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1. Abstract
We identify a causal–mechanistic paradigm in AI safety,
primarily through the example of mechanistic interpretabil-
ity. Recent results suggest limits to this paradigm’s util-
ity in answering questions about the safety of neural net-
works, and we argue further that those results give a taste
of what is to come, by proposing a sequence of scenarios in
which safety affordances based upon the causal–mechanistic
paradigm break down. This analysis conceptually con-
nects current obfuscation results with some of MIRI’s more
pessimistic threat models (e.g., deep deceptiveness, robust
agent-agnostic processes) and suggest how we might unify
all under a common framework. The paper then introduces
a supplementary framework, MoSSAIC (Management of
Substrate-Sensitive AI Capabilities), which addresses some
of the core assumptions that underlie the causal–mechanistic
paradigm, and we sketch out the complementary research
infrastructure we are currently designing to allow us to keep
pace with evasive intelligence.

2. Introduction
Neural networks (NNs) are famously described as black
boxes. Their inner workings resist reduction to human-
understandable concepts. [4; 43] Their decision-making
processes are therefore difficult to properly audit to ensure
safety. [43]

Neural networks are also increasingly being deployed to
make decisions on behalf of humans across high-stakes
domains. Our lack of understanding of how trained NNs
process information to arrive at decisions poses challenges
to their safe deployment. [43]

The sub-field of AI safety known as interpretability seeks to
produce human-understandable explanations of NN behav-
iors. [7] [31]

Bereska & Gavves (2024) classify interpretability ap-
proaches into four main paradigms, which we’ll take a quick
look at:

Behavioral Interpretability treats models as black boxes,
analyzing input-output relations without examining internal
processes. They are model-agnostic and practical for com-
plex systems but lack real insight into internal processes.

[7] For example, minimal pair testing compares model out-
puts on almost-identical inputs to test for specific linguistic
capabilities (e.g., ”The cat sat on the mat” vs. ”The cats sat
on the mat” to test pluralization), and perturbation analysis
systematically alters inputs to see how the output changes
(e.g., testing robustness to adversarial examples).

Attributional Interpretability examines how individual
features of the input affect the output, using gradient-based
methods. These approaches offer more transparency over
black-box methods, but still do not provide any information
on the internal structures of models. [7] The simplest ver-
sion of this is vanilla gradients, which computes the gradient
of the output with respect to a change in some input feature.
Subsequent versions offer more refined techniques on this
basic premise.

Concept-based Interpretability seeks high-level concepts
governing network behavior. [7] For instance, it might clas-
sify model outputs into honest and dishonest categories,
take averages over the intermediate activations for each
class and work out the difference between these averages
as a vector in latent space, representing the concept “hon-
esty.” This paradigm allows for ”representation engineer-
ing”—manipulating these internal representations to upreg-
ulate desirable concepts. [43]

Mechanistic Interpretability starts from the bottom, iden-
tifying clusters of neurons (called ”circuits”) that together
perform a function in the decision-making process, from
there seeking to understand the relations between these cir-
cuits and how these give rise to system behavior. [43] [7]
[28] This field treats human-understandable ”features” as
the fundamental unit of analysis, trying to isolate these via
a number of techniques. [7]

Here we’re focusing on mechanistic interpretability. It has
remained a popular subject in AI safety over the past few
years, receiving considerable funding and attention. As a
rough indication of current investment, we note that approx-
imately a third of the topics listed in Open Philanthropy’s
recent request for technical AI safety proposals are on mech-
anistic interpretability or are closely related. [33]
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3. Mechanistic Interpretability
The field of mechanistic interpretability (MI) is not a single,
monolithic research program but rather a rapidly evolving
collection of methods, tools, and research programs. These
are united by the shared ambition of reverse-engineering
neural computations and, though lacking a comprehensive
uniform methodology, typically apply tools of causal analy-
sis to understand a model from the bottom up.

MI research is built on a set of postulates. A central as-
sumption is that NN representations can in principle be
decomposed into interpretable ”features,” fundamental units
that ”cannot be further decomposed into smaller, distinct fac-
tors”—and that these are often encoded linearly as directions
in activation space. [43] [7] Further work has shown that
NNs in fact compress features such that multiple features
are encoded by the same neuron—a phenomenon called
superposition. [18] [7] [19]

Some examples of mechanistic techniques include the fol-
lowing:

• Linear Probes: Simple models (usually linear clas-
sifiers) are trained to predict a specific property (e.g.,
the part-of-speech of a word) from a model’s inter-
nal activations. The success or failure of a probe at a
given layer is used to infer whether that information is
explicitly represented there.

