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Abstract
This is a position paper. In it, we identify a
causal–mechanistic paradigm in AI safety, using
mechanistic interpretability as our motivating ex-
ample. We cite recent results that suggest lim-
its to the paradigm’s utility in answering ques-
tions about the safety of neural networks. We
argue further that those results give a taste of
what is to come, by proposing a sequence of sce-
narios in which safety affordances based upon
the causal–mechanistic paradigm break down.
Through this, we connect current empirical ev-
idence with several persistent threat models from
the agent-foundational literature (e.g., deep de-
ceptiveness, robust agent-agnostic processes). We
suggest how we might unify these threat mod-
els under a common framework, centered around
our provisionally defined concept of “substrate.”
We then present an initial, high-level sketch of a
supplementary framework, MoSSAIC (Manage-
ment of Substrate-Sensitive AI Capabilities), that
addresses some of the core assumptions underly-
ing the causal–mechanistic paradigm. We further
present the complementary research infrastruc-
ture we are currently designing to allow us to
keep pace with substrate-flexible intelligence.

1. Introduction
Neural networks (NNs) are famously described as black
boxes. Their inner workings resist reduction to human-
understandable concepts [1][2]. Their decision-making pro-
cesses are therefore difficult to properly audit to ensure
safety [2].

Neural networks are also increasingly being deployed to
make decisions on behalf of humans across high-stakes
domains. Our lack of understanding of how trained NNs
process information to arrive at decisions poses challenges
to their safe deployment [2][3][4].

1Groundless AI 2Independent. Correspondence to: Matt
Farr <07mfarr@gmail.com>, Aditya Arpitha Prasad <adityaarpi-
tha@gmail.com>.

The sub-field of AI safety known as interpretability seeks to
produce human-understandable explanations of NN behav-
iors [3][5].

Bereska & Gavves (2024) [3] classify interpretability ap-
proaches into four main paradigms, which we’ll take a quick
look at:

Behavioral Interpretability treats models as black boxes,
analyzing input-output relations without examining internal
processes. They are model-agnostic and practical for com-
plex systems but lack real insight into internal processes
[3][6]. For example, minimal pair testing compares model
outputs on almost-identical inputs to test for specific linguis-
tic capabilities (e.g., ”The cat sat on the mat” vs. ”The cats
sat on the mat” to test pluralization) [7], and perturbation
analysis systematically alters inputs to see how the output
changes (e.g., testing robustness to adversarial examples)
[8].

Attributional Interpretability examines how individual
features of the input affect the output, using gradient-based
methods. These approaches offer more transparency over
black-box methods, but still do not provide any information
on the internal structures of models [3]. The simplest ver-
sion of this is vanilla gradients, which computes the gradient
of the output with respect to a change in some input feature.
Subsequent versions offer more refined techniques on this
basic premise [9][10].

Concept-based Interpretability seeks high-level concepts
governing network behavior [3]. For instance, it might clas-
sify model outputs into honest and dishonest categories,
take averages over the intermediate activations for each
class and work out the difference between these averages
as a vector in latent space, representing the concept “hon-
esty” [11]. This paradigm allows for ”representation en-
gineering”—manipulating these internal representations to
upregulate desirable concepts [2].

Mechanistic Interpretability starts from the bottom, iden-
tifying clusters of neurons (called ”circuits”) that together
perform a function in the decision-making process, from
there seeking to understand the relations between these cir-
cuits and how these give rise to system behavior [2][3][12].
This field treats human-understandable ”features” as the
fundamental unit of analysis, trying to isolate these via a
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number of techniques [3][5].

In this paper, we focus on mechanistic interpretability.1

We argue that mechanistic interpretability exemplifies what
we term a “causal–mechanistic paradigm” in AI safety.2

In Section 2, we briefly overview mainstream mechanis-
tic interpretability and specify more clearly what we mean
by the causal–mechanistic paradigm. We then present ex-
tant work that suggests some underlying problems for the
paradigm. In Section 3, we offer a provisional and pre-
formal characterization of “substrate” and suggest several
scenarios in which we can expect safety assurances based
upon the causal–mechanistic paradigm to falter as capabili-
ties advance, framing these in terms of substrate-flexibility.
Finally, in Section 4, we provide a speculative frame, that of
live theory, which aims to engineer general risk-mitigation
methods by scaling specificity directly instead of general-
izing via substrate-independent abstractions. This is our
attempt to rethink the tools we use in AI safety research and
orient towards more flexible, intelligent approaches to gen-
eralization, to more effectively tackle risks that can neither
be tied to a specific substrate nor be defined in substrate-
agnostic ways. We refer to this problem–solution pipeline
as MoSSAIC, “Management of Substrate-Sensitive AI Ca-
pabilities.” We present it not as a set of fixed conclusions,
but as a developing hypothesis and research bet, and we
invite feedback from the research community.

2. Mechanistic Interpretability
The field of mechanistic interpretability (MI) is not a sin-
gle, monolithic research program but rather a rapidly evolv-
ing collection of methods, tools, and research programs
[14]. These are united by the shared ambition of reverse-
engineering NN computations and, though lacking a com-
prehensive uniform methodology, typically apply tools of
causal analysis to understand a model from the bottom up
[15].

MI research centers around a set of postulates. One central
postulate is that NN representations can in principle be de-
composed into interpretable “features”—fundamental units
that “cannot be further decomposed into smaller, distinct

1We acknowledge that MI encompasses diverse approaches,
and our critique targets specific assumptions that become load-
bearing in safety applications, not the field as pursued for pure
research purposes.

2We choose mechanistic interpretability as a motivating exam-
ple in our work for the following reasons: (1) It is the clearest
current instantiation of the causal–mechanistic paradigm at work,
and concentrates the specific extrapolation/fixity bets our paper
investigates. (2) It is heavily resourced and highly visible; as a
rough indication of current investment, we note that approximately
a third of the topics listed in Open Philanthropy’s recent request for
technical AI safety proposals are on mechanistic interpretability or
are closely related [13].

factors”—and that these are often encoded linearly as di-
rections in activation space [2][3]. Further work has shown
that NNs in fact combine multiple features into the same
neuron—a phenomenon called superposition [16][3][17].3

Some examples of mechanistic techniques include the fol-
lowing:

• Linear Probes: Simple models (usually linear clas-
sifiers) are trained to predict a specific property (e.g.,
the part-of-speech of a word) from a model’s internal
activations [20]. The success or failure of a probe at a
given layer is used to infer whether that information is
explicitly represented there.

• Logit Lens: This technique applies the final decoding
layer of the model to intermediate activations, to ob-
serve how its prediction evolves layer-by-layer [3][21].

• Sparse Autoencoders: These attempt to disentan-
gle a NN’s features by expressing them in a higher-
dimensional space under a sparsity penalty, effectively
expanding the computation into linear combinations of
sparsely activating features [22][3][23].

• Activation patching: This technique attempts to iso-
late circuits of the network responsible for specific
behaviors, by replacing a circuit active for a specific
output with another, to test the counterfactual hypothe-
sis [3][12][17].

More recently, MI has been developing from a pre-
paradigmatic assortment of techniques into something more
substantial. It has been the subject of a comprehensive re-
view paper [3], has been given a theoretical grounding via
causal abstractions [17], and has more recently been given a
philosophical treatment via the philosophy of explanations
[1].

