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Abstract

Large Multimodal Models (LMMs) extend Large
Language Models (LLMs) by handling diverse
inputs such as images, audio, and video, but at
the cost of adding a multimodal encoding stage
that increases both computational and memory
overhead. This step negatively affects key Service
Level Objectives (SLOs), such as time to first to-
ken (TTFT) and time per output token (TPOT).
‘We introduce Encode-Prefill-Decode (EPD) Dis-
aggregation, a novel framework that separates the
encoding, prefill, and decode stages onto dedi-
cated resources. Unlike current systems, which
bundle encoding and prefill together, our approach
decouples these steps, unlocking new opportuni-
ties and optimizations. These include a mech-
anism to cache multimedia tokens for efficient
transfer, a novel way to parallelize the encod-
ing load within a request, a module for opti-
mal resource allocation for disaggregated serv-
ing, and a novel role-switching method to handle
changing workload characteristics. Experimen-
tal evaluations with popular LMMs show sub-
stantial gains in memory efficiency (up to 15x
lower peak memory utilization), batch sizes (up
to 22x larger), 10x more images per request,
and 2.2x larger KV caches. Furthermore, it
leads to significant improvements in SLO attain-
ment (up to 90-100% improvement) and TTFT
(up to 71% reduction), compared to systems that
do not disaggregate. The code is available at
https://github.com/vbdi/epdserve.
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Figure 1: Aggregated (top) vs. disaggregated (bottom) sys-
tem architectures. In the aggregated setup, the encoder (E)
and LLM share the same GPUs, leading to interference be-
tween encode and prefill stages (e.g., LLM-4 delays ES).
Disaggregation isolates these stages across GPUs, reduc-
ing contention and improving utilization. This separation
enables better performance under multimodal workloads,
addressing key limitations of existing systems.

1. Introduction

Large Language Models (LLMs) have revolutionized lan-
guage understanding and reasoning, achieving superhuman
performance on a variety of tasks (Achiam et al., 2023;
Chang et al., 2024). Recently, the scope of these models has
expanded to include multiple modalities, such as images,
audio, and videos, leading to the emergence of Large Multi-
modal Models (LMMs) (Yao et al., 2024; Liu et al., 2023;
Chen et al., 2024). LMMs enable users to interact with
diverse data types, such as posing questions about visual
scenes or analyzing audio clips, thereby unlocking novel ap-
plications across fields like healthcare, autonomous systems,
and creative industries (Luo et al., 2025).

However, serving LMMSs in an efficient manner presents
unique challenges. Meeting strict Service Level Objectives
(SLOs), such as time to first token (TTFT) and time per out-
put token (TPOT), becomes increasingly difficult given the
added computational and memory demands of processing
multimodal data (Alvar et al., 2025; Liu et al., 2024). Unlike
LLMs, where inference involves prefill and decoding stages,
LMMs require an additional encoding stage to process raw
multimodal inputs (e.g., images or videos) into tokenized
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Figure 2: Impact of disaggregation on supported batch
size and number of images per request for the MiniCPM-
V 2.6 model. Removing the LLM from the GPU signifi-
cantly increases capacity, enabling larger batches and higher-
resolution inputs. This demonstrates the memory efficiency
benefits of disaggregation.

representations. This stage is computationally intensive,
especially for high-resolution or complex multimodal in-
puts, and often produces a substantial number of additional
tokens (Wu et al., 2023). The resulting token inflation in-
creases resource consumption and leads to quadratic growth
in prefill-stage compute demands, adversely impacting SLO
attainment.

Disaggregating the prefill stage from the decode stage has
emerged as a well-studied solution for improving LLM in-
ference efficiency (Zhong et al., 2024; Qin et al., 2024;
Patel et al., 2024; Jin et al., 2024; Hu et al., 2024). By
assigning separate resources to each stage, prefill-decode
disaggregation enables independent optimization of batch-
ing, scheduling, and resource allocation strategies, signifi-
cantly enhancing system throughput and memory utilization.
However, these techniques fall short in addressing LMM-
specific challenges, as the addition of an encoding stage
fundamentally changes the resource dynamics. The encod-
ing stage adds significant compute and memory overhead,
inflates tokens, and creates dependencies that affect later
stages, requiring a fresh look at disaggregation strategies for
multimodal workloads.

These challenges present optimization opportunities that cur-
rent serving systems do not exploit. Presently, the encode
and prefill stages are aggregated into a single monolithic
and synchronous step executed on the same set of GPUs.
Sequential execution of encoding and prefilling introduces
interference, as demonstrated in Figure 1. In the aggre-
gated setup (top), the prefill step (LLM*) interferes with
the encode-heavy request (E°). As a result, such aggrega-
tion leads to suboptimal resource utilization and degraded
SLO performance, revealing the inadequacy of current solu-
tions for LMM workloads. Disaggregating encoding from
prefill enables the system to reduce such interference under
specific workloads. From another perspective, simultane-
ously loading both the multimodal encoder (MME) and the
LLM onto the same GPUs in aggregated setups restricts the
available memory for processing multiple high-resolution

images or supporting larger batch sizes. In preliminary
investigations, removing the LLM and its associated KV
cache significantly increases the maximum batch size and
the number of images per request (Figure 2).

Thus, we propose Encode-Prefill-Decode (EPD) Disaggre-
gation, a framework that decouples the encode, prefill, and
decode stages, assigning each stage dedicated resources
to operate independently. This design enables customized
strategies for batching, parallelization, and scheduling at
each stage, optimizing resource utilization while reducing
contention. As a result, EPD achieves better memory uti-
lization, higher throughput, and improved compliance with
critical SLOs like TTFT and TPOT.

The major contributions of this work are as follows:

* We propose an efficient system for LMM inference that
introduces the novel idea of disaggregating the encoding
and prefill stages. Our approach addresses key challenges
in inter-stage communication, efficient parallelization, re-
source allocation, and performance optimization within
this framework.

* We introduce intra-request parallelization (IRP), which
shards a request into independent encoding jobs that can
be executed in parallel, significantly reducing first-token
latency.

* We formulate the resource allocation problem as an op-
timization over batch sizes, scheduling strategies, and
parallelization approaches for each pipeline stage. Fur-
thermore, we provide a simple black-box optimizer that
uses workload samples to approximate the optimal con-
figuration for a given workload.

* We develop a dynamic role-switching capability that mon-
itors the system for bottlenecks and enables flexible re-
allocation of resources across the E, P, and D stages by
switching an instance’s role between stages. This ensures
the system can respond effectively to changes in workload
requirements during online serving.

* We conduct evaluations on several popular LMM
models—MiniCPM-V 2.6, InternVL2-8B, and InternVL2-
26B—using both real-world and synthetic workloads. Re-
sults demonstrate the superiority of our approach: up to
15x lower memory usage, 22 larger batch sizes, 10x
more images per request, up to a 90-100% improvement
in SLO attainment, and up to 71% lower TTFT.

2. Related Work

In this section, we describe existing approaches in the litera-
ture for multimodal model serving and their limitations, and
then we review the use of disaggregation techniques.