• Logit Lens: This technique applies the final decod-
ing layer of the model to intermediate activations, to
observe how its prediction evolves layer-by-layer. [7]
[6]

• Sparse Autoencoders: These attempt to uncompress
a NN’s features such that they become monosemantic.
This allows researchers to observe the monosemantic
features used by a NN in its computation.[14; 7; 3]

• Activation patching: This technique attempts to iso-
late circuits of the network responsible for specific
behaviours, by replacing a circuit active for a spe-
cific output with another, to test the counterfactual
hypothesis.[7; 28; 19]

More recently, mechanistic interpretability has been devel-
oping from a pre-paradigmatic assortment of techniques
into something more substantial. It has been the subject of a
comprehensive review paper[7], has been given a theoretical
grounding via causal abstractions[19], and has more recently
been given a philosophical treatment via the philosophy of
explanations.[4]

In particular, this philosophical treatment characterizes MI
as the search for explanations with these four properties:

1. Causal-Mechanistic - providing step-by-step causal
chains of how a computation happens. This contrasts
with attribution methods like saliency maps, which are
primarily correlational. A saliency map might show
that pixels corresponding to a cat’s whiskers are ”im-
portant” for a classification, but it doesn’t explain the
mechanism of how the model processes that whisker
information through subsequent layers to arrive at its
decision.

2. Ontic - MI researchers believe they are discovering
real structures (the ontology) within the model. This
differs from a purely epistemic approach, which might
produce a useful analogy or simplified story that helps
human understanding but doesn’t claim to perfectly
represent reality. The search for ”features” as funda-
mental, linearly encoded units in activation space is a
core ontic commitment of the field.

3. Falsifiable - MI explanations are framed as testable hy-
potheses that can be empirically refuted. The claim that
”this specific set of neurons and attention heads forms a
circuit for detecting syntax” is falsifiable. One can per-
form a causal intervention—such as activation patching
or ablating the circuit and observe if the model’s syn-
tactic capabilities break in a predictable way. This
contrasts with unfalsifiable, post-hoc stories that can’t
be rigorously tested.

4. Model-level - The focus of MI is on the neural network
itself, its weights, activations, and architecture. This
is distinct from system-level analysis, which might ex-
amine the behavior of an entire deployed product (e.g.,
a chatbot integrated with search tools and a chain-of-
thought prompting wrapper). A system-level explana-
tion might attribute a behavior to the prompt, whereas
a model-level explanation seeks the mechanism within
the neural network’s computation graph.

Leaving aside questions regarding the aptness of this philo-
sophical characterization, we focus here on the Causal-
Mechanistic nature of the explanations that mechanistic
interpretability produces. We argue that MI exemplifies
what we term the ”Causal-Mechanistic Paradigm” in AI
safety, and we go on to present some scenarios in which
this paradigm fails to deliver reliable safety guarantees.

The causal-mechanistic paradigm: the belief that we can
decompose AI systems into smaller causal components by
analysing their computational structure, and from these com-
ponents reconstruct precise explanations of the behaviour
of AI systems. From Bereska, Greaves et al.: ”The the-
ory of causality (Pearl, 2009) provides a mathematically
precise language for mechanistic interpretability, forming
the foundation for understanding high-level semantics in

2



MoSSAIC: AI Safety after Mechanism

neural representations (Geiger et al., 2023a). Treating neu-
ral networks as causal models involves considering the
compute graph as the causal graph, allowing for precise
interventions and examining individual parameters’ roles
(McGrath et al., 2023).” [7] [emphasis ours] In other words,
a direct relationship is drawn between the inner structure
of an AI system (i.e., the compute graph) and the methods
(i.e., interventions upon the corresponding causal graph) we
can use to reliably predict all the relevant outcomes. That is,
we can understand the relevant outcomes of an AI system if
and only if we understand its inner structure.