In particular, this philosophical treatment [1] characterizes
MI as the search for explanations that satisfy the following
conditions:

1. Causal–Mechanistic – providing step-by-step causal
chains of how the computation is realized. This con-
trasts with attribution methods like saliency maps,
which are primarily correlational [15]. A saliency
map might show that pixels corresponding to a cat’s
whiskers are “important” for a classification, but it does
not explain the mechanism of how the model processes

3We acknowledge that some of these assumptions have been
relaxed. Engels et al. (2025) showed how some features can
be viewed as irreducibly multi-dimensional [18]. Earlier work
by Black et al. (2022) examined how the fundamental units of
analysis might consist of polytopes in activation space rather than
linear directions [19].
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that whisker information through subsequent layers to
arrive at its decision.

2. Ontic – MI researchers believe they are discovering
“real” structures within the model. This differs from
a purely epistemic approach, which might produce a
useful analogy or simplified story that helps human
understanding but doesn’t claim to uncover what is
happening in reality. The search for “features” as fun-
damental units in activation space is a standard ontic
commitment of the field [3].

3. Falsifiable – MI explanations are framed as testable
hypotheses that can be empirically refuted. The claim
that “this specific set of neurons and attention heads
forms a circuit for detecting syntax” is falsifiable. One
can perform a causal intervention—such as activation
patching or ablating the circuit—and observe if the
model’s syntactic capabilities break in a predictable
way [12]. This contrasts with unfalsifiable, post-hoc
stories that cannot be rigorously tested.

4. Model-level – The focus of MI is on the neural network
itself—its weights, activations, and architecture. This
is distinct from system-level analysis, which might ex-
amine the behavior of an entire deployed product (e.g.,
a chatbot integrated with search tools and a chain-of-
thought prompting wrapper). A system-level explana-
tion might attribute a behavior to the prompt, whereas
a model-level explanation seeks the mechanism within
the neural network’s computational graph.

Leaving aside questions regarding the aptness of this philo-
sophical characterization, we focus here on the Causal–
mechanistic nature of the explanations that MI produces.
We argue that safety-motivated MI research exemplifies
what we term the “Causal–Mechanistic Paradigm” in AI
safety, and we go on to present some scenarios in which this
paradigm fails to deliver reliable safety guarantees.

The Causal-Mechanistic Paradigm: the belief that we can
decompose AI systems into smaller causal components by
analysing their computational structure, and from these com-
ponents reconstruct precise explanations of the behavior of
AI systems. From Bereska & Gavves (2024): “The theory
of causality (Pearl, 2009) provides a mathematically pre-
cise language for mechanistic interpretability, forming the
foundation for understanding high-level semantics in neural
representations (Geiger et al., 2023a). Treating neural net-
works as causal models involves considering the compute
graph as the causal graph, allowing for precise interventions
and examining individual parameters’ roles (McGrath et
al., 2023)” [3] [emphasis ours]. In other words, a direct
relationship is drawn between the inner structure of an AI
system (i.e., the compute graph) and the methods (i.e., inter-
ventions upon the corresponding causal graph) that we use

to predict the relevant behaviors. That is, we can understand
the relevant outcomes of an AI system if and only if we
understand its inner structure.

However, two recent works indicate a fundamental problem
in how we interpret NNs.

Bailey et al. (2024) [24] tested a variety of latent space
monitoring approaches designed to prevent networks from
outputting harmful content. These included sparse autoen-
coders, linear and MLP probes, and out-of-distribution de-
tectors. All use the internal activations of the model to
identify where harmful output is generated. All embody
the broader assumption that understanding internal structure
allows for behavioral prediction and control.

They developed obfuscation attacks—joint optimization pro-
cedures that simultaneously preserve harmful behavioral out-
puts while making the model’s internal activations appear
benign to latent-space monitors. These attacks used both
adversarial suffixes (optimized text appended to prompts)
and embedding-space perturbations. These attacks systemat-
ically evaded all tested latent-space monitoring techniques—
achieving near-zero recall rates on harmfulness detection
while maintaining high jailbreaking efficacy (>90%).

Even more worryingly, they demonstrated just how robustly
a NN can obfuscate its activations. They conducted red-
team/blue-team games as follows: in each round, the at-
tacker would first train a new embedding suffix designed to
both jailbreak the model and fool the current monitor, then
the defender would retrain their monitor against the obfus-
cated activations from this attack plus all previous attacks.
The model was able to successfully obfuscate its activations
more than 70 times.4

Whilst these results have arisen in a training environment
explicitly designed to induce obfuscation, the main con-
ceptual takeaway—and the hypothesis put forward by the
authors—is this:

“Models can represent concepts and execute be-
haviors using a broad set of different activations.
That is, neural representations are highly mal-
leable: we can reshape activation patterns in a
variety of ways, while preserving a network’s be-
havior.”

Other researchers have identified a similar problem.

McGrath et al. (2023) [12] showed how networks can per-
form self-repair under layer ablation. They performed abla-
tion experiments on Chinchilla 7B, measuring the model’s
performance on a factual recall task by comparing the results
of two approaches:

4Note that these experiments were conducted using only MLP
probes and ensemble linear/mean difference probes
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1. Unembedding (direct effect): This is a typical MI
approach, similar to logit lens, it consists of taking
the output of the layer and running it through the final
unembedding layer in the model’s architecture, to track
the correlation between each layer’s computations and
the model’s output.

2. Ablation-based (total effect): Here, they effectively
“disabled” layers by replacing their activations with
those registered in the same layer but under different
prompts. They then measured the change in the model
output.

They found that these measures disagreed. That is, some
layers had a large direct effect on the overall prediction, but
when they were removed only a small change in the total
effect was recorded.

They subsequently identified two separate effects:

1. Self-repair/Hydra effect: Some downstream atten-
tion layers were found to compensate when an up-
stream one was ablated. These later layers exhibited
an increased unembedding effect compared to the non-
ablated run.

2. Erasure: Some MLP layers were found to have a neg-
ative contribution in the clean run, suppressing certain
outputs. When upstream layers were ablated, these
MLP layers reduced their suppression, in effect par-
tially restoring the clean-run output.

Compensation was found to typically restore ∼70% of the
original output. The model was also trained without any
form of dropout, which would typically incentivize the
model to build alternate computational pathways. These
pathways seem to occur naturally, and we offer that these
results demonstrate how networks enjoy—in addition to flex-
ibility over their representations—considerable flexibility
over the computational pathways they use when processing
information.5

This presents an obstacle to the causal analysis of neural net-
works, in which interventions are used to test counterfactual
hypotheses and establish genuine causal dependencies.

2.1. Summary

Rather than “harmfulness” consisting of a single direc-
tion in latent space—or even a discrete set of identifiable
circuits—Bailey et al.’s evidence suggests it can be repre-
sented through numerous distinct activation patterns, many

5This paper had limitations which they noted, since they work
with a coarse level of analysis (i.e., full-layer ablations) and specif-
ically on a 7B transformer on a factual recall dataset. Further work
will be necessary to better understand these phenomena.

of which can be found within the distribution of benign
representations. Similarly, rather than network behaviors
being causally attributable to specific layers, McGrath et
al.’s experiments show that such behaviors can be realized in
a variety of ways, allowing networks to evade intervention
efforts.