Multimodal Model Serving. There are two ways to en-
able a multimodal model serving system: (1) adopting and
extending existing LLM serving systems, such as vLLM
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(Kwon et al., 2023), SARATHI (Agrawal et al., 2023), and
Orca (Yu et al., 2022); and (2) leveraging open-source code
from recent works on improving multimodal model infer-
ence. The first approach fails to address the encoding bot-
tleneck inherent in LMMs, limiting their applicability to
multimodal workloads, particularly when handling high-
volume and high-resolution multimedia data. In the second
approach, recent advancements such as KV cache eviction
(Li et al., 2024; Ning et al., 2024) and compression (Kang
et al., 2024) focus on specific features and limited scenar-
ios. For instance, Inf-MLLM (Ning et al., 2024) enables
efficient streaming inference for LMMs on a single GPU,
targeting resource-constrained scenarios. While these im-
plementations are feasible for serving LMMs, they fail to
meet user SLOs in cloud serving scenarios. To the best of
our knowledge, we are the first to propose an LMM serving
system that leverages disaggregation and a series of inte-
grated techniques to enable better resource allocation and
improved SLOs.

Disaggregated Serving. Disaggregated serving has
emerged as a promising technique in large model serving.
By decoupling the prefill and decode stages, systems like
SplitWise (Patel et al., 2024), DistServe (Zhong et al., 2024),
and DéjaVu (Strati et al., 2024) mitigate interference be-
tween these phases, enabling finer control over TTFT and
TPOT. However, these systems primarily target LLMs and
overlook the encoding step required for LMMs, which is
tightly coupled with prefill. Recent work, such as Moon-
cake (Qin et al., 2024) and PD-Serve (Jin et al., 2024), have
extended disaggregation to include KV cache management
and other system-level optimizations. Despite these ad-
vancements, they remain limited in their applicability to
LMMs. Disaggregating the encoding phase from prefill
could unlock new opportunities for optimizing LMM serv-
ing. For instance, when handling requests with long videos,
the frames could be encoded in parallel, reducing head-of-
line blocking and improving overall system efficiency. This
approach would enable more flexible batching and schedul-
ing strategies, achieving better latency and throughput for
multimodal workloads.

3. Method

In this section, we first describe the EPD disaggregation
framework (Section 3.1), followed by a detailed explanation
of the system design and optimizations (Section 3.2), includ-
ing asynchronous token transfer, intra-request parallelism,
optimized resource allocation, and dynamic role switching.

3.1. EPD Disaggregation

As shown in Figure 3, disaggregating an LMM system
involves dividing the inference process into three stages:
encoding, prefill, and decode. Transitions between these
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Figure 3: The inference pipeline of EPD Disaggregation.

stages—EP-migration and PD-migration—handle the trans-
fer of data from encoding to prefill and from prefill to de-
code, respectively. We denote the input text prompt as i,
multimodal data as 7,,,, and the output text as o. The steps
are as follows:

Encoding (E): The multimodal input 7,, is processed by the
multimodal encoder E, converting it into multimodal tokens
v§ = E(in,), which form a high-dimensional embedding
for the next pipeline stage.

EP-migration: Once encoding completes, the generated
tokens are transferred to the prefill stage P via the EP-
migration function ¥ g p, such that v = ¥ p(v§).

Prefill (P): The prefill stage processes v} and the text
prompt %, to produce the initial KV cache and first output
token: kvy, o} = P(v},4,).

PD-migration: The KV cache and token are passed to the
decode stage via the PD-migration function ¢)pp, where
kv, of = pp(kvl,of).

Decode (D): Decoding proceeds autoregressively, gen-
erating the next token of 1 and updating the cache:
kvl 1,0, = D(kv{, o).

This autoregressive process continues until the output se-
quence is fully generated.

3.2. System Design and Optimization

Figure 4 illustrates the architecture of the EPD Disaggre-
gated inference system. Each pipeline stage (Encoding,
Prefill, and Decoding) has independent instances that run
the corresponding stage. These instances operate in data par-
allel (DP) mode, enabling concurrent processing of multiple
requests per stage and ensuring scalability and efficiency.

Each instance comprises a scheduler, responsible for
scheduling requests, block managers (responsible for man-
aging cache(s)), and multiple workers. The workers operate
in tensor-parallel (TP) and/or pipeline-parallel (PP) mode,
where each worker holds only a subset of the model weights
and the corresponding caches required for the stage.

In the encoding stage, workers load only the encoder
weights and initialize the Multimodal (MM) cache. In the
prefill stage, the LLM weights are loaded, and both the
MM and KV caches are required to efficiently manage all
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Figure 4: System architecture of the proposed EPD Disaggregated Inference.

the data associated with the request. In the decoding stage,
workers load the LLM weights for decoding tasks and use
the KV cache.

Cache transfers occur asynchronously when an instance
pulls a request from its queue, ensuring the transfer occurs
once the downstream instance is ready. Further, our system
incorporates several techniques to optimize the performance
of the disaggregated LMM pipeline, with a primary focus
on ensuring smooth token transfers between stages (Section
3.2.1), reducing latency (Section 3.2.2), managing resources
effectively (Section 3.2.3), and adapting to changing work-
loads (Section 3.2.4). The ablation of these features is shown
in Section 4.4.

3.2.1. ASYNCHRONOUS TOKEN TRANSFER

Disaggregating the system introduces an additional step of
transferring vision tokens from the encoding to the prefill
stage. To minimize latency during token transfers between
stages, our system employs direct, asynchronous transfers
via high-bandwidth channels (NVLink, and InfiniBand).
The asynchronous transfer allows the system to continue
processing new requests without interruption. Both encod-
ing and prefill workers maintain an MM cache to facilitate
this process.

When encoding is complete, tokens are stored in the encod-
ing worker’s MM cache, allowing it to serve new requests
immediately. An asynchronous event loop monitors com-
pleted encoding tasks and initiates direct token transfers
to the prefill worker’s MM cache. Once the transfer is
confirmed, the encoding cache entries are cleared to free
memory. To manage these cache blocks effectively, we in-
troduce the MMBlockManager, which pre-allocates cache
blocks based on each request’s needs. After token transfer,

the blocks are reassigned or de-allocated, ensuring flexible
cache utilization even under heavy workloads.

3.2.2. INTRA-REQUEST PARALLEL (IRP)

Multimodal requests often include multiple high-resolution
images in many practical scenarios like autonomous driving
and video question answering. In modern LMMs, these
images are further converted into a large number of patches
that need to be processed through a computationally heavy
MME. This significantly increases the computation load,
making the encoding process a major bottleneck.

To address this, we introduce Intra-Request Parallelism
(IRP), which partitions a single request’s image patches
across multiple encoding workers in a data-parallel fash-
ion. Since patches are encoded independently, they can be
processed and transferred concurrently. Specifically, each
encoding worker concurrently processes a subset of patches,
computes their token representations, and asynchronously
transfers them to the prefill stage. Once all patch-level to-
kens reach the prefill stage, they are aligned, projected, and
merged to form the complete multimodal tokens.