However, recent work indicates a fundamental problem in
how we interpret NNs. Bailey et al. (2024) applied a variety
of latent space monitoring techniques to prevent networks
from outputting harmful content. They then used a series of
black-box and white-box jailbreak methods to coax a NN to
evade these monitors by obfuscating its activations, whilst
preserving the harmful output. [5]

The latent space monitoring methods they tested included
sparse autoencoders, linear and MLP probes, and out-of-
distribution detectors. All use the internal activations of
the model to identify where harmful output is generated.
They all embody the broader assumption that understand-
ing internal structure allows for behavioral prediction and
control.

Using obfuscation attacks—joint optimization procedures
that simultaneously preserve target behaviors while evad-
ing latent monitors—Bailey et al. were able to make their
network evade all tested latent space monitors.

Even more worryingly, they demonstrated just how robustly
a NN can obfuscate its activations. They conducted red-
team/blue-team games in which defenders iteratively re-
trained their detection methods using previously obfuscated
activations, and attackers adapted their methods to evade
each new iteration. The NN was able to successfully obfus-
cate its activations more than 70 times.

Whilst these result have arisen in a training environment
explicitly designed to induce obfuscation, the main con-
ceptual takeaway—and the hypothesis put forward by the
authors—is this:

”Models can represent concepts and execute behaviors using
a broad set of different activations. That is, neural repre-
sentations are highly malleable: we can reshape activation
patterns in a variety of ways, while preserving a network’s
behavior.”

Following similar trends in the philosophy of mind and sci-
ence, we might call this the multiple realizability of neural
representations. Rather than ”harmfulness’” consisting of
a single direction in latent space-or even a discrete set of
identifiable circuits-Bailey et al.’s evidence suggests it can

be represented through numerous distinct activation pat-
terns, many of which can be found within the distribution
of benign representations.

Such multiple realizability is deeply concerning. We submit
that the results of Bailey et al. should be viewed not simply
as a technical challenge to be overcome through better mon-
itoring techniques, but as indicating a theoretical limit to
the causal-mechanistic paradigm. We further believe that it
forms part of a developing threat model: substrate-flexible
risk, as described in the following section. As NNs become
ever more capable and their latent spaces inevitably become
larger, we anticipate substrate-flexible risks to become in-
creasingly significant for the AI safety landscape.

4. Problematic scenarios for the
causal-mechanistic paradigm

We first briefly overview our critique of the causal-
mechanistic paradigm in AI interpretability.

4.1. Overview of Scenarios

We contend that the causal-mechanistic paradigm in AI
safety research makes two implicit assertions:

1. Fixity of structure: That the structural properties 1

discovered in AI systems will be relatively stable as AI
capabilities increase. 2

2. Reliability of extrapolation: That the structural prop-
erties of neural networks can be reliably used to make
safety assertions about AI systems.

If these assertions hold, we will be able to reliably uncover
structural properties that lead to misaligned behaviour, and
create either (i) new model architectures or training regimes
that don’t possess those properties, (ii) low-level interven-
tions that address those properties in existing systems, or
(iii) high-level interventions that take advantage of stable
low-level properties.

We believe there are scenarios in the near or medium-term
future that will challenge these assertions. We outline these
scenarios below:

• Scaffolding shift - the core AI architecture (e.g., an
LLM) does not change, but new tools are provided
that amplify or unlock latent capabilities, for example

1Note that the term “structural properties” is ambiguous and
important in these assertions. We will partially resolve this in
the next section, though indeed much of the work involved in
MoSSAIC is clarifying what these structural properties are.

2Correspondingly, the techniques with which researchers dis-
cover structural properties will also remain relevant as capabilities
increase.

3



MoSSAIC: AI Safety after Mechanism

changes in decoding algorithm, meta-decoding algo-
rithms or access to tool use within some agent scaffold-
ing.

• Human-initiated paradigm shift - a new machine
learning paradigm or architecture is discovered that is
more efficient and capable but breaks from existing,
legible paradigms.

• AI-assisted paradigm shift - Automated R&D is used
to create paradigms humans have limited understand-
ing and influence over.

• Self-modifying AI systems - AI systems with the high
level (i.e. not backpropagation/SGD-based) of ability
to modify their own model architecture or give them-
selves new tools.

• Deep deceptiveness - Models able to reconfigure their
internal representations at a deep level to evade human
scrutiny.