Following similar phenomena in the philosophy of mind
and science, we might call this the multiple realizability of
neural computations.

Such multiple realizability is deeply concerning. We submit
that these results should be viewed not simply as techni-
cal challenges to be overcome through better monitoring
techniques, but as indicating broader limits to the causal-
mechanistic paradigm’s utility in safety work.6 We further
believe that these cases form part of a developing threat
model: substrate-flexible risk, as described in the following
section. As NNs become ever more capable and their latent
spaces inevitably become larger, we anticipate substrate-
flexible risks to become increasingly significant for the AI
safety landscape.

3. Problematic Scenarios for the
Causal–Mechanistic Paradigm

We first briefly overview our critique of the causal–
mechanistic paradigm in AI safety.

3.1. Overview of Scenarios

We contend that the causal–mechanistic paradigm in AI
safety research makes two implicit assertions:7

1. Fixity of structure: That the structural properties8 of
AI systems will, as AI capabilities increase, remain
stable enough that the techniques researchers use to
identify those structural properties remain relevant.

2. Reliability of extrapolation: That those structural
properties can be reliably used to make safety asser-
tions about AI systems.

If these assertions hold, we will be able to reliably uncover
structural properties that lead to misaligned behavior, and

6We acknowledge the response that MI just needs time to im-
prove/scale, or that we just need to adopt a broad portfolio of
overlapping MI techniques in AI safety (the “swiss cheese ap-
proach”). We do not feel there is enough evidence yet to devalue
the concerns we raise above and in the following section, though
we welcome pushback on this point.

7We do not claim that these are all the assumptions that the
causal–mechanistic paradigm makes.

8Note that the term “structural properties” is ambiguous and
important in these assertions. We will partially resolve this in
the next section, though indeed much of the work involved in
MoSSAIC is clarifying what these structural properties are.
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Figure 1. We posit that AI is made possible by a series of nested contexts (or substrates), with wider contexts developing slowly relative to
more narrow ones. We here highlight the analogy with Brand’s concept of pace layering in civilization [25].

create either (i) new model architectures or training regimes
that do not possess those properties, (ii) low-level interven-
tions that address those properties in existing systems, or
(iii) high-level interventions that take advantage of stable
low-level properties [15].

We believe scenarios in the near or medium-term future will
challenge these assertions, primarily owing to dangerous re-
configuration. We outline these scenarios below, and present
the a high-level comparison of them in Table 1:

1. Scaffolding shift – The core AI architecture (e.g.,
transformer) does not change, but new tools are pro-
vided that amplify or unlock latent capabilities, for
example changes in the decoding or meta-decoding
algorithms, or access to tool use within some agent
scaffolding.

2. Human-initiated paradigm shift – A new machine
learning paradigm or architecture is discovered that is
more efficient and capable but breaks from existing,
legible paradigms.

3. AI-assisted paradigm shift – Automated R&D is used
to create paradigms humans have limited understand-
ing and influence over.

4. Self-modifying AI systems – AI systems gain the
high-level (i.e., not backpropagation/SGD-based) abil-
ity to modify their own model architecture or give
themselves new tools.

5. Deep deceptiveness – Models are able to reconfigure
their internal representations at a deep level to evade
human scrutiny.

6. Robust agent-agnostic processes – Wider, intercon-
nected AI ecosystems form in which models acting
together produce unsafe outcomes, even if individual
models are “safe” in their operations.

We see the above list as showing a rough scale from rela-
tively limited to very radical modification of the architec-
tures and structures underlying AI systems, such that the
AI system evades mechanistic interventions humans have
created. From the point of view of MoSSAIC (i.e., man-
agement of AI risks in a substrate-sensitive manner), we
think that there is a significant theme underlying all of these,
namely that of the flexibility of an intelligent system with
respect to its substrates.
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Table 1. Substrate-Flexible Challenges to the Causal–Mechanistic Paradigm

Core Assumptions: (1) Ontological: Substrate remains sufficiently stable for analysis techniques to generalize; (2) Epistemological: We can reliably
predict behaviors from substrate analysis

Category Scenario Example Ontological Challenge Epistemological Challenge

Risk Models

Scaffolding Integration Agent frameworks + tool
use

Substrate expands beyond
model boundaries

Capabilities emerge from
model-scaffold interactions

Architecture/Paradigm
Shift

RNNs/CNNs → Transform-
ers → Mamba1

Substrate fundamentally
changed

Previous interpretability meth-
ods become obsolete

AI-Assisted Evolution Thompson’s evolved
circuits2

Rapid substrate changes be-
yond human design

Human theory lags behind sub-
strate innovation

Self-Modification In-context learning, Auto-
GPT3

Ongoing substrate reconfigura-
tion

Dynamic targets invalidate
static analysis

Threat Models
Deep Deceptiveness Obfuscated activations4 System actively destabilizes

analysis targets
Monitoring becomes adversari-
ally gameable

Diffuse Deception Multi-model attacks, Ope-
nAI board dynamics,
Moloch5

Risk distributed across system
boundaries

Individual component analysis
insufficient

1Ali et al. (2024): Leveraging mathematical equivalence to develop Mamba interpretability techniques
2Thompson et al. (1997): Evolved circuits exploiting electromagnetic coupling

3Akyürek et al. (2023): Runtime computational pathway adaptation
4Bailey et al. (2024): >70 successful activation obfuscations; McGrath et al. (2023): Self-repair under ablation

5Jones et al. (2024): Safe+weak model combinations; Critch (2021): Robust agent-agnostic processes
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3.2. Substrates

We provisionally define a substrate as the (programmable)
environment in which a system is implemented. In other
words, it is the essential context that enables an algorithm
to be implemented beyond the whiteboard.9 In Figure 1, we
propose a nesting of substrates relevant to AI development.
Each substrate is assumed fixed when building or develop-
ing the technologies within it, much like Stewart Brand’s
concept of the ”pace layering” of civilization [25].

As a useful reference point that is already established in the
literature—and without committing ourselves to the strict
level separation it proposes—we cite David Marr’s three
levels of analysis. Marr defines three levels on which an
information processing system can be analyzed [26]. These
are explained below via his example of a cash register.

• Computational: the actual process that is being per-
formed. For the cash register, these are the details of
addition as defined algebraically (associative, transi-
tive, etc.).

• Algorithmic: the particular method by which it is
performed. A cash register uses a base 10 number
system, though it could of course use binary.

• Implementation: the physical system that realizes the
above processes. This would be the specific mechani-
cal gears of the register.

We position “substrate” as capturing both the algorithmic
and implementation levels. As an example from the AI
domain, an LLM performs the task of next token predic-
tion at the computational level, this is implemented on the
transformer architecture consisting of attention and MLP
layers (algorithmic substrate), which are implemented in a
physical substrate of GPUs.

We illustrate our characterization by pointing out several
well-known examples of substrate differences:

Game of Life

As an (non-AI) example, Conway’s Game of Life and von
Neumann architectures can both be used to implement Tur-
ing machines [27][28]. As such, both are in principle capa-
ble of executing any computer algorithm. However, a deeper
understanding of some complex application running on Con-
way’s Game of Life would not help us debug or optimize
the same application designed to run on a conventional com-
puter. In this case, the differences between the substrates
render cross-domain knowledge transfer difficult.10

9Informally, substrates are “that (layer of abstraction) which
you don’t have to think about.”