3.2.3. OPTIMIZED RESOURCE ALLOCATION

The EPD system requires tuning various configurations,
including batch sizes, scheduling strategies, and paralleliza-
tion methods for each pipeline stage. To determine the
optimal setup, we collect historical workload samples and
apply a black-box optimizer.

Let f(-) represent the system’s performance metric (e.g.,
goodput, see Section 4). Since f(-) is treated as a black-
box function with an unknown internal mechanism, we rely
on a simulator—extended from DistServe (Zhong et al.,
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2024)—to evaluate performance metrics efficiently. The
objective is to maximize performance while minimizing
GPU usage, which inherently reduces pipeline inefficiencies
(e.g., idle time) and improves resource utilization. Formally,
we solve

(pgl’gsa,)xex f(p, b, S) — 5605t(p) (1)

Here, X is the search space for system configs, including
parallelization configs p, max batch size configs b, and
scheduling configs s (See Appendix D for details). We
use Bayesian optimization (Calvo et al., 2019) to solve
Problem 1.

3.2.4. DYNAMIC ROLE SWITCHING

The configuration optimizer described in the previous sec-
tion can determine the optimal settings for a given workload.
However, in an online environment, workload characteris-
tics can change dynamically, requiring adjustments to the
configuration. Re-initializing the entire system from scratch
in response to these changes can be both difficult and costly.
For instance, there may be ongoing requests in the encoding,
context, or decoding phases with precomputed KV and/or
VE caches stored in memory. A naive re-initialization would
not only involve booting time but also force these requests to
restart from the beginning, potentially causing a cascading
impact on SLO metrics for subsequent requests.

To overcome these challenges, we introduce dynamic role
switching, which enables any instance in the E, P, or D
stages to switch roles to any other stage (E, P, or D) with
minimal overhead. At a high level, dynamic role switching
continuously monitors the system’s queuing statistics across
all stages and reallocates workers to stages experiencing
higher demand. When a decision is made to transfer an
instance from a source stage S to a destination stage 7', the
migration process occurs in three key steps:

* Offload: The instance in the S stage stops accepting
new requests and redistributes its queued tasks to sib-
ling instances in the same stage.

* Migration: The instance is reconfigured to meet the
requirements of the 7" stage. This may involve switch-
ing both the model and cache type. For example, if the
E stage is involved, the instance may switch from an
LLM to an MME model and from a KV cache to an
MM cache.

* Onload: The migrated instance resumes processing
new requests, helping to alleviate the queuing bottle-
neck at the 7" stage.

This process typically takes less than 0.7 seconds. The
duration is longer for migrations involving the E stage due
to model and cache changes, but significantly shorter when

switching between P and D stages, as both the LLM and
KV cache can be reused.

4. Experiments

In this section, we analyze and compare the performance of
the proposed EPD disaggregation method against various
baselines. We start with an end-to-end generation perfor-
mance analysis in Section 4.1, followed by an examination
of the first token latency in Section 4.2. We then evalu-
ate the memory savings achieved by EPD in Section 4.3.
Next, we present an ablation analysis of the key system
components in Section 4.4. Finally, we present an exten-
sion of our framework to Neural Processing Units (NPUs)
in Section 4.5. Additional experiments are detailed in the
Appendix, including 1) a throughput comparison for offline
and heterogeneous settings in Appendix A.3, 2) additional
analysis of the implementation on NPUs in Appendix F, 3)
an experiment extending our framework to the audio modal-
ity in Appendix A.1, and 4) additional SLO and memory
experiments in Appendix A.

Baselines: We compared the proposed EPD method against
two popular baselines: DistServe (Zhong et al., 2024) and
vLLM (Kwon et al., 2023). The DistServe baseline imple-
ments the prefill-decode (PD) disaggregation approach, in
which the prefill and encoding phases are executed on one
set of GPUs, while the decode phase is disaggregated on
separate GPUs. Since DistServe was originally designed for
LLMs, we extended it to support LMMs by enabling mul-
timodal data processing and modifying its block manager
to accommodate multimodal tokens. The vLLM baseline
adopts a monolithic architecture, where all three stages run
on the same set of GPUs.

Models: We utilized three LMMs in our analysis:
MiniCPM-V 2.6 (Yao et al., 2024), InternVL2-8B, and
InternVL2-26B (Chen et al., 2024). These LMMSs are
renowned for their advanced capabilities in processing and
understanding multimodal data. Detailed descriptions of the
LMMs and their sizes can be found in Appendix E.2.

Datasets: To evaluate performance across diverse scenarios,
we use three datasets: synthetic workload, NextQA, and
Video-MME. The synthetic workload enables configurable
parameters such as prompt length, number of images per
request, image resolution, output length, and sampling set-
tings. Unless otherwise noted, the input prompt length is set
to 22 tokens. NextQA (Xiao et al., 2021), a benchmark video
question-answering dataset, features human-annotated ques-
tions and answers, offering a more realistic reflection of real-
world video request distributions compared to the synthetic
workload. Video-MME (Fu et al., 2024) is a multimodal
evaluation dataset designed for assessing large LMMs on
video understanding tasks. It contains multiple-choice video
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Figure 5: SLO attainment (1) for end-to-end inference across multiple models and image counts per request. Subfigures (a),
(b), and (c) correspond to MiniCPM-V 2.6, InternVL2-8B, and InternVL2-26B, respectively. The top and bottom rows show
results for 2 and 4 images per request. EPD consistently outperforms all baselines across configurations.

question answering items that span diverse video lengths,
topics, and reasoning types. In contrast to NextQA, which
emphasizes open-ended video-text generation, Video-MME
focuses strictly on multiple-choice QA and covers a broader
spectrum of video durations and formats.

Evaluation Metrics: We evaluate the system based on
runtime performance and memory consumption. The per-
formance metrics are as follows:

e TTFT: The time from the submission of a request to
the system until the first token is received by the user.

* TPOT: The average time interval between consecutive
output tokens (excluding the first token).

* SLO Attainment: The percentage of requests that meet
predefined SLOs, such as TTFT and TPOT require-
ments.

* Goodput: The highest request rate at which 90% or
more SLO attainment is achieved.

For memory benchmarking experiments, we analyze the
baselines by evaluating the benefits of available free mem-
ory in each approach. Additional free memory can facil-
itate higher batch sizes, accommodate more images per
request, or enable larger key-value (KV) cache sizes (see
Section 4.3).

4.1. SLO Attainment for End-to-End Generation

In this experiment, we evaluate the goodput of EPD and
the baselines in an online setting where 100 multimodal
requests arrive following a Poisson process with rate A. The
length of output tokens is fixed to 10. We test requests with
2 and 4 images, each at a resolution of 4032 x 3024. The

details of the corresponding SLO criteria are discussed in
Appendix E.3. The results for three models (columns) are
presented in Figure 5. The X-axis represents the overall
request rate (\), and the Y-axis indicates the percentage of
requests meeting both TTFT and TPOT requirements, with
a 90% threshold denoted by a black dotted line.

