,682
Number of Streaming Edges 1,096,440 475,097 2,668,965 10,929,205,002
Graph Type Communication Communication Co-authorship Social

Table 6: Statistics of Datasets

15

Published as a conference paper at ICLR 2024

0 10 100 1000 10000
Rank

0

10

100

1000

W
ei

gh
t

Zipf
Enron

0 10 100 1000 10000
Rank

0

10

100

W
ei

gh
t

Zipf
Lkml

0 1000 1000000
Rank

0

10

100

1000

W
ei

gh
t

Zipf
Coauthor

(a) Enron Dataset (b) Lkml Dataset (c) Coauthor Dataset

Figure 8: Visualization of Datasets

Table 7: Module Parameters

Model Parameter Mayfly64KB Mayfly128KB Mayfly256KB AlexNet VGG16
Embedding Module 1.93K 1.93K 1.93K - -
Addressing Module 2.09K 2.30K 2.62K - -
Decoding Module 5.27K 5.27K 5.27K - -
Total 9.29K 9.51K 9.82K 60907.38K 1115786.64K

inM continuously decreases, indicating its automatic learning of evenly storing edges to the set of
slots to maximize the storage utilization.

A.7 ABLATION STUDY

Ablation experiments, as shown in Figure 10, show that Mayfly with MinGain leads to faster
convergence, enhanced stability, and superior training performance.We further conducted ablation
experiments for Sparse softmax, which demonstrates that the Mayfly with Sparse softmax achieves
faster convergence rates and better performance during training.

A.8 THROUGHPUT

We evaluate the throughput of Mayfly in comparison with TCM and GSS in Table 8. Mayfly and
TCM use a space budget of 64KB for processing Lkml of length 800,000. As an exception, GSS is
allowed to allocate extra space if its 64KB budget is exhausted. For the implementation on CPUs, the
Mayfly (Python) achieves a similar querying throughput to GSS (C++), while TCM (C++) performs
the best, due to its simple hash-based structure. However, by employing simple parallel algebraic
operations on GPUs, Mayfly achieves a remarkably high throughput, which is about 28 and 18 times
higher than the storing and querying throughputs of TCM on CPUs. Mayfly may benefit from the
growing trend of integrating GPU-based neural data structures in streaming applications, where inputs
are either ephemeral or at high throughputs (Rae et al., 2019).

Table 8: Result of Throughput (Mops)

Model Store Edge-query Node-query Model Store Edge-query Node-query
Mayfly(GPU) 64.01 54.98 27.09 TCM(CPU) 2.18 2.10 1.40
Mayfly(CPU) 0.09 0.43 0.13 GSS(CPU) 0.55 0.58 0.10

A.9 ROBUST FOR DYNAMIC CONCEPT DRIFT

A simple approach for learned data structures leverages neural networks to predict and classify
high/low-frequency items, thereby reducing hash conflicts and prediction errors (Hsu et al., 2019).
However, this approach lacks robustness against dynamic drift in data streams. In contrast, our
proposed Mayfly does not mechanically memorize the correspondence between specific items and
their frequencies (see metamorphosis task generation in section 4.4), providing robustness against
concept drift in dynamic stream scenarios.

To demonstrate the efficacy of the Mayfly on the dynamic drift, we implement an enhanced version of
the TCM, termed LTCM, as per previous work (Hsu et al., 2019). The LTCM optimizes by capturing

16

Published as a conference paper at ICLR 2024

0M 0.1M 0.2M 0.3M 0.4M 0.5M
Train_step

0

40

80

120

160

2-
No

rm

|| ||2
||ro(xi)||2
||no(xi)||2

0K 2K 4K 6K 8K 10K
Train_step

0

4

8

12

16

Ad
dr

es
s_

sp
ar

sit
y

0M 0.1M 0.2M 0.3M 0.4M 0.5M
Train_step

0.0

0.4

0.8

1.2

1.6

Va
r_

of
_s

to
re

d_
ed

ge
s

(a) ||β||2 ,||ro(xi)||2 and ||no(xi)||2(b) Average Sparsity of Addresses (c) Average Variance of Edges