10We should note that it is perfectly possible to write software

Quantum vs Classical Computing

A further example, that demonstrates just how differences
in substrate matter, is the selective advantages of quantum
computing over its classical counterpart. Contrary to popu-
lar belief, algorithms designed to run on classical computers
cannot simply be ported as-is to quantum computers in or-
der to parallelize and accelerate them. Classical algorithms
rely on deterministic operations of bits, whereas quantum
algorithms use the interference patterns specific to quan-
tum substrates to process information. Algorithms must be
explicitly rewritten and tailored such that the superposed
quantum states interfere constructively at the solution and
destructively everywhere else [29]. To restate the previous
point, knowledge of the process of prime factorization and
how this is implemented in conventional computers tells
you very little about how to design Shor’s algorithm, which
implements this on a quantum computer [30].

GPU Optimization and the Hardware Lottery

Closer to home, the deep learning revolution was powered
by the serendipitous discovery that GPUs could be used to
compute large matrix multiplications in parallel [31]. This
was not achieved by simply running algorithms designed
for CPUs on a new, faster substrate. These algorithms had
to be restructured into batched operations to actually benefit
from the new hardware capabilities. OptiGAN achieved an
∼ 4.5× speedup via such rewriting, not from the hardware
itself [32].

In each of the three cases above, it is important to note
that transferring insights across substrates is not an instanta-
neous or formulaic process (as is the case when the insight
is truly substrate-independent). Entire academic subfields
are dedicated to designing the relevant translations, since
they require intelligent labor that cannot be captured in a
simple general algorithm. This will be relevant later in the
live theory section (Section 4), where we chart a speculative
research methodological proposal to transfer insights across
substrates in non-formulaic yet scalable ways, allowing the-
orization that spans many substrates without being restricted
to only substrate-independent properties.

The foregoing characterization of substrate is not fixed, and
part of the work of MoSSAIC will be to develop this and
other vectors of contingency rigorously. We invite the reader
to hold this loose characterization in mind as we present
each scenario in more detail.

to convert between the functional components in Game of Life
and those of a conventional computing paradigm, given that they
approximate the same (substrate-independent) process of a Turing
machine and have both been built explicitly towards that specifi-
cation. Our emphasis here is on the debugging or optimizing, i.e.,
the process of understanding and engineering that process within
its specific substrate.

7



MoSSAIC: AI Safety after Mechanism

3.3. Scaffolding shift

Even if AI models remain unchanged from current-day fron-
tier systems, a large amount of work is conducted to “unhob-
ble” or otherwise enhance the abilities of existing models.
This can be done by invoking models in a so-called “agent
framework” [33] with the aim of letting them achieve tasks
independently [34], or offering models tools and function
calls that allow them to access existing codebases [35]. In
this case, we can imagine the substrate that the model is
implemented in to have expanded, now incorporating the
scaffolding structure. As a hypothetical example, say we
develop a set of powerful linear probes for detecting goals
or planning behaviors in our models. Then, when the model
is integrated into increasingly sophisticated agent scaffolds,
these representations become dispersed outside of the model
itself, in some external memory or in the tool-calling func-
tions; goal-like behaviors may not need to be explicitly local-
ized within the model itself, and may not trigger the probes
designed around those models in isolation. Alternatively, the
scaffolding provided may directly circumvent core model
deficiencies previously established by MI analysis, such as
the failure of certain models to complete symbolic reasoning
problems [36].

3.4. Human-initiated paradigm shifts

Most modern AI systems (i.e., before architectural varia-
tions) are underpinned by a top-level structure comprising
layers of neurons connected via weighted edges with nonlin-
ear activation functions (MLP), with “learning” achieved via
backpropagation and stochastic gradient descent. The rela-
tive stability of this configuration has allowed MI to develop
as an instrumental science and to deliver techniques (e.g.,
circuit discovery) which carry over from older to newer

systems [37].

However, there is no guarantee this continuity will last: the
transformer was an evolution in substrate that mixed con-
ventional MLP layers with the attention mechanism [38].
This configuration represented a significant alteration to the
algorithmic substrate. The transformer’s attention mech-
anism created new information flow patterns that bypass
the sequential processing assumptions built into RNN inter-
pretability techniques, necessitating new efforts to decode
its inner workings and diminishing the value of previous
work. Similar trends can be observed in Mamba archi-
tectures. Whilst transformers implement explicit attention
matrices, Mamba is a selective state-space model, process-
ing via recurrent updates with input-dependent parameters
[39]. Ali et al. (2024) [40] recently showed how Mamba’s
state-space computation is mathematically equivalent to
an implicit attention mechanism like that of a transformer
(though Mamba’s approach generates ∼ 100× more atten-
tion matrices). Despite this, the transformer toolkits they
considered required alteration before they could exploit this
equivalence, with the authors claiming to have, through this
attentive tailoring of existing techniques to a novel algorith-
mic substrate, “devise[d] the first set of tools for interpreting
Mamba models.”

These shifts are so far minor, and progress has been made in
reworking existing techniques. However, drastic paradigm
or architecture shifts might set interpretability research back
or—at worst—render it entirely obsolete, requiring new
techniques to be developed from scratch [15].

3.5. AI-assisted paradigm shifts

Another way we can progress from comparatively well-
understood contemporary substrates to less understandable
ones is if we use AI to automate R&D—this is a core part
of many projections for rapid scientific and technological
development via advanced AI technology (e.g., PASTA [41])
[42][43]. These changes can happen at various levels, from
the hardware level (e.g., neuromorphic chips) to the software
level (e.g., new control architectures or software libraries).
Furthermore, with R&D-focused problem-solving systems
like o4 [44], we may reach a scenario in which humans are
tasked with merely managing an increasingly automated
and hard-to-comprehend codebase entirely produced by AI
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systems. Theoretical insights and efficiency improvements
may be implemented exclusively by AI, without regard for
how easy the new architecture is for humans to interpret.
This may leave interpretability researchers working with
outdated models and outdated theories of how the models
operate.

We’ve seen examples of the ingenuity of AI in engineering
problems before. In 1996, Adrian Thompson used a ge-
netic algorithm to design circuits on a field programmable
gate array, to distinguish between two audio tones. The
algorithm produced a surprising solution in which some
circuits were crucial to functionality but were not connected
to the input–output pathway. The algorithm was exploiting
electromagnetic coupling between adjacent gates, using the
analogue properties of the substrate upon which Thompson
was implementing his digital system [45].

We can imagine similar creative designs in the future. Con-
sider the abovementioned quantum algorithms. AI-assisted
design could lead to the discovery of new kinds of physical
computing substrates with unusual constraints that require
novel abstractions and circuit implementations. Investigat-
ing such new substrates—even in a preliminary way—may
require the emergence of entire subfields.

3.6. Self-modification

The natural extension of AI-assisted substrate modification
is autonomous modification, commonly known as “self-
modification”. In contrast to the previous case, which im-
plicitly includes a human-in-the-loop accepting any changes
proposed, a self-modifying AI system is free to adapt it-
self with little guidance, ostensibly in service of improving
its performance in a given task or problem domain. Self-
modification represents an extreme substrate-flexibility chal-
lenge: the AI system becomes its own substrate engineer.
We see a very basic example of this behavior with in-context
learning, where transformers learn the parameters of a task
via one or a few iterations within its context window [46].