EPD outperforms all baselines, achieving over 90% SLO
attainment at lower request rates. This is due to its ability
to parallelize the computationally intensive image encod-
ing step across multiple GPUs. DistServe and vLLM often
maintain less than 10% SLO attainment due to interference.
Meanwhile, comparing the first and second rows for vary-
ing image counts per request (2 and 4), we observe that,
while more images per request increase the workload, EPD
maintains reasonable performance, whereas baselines’ SLO
attainment drops significantly. Lastly, InternVL, which is
prefill-heavy, experiences queuing delays due to the higher
number of image tokens, particularly at higher request rates.
This effect further exacerbates the performance degradation
from the 8B to the 26B model. In contrast, MiniCPM-V, op-
timized to generate fewer image tokens, avoids these delays
and achieves lower overall latency. Further results with 6
and 8 images are provided in Appendix A.4.

Next, we repeat the experiment using the non-synthetic
video question-answering dataset, NextQA (Xiao et al.,
2021). To do so, we randomly sampled 100 examples,
with input text token lengths ranging from 4 to 21 (aver-
age: 11.42) and output token lengths ranging from 1 to 7
(average: 2.75). Each video request was represented by 8
uniformly sampled frames, and we used MiniCPM-V 2.6
in the experiment, adhering to the SLO criteria of TTFT =
5.60 and TPOT = 0.06. As illustrated in Figure 7, EPD is
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Figure 7: SLO attainment () versus request rate on the
NextQA dataset using the MiniCPM-V 2.6 model. EPD
consistently achieves higher SLO attainment compared to
all baselines.

the only framework achieving 90% SLO attainment at low
request rates, demonstrating its superior ability to handle
real-world workloads compared to DistServe and vLLM.

Finally, we conduct the same experiment using the Video-
MME (Fu et al., 2024) dataset. We evaluate SLO attainment,
defined as TTFT < 3.1s and TPOT < 0.025s, on 100 ran-
domly sampled Video-MME examples using MiniCPM-V
2.6. Each video is represented by 64 uniformly sampled
frames, following the MiniCPM frame configuration re-
ported on the Video-MME leaderboard. The results are
shown in Figure 8.

As seen, EPD consistently outperforms vLLM and Dist-
Serve across all rates, demonstrating a strong generalization
to temporal multimodal workloads, such as videos.

#Frames
m 8§ 16 32 64
vLLM 042 082 159 3.11
DistServe 042 0.81 154 3.08
EPD (ours) 024 030 049 1.00

Table 1: Mean TTFT latency (in seconds) () for varying
video lengths at a fixed request rate of 1 request/sec. Results
are averaged over 100 Video-MME samples. EPD achieves
the lowest latency across all video lengths.

—— EPD —— DistServe —— VvLLM
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Request Rate (req/s)
Figure 8: SLO attainment (1) versus request rate on the
Video-MME dataset using the MiniCPM-V 2.6 model. EPD

significantly outperforms competing baselines across all
request rates.

4.2. First Token Generation Latency

Multimodal requests often impose a heavy load on both the
E and P phases, making the first token generation a key la-
tency bottleneck. Therefore, in this experiment, we analyze
the first token latency for various baselines. The results
presented in Figure 6 show box plots of TTFT distributions
for three different models. Note that, as the decoding phase
is excluded, the vLLM baseline is equivalent to DistServe
and is thus omitted. Requests are generated according to
a Poisson distribution with a fixed request rate A. Specifi-
cally, A = 0.25 for MiniCPM-V 2.6 and A = 0.08 for both
InternVL2-8B and InternVL2-26B. Thanks to intra-request
parallelization, EPD significantly outperforms both vLLM
and DistServe. Specifically, TTFT is reduced by up to
71.9%, 32.8%, and 44.9% compared to the DistServe base-
line for the MiniCPM-V 2.6, InternVL2-8B, and InternVL2-
26B models, respectively.

Additionally, we conducted a TTFT comparison on the
Video-MME (Fu et al., 2024) dataset for various baselines.
The results are presented in Table 1. As seen, EPD achieves
a latency reduction of up to 68.2% over DistServe and up to
69.2% over vLLM. Moreover, the performance gap widens
with increasing video length—for instance, at 8 frames, EPD
reduces latency by 42.9%, and at 64 frames, the reduction
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reaches 67.5% relative to DistServe. These results highlight
EPD’s superior scalability and robustness under increasingly
demanding video processing workloads.

4.3. Memory Savings through Stage Disaggregation

In this section, we analyze the memory savings achieved by
disaggregating the encoding and prefill stages. The E work-
ers can save memory as they do not require LLM weights
or the KV cache. Analyzing only the weight size indicates
memory reduction of approximately 95%, 96.2%, and 78.3%
for the MiniCPM-V 2.6, InternVL2-8B, and InternVL2-26B
models. Similarly, for the P workers, memory savings of
about 5%, 3.7%, and 21.6% are achieved, respectively. In
practice, since KV cache is also not required at E workers,
the memory saving can be even higher (93.3% saving, i.e.,
15x lower, according to profiling). These reductions in
memory usage enable the EPD system to support higher
numbers of images per request and batch sizes (discussed
in the following experiments) and larger KV cache sizes
(discussed in Appendix A.2).

Model Image Reso. ‘ DistServe  EPD
313,234 71 490
MiniCPM-V 2.6 787,444 26 165
4032,3024 7 49
313,234 19 19
InternVL2-8B 787,444 19 19
4032,3024 19 19
313,234 1 10
InternVL2-26B 787,444 11 45
4032,3024 1 10

Table 2: Comparison of the maximum number of images
supported per request for various image resolutions across
different models. Higher values are better; best values in
each row are italicized.

EPD Supports a Higher Number of Images per Request:
We compare the maximum number of images per request
supported by the disaggregated (EPD) and aggregated (Dist-
Serve or vLLM) systems across three multimodal models:
MiniCPMyv, InternVL2-8B, and InternVL2-26B. The exper-
iment was conducted at three different image resolutions,
with a fixed batch size of 1 and with 80% of the available
memory allocated for the KV cache. As shown in Table 2,
EPD handles more images per request than DistServe, for
example, at 4032x3024 resolution, 7x more for InternVL2-
26B and 10x more for InternVL2-8B. For InternVL2-8B,
the limit of 19 images per request is due to its maximum
context length. Without this constraint, a larger number of
images per request could be supported.

EPD Supports Higher Batch Sizes: We compare maxi-
mum supported batch sizes for E and P stages across dif-

ferent settings of image resolution and models in Table 3.
The number of images per request is fixed to 10, and the KV
cache is allocated to utilize 80% of the available free mem-
ory. As seen, EPD significantly outperforms DistServe for
both E and P batch sizes. For example, with InternVL2-26B
at 787x444 resolution, EPD supports a batch size of 22 for
encoding vs. DistServe’s 1, achieving 22X improvement.
Similarly, for MiniCPM-V 2.6 at 787 x444, EPD achieves
a batch size of 29 vs. DistServe’s 2 for prefill, a /4.5
improvement.