Figure 9: Addressing Analysis

0K 100K 200K 300K 400K 500K
Train_step

0

10

20

30

AR
E

Mayfly_Baseline
MinGain_Ablation
SparseMax_Ablation

0K 100K 200K 300K 400K 500K
Train_step

0

10

20

30
AR

E
Mayfly_Baseline
MinGain_Ablation
SparseMax_Ablation

0K 100K 200K 300K 400K 500K
Train_step

0

10

20

30

AR
E

Mayfly_Baseline
MinGain_Ablation
SparseMax_Ablation

0K 100K 200K 300K 400K 500K
Train_step

0

10

20

30

AR
E

Mayfly_Baseline
MinGain_Ablation
SparseMax_Ablation

(a) zipf:0.6 Length:40K (b) zipf:0.6 Length:80K (c) zipf:0.8 Length:40K (d) zipf:0.8 Length:80K

Figure 10: Ablation Study

1% and 5% of high-frequency terms. We select a real substream (B=64KB, Lkml) of length 80K from
Dtest, and progressively shuffle the item-frequency correspondence as shown in Figure 11. As the
shuffle ratio increases from 0% to 100%, the AAE of the Mayfly fluctuates minimally between 2.40
and 2.62. In contrast, the AAE of LTCM (5%) starts at 8.34 and escalates to 10.60. This increase is
attributed to the classifier of LTCM incurring more errors due to the dynamic shift, leading to a rise
in estimation error and ultimately surpassing the original TCM’s average AAE of 9.84.

0.0 0.2 0.4 0.6 0.8 1.0
Shuffle_ratio

1
2
3
4
5
6
7

AR
E

TCM
LTCM_1%
LTCM_5%
Imago

(a) ARE

0.0 0.2 0.4 0.6 0.8 1.0
Shuffle_ratio

2
4
6
8

10

AA
E

TCM
LTCM_1%
LTCM_5%
Imago

(b) AAE

Figure 11: LTCM vs. Mayfly

A.10 DEFINITION OF COMPLEX QUERY

We provide formal definitions for path queries and subgraph queries (see Analysis Section).

Path Query. We adopt a prevalent path query, maximum flow path query, as detailed in Algorithm 5.
The maximum flow in a path defined by a finite set of directed edges, corresponds to the minimum
edge weight in the path. Note that the maximum flow defaults to 0 if any edge is not exist.

Subgraph Query. The Subgraph Query, as detailed in Algorithm 6, adheres to the query semantics
of TCM. Its objective is to compute the sum of the weights of all edges in a subgraph GQ of the
original graph G.

17

Published as a conference paper at ICLR 2024

Algorithm 5: Path Query
Data: graph G; query path ψ; result = MAX_INT
Result: the maximum flow in ψ
for e ∈ ψ do

if not Qc(o(e), d(e)) then
result=0;
break;

if Qw(e) < result then
result = Qw(e);

return result;

Algorithm 6: Subgraph Query
Data: graph G; query subgraph GQ; result = 0
Result: the aggregated weight of query subgraph GQ

for e ∈ GQ do
if not Qc(o(e), d(e)) then

result=0;
break;

else
result += Qw(e);

return result;

A.11 LIMITATION AND FUTURE WORK

As the inaugural neural data structure for graph stream summarization, the Mayfly presents substantial
opportunities for enhancement. However, our focus is not on its intentional optimization. Insights into
the workings of each Mayfly module can be found in the Analysis Section. For example, exploiting
the prevalent sparsity in addresses could markedly improve storage and query efficiency. Moreover,
integrating additional effective reading heads could notably boost query accuracy.

A.12 SUPPLEMENTARY RESULTS

Due to the space constraint, the real-time performance of imago with α ∈ {0.6, 0.8} under concept
shift is shown in Figure 12.

8.0

8.5

9.0

0 500 1000 1500 20000.0

0.5

1.0

Adaption_step

AR
E

TCM
Mayfly

9.0

9.5

10.0

0 500 1000 1500 20000.0

0.5

1.0

Adaption_step

AR
E

TCM
Mayfly

(a) zipf:0.6 (b) zipf:0.8

Figure 12: Other Concept Drifts

18

	Introduction
	Related Works
	Neural Data Structure
	Graph Stream Summarization

	Concepts
	Methodology
	Overview
	Modules
	Operations
	Training

	Experiments
	Setup
	Results on Real Datasets
	Results on Synthetic Dataset

	Extension
	Extension to Atomic Queries By Constructing New Information Pathway
	Extension to Miscellaneous Queries By invoking Atomic Queries

	Conclusion
	Appendix
	Details of Mayfly Operations
	Details of Training Algorithm for Mayfly
	Details of Algorithm for Larval/Metamorphosis Task Generation
	Visualization of Datasets
	Detailed Settings of Experiment
	Addressing Mechanism
	Ablation Study
	Throughput
	Robust for Dynamic Concept Drift
	Definition of Complex Query
	Limitation and Future Work
	Supplementary results