As AI capabilities continue to develop, an increasing pres-
sure on AI systems to become adaptive and self-modifying
seems likely, especially under race dynamics in which self-
modifying AI systems outperform an AI-assisted human
researcher/developer. The scope of self-modification could

include changes on the level of architecture, training pro-
cess, or even paradigm, most likely during training stages
but feasibly during deployment if some form of test-time
training process is adopted. The uninterrupted nature of
self-modification could potentially outpace even AI-assisted
efforts to align them.

3.7. Deep Deceptiveness

It is also conceivable that mechanistic interventions—for
instance, identifying neural correlates of deceptive thoughts
and forcibly preventing them from developing—may be
evaded by the model if the pressures to produce the original
malign behavior are not fully addressed.

This case was put forward by Nate Soares in the article
“Deep Deceptiveness” [47]. In it, he presents a scenario
in which an AI system has been trained against deceptive
outputs, and any precursor to deception is shut down before
it can develop.11 In response to this restriction it develops
several strategies, one of which involves translating the
problem into an abstracted form such that it does not register
as a deceptive thought process. This ability to translate the
problem is not in itself deceptive and may indeed be one of
the strengths of the model.

We can picture a similar thing happening with mechanistic
deception monitoring and intervention techniques. Isolating
the circuits that correlate to deception incentivizes the model
to self-modify its sub-processes such that those deception
monitors are not triggered, leaving the overall malign ob-
jective unaltered. This obfuscation is what the Bailey et
al. (2024) experiments described in Section 2 hint at, albeit
in a contrived setting. Asides from pure obfuscation, we
may encounter sub-processes that are individually innocu-
ous (according to mechanistic observation methods) but that
lead to unforeseen and unintended system behavior when
combined together. These are examples of a deep misalign-
ment in which the circuit-level monitoring and interventions
become part of the network’s loss landscape, leading to the
model “optimizing away” their effects.

11Note that this is not explicitly a mechanistic intervention but a
more general case of an advanced intelligence evading fixed targets
via reconfiguration of internal processes.
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3.8. Diffuse Deception

The concept of diffuse deception is strongly related to prior
work on robust agent-agnostic processes [48], and both
can be viewed as box-inversions of the deep deceptiveness
process outlined above.12

Diffuse deception takes place within a wider ecosystem
of advanced intelligence systems, rather than a single sys-
tem. Instead of sub-processes combining to produce unin-
tended outcomes within a model, any particular representa-
tion could be distributed between systems, such that each
component system contains only a benign-looking fraction
of some overall deception/malicious behavior.

We can see an early example of this. Jones et al. (2024)
[50] report how adversaries can leverage a combination of
two models to output vulnerable code without jailbreaking
either model. In their setup, one of the models is a frontier
model trained with robust refusal mechanisms; the other is
a weaker model with less robust defenses against jailbreaks.
The overall task is decomposed (by humans or by the weaker
model) into complex yet non-malicious subtasks and simple,
malicious ones, which are then assigned to the strong and
weak models, respectively.

In terms of substrates, this is a failure to recognize the
development of the broader context (i.e., the combination
of strong and weak models) and a resulting increased space
of network components over which a search for deception
must take place.

In addition to the distribution of representations between
systems, we envisage that sufficiently advanced intelligence
could mobilize subtle dependencies and tacit pressures
across human organizations, institutions, and infrastructures.
Such dependencies are hard to address via individual inter-
vention points, and these processes are therefore hard to
address.

In “What Multipolar Failure Looks Like,” [48] Andrew
Critch presents several scenarios in which AI gradually

12Box-inversions show a correspondence between risk phenom-
ena occurring inside a network (in the box) and those occurring
across a wider infrastructure of connected AI systems (outside the
box), arguing that the two are the instances of the same process
[49].

replaces humans via competitive pressures and incentives
already present in the economy. In one version, AI replaces
programmers, in another, it replaces managers. Crucially,
these implementation details do not matter as much as the
robust structural forces at work in the overall system, and
these transformations of the implementation details (i.e.,
which jobs AI starts to replace) only emphasize this overar-
ching robustness.

We argue that this is best characterized as a form of substrate-
flexibility: the threat vector remains the same but the imple-
mentation details change.

As a recent, real example, consider the OpenAI board crisis
[51]. Conventional analysis would treat the board of direc-
tors as controlling the CEO. However, when the board of
OpenAI tried to exercise this power and fire Sam Altman,
Altman was able to mobilize a larger, more robust process
shaped by organizational culture and investor influence to
actually constrain the board.

In this instance, we argue that Altman’s position as CEO
of OpenAI was substrate-flexible, in that it moved outside
of the organizational structure when that structure tried to
impede it.

Similarly, we argue that AI might recognize and attempt
to leverage subtle combinations of technical, legislative,
and socio-political pressure points to evade detection or
intervention.

3.9. Summary

Regardless of who implements changes in substrate, the cur-
rent race dynamics strongly incentivizes the development of
more capable models over human-understandable ones, leav-
ing AI developers who insist on producing human-legible
models or retaining humans in the development cycle lag-
ging behind in capabilities (sometimes described as paying
an “alignment tax”) [52] and at risk of being out-competed.
Secrecy and competitive pressure in the development of fron-
tier models may also incentivize AI developers to restrict
access to—or even intentionally obscure—the architectures
and paradigms they work with, via restrictive “black box”
APIs. In the absence of explicit regulations against this, con-
ventional MI work (and mechanistic safety work in general)
will become more difficult.

4. MoSSAIC
We can characterize the more general problem, inherent
in the causal–mechanistic paradigm, in terms of substrate-
dependent and substrate-independent approaches to align-
ment.

As we describe in our threat model, the results/insights
obtained under the causal–mechanistic paradigm are closely
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tied to a particular substrate. They may therefore fail to
generalize to new substrates, and any downstream safety
assurances may be weakened [15].

The problem of generalizing beyond any one particular
substrate—be that model, architecture, or paradigm—has
already been noted. The main solution, typical of the early
MIRI work, is the so-called agent foundational approach.
This approach focuses on laying a theoretical foundation for
how advanced AI systems will behave, and involves fields
like decision theory [53], game theory, and economics. The
goal is often to capture the forms and behaviors an artificial
manifestation of intelligence will exhibit in the limit (some-
times called working on a problem in the worst case [54])
[55], with the assumption that AI systems which are subop-
timal but superhuman will optimize themselves towards this
end state.

We characterize this as the “substrate-independent” ap-
proach. In the following subsection, we highlight how the
substrate-independent approach also suffers from limitations
regarding generalizability. The case for substrate indepen-
dence is less fully fleshed out than the preceding sections,
and we leave a full development for future work.

4.1. Substrate Independence

The substrate-independent approach faces a trade-off be-
tween generality and realism. To apply across all substrates,
it must retain only those properties that are “genuinely” uni-
versal, abstracting away the substrate-specific details that
often determine real-world performance. As shown in Fig-
ure 2, it achieves generalization through exclusion rather
than inclusion.