DistServe EPD
Model Image Reso.  #Patch (E, P) E P
313,234 1 7 49 86
MiniCPMyv 2.6 787,444 3 2 16 29
4032,3024 10 OOM 4 9
313,234 13 2 15 2
InternVL2-8B 787,444 3 9 67 10
4032,3024 13 2 15 2
313,234 13 OOM 6 1
InternVL2-26B 787,444 3 1 22 4
4032, 3024 13 OOM 6 1

Table 3: Comparison of the maximum supported batch sizes
for E and P stages across different models and image reso-
lutions. Higher values are better; italicized values indicate
the best in each row. OOM denotes cases where the model
ran out of memory.

4.4. Ablation Study

In this section, we analyze the impact of various components
of the proposed system.

#I/R=2 #I/R=4 #I/R=06 #I/R=8
EPD 0.92 1.02 1.14 1.74
w/oIRP 146 (1.6x) 2.47(2.4x) 3.37((29x) 4.27(2.5x)

Table 4: Effect of ablating IRP feature from the proposed
system on TTFT (s). Disabling IRP negatively affects the
TTFT (up to 2.9x worse) for various multiple images/ re-
quest (#I/R). Results are averaged over 100 requests.

Effect of IRP: We analyze the effect of ablating IRP, pre-
sented in Section 3.2.2. The experimental settings are the
same as the TTFT experiment in Section 4.2. As shown in
Table 4, removing the IRP feature negatively affects TTFT
across various images/ request. Moreover, the degradation
exacerbates as the number of images/ request increases. This
is because the IRP feature allows parallelization of encoding
load within the same request across multiple GPUs.

Effect of Offline Optimizer: By default, the EPD system
collects workload samples and finds the optimal configura-
tion offline using the optimizer. To demonstrate its effect,
we conduct an experiment without using the optimizer and
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Goodput (t/s) + TTFT (s){ TPOT (s) |

EDP 1.25 2.12 0.031
wloOpt.  0.56(22x)  4.48(2.1x) 0.025 (0.8x)

Table 5: Ablating the offline optimizer reduces goodput by
2.2x on average when configurations are selected randomly.
J indicates lower is better; 1 indicates higher is better.

select configurations randomly. Specifically, we uniformly
sample 10 configurations at random and report the expected
value of the performance metric in the second row of Table 5.
For a fair comparison, when evaluating TTFT and TPOT,
we maintain the same request rate of 1.25 r/s, which corre-
sponds to the goodput of the EPD system (see Appendix
E.4 for more details). As shown in Table 5, disabling the op-
timizer causes significant performance degradation in terms
of both goodput and TTFT. This highlights the importance
of the optimizer, especially when the EPD system has many
tunable configurations.

Effect of Dynamic Role Switching: To analyze the im-
pact of dynamic role switching, we conduct a controlled
experiment simulating a shift in workload characteristics.
Specifically, we generate 100 requests following the same
static workload configuration as described in Section 3.2.4.
However, to introduce an artificial workload change, the first
10 requests generate 50 output tokens, while the remaining
90 requests generate 500 output tokens. The request arrival
rate is fixed at 3 requests per second. The results are shown
in Table 6.

Latency (s) , TTFT (s)] TPOT (s) |

28.01 1.42 0.05
61.10 (2.2x) 1.33(0.9x) 0.12 (2.4x)

EPD
w/o Switch

Table 6: Ablating dynamic role-switching from EPD de-
grades TPOT by 2.4x and increases end-to-end latency by
2.2x. Results are averaged over 100 requests with one 4K
image each. | indicates lower is better.

Without dynamic worker migration, the system performs
poorly because it remains fixed in the initial configuration
(SE1P2D, optimized offline for 50 tokens) and is unable to
adapt to the increased decoding demand. In contrast, the
EPD system with migration dynamically reconfigures itself
(2E1P5D) to handle the new workload (500 output tokens)
by shifting three E instances to D, resulting in approximately
2x better performance.

4.5. Adaptation to Neural Processing Units (NPUs)

We present the results of adapting the proposed EPD frame-
work to Huawei Ascend NPUs. For more details on the
implementation and experiments, see Appendix F.

First, we compare EPD-NPU against the vLLM and Dist-
Serve baselines on the InternVL2-8B LMM. We evaluate
SLO attainment, defined as TTFT < 8.5s and TPOT < 0.12s
on eight 4K images per request. We used the same settings
as described in Section 4.1, except that we employed a heavy
encoding workload of eight 4032 x 3024 images per request.
The optimal configuration for this workload was found to
be SE2PI1D, and the corresponding results are presented in
Figure 9. As shown, EPD is the only configuration that
achieves the SLO requirements, while the other baselines
fail to meet the SLOs entirely, even at low request rates.

—e— EPD —¢— DistServe —— VLLM

1001

501

SLO (%)

001 002 003
Request Rate (req/s)

Figure 9: SLO attainment (1) on NPUs under varying re-
quest rates for a synthetic workload using the InternVL2-8B
model. EPD maintains positive SLO attainment under strict
TTFT constraints, while baselines fail to meet the criteria.

Next, we compare the TTFT of EPD-NPU against vLLM.
EPD-NPU achieves a 35.2% improvement over vLLM, sur-
passing the 24.4% improvement observed in the GPU sce-
nario. This additional ~10% improvement is attributed to
the proportionally heavier encoding workload of LLMs on
NPUs compared to GPUs. Please refer to Appendix F.1 for
more details. As a result, disaggregating the encoding from
the prefill phase yields greater benefits on NPUs than on
GPUs.

5. Conclusion

In this paper, we proposed a novel approach for optimizing
LMM systems via disaggregation of key processing stages.
By separating the encoding, prefill, and decoding phases
into distinct stages, our system provides greater flexibility in
resource allocation, enabling more efficient management of
computational and memory resources. This disaggregation,
together with dynamic resource allocation, asynchronous to-
ken transfer, and advanced parallelization strategies, directly
addresses several critical challenges in LMM deployment,
including latency reduction, memory optimization, and ef-
ficient computational resource usage. We validated the ef-
fectiveness of our system through extensive experiments.
Finally, we outline the system’s limitations and future direc-
tions in Appendix B and Appendix C, respectively.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Additional Experiments
A.1. Adaptation to Audio modality

In this section, we extend EPD to the audio modality to eval-
uate its effectiveness beyond vision tasks, highlighting the
method’s generalizability. Specifically, we evaluate EPD in
an online, audio setting using the ult ravox—-v0.3 model,
based on LLaMA3.1-8B. To simulate an encode-intensive
workload, each request is configured to include 24 audio
files. Evaluation metrics include SLO attainment—defined
as TTFT < 2.0 s and TPOT < 0.025 s—and goodput (re-
quests per second, 1/s). As shown in Table 7, EPD con-
sistently outperforms vLLM and DistServe across all re-
quest rates, demonstrating superior efficiency and reliability.
Combined with prior results in the video domain, these find-
ings reinforce EPD’s robustness and generalizability across
modalities.