• Robust Agent-Agnostic Processes - Even if individual
models are ”safe” in their operations, there may be
an overall context in which models acting together
produce unsafe outcomes

We see the above list as showing a rough scale from rela-
tively limited to very radical modification of the architecture
and structures behind AI systems, such that the AI system
effectively evades any interventions humans have created
based on mechanistic assumptions. From the point of view
of MoSSAIC, we think that there is a significant theme un-
derlying all of these, namely that of a shift in the substrate
of a model.

4.2. Substrates

We provisionally define a substrate as the (programmable)
environment or architecture in which a system is imple-
mented. In other words, it is the essential context that
enables an algorithm to be implemented beyond the white-
board. As a useful reference point that is already established
in the literature—and without committing ourselves to the
strict level separation proposed—we cite Marr’s three levels
of analysis. Marr defines three levels on which an infor-
mation processing system can be analyzed. [27] These are
explained below via his example of a cash register.

1. Computational: the actual process that is being per-
formed. For the cash register, this is the details of
addition as defined algebraically (associative, transi-
tive, etc.)

2. Algorithmic: the particular method by which it is
performed. A cash register uses a base 10 number
system, though it could of course use binary.

3. Implementation: the physical system that realizes the
above processes. This would be the specific mechani-
cal gears of the register.

We position “substrate” as capturing both the algorithmic
and implementational levels. As an example from the AI
domain, an LLM performs the task of next token predic-
tion at the computational level, this is implemented on the
transformer architecture consisting of attention and MLP
layers (algorithmic substrate), which are implemented in a
physical substrate of GPUs.

As another (non-AI) example, Conway’s Game of Life and
von Neumann architectures can both be used to implement
Turing machines. [34] [22] As such, both are in principle ca-
pable of executing any computer algorithm. However, even
a deep understanding of Conway’s Game of Life would not
help us debug or improve a complex application (e.g. a
climate simulation, or a video game) designed to run on a
conventional computer. In this case, the differences between
the substrates render cross-domain knowledge transfer diffi-
cult.

It is also important to note that substrates are usually nested
within other substrates. Functional and object-oriented pro-
gramming languages, for example, are themselves substrates
built upon lower-level substrates like x86 or ARM assem-
bly. Both require different forms of interface and exhibit
different domains of applicability.

Furthermore, substrates are not mere variations of a the-
oretical “perfect machine” – their differences have direct
implications on their functionality.[21] For example, mod-
ern AI systems are built upon deep neural networks that
exponentially scale in size and rely on matrix multiplica-
tion because one particular hardware-level substrate makes
scaling matrix multiplications easier: GPUs with the CUDA
toolkit. [24] [13] At a lower level, the divide between RISC
and CISC instruction sets is a more realistic example of
differences in substrate leading to significant differences in
application programming. [9]

This dependence on substrate is not just a theoretical con-
cern; it is visible even in the successes of mechanistic inter-
pretability. Consider the well-studied task of modular addi-
tion, where small transformers are trained to compute (a +
b) mod p. Researchers have successfully reverse-engineered
these models and discovered that they learn a specific, intri-
cate algorithm based on trigonometric identities and Fourier
transforms, implemented via clock-like representations in
the attention heads. The specific implementation is fun-
damentally tied to the architectural properties of the trans-
former substrate. A different architecture would almost
certainly learn a different algorithm, rendering this detailed
explanation obsolete. Thus, even our most complete mecha-
nistic explanations are descriptions of a substrate–algorithm
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pairing, not of a universal computation. [42] [29]

The foregoing definition of substrate is not fixed, and part
of the work of MoSSAIC will be to develop this and other
vectors of contingency rigorously. We invite the reader to
hold this loose characterisation in mind as we present each
scenario in more detail.

4.3. Scaffolding shift

Even if AI models remain unchanged from current day fron-
tier systems, a large amount of work is conducted to ”unhob-
ble” or otherwise enhance the abilities of existing models.
This can be done by invoking models in a so-called ”agent
framework” [37] with the aim of letting them achieve tasks
independently [16], or offering models tools and function
calls which allow them to access existing codebases [2].
In this case we can imagine the scaffolding as a substrate
layer beneath that of the model itself, supplementing its
operations and filling in deficiencies as an operating system
does in a conventional computer. The tools provided might
also directly circumvent core model deficiencies that were
previously established by interpretability analysis, such as
the failure of certain models to complete symbolic reasoning
problems. [30]

To examine these changes through the lens of modern sys-
tems, these scaffolding implementations might plausibly
elicit new capabilities previously hidden in models. For ex-
ample, mechanistic interventions designed to prevent chat-
bot systems from creating harmful output may also fail
when the LLM is removed from the guidance of a human
conversation partner and told to iterate upon its own output
in an agent loop.