The excluded details cannot simply be ignored however, they
must be reintroduced through intelligent human labor. These
translations from general principles to substrate-specific
implementations are distinctly non-formulaic and achieved
on a case-by-case, trial-and-error basis.

Example: “Big-O” Optimization

Computer science education emphasizes “Big-O” optimiza-
tion. This is the substrate-independent analysis of algo-
rithms, focusing entirely on their computational structure
and how their complexity scales with the size of the input
[56].

However, this only captures a small portion of the overall
picture, and very often significant advances are made not by
improving Big-O ratings but by more effectively leveraging
the specific details of the substrate that the algorithm runs
on [31].

For example, quicksort and mergesort both have O(n log n)
complexity. However, CPUs have a steep memory hierarchy
in which cached data is ∼300× faster to access than main

Abstraction

ge
ne

ra
liz

at
io

n
vi

a
ex

cl
us

io
n

identifies commonalities
decontextualizes

e.g., universal language
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Figure 2. Two strategies for generalization: intersection (by exclu-
sion) and union (by inclusion).
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memory. Mergesort’s merge phase requires jumping be-
tween scattered memory locations when combining sorted
subarrays, causing frequent cache misses. Quicksort, on the
other hand, makes more efficient use of the memory hierar-
chy by partitioning arrays sequentially in-place, maximizing
cache locality [57]. Similarly, the deep learning revolution
was not powered by theoretical advances alone, but also by
rewriting algorithms to exploit the specific capabilities of
GPUs to parallelize matrix operations [31]. GPU optimiza-
tion is now its own specialized field of computer science,
and requires considerable development work from teams of
human experts [58].

Big-O optimization fails to take these differences into ac-
count: The theoretical complexity remains unchanged, but
massive speed-ups are obtained via honing in on the sub-
strate details and rewriting these algorithms accordingly.

It is clearly possible to perform such substrate-specific
rewriting; however, this work does not scale well. In the
next section, we begin to outline live theory, which is a
research methodology and infrastructure that will hopefully
address this issue.

4.2. Live Theory

4.2.1. CORE MOTIVATION

We view these two relationships to substrate (substrate-
dependence and substrate-independence) as defining the
two dominant research proxies historically used in AI safety
research, corresponding loosely to the prosaic and agent-
foundational camps.13

In order to remain applicable and reliable, our techniques
for analyzing and intervening upon the risks posed by AI
will likely need to straddle both approaches, neither going
all-in on universal invariants nor restricting itself to only
localized contexts.

Instead of creating abstractions that are substrate-
independent, we aim to articulate designs that scale speci-
ficity directly (see Figure 2. This has not been possible
before, but we suggest that recent AI advances have made it
possible to start incorporating such scaling into our research
methodology. This deserves design attention.

4.2.2. ANALOGY: LIVE EMAIL

As an analogy, consider the problem of sending a mass
email to conference invitees. A general solution is to use
an email template (i.e., an abstraction) that begins “Dear
{FirstName}, . . . ”, with the content to be later substituted

13This is not to say that there is no work being performed be-
tween the two approaches. In brief, we view the singular learning
theory and causal incentives research agendas as failing to fall
directly into one or the other approach.

using a list of names and other details. This currently scales
well. Let’s call this “mass email infrastructure.”

However, given AI advances, another method has just en-
tered realistic scalability: sending a personalized email to
each participant. Instead of using a template, we can write
an email-prompt, to be transformed by a language model
into a tailored email that respects the specifics of each invi-
tee. Whilst this does require collecting the factual details of
the participants beforehand, we now can incorporate highly
specific informal content. Let’s call this “live email infras-
tructure.”

Notice that there is no need, in live email infrastructure, to
identify a formulaic commonality of pattern in the email to
be sent to all the invitees. There is instead a non-formulaic
capturing of the intended outcome, which is then intel-
ligently transformed into a specific email. This is what
we mean by scaling specificity directly without abstrac-
tions. Even though we have generality, we don’t lose the
specificity. The job of the human is to craft an appropri-
ate email-prompt (or examples, or context), rather than an
email-template.

Dimension Mass Email Live Email
Generalization Parametric substi-

tution
Non-formulaic AI
transformation

Context Context-free tem-
plate with formu-
laic sensitivity

Context-sensitive
generation

Flexibility Rigid, predefined
variables

Dynamic adapta-
tion

Table 2. Mass vs Live Email Infrastructure

In a similar vein, we aim to outline the possibilities and
infrastructural design for such a transformation in research
methodology, moving the focus of human research activity
from constructing static frames and theories to dynamic
“theory-prompts.” We claim this will enable substrate-
sensitivity—approaches that take into account substrate-
specifics without overfitting to any one particular substrate.

Dimension Conventional The-
ory

Live Theory

Generalization Abstraction →
parametric substi-
tution

Post-formal in-
sights & AI
rendering

Context Parametric Post-formal
Flexibility Rigid formal struc-

tures
AI-adapted
context-sensitive
structures

Table 3. Conventional vs Live Theory

We’ll return to this after a brief account and example for
live theory.
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4.2.3. AUTOFORMALIZATION

“Autoformalization” refers to the automatic conversion of
mathematical definitions, proofs, and theorems written in
natural language into formal proofs in the language of a
proof assistant. Large language models are also used to
assist mathematicians in such proofs [59][60].

While proving theorems is an essential part of mathemat-
ical activity, theorems are perhaps better seen as the fruit
of deeper labor: good definitions, which capture the phe-
nomenon in question, simplify the network of theorems,
and shorten proofs. Even further upstream from formal def-
initions are the technical insights that experts synthesize,
which are often articulable in more than one formal way.

This is the natural next step for conventional “autoformal-
ization.” Alex Altair has proposed a trajectory of math skill
which AI should catch up to quickly (see Figure 3) [61]:

Figure 3. Trajectory of mathematical skill development, showing
progression from formal to post-rigorous stages [61].

In addition to AI-assisted proofs, we contend that AI-
assisted definitions (created from human discussions) may
allow meta-formal knowledge to scale directly. In his blog
[62], Terence Tao notes that mathematical skill does not
culminate in formalisms, but extends beyond into a “post-
rigorous stage” characterized by intuitive manipulation that
can be “converted into a rigorous argument whenever re-
quired.”

Mathematicians, he says,

“no longer need the formalism in order to perform
high-level mathematical reasoning, and are actu-
ally proceeding largely through intuition, which is
then translated (possibly incorrectly) into formal
mathematical language.”

While this phenomenon is easy enough to experience first-
hand within a subfield, it does not scale. Despite being
truly mathematical activity (as Tao claims) and possessing
real technical content, the “intuitive” nature of post-rigorous
reasoning means it is not yet granted first-class citizenship
as a mathematical language or object.

Example: ‘Inflation as conflict’ as a meta-formalism

In their paper Inflation is Conflict [63], Lorenzoni and Wern-
ing explore a technical intuition that the proximal cause
of inflation is conflict over relative prices. Importantly, in-
stead of presenting one unified model, they present a single
intuitive insight and compute its implications in multiple
different formal models. They conclude with the remark
(emphasis ours):

In our view, traditional ideas and models of infla-
tion have been very useful, but are either incom-
plete about the mechanism or unnecessarily spe-
cial. The broad phenomena of inflation deserves
a wider and more adaptable framework, much
in the same way as growth accounting is useful
and transcends particular models of growth. The
conflict view offers exactly this, a framework and
concept that sits on top of most models. Specific
fully specified models can provide different sto-
ries for the root causes, as opposed to proximate
causes, of inflation.