Rate (1/s) SLO Attainment Rates (1)
vLLM DistServe EPD

0.10 0.99 0.99 0.99

0.25 1.00 0.94 0.99

0.50 0.99 0.89 1.00

1.00 091 0.72 0.96

1.10 0.87 0.69 0.93

1.15 0.87 0.68 0.93
Goodput (1/s) 1 1.01 0.45 1.16

Table 7: SLO attainment results (1) for online audio bench-
marking with ultravox-v0_3 (24 audio files per re-
quest). All baselines use 4 GPUs: VLLM operates in data-
parallel (DP) mode, DistServe uses a 3P1D configuration,
and EPD adopts a 2E1P1D setup. EPD achieves consis-
tently high SLO attainment and the highest goodput across
all request rates.

A.2. EPD Supports Larger KV Cache Sizes

In this section, we compare the maximum KV cache size
that can be allocated across various baselines. The batch size
is fixed at 1, and the image resolution is set to 4032x3024.
As shown in Table 8, EPD supports significantly larger KV
cache sizes than DistServe. For instance, for the InternVL2-
26B model at 10 images per request, EPD can support a KV
cache size of 80% vs 36% for DistServe, representing a 2.2 X
improvement. Notably, in certain scenarios—such as with
the InternVL2-26B model and 20 images per request—the
DistServe system encounters an OOM error, indicating that
it cannot process 20 images even with a KV cache size of
0. Additionally, some configurations encounter an Out of
Context Limit (OOCL) error, where the large number of
encoding tokens generated by high image counts exceeds
the LLM’s context limit during the prefill stage.
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Model | #Images/Req. || DistServe | EPD
5 86% 99%
10 74% 97%
MiniCPM-V 2.6 20 49% 95%
40 OOM 92%
80 OOM OOCL
5 94% 95%
InternVL2-8B 10 89% 91 %
20 OOCL OOCL
5 67% 89%
10 36% 80%
InternVL2-26B 20 OOM 63%
40 OOM OOCL

Table 8: Comparison of maximum supported KV cache size
(in terms of percentage of free memory) on prefill node
for various #images/ request. Image resolution fixed to 4K.
Higher (italicized) is better.

A.3. Throughput Comparison for Offline and
Heterogeneous scenario

In this section, we compare the throughput of the EPD and
DistServe methods under both offline and heterogeneous
settings. In the offline scenario, a batch of requests is sub-
mitted in advance, allowing the system to process them
overnight with the goal of maximizing end-to-end (E2E)
throughput. In the heterogeneous setting, we consider a
cluster composed of GPUs with varying computational and
memory capacities.

Our motivation is as follows: in the DistServe system, both
the encoding and prefill stages are executed on the same
worker, requiring the corresponding memory to be allocated
on a single GPU. However, GPU memory is limited, and
this constraint becomes particularly problematic in hetero-
geneous environments that include low-end GPUs. In such
cases, the total memory demand of the encoding and pre-
fill stages may approach or exceed the available memory,
significantly restricting the batch size or even rendering
the DistServe method infeasible on these devices. Thus,
we consider a controlled scenario in our experiment where
the memory usage of the prefill stage in DistServe remains
within the capacity of low-end GPUs, but only permits a
minimal batch size of 1 for both encoding and prefill stages.

We conduct this experiment using 8 A800 GPUs. For the
EPD system, we use the default SE2P1D configuration,
which allocates 5, 2, and 1 GPUs to the encoding, prefill,
and decoding stages, respectively. The corresponding max-
imum batch sizes are set to 8 for encoding, 8 for prefill,
and 128 for decoding. In the DistServe system, we adopt
the 7P 1D setup, with maximum batch sizes of 1 and 128.
Here, the encoding and prefill steps are conducted on the 7
P workers. The workload consists of 1,000 requests, each
containing a single image, a simple prompt (“What is the
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Figure 10: Left: Impact of varying the number of encoding workers in the EPD method. The notation xEyP denotes
a configuration with x encoder and y prefill workers. The DistServe method uses a fixed 7P configuration, assigning 7
workers to handle both encoding and prefill steps. Middle: Effect of the number of images per request on end-to-end
throughput. Right: Sensitivity to encoding and prefill batch sizes, where these two numbers are set equal.
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Figure 11: SLO attainment (1) for end-to-end inference across multiple models and image counts per request. Subfigures
(a), (b), and (c) correspond to MiniCPM-V 2.6, InternVL2-8B, and InternVL2-26B, respectively. The top and bottom rows
show results for 6 and 8 images per request. EPD consistently outperforms all baselines, demonstrating robust performance

as image count increases..

content of this image?”), and a maximum of 10 output to-
kens. We perform an ablation study by tuning the system’s
hyperparameters as described in Sec. 3.2.3, and analyze
their impact on throughput. The results are presented in
Fig. 10.

The left plot demonstrates the importance of selecting an
appropriate GPU configuration. The algorithm detailed
in Sec. 3.2.3 can automatically select the 5SE2P config-
uration as the optimal setup for maximizing end-to-end
(E2E) throughput. The middle plot shows that EPD achieves
higher throughput when the number of images per request
is small, indicating that its disaggregated architecture ef-
fectively mitigates encoder-side compute bottlenecks. The
right plot highlights that EPD is relatively insensitive to
encoding and decoding batch sizes. This enables users to
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either manually choose a large batch size or rely on the al-
gorithm in Sec. 3.2.3 to automatically determine an optimal
configuration.

A.4. SLO Attainment for Higher Number of Images

In this section, we show additional results from the experi-
ment in Section 4.1 pertaining to 6 and 8 images per request.
The results are presented in Figure 11. As seen, the SLO
attainment for EPD begins to decline as number of images
rise, particularly at higher request rates. This decline re-
flects the increasing computational demand associated with
processing multiple high-resolution images within a single
request. Nevertheless, EPD continues to outperform all
baselines, which struggle even at low request rates and fail
to scale effectively under increased workloads.
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B. Limitations

While disaggregated serving offers significant benefits in
meeting strict service-level objectives, it is not universally
optimal. In scenarios where throughput is the primary con-
cern and SLOs can be relaxed, traditional aggregated serving
can outperform disaggregated approaches due to superior
GPU utilization. This is largely attributed to the absence
of inter-stage communication overhead and pipeline ineffi-
ciencies/ bubbles that can arise from resource imbalance in
disaggregated setups.

From a cost-efficiency perspective, disaggregated serving
is most beneficial when latency SLOs are non-negotiable.
In contrast, when maximizing throughput per dollar is the
primary goal and latency constraints are minimal, aggre-
gated configurations are often more cost-effective. This
can be attributed to the reduced communication cost and
orchestration overhead that result in higher GPU utilization.

Specific to the EPD disaggregation strategy, the encoding
and prefill stages are predominantly compute-bound. As a
result, the primary performance gains from disaggregation
stem from stage-specific finetuning of batching, schedul-
ing, and parallelization strategies, especially IRP for paral-
lelizing encoding load of a request across multiple GPUs.
However, these gains are sensitive to pipeline inefficiencies,
for instance pipeline bubbles can erode the latency benefits.
Thus, careful tuning of resource allocation and responsive
worker migration is required to ensure these stages are well-
balanced for a given model and workload.