4.4. Human-initiated paradigm shifts

Most modern AI systems (i.e., before architectural varia-
tions) are underpinned by a top-level structure comprising
layers of neurons connected via weighted edges with non-
linear activation functions (MLP), with ”learning” achieved
via backpropagation and stochastic gradient descent.

The relative stability of this configuration has allowed mech-
anistic interpretability to develop as an instrumental science
and to deliver findings which carry over from older to newer
systems, such as circuit discovery. [12]

However, there is no guarantee this continuity will last: the
transformer was an evolution in substrate that mixed conven-
tional MLP layers with the attention mechanism[17], neces-
sitating new mechanistic interpretability efforts to decode its
inner workings and diminishing the value of previous work
on networks such as CNNs and RNNs. Consider the dif-
ference between traditional MLP and Kolmogorov Arnold
networks: the latter replace fixed activation functions on
neurons with learnable functions for each edge in the net-
work [26]. These paradigm or architecture shifts might set
interpretability research back or—at worst—render it en-
tirely obsolete, requiring new techniques to be developed
from scratch.

As AI R&D accelerates, we expect new structures to emerge
that are similarly incomprehensible from the perspective of
someone studying a MLP network. Therefore, a deep under-
standing of today’s models—obtained via analysis of neural
networks, transformer features, etc.—does not guarantee an
understanding of future intelligences built upon different
computational structures. This would be akin to trying to
interpret a Python program as a pattern in Conway’s Game
of Life.

4.5. AI-assisted paradigm shifts

Another way we can progress from comparatively well-
understood contemporary structures to less understandable
ones is if we use AI to automate R&D—this is a core part
of many projections for rapid scientific and technological
development via advanced AI technology (e.g., PASTA[23])
[8] [40]. These changes can happen at various levels, from
the hardware level (e.g. new neuromorphic chips) to the
software level (e.g. new control architectures or software li-
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braries). Furthermore, with R&D-focused problem-solving
systems like o3[32], we may reach a scenario where humans
are tasked with merely managing an increasingly automated
and hard-to-comprehend codebase entirely produced by AI
systems. Theoretical insights and efficiency improvements
may be implemented entirely by AI, without regard for
how easy the new architecture is for humans to interpret.
This may leave interpretability researchers working with
outdated models and outdated theories of how the models
operate.

4.6. Self-modification

The natural extension of AI-assisted structural modifica-
tion is self-modification. In contrast to the previous case,
which implicitly includes a human-in-the-loop accepting any
changes proposed (irrespective of whether they understand
them or not), a self-modifying AI system is free to adapt
itself, ostensibly in service of improving its performance
in a given task or problem domain. We see a preliminary
example of this behaviour with in context learning, where
transformers learn the parameters of a task via one or a few
iterations of the task within its context window. [1]

As AI capabilities continue to develop, an increasing pres-
sure on AI systems to be adaptive and self-modifying seems
a feasible scenario to anticipate, especially under race dy-
namics in which self-modifying AI systems outperform
an AI-assisted human researcher/developer. The scope of
self-modification could include changes on the level of ar-
chitecture, training process, or even paradigm, most likely
during training stages but feasibly during deployment if
some form of test-time training process is adopted.

4.7. Deep Deceptiveness

It is also conceivable that mechanistic interventions—for
instance, identifying neural correlates of deceptive thoughts
and forcibly preventing them from developing—may be
evaded by the model if the pressures to produce the original
malign behaviour are not fully addressed.

This case was put forwards by Nate Soares in the article
”Deep Deceptiveness”[39]. In it, he presents a scenario in
which an AI system has been trained against deceptive out-
puts, and any precursor to deception is shut down before it
can develop. (Note that this is not explicitly a mechanistic
intervention but a more general case of an advanced intelli-
gence evading fixed targets via reconfiguration of internal
processes.) In response to this restriction it develops several
strategies, one of which involves translating the problem
into an abstracted form such that it doesn’t register as a
deceptive thought process. This ability to translate the prob-
lem is not in itself deceptive and may indeed be one of the
strengths of the model.