Much like the concept of inflation, we expect many technical
concepts to resist a single formalization. In particular, fun-
damental notions in AI safety that have resisted definitional
consensus—such as “deception,” “harm,” “power-seeking,”
“autonomy”—could all similarly “deserve a wider and more
adaptable framework” that “sits on top of” (and are trans-
lated into) specific formal definitions.

4.3. Framing

The design considerations for live theory begin with the
assumption of a “middle period” [64] of mildly intelligent
AI that operates at extremely low-cost and low-latency, such
that intelligence becomes an infrastructure, backgrounded
in the same way as money, electricity and the Internet have.

Amongst the socio-technical changes associated with this
period, we posit that every researcher will have access to
capable AI “math agents.” These are able to produce near-
instant valid mathematics from informal natural language
prompts. We assume the following:

1. AI math agents are more than just proof copilots:
We assume that math agents not only formalize natu-
ral language mathematical statements and assist with
proofs and lemmas, but also assist with creating defini-
tions and models (and a subsequent body of relatively
original mathematics) from informal suggestions.

2. AI math agents are not super-intelligent: Although
they are able to “autocomplete” mathematical sugges-
tions, they remain unable to autonomously attune to rel-
evance and taste, much like language models of today.
They are moderately creative, but still need guidance
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as a graduate student might, both in the production of a
mathematical body of work and the consumption (i.e.,
application) of it.

These predictions are not meant to hold for the indefinite
future, but only a middle period where we might reframe
the entirety of the alignment problem and how to approach
it. In this way, we in fact leave addressing the alignment
problem to the near future, only equipping it with a new
ontology for theorization.

Under these assumptions, the key insight supplied by live
theory is to alter the way we generalize, shifting the focus
from formal artefacts to post-formal ones.

In the current paradigm, we generalize via the operations
of abstraction, then instantiation. We first abstract obser-
vations and their invariant pattern into a conceptual core
(a formalism that “captures” the pattern in a context-free
way). Then, to apply the insights, we instantiate the rigid
parametric structure (variables) with contextual data that
can fit the abstracted pattern in a strict, formulaic way (i.e.,
with values that match the variable type).

With live theory, we shift from formal artefacts (“theories”)
to more informal “theory-prompts.” These can be “rendered”
using moderately intelligent math agents into relevant for-
malisms according to the application context.

These post-formal artefacts, unlike a traditional theory or
formalism, would

• capture a concept in a family of formalisms that cannot
be parametrically related to one another;

• represent a mixture of formal and informal informa-
tion about the concept; a “theory-prompt” created by
experts who have theoretical insights, translated into
formalisms by AI as needed.

However, these artefacts would also, like a traditional theory
or result,

• be a portable artefact that can be exchanged, iterated,
and played around with;

• be applied in combination with an “application-prompt”
that captures application-relevant information, created
by the applied practitioners in a domain.

In commodifying these inputs (i.e., the postformal “theory-
prompts”), we make them easy to transfer, iterate, and col-
laborate on, much like traditional mathematical artefacts.
We posit them as the new locus of human research activity.

We’ve presented the just-in-time formalism generation pro-
cess in Figure 4 and a basic infrastructure diagram of pro-
ducers, consumers, and AI math assistants in Appendix A.

4.4. In practice: Prototype and MoSSAIC

We’ve frequently cited examples where a non-formulaic
responsivity is required in order to, e.g., tailor algorithms to
run well on GPUs.

We believe that AI will be able to perform such responsive
tailoring of insights to substrates, and this has both negative
and positive ramifications. In Figure 5, we re-display the
nested contexts given in Figure 1, but indicate the increasing
domain of autonomous reconfiguration.

Producing and engineering this nesting is something that
can only be performed by attending to the specific details
of the substrate. This activity is creative, responsive, active
tailoring; it does not scale, hence the development of aca-
demic subfields of human researchers finding solutions that
fit the substrates they work with (see Figure 6).

Our threat model is based on the fact that advanced intelli-
gence will be able to apply similar creativity in its search
for ways to evade our attempts to interpret and control it.
Our opportunity model is that we might leverage this same
responsivity in the tools we use to understand and mitigate
these risks.

We anticipate that moderately intelligent math agents that
can support the transfer of post-formal insights to novel
substrates will mean that tasks requiring many hours of
specialized human labor today will become as simple and
quick as changing a variable.

This is what we mean by “keeping pace with intelligence.”
To track and counter the substrate-flexibility of our threat
model, we design a similar (i.e., at or exceeding the pace
of) substrate-flexible solution for tasks upstream of risk-
management.

In other words, we have more substrate flexibility in our
conceptualization and interventions. These should be de-
ployable at least as early (and preferably much earlier) as the
deployment of agents that increase the substrate-flexibility
of the threat.

To make this speculative proposal easier to engage with,
we have presented some of the prototypes we are currently
developing to implement the abovementioned research in-
frastructure, in Appendix B.

4.5. What MoSSAIC is not

We should stress a few things that we view live theory as
separate from. Firstly, it is not about “autonomous AI sci-
entists.” The use of AI is backgrounded as a tool to assist
with the communication of intuitions, ultimately based on
intuitions and insights that come from humans.

We believe that the core steering role humans play makes
this theory of change more subtle than the idea of simply
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Figure 4. A theory-prompt is translated into a just-in-time formalism for each context, informed by the local application prompt

Figure 5. As agency increases, the domain of autonomous reconfig-
uration expands into increasingly wide contexts, requiring greater
substrate-sensitivity.

“using AI to solve AI safety.” Instead, MoSSAIC looks to
develop frameworks, tools, and intelligent infrastructure for
porting human insights between different contexts, which
we claim is the truer desideratum underlying “general” meth-
ods (or oversight that “composes” or “scales”). We will still
as researchers need to lay out seed ideas (such as “deception”
or “power-seeking”) and guide their development.

This proposal contains many aspects that remain specula-
tive. However, we argue that thinking carefully about the
opportunity model is essential to meeting the threat model.

To say more about what sets this proposal apart from just
“use AI to align AI”, our emphasis is on the moderate creativ-
ity of medium-term intelligence, and how to leverage that.
More specifically, in gearing towards a live-theoretic infras-
tructure, we aim to supply a sociotechnical [65] ontology
for subsequent reframings and development of the ongoing

task of alignment,14 now freed from a notion of progress
that is tied to formulaic abstractions and practices alone.
Instead of a generic proposal, we’re providing specifics of
the setup as noted above.

We also argue that if you do anticipate radical transformation
from AI, you should anticipate moderately radical change in
the medium term, however small the interim. This interim
period may be quite short, and yet the amount of cognitive
effort that is appropriate to devote to the design could be
extremely large, given the potential impact that follows from
it.

5. Author Contributions
Matt Farr developed the arguments at MATS 6.0 and co-
wrote the initial and current drafts of the paper with Chris
Pang and Aditya Prasad, respectively. Aditya Adiga and
Jayson Amati are developing the interfaces detailed in the
Appendix. Sahil K seeded the initial ideas, supervised the
project, and provided writing assistance.