C. Future Work

Although the encode and prefill stages have similar compute
characteristics, their memory usage profiles differ substan-
tially. This asymmetry presents a promising opportunity
to explore heterogeneous hardware configurations. For in-
stance, using high-memory high-compute GPUs for prefill
and low-memory but high-compute units for encoding could
further enhance efficiency and cost-effectiveness in disag-
gregated setups.

Another area of exploration is reducing the overhead of
visual token migration, which can be a bottleneck in mul-
timodal disaggregated pipelines. Compression techniques,
particularly those leveraging the inherent redundancy in vi-
sual tokens as identified in token pruning literature (Alvar
et al., 2025), may significantly reduce transfer latency and
cost.

Lastly, disaggregated serving introduces new possibilities
in privacy-aware inference (Liu et al., 2020; Huang et al.,
2020; Singh et al., 2022), especially in edge-cloud environ-
ments. For example, encoding could be performed on edge

devices, keeping raw, privacy-sensitive images local. Only
the encoded representations would be transmitted to the
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cloud for prefill and decode stages, minimizing privacy risks
without compromising model capability. This hybrid archi-
tecture could form the foundation for privacy-preserving
multimodal systems.

D. Optimizer Details

We recapitulate the configuration optimization problem:

f(p,b,s) — 3 cost(p)

max
(p,b;s)ex

(@)

For the search space &, there could be implicit constraints

during the configuration search. For example, the total

number of GPUs must not exceed the available resources

(e.g., 8 or 16). Alternatively, if the cloud service provider

intends to fully utilize all available 8 GPUs, an implicit

constraint could enforce the number of GPUs to be exactly

8. These constraints serve to reduce the search space. The

system configuration involves parallelization configurations

P, maximum batch size configurations b, and scheduling

configurations s. These variables are vectors, where each

element corresponds to the configuration of an individual
instance. Each instance is capable of handling requests
independently, including managing (sub-)workers for ten-
sor parallelism and pipeline parallelism. Instances within

a stage process different requests in parallel, a concept re-

ferred to as data parallelism. Note that p, b, and s can

have variable lengths, as the number of instances is itself

a configurable parameter. For the i-th instance, we denote

its stage as Stage, € {E, P, D}, where E represents the

encoder stage, P represents the processing stage, and D

represents the decoder stage.

* Parallelization: Let p denote the vector of parallel con-
figs for all instances. For the i-th instance, if it is a prefill
or decoding instance, then its config p; includes: piTP, the
number of GPUs used for tensor parallelism; and pf?,
the number of GPUs used for pipeline parallelism. If
it is an encoding instance, considering IRP does not re-
quire communication, which is better than TP, we only
use IRP. Therefore for encode, we overload the symbol
pi¥ = pIRP 0 denote the number of GPUs used for IRP.
If the cost per GPU is a constant c, then the total cost is:
cost(p) = ¢, cp(Di” X P7")-

* Max Batch Size determines how many requests are pro-
cessed simultaneously during the encoding, prefill, and
decoding stages. Let b denote the batch size config for all
instances. For ¢-th instance, b; is its max batch size. This
config involves a trade-off between latency and through-
put. Larger batch sizes improve throughput by enabling
parallel processing but may increase latency if the stages
become compute-bound.

* Scheduling involves two main decisions: First, which
workers should each request be assigned to? Second,
how should the order of requests be determined within a
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worker queue? To solve these decisions, we adapt strate-
gies from the DistServe framework (Zhong et al., 2024).
In the encoding stage, when a request arrives, it is as-
signed and pushed to an instance queue. Between different
stages, global queues are used, and each available engine
pulls proactively from the queues. Possible assignment
strategies in the encoding stage include Round-Robin or
Least-Loaded First for assigning requests. Once a request
is assigned to a worker’s queue, we can apply ordering
strategies like first-come-first-serve or shortest-job-first,
or more complex strategies that prioritize requests based
on their Service Level Objectives (SLOs). For simplicity,
we constrain that all instances within the same stage share
the same scheduling strategy.

E. Implementation Details

EPD is a fully capable distributed serving system for LMMs,
comprising several key components: a load estimation mod-
ule, a resource allocation module, a RESTful API frontend,
and a multimodal-aware orchestration layer. The entire
framework is implemented with a mix of Python and C++/
CUDA implementations, ensuring superior scalability and
performance. To facilitate integration, we repurpose the
distributed execution engine from vLLM, which supports
numerous popular LLMs and LMMs, allowing easy adapta-
tion of new models into our disaggregated framework with
minimal effort.

The API interface adheres to OpenAI’s multimodal specifi-
cations, enabling users to specify parameters such as output
length, temperature, and multimodal data inputs.

The scheduler is specifically designed for the disaggregated
EPD framework, dynamically managing batch sizes and
enabling asynchronous execution of the encoding, prefill,
and decoding phases. The load estimation module ensures
efficient GPU allocation across these phases, adapting to
changing workload demands in real time.

Our repurposed distributed execution engine uses Ray actors
to implement GPU workers, which manage multimodal and
key-value caches, and coordinate the independent execution
of the encoding, prefill, and decoding tasks. Furthermore,
it supports 3D parallelism, incorporating Data Parallelism
(DP), Tensor Parallelism (TP), and Pipeline Parallelism (PP)
to maximize resource utilization and scalability.

The orchestration layer includes custom CUDA kernels op-
timized for parallelism in the encoding and prefill phases.
These kernels enable efficient management of paged mul-
timodal caches and ensure seamless asynchronous transfer
of multimodal tokens between encoding and prefill GPUs.
The orchestration layer oversees the execution of encod-
ing, prefill, and decoding instances, handling tasks such
as request distribution, KV cache transmission, and result
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aggregation. For efficient data movement, the system em-
ploys NCCL for inter-node GPU communication and asyn-
chronous CudaMemcpy for intra-node transfers, ensuring
smooth operations without disrupting GPU computations
across the disaggregated EPD framework.

E.1. Hyper-parameters in EPD system

We conducted our experiments using a cluster of § NVIDIA
A100 GPUs (82GB). Each server was equipped with 128
CPUs and 1TB of RAM. The CUDA version was 12.2.
Flash attention-2 was used for the attention implementation.
We use FP16 precision for all experiments.

To ensure a fair comparison, we standardized key
performance-affecting settings of the inference engine
across all baselines. Specifically, these include a block
size of 16; a maximum of 2048 blocks per request; context
tokens capped at 49,152, and decoding tokens at 81,920
per batch. The scheduling policy for all stages was set to
First-Come-First-Served (FCFS). Further, to allow enough
resources for memory-heavy multimodal requests to exe-
cute, KV cache GPU utilization was set to 50%, and the
maximum number of multimedia data of 32 was imposed
per prompt. The size of the multimodal cache was fixed to
3000 across all models, and the vLLM inference engine was
run in eager mode. Finally, for the vLLM inference engine,
we used the version 0.6.1.post] which represents a stable
version for multimodal inference.

In our online experiments, requests were sent to the infer-
ence engine using a Poisson arrival process with a fixed A,
representing the number of requests per second. Each trial
was executed until 100 requests were completed, ensuring
sufficient data for consistent performance analysis. Further,
to optimize TTFT and TPOT in this latency-sensitive set-
ting, we disabled batching by setting batch sizes to 1 for the
encoding, prefill, and decoding stages.