We can picture a similar thing happening with mechanistic
deception monitoring and intervention techniques. Isolat-
ing the circuits that correlate to deception incentivizes the
model to self-modify its sub-processes such that those decep-
tion monitors are not triggered, leaving the overall malign
objective unaltered. In fact, this obfuscation is what the Bai-
ley et al. (2024) experiments described in the introduction
demonstrate, albeit in a contrived setting. Asides from pure
obfuscation, we may encounter sub-processes that are indi-
vidually innocuous (according to mechanistic observation
methods) but that lead to unforeseen and unintended system
behavior when combined together. These are examples of a
deep misalignment in which the circuit-level monitoring and
interventions become part of the network’s loss landscape,
leading to the model ”optimising away” their effects.

4.8. Aggregate Deception

The concept of aggregate deception is strongly related to
prior work on robust agent-agnostic (multipolar) processes,
and both can be viewed as box-inversions of the deep decep-
tiveness process outlined above.3

3Box-inversions show a correspondence between risk phenom-
ena occurring inside a network (in the box) and those occurring
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Aggregate deception takes place within a wider ecosystem
of advanced intelligence systems, rather than a single sys-
tem. Instead of sub-processes combining to produce un-
intended outcomes within a model, any particular repre-
sentation could be distributed between systems, such that
each component system contains only a benign-looking frac-
tion of some overall deception/malicious behaviour. This
massively increases the space of network components over
which a search for deception must take place, further ham-
pering mechanistic safety work.

4.9. Summary

Regardless of who implements changes in substrate, the cur-
rent race dynamics strongly incentivise the development
of more capable models over human-legible or human-
understandable ones. This suggests that more capable mod-
els will consistently be selected for deployment over more
interpretable ones, leaving AI developers who insist on pro-
ducing human-legible models or retaining humans in the
development cycle lagging behind in capabilities (some-
times described as paying an ”alignment tax”)[38] and at
risk of being out-competed. Secrecy and competitive pres-
sure in the development of frontier models may also in-
centivise AI developers to restrict access to—or even in-
tentionally obscure—the architectures and paradigms they
work with, via restrictive ”black box” APIs. In the absence
of explicit regulations against this, conventional mechanis-
tic interpretability work (and mechanistic safety work in
general) will become more difficult.

5. MoSSAIC Overview
In this section we lay out a speculative proposal for how
we might address the above problems with the reduction-
ist/mechanistic paradigm.

5.1. Core Motivation

We can characterize the more general problem, inherent in
the Causal–Mechanistic paradigm, in terms of substrate-
dependent and substrate-independent approaches to align-
ment.

across a wider infrastructure of connected AI systems (outside the
box), arguing that the two are the instances of the same process.

Many of the concerns we raise above center on the problem
of moving and fixed targets: Mechanistic research is built on
analysing fixed, legible substrate targets, whilst much of the
problem posed by new models is that they present a moving
target of novel substrate configurations. The results/insights
obtained under the causal–mechanistic paradigm are tied
too closely to a particular substrate instantiation of AI. Thus,
they may fail to generalize to new substrates, and their safety
assurances may be weakened.

The problem of generalizing beyond any one particular sub-
strate—be that model, architecture, or paradigm—has al-
ready been noted. The main solution, typical of the early
MIRI work, is the so-called agent foundational or theoretical
“top-down” approach. This approach focuses on laying a
theoretical foundation for how advanced AI systems will be-
have, using fields like decision theory[41], game theory, and
singular learning theory[20]. The goal is often to capture
the forms and behaviours an artificial manifestation of in-
telligence will exhibit under optimal conditions (sometimes
called working on a problem in the worst case [11]) [10],
with the assumption that AI systems which are suboptimal
but superhuman will optimise themselves towards this end
state. AIXI is a key example of such an approach.

These abstractions and idealised concepts of agency and
decision-making should remain stable through successive
generations of SOTA models and architectures. AIXI rep-
resents a mathematically perfect or optimal reinforcement
learner, so any advance in reinforcement learning should
resemble more and more AIXI’s core learning process, re-
gardless of the substrate it’s realized in. These substrate-
independent insights should therefore generalize. Unfor-
tunately, these insights show limited applicability to the
diversity of real-world AI development/deployment scenar-
ios. It is naturally difficult to perform experiments to verify
these hypotheses in existing systems, and harder still to
empirically verify the theory behind them.