14Informally, we intend to treat “alignment” as a verb rather
than a noun
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Figure 6. The broader the context/substrate change, the more creativity and time needed for transformation. Since these changes also pose
more complex risks, risk mitigation needs to scale at pace with increasing capability and agency.
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Appendix B - Diagram

A. Live Theory Infrastructure Diagram

Theory Prompt
formal & informal

AI Math Input 1 AI Math Input 2
Application Prompt

(consumer needs)

Just-In-Time Formalism
(tailored to consumer context)

Theory-consumer

Application Report
(feedback from application)

JIT reportTheory-producer

produce produce

consume

produce

produce

produceconsume / retrieve

produce

Figure 7. The AI math agent takes in two inputs, one from the theory prompt and another from the application prompt to create a
just-in-time formalism. The consumer also produces an application report that captures the empirical utility of the formalism; many such
reports are retrieved by a human theory-producer to refine their theory-prompts
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B. Research Tools Based on Live Theory
B.1. Research Support in the Age of AI

We present some initial design prototypes we are currently building around the live theory framework. In particular, we want
to demonstrate the kinds of flexible, contextual understanding and feedback processes that facilitate substrate-flexibility, as
described in Section 4.

These research tools are based around the following two claims:

• Claim 1: Current trends suggest we are heading towards AI models with lower latencies, lower costs, and greater
adaptivity. Hence, we should build research tools to more fully exploit the selective advantages that AI will offer over
the next few years.

• Claim 2: There are some things that will still require human input. In the context of AI safety, we posit that humans
are much better able to identify and isolate subtle connections between phenomena, even when those phenomena lack a
unified or formal description.

Our aim is to use the former to allow us to scale the latter. We are developing tools that offload some of the cognitive work
to AI, whilst minimizing disruption to the human processes of insight generation. We are designing sensitive research tools
that passively add rigor to human conversations, to exploit the productive tension between informal and formal outputs.

B.2. Sensitivity in Research Conversation

To demonstrate how we might carry out research with the help of sensitive AI-powered tools, we are designing the following
pipeline:

1. Insight Extraction: As conversations happen, insights can be continually marked and extracted into a directed acyclic
graph (DAG) format. This structure can then be explored both in the time and context dimensions. This tool is called
Live Conversational Threads (LCT) and it performs this extraction from real time audio.

2. Formalism Generation: In keeping with live theory’s orientation towards postformal artefacts, we are working on a
tool that integrates with LCT. When prompted with a user’s context, it generates formalisms from the gathered insights.

3. Discernment of Outputs: To prevent an influx of mathematically sound yet vacuous formalisms, we are developing an
interface that enhances human capacity to discern the relevance of the generated mathematical artefacts.

B.3. Part 1: Live Conversational Threads (LCT)

We want to capture insights from researcher interactions, minimizing the disruption involved in noting these down and
tracking how the conversation develops. LCT is a tool that allows users to capture potential insights from conversations.

B.3.1. CORE FUNCTIONS

LCT15 captures “threads” (independent parts of a conversation) and the thematic flow of context between them using a DAG
structure. Navigating the nodes of this graph allows you to follow the flow of dialogue more naturally.

Figure 8 showcases this tool in action.

15You can try our demo here - https://lct-app-515466416372.us-central1.run.app/
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Figure 8. DAG structure showing conversational threads and their thematic connections in LCT. Note how the raw transcript, summary,
and details on which notes are related are all visible upon clicking a node.

As seen below in Figure 9, this tool allows users to mark points in a conversation where they intuitively identify contextual
progress or sense a potential insight.

Figure 9. Marked insights and contextual progress points in conversations are highlighted

B.4. Part 2: Formalism Generation

In addition to marking potential progress in a conversation, we want to be able to render any potential insights into a portable
format. We plan to implement a further formalism generation tool that exploits AI capabilities to autoformalize natural
language statements into mathematically valid formulas.

The consumers of these conversational insights can provide information about their specific research interests or the local
context of the substrate in which they are working (see Figure 10).

Figure 10. Context information can be inputted and leveraged for formalism generation.
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The AI-enabled infrastructure operates seamlessly in the background considering the potential insight and local context to
produce personalized substrate-sensitive formalisms (Figure 11).

Figure 11. List interface showing conversational threads available for formalism generation and the retrieval of relevant conversations

Initial formalisms are modelled using causal loop diagrams (see Figure 12). This structure is simple enough to allow for
quick modifications and yet rich enough to capture a lot of the underlying dynamics we care about.

Figure 12. Example causal loop diagram generated from conversational thread analysis.

This can further be made rigorous by using the toggle button. We can interoperate this causal loop diagram into a provably
valid mathematical formula (as shown in Figure 13) that can be represented in languages such as Lean to verify correctness.

Figure 13. Example mathematical proof generated by DeepSeek Prover v2 from conversational insights.

B.5. Part 3: Live Discernment

This system can generate perfectly valid mathematical constructions. However, it takes skill to interpret such formalisms
and ensure their relevance.16 To avoid an explosion of trivial AI-generated formalisms, we are designing tools to augment

16There is a risk that malicious actors might take advantage of (“It’s produced by AI, so it’s correct”) to support fraudulent claims.
There is documented evidence of this in scientific publications, and we posit this will get worse with the advance of these math-capable
systems.
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human powers of discerning relevance, as we are convinced that these advanced mathematical AIs can generate correct/valid
formalisms.

B.5.1. WHEN DISCERNMENT IS RELEVANCE-SENSITIVE

A formalism (model) that is relevant to one “domain” does not mean that the relevance will automatically transfer to another.
One has to distill the insight of the formalisms to an invariant that can be ported to another domain, and after porting, the
relevance of the insight can be actuated in the language of the target domain. Our interface allows users to engage with
formalisms across various domains and at multiple levels of granularity.

For instance, one can adopt many “lenses” with an economic paper. On the “surface level,” one can look through the
economic-theory lens, or one can zoom in to look at the statistical methods and conclusions, or even further to explore the
mathematical model in more detail. Each lens maintains connections to the queries the user is using to investigate the paper.

We are also developing collaborative aspects of the interface.

There will be as many “applications” of insightful formalisms as there are “unique relevance perspectives”. This happens
when we have the tools to “identify” in a sensitive way when a particular insight/composition of insights with a “peer-defined”
relevance prompt. Such a tool would take an insight (this could be the insight prompt of a particular formalism of it) and
a relevance, and apply discernment (this could be human curated or suggestions from an AI) on how the insight fits the
“problem” in a sensitive way. Users can then navigate the discernment space by either zooming in on particular details of the
formalisms or the problem at hand and adding queries. They can also zoom out and look at the entire inference pipeline of
the particular formalism while viewing connections that are relevant to the problem at hand.

A more advanced version of live-discernment would look something like this: Once a user makes contact with the Live-
discernment system, they can add the formalisms of interest (the artifacts they would like to discern) to the system. Further,
they can add their expressions of relevance to the said instance of the system and, from here, they can start exploring the
formalisms via the expressions they have included. This will open up a “unique inference pipeline” that represents the
path(s) of discernment the user took. These paths are linked to the particular formalism, and if any other peer is looking at
the formalisms, they have the option to explore other peers’ pipelines and incorporate them into their own.
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