E.2. LMM Details

MiniCPM-V 2.6 integrates a SigLip-400M vision encoder,
comprising 400 million parameters, with a Qwen2-7B lan-
guage model, containing 7.6 billion parameters, culminat-
ing in 8 billion parameters. It excels in tasks involving
single-image, multi-image, and video comprehension, even
surpassing GPT-4V in these domains (Yao et al., 2024).

InternVL2-8B features an InternViT-300M-448px vision
encoder with 300 million parameters, paired with an in-
ternlm2_5-7b-chat language model comprising 7.7 bil-
lion parameters, totaling 8 billion parameters. Similarly,
InternVL2-26B combines an InternViT-6B-448px-V1-5 vi-
sion encoder with 6 billion parameters and an internlm2-
chat-20b language model containing 20 billion parameters,
resulting in 26 billion parameters.
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Figure 12: Breakdown of latency for encode and prefill stages using the InternVL2-8B model across varying numbers of
images per request. Subfigures (a) and (b) show results on GPU and NPU, respectively. Light green denotes encode latency
and light blue indicates prefill latency. NPUs demonstrate distinct latency characteristics compared to GPUs as input size

increases.

E.3. SLO Criteria

Table 9 outlines the SLO criteria for TTFT and TPOT across
various models and different numbers of images per request
(#I/R). These criteria are empirically derived based on the
characteristics of the underlying models, such as the compu-
tational complexity of the MME and LLM. We also consider
what is realistically achievable by both our method and the
baselines on a fixed number (8 GPUs) used in experiments.
Across models, as #I/R increases, there is an approximately
linear increase in the TTFT criteria due to the higher encod-
ing load and additional tokens generated during the prefill
stage. In contrast, TPOT requires only minor adjustments
since it is not directly impacted by changes in #I/R.

#I/R || MiniCPM-V 2.6 || InternVL 8B || InternVL 26B
H TTFT TPOT H TTFT TPOT ‘ TTFT TPOT

2 1.40 0.04 1.20 0.05 3,50  0.07
4 2.60 0.04 240  0.06 7.05 0.08
6 3.90 0.06 3,55  0.09 11.00 0.95
8 5.10 0.06 5.00 0.18 15.00 0.15

Table 9: TTFT and TPOT values (in seconds) used as SLO
thresholds for different models and image counts per request
(#I/R). Respective values are shown for MiniCPM-V 2.6,
InternVL2-8B, and InternVL2-26B models.

E.4. Details for the Ablation Experiment of Offline
Optimizer

In this experiment, 100 User requests arrive in real-time
with each request containing 6 images, and they all request
for the MiniCPMv model. For simplicity, we limit the con-
figuration space to a restricted search space, where each
data-parallel (DP) worker uses the same batch size configu-
ration, and both TP and PP are fixed to 1. We explore the
batch size configurations for workers across different stages,
the number of DP workers in each stage, and the decision
to enable IRP. The config identified by the optimizer is as
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follows: batch sizes for the E, P, and D stages are 2, 1, and
128, respectively; the number of workers in each stage is 6,
1, and 1; and IRP is enabled. We uniformly random-sample
10 configs from the search space. To maintain the same
computational cost, all 8 GPUs are utilized across different
configs. Consequently, the search space is constrained to
leverage 8 GPUs, which can be enforced through rejection
sampling. The sample mean of the performance metric
(goodput, TTFT, and TPOT) is presented in Table 5. Recall
that the goodput metric is defined as the maximum request
rate while maintaining an SLO attainment of no less than
90%. For a fair comparison, When evaluating the TTFT and
TPOT, we maintain the same request rate of 1.25 r/s, which
is same as the goodput of the EPD system.

F. Extending EPD to NPU

We extend our EPD framework to a cluster of Neural Pro-
cessing Units (NPUs) for two purposes: (1) to investigate
the impact of disaggregating (E) from (P) on NPUs which
tend to have higher encode-to-decode latency ratio and (2)
to demonstrate the generalizability of EPD.

F.1. NPUs having higher encode-to-prefill latency ratios

When investigating architectures and potential benefits of
an EPD-NPU framework, we first profiled the LMMs tested
in this paper for their encoding and prefilling latencies to
understand the impact of the characteristics described above.
We calculated the average encode and prefill stage latencies
of 10 requests. Across the different LMMs, NPUs spent
more time on encode than prefill across these models when
compared to GPUs. Figure 12 shows the latency breakdown
between encode and prefill for InternVL2-8B across a range
of #I/R. Across the models and different #I/R, we found
a ~10-20% larger encode-to-prefill latency ratios in NPU
than in GPU. This trend was consistent across different large
multimodal models (LMMs), indicating that NPUs tend to
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spend a greater proportion of time in the encoding phase
compared to GPUs.

Since the encode in NPU is a larger portion of the TTFT
when compared to GPU, we hypothesized that we would
see more benefit from EPD and IRP towards NPU. Thus,
we were motivated to adapt EPD for NPU.

F.2. Implementation Details for NPU

The EPD-NPU system was implemented in a similar man-

ner to our EPD-GPU system as described in Appendix E.

All EPD-NPU experiments utilize IRP. The EPD-NPU dis-

tributed serving system was developed and deployed on a

cluster of 910B3 NPUs, each with 64GB of high bandwidth

memory. There are two major differences between the NPU
and GPU implementations:

* Ascend-vLLM: EPD-NPU leverages Ascend-vLLM
rather than vLLM which is an adaptation of vVLLM on
Ascend NPU hardware that utilizes the Compute Architec-
ture for Neural Networks (CANN) software stack rather
than CUDA.

* Container-based deployment: Each encode, prefill, and
decode instance is deployed separately as an API for the
scheduler engine to call. These instances run in data paral-
lel mode. The scheduler engine simply sends a POST
request to the corresponding API with some minimal

17

request-specific information (e.g., request ID, sampling
parameters, block IDs to pull) and the remaining imple-
mentation mirrors that of EPD-GPU. This container-based
deployment allows our framework to be easily scalable
and portable to the cloud, providing intriguing future
works regarding efficient utilization and scheduling of
resources for users.

F.3. Experimental Settings for NPU

For EPD-NPU, We use eight 910B3 NPUs and evaluate
the system by running the controlled experimental setup (as
described in the experiments section of the main paper) in an
online setting. The number of input tokens was 22, length
of output tokens was 10 with the end-of-sequence token
ignored. The SLO requirements (8.5 and 0.12 for TTFT and
TPOT, respectively) were also selected in a similar manner
as the GPU experiments. The maximum model length was
set to 27000, and KV Cache utilization was set to 83%.
EPD-NPU also used a version of Ascend-vLLLM (version
0.6.3.postl) with CANN version 7.6. Unless otherwise
stated, the hyper-parameters are identical to those described
inE.1.

We evaluate EPD-NPU using InternVL2-8B LMM against
two baselines: (1) Ascend-vLLM and (2) Ascend-vLLM
PD disaggregation for the heavy workload of 8 images
(4032x3024 resolution) per request.