We view these two relationships to substrate as defining
the two dominant research proxies [25] historically in AI
safety research, corresponding loosely to the prosaic and
agent-foundational camps. The prosaic camp uses insights
typically derived via inductive methods to arrive at conclu-
sions regarding current systems, thereby risking overfitting
to those systems and the substrates that realize them. The
agent-foundational camp proceeds more via deduction, ar-
riving at mathematical proofs of idealized agency which
apply generally but fail to apply to any existing instances of
AI systems.4

That is, we must meet the challenge of substrate-dependance

4This is not to say that there is no work being performed be-
tween the two approaches. In brief, we view PIBBSS and the
singular learning theory and causal incentives research agendas as
failing to fall directly into one or the other approach.
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by becoming more general without dichotomizing it with
generalization that neglects substrate-specifics altogether.
We contend that this might be made possible by investigat-
ing the power of generalization (in say, a “general result”)
and vastly re-imagining the possible solutions. We outline a
specific proposal to this effect in the next section (“live the-
ory”), as our tools and research infrastructures themselves
are pervaded by moderate intelligence.

5.2. Live Theory

The research tools we propose are built upon an approach
we call “live theory”. Here we summarize the way in which
live theory might help us meet the challenge of adequately
characterizing intelligence in a generalizable way without
trading off the specifics.

To generalize is to transfer some insight between contexts.
For this, we typically extract that which is stable or invariant
across multiple contexts and port that to the novel situation.
The generalised product we produce is typically a theory; it
captures the core insights that can be fitted to new contexts
via abstraction and parametrization.[35] For example, Shan-
non formalized his intuitions regarding information into a
set of equations that apply to multiple different domains.
His equations provide an invariant structure that applies to
handwriting, morse code, the Internet, telephone communi-
cations, biological brains, and numerous other substrates.

However, routing our insights through a single conceptual
core as part of our theoretical practice requires us to over-
look, or “abstract away from”, local contextual features that
are often significant, especially in contexts involving a lot
of complexity. In practice, this re-insertion of context is
done by intelligent humans. Shannon’s insights must be
married to an understanding of the specifics of neurons and
their metabolic constraints if his insights are to be applied
to information processing in biological brains.[15]

We believe that the causal–mechanistic paradigm we de-
scribe above is an example of a set of research assumptions
and practices that depend heavily on local context. It is
fine-grained, substrate-specific, and may fail to generalize
as a single conceptual core. The typical “conceptual core”
approach involves abstracted or high-level claims and can
be overly coarse-grained, substrate-independent or model
agnostic, and may fail to reflect the local evolving details,
which is a vector of risks, as discussed in the first half of
this paper.

We believe that the dichotomy between the two approaches
is a byproduct of limitations in research infrastructure (and
subsequent culture of methodology) rather than a necessary
divide in the field.

We aim to look slightly ahead, where AI presents the op-
portunity to transcend this dichotomy at the level of out-

puts and artefacts. We expect moderately intelligent AI
infrastructure to be able to support new kinds of conceptual
transformations that do not rely on shared core formalisms
in order to be robust across disciplines, mechanisms, sub-
strates, paradigms etc.. This is a dynamic form of robustness,
which aims to create dynamic artefacts that transmit novel
insights reliably while remaining adaptive to local context.

This is possible in a time of moderate-intelligence, where AI
technology is not too dangerous or agentic, but the cost and
latency become extremely low. Humans in such a middle-
period regime might produce partially complete mathemat-
ical theory prompts or contexts, rather than finished for-
malisms. The incompleteness is a feature rather than a bug,
since it allows the specifics to weigh in on the mathematical
structure itself, rather than as just parametric instantiations
of a prefigured general mathematical structure.

5.3. AI assistance

As a contemporary example of what we mean, consider the
adaptability that an LLM provides. You create a local con-
text based on the task you want to achieve and the interface
adapts its responses to suit the situation. For example, it can
explain the same mathematical concepts at various intellec-
tual levels, translate ideas between languages, and create
examples to demonstrate theoretical intuitions. This inter-
activity goes beyond simply taking a formula and inputting
context via parametrization.

We expect live theories to reflect this adaptability made pos-
sible by AI tools and interfaces, and we argue that substrate-
flexible intelligence will require us to exploit this adaptivity
to novel contexts when porting insights regarding “high-
level” constructs such as deception, honesty, and so on.
Therefore, we will be able to transform previous discoveries
in mechanistic research (e.g. mechanistic interpretability
techniques or intuitions) to fit new domains and substrates
in a way that is more flexible than traditional mathemati-
cal formulae. Humans will supply partial formalisms that
include a mix of formal and informal data, that undergo
“smart substitution” using infrastructural AI, replacing the
usual theoretical process of formal abstraction and substitu-
tion that is the basis of existing science. The details of this
post-parametric generalization are beyond the scope of this
paper, but articulated elsewhere.[36]

To be clear, live theory is still undergoing prototyping, but
we view it as a plausible near-term outcome of progress
currently being made, and we want to leverage these near-
term tooling capabilities to counter the challenges of the
medium-term developments we detail in this paper.
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5.4. What MoSSAIC is not

We should stress a few things that we view live theory as
separate from. Firstly, it is not about “autonomous AI sci-
entists.” The use of AI is backgrounded as a tool to assist
with the communication of intuitions, ultimately based on
intuitions and insights that come from humans. Secondly,
we do not view our work as either high or low-level the-
orizing, but a way of generalizing theoretical insight that
is transferable across different contexts, without finding a
static “core thesis” that simplifies them. It is neither inde-
pendent of substrate nor entirely substrate-dependent (and
hence not model “agnostic”). We believe that the core steer-
ing role humans play makes this theory of change more
subtle than the idea of simply “using AI to solve AI safety.”.
Instead, MoSSAIC looks to develop frameworks, tools, and
intelligent infrastructure for porting human insights between
different contexts, which we claim is the truer desideratum
underlying ”general” methods, or oversight that “composes”
or “scales”. We will still as researchers need to lay out seed
ideas (such as ‘deception’ or ‘power-seeking’) and their
guidance, without being restricted only to formal invariants.

5.5. Commitment

Rather than treating intelligent constructs such as deceptive-
ness or honesty as behaviours and meaningful phenomena
in and of themselves, the mechanistic paradigm aims to
explain them in terms of underlying neural mechanisms. As
a result, it cannot respond to the inherent flexibility that
intelligence has with respect to its substrates. As part of
our work on MoSSAIC, we are attempting to formalize in-
tuitions we feel to be relevant to deception in a flexible way.
This work serves both as a demonstration of a live theoretic
approach to tackling deception across substrates, and also an
attempt to define a framework that might provide a cohesive
articulation of the pessimistic, agent foundations problem
cases mentioned earlier.

A range of terms are used in the literature to describe ideas
associated with goal-directedness, each with its own con-
notations and implied structure. These terms include goal,
objective, aim, intention, or drive. We choose to use the
word “commitment” because we hope to capture something
more general than the above terms. Commitments can vary
from very basic commitments of self-preservation and physi-
cal integrity; to more complex ones such as parent–offspring
relationships; to the intricate commitments social animals
form in packs or groups. Commitments can include goals
or objectives, but need not be actively optimized for or even
consciously acknowledged in many cases. For instance, my
emotional commitment to a sibling in another part of the
world only becomes part of my conscious planning in some
specific cases. Commitments can also include the more
biological notions of intentions and drives, or the possibility

of structured plans and in shared commitments between
intelligences. Commitments as we define them need not
be voluntary, the product of a deliberation process, or lo-
cally/globally optimal: a parent may sacrifice their life to
save their child from a burning building without consciously
weighing up their options. In short, we want to capture some
notion of “for-the-sake-of” that guides action/behaviour and
is robust across environmental changes and substrate alter-
ations.

Crucially, we will aim to formalize “commitments” in a way
that is substrate-sensitive rather than substrate-independent.
This is because the nature of the substrate will dramatically
affect the nature of the associated commitments—there is
no static, universally applicable account of commitment.

6. Conclusion
We believe that the above lays out a picture of why we
are interested in working on MoSSAIC, as well as some
approaches we find promising. We have already begun pre-
liminary work formalizing commitments through the lens
of category theory, which provides a lightweight, domain-
agnostic mathematical structure that will help us conceptu-
alise networks of commitment as the dual of causal DAGs.
We hope to continue this work both on the mathemati-
cal/formal and philosophical aspects and welcome engage-
ment with the ideas we have raised in this preliminary out-
line.
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