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Abstract
We study the problem of non-convex optimization using Stochastic Gradient Langevin Dynamics
(SGLD). SGLD is a natural and popular variation of stochastic gradient descent where at each step,
appropriately scaled Gaussian noise is added. To our knowledge, the only strategy for showing
global convergence of SGLD on the loss function is to show that SGLD can sample from a station-
ary distribution which assigns larger mass when the function is small (the Gibbs measure), and then
to convert these guarantees to optimization results.

We employ a new strategy to analyze the convergence of SGLD to global minima, based on
Lyapunov potentials and optimization. This adapts well to the case with a stochastic gradient
oracle, which is natural for machine learning applications where one wants to minimize population
loss but only has access to stochastic gradients via minibatch training samples. Here we provide
1) improved rates in the setting of previous works studying SGLD for optimization under mild
regularity assumptions, and 2) the first finite gradient complexity guarantee for SGLD where the
function is Lipschitz and the Gibbs measure defined by the function satisfies a Poincaré Inequality.

1. Introduction

We consider the minimization problem

arg min
w∈Rd

F (w).

More specifically we are interested in returning a vector w such that F (w) − minw F (w) ≤ ε
for some desired sub-optimality ε > 0. In Machine Learning (ML) settings, F can be thought
of as population loss and w as the parameters of a model we are using for the learning problem.
Additionally, in ML one does not have direct access to F but only via samples z1, . . . ,zn drawn iid
from some unknown but fixed distribution D and we assume that Ez∼D[f(w;z)] = F (w). Here
the zi can be thought of as input-output pairs and f(w;z) can be thought of as the loss of the model
parametrized by weights w on instance z. When the objective function/loss function is differentiable
(or sub-differentiable), then a common method of choice in practice is to use gradient descent (GD),
stochastic gradient descent (SGD) and its variants to perform the optimization. To understand their
properties theoretically, we aim to understand how many gradient computations are necessary to find
an ε-suboptimal w, and for which functions F this is possible. Under geometric conditions such as
convexity, the properties of GD and SGD are well-understood. For convex functions, methods from
acceleration to variance reduction have been developed to speed up runtime in a variety of settings.
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Matching lower and upper bounds exist for both exact and stochastic gradients for convex functions
and smaller classes such as strongly convex functions [6].

In recent years, machine learning has seen an explosion of success employing non-convex mod-
els. However, despite intensive study, the empirical success of optimizing non-convex functions to
global optima is not at all well-understood theoretically. Beyond convexity, GD/SGD converges to
global minima under general conditions such as Polyak-Łojasiewicz (PŁ) [28] [22] and Kurdyka-
Łojasiewicz (KŁ) [20] functions. Much more general geometric properties where GD/SGD can
converge to global minima were found in [15], by considering what properties hold if and only if
gradient flow succeeds. Additionally, researchers have proved GD/SGD with appropriate initializa-
tion can find global minima of particular non-convex problems such as matrix square root [17] [15],
matrix completion [18], phase retrieval [7] [11] [31] [15], and dictionary learning [2].

While gradient descent/stochastic gradient descent has been shown to be successful in the afore-
mentioned cases, there are well-known cases where GD/SGD does not work. A natural variant of
gradient descent that is used for optimization is perturbed gradient descent, where Gaussian noise
is added to the iterates of stochastic gradient descent – known as Langevin Dynamics – is frequently
analyzed. Formally, the iterates of Gradient Langevin Dynamics (GLD) are given as follows:

wt+1 ←wt − η∇F (wt) +
√
2ηβ−1εεεt. (1)

Here η > 0 is the step size, εεεt ∼ N (0, Id) is a d-dimensional standard Gaussian, and β > 0 is the
inverse temperature parameter (when larger, noise is weighted less). When we use a stochastic
gradient oracle ∇f(wt;zt) in place of ∇F (wt), these iterates become those of Stochastic Gradient
Langevin Dynamics (SGLD). Langevin Dynamics has been shown to work in several highly non-
convex settings where even gradient descent fails [29].

The continuous time version of (1) is the following Stochastic Differential Equation (SDE):

dw(t) = −∇F (w(t))dt +
√
2β−1dB(t). (2)

Here B(t) denotes a standard Brownian motion in Rd. This is known as the Langevin Diffusion.
Broadly, all of these recursions are known as Langevin Dynamics. Note as β → ∞, these iterates
become exactly those of GD/SGD (for (1)) or Gradient Flow (for (2)).

The only strategy in literature we know for proving global optimization guarantees for GLD
is by first showing sampling guarantees, and then connecting it back to optimization. Consider the
Gibbs measure µβ = e−βF /Z, where Z denotes the partition function. It is well known that the
continuous-time Langevin Diffusion with inverse temperature β (2) converges to µβ [14] (although
this is in fact false in discrete time). When β is sufficiently large, one can use this convergence to get
optimization guarantees. This was exactly the strategy of the works [19, 29, 35, 39]. These works
prove that under their conditions, this measure µβ can be sampled from, and therefore non-convex
optimization can succeed. Sampling from µβ is generally known as Langevin Monte Carlo (LMC).

For optimization, we need the inverse temperature β = Ω̃(dε); consider the natural example
when F (w) = ∥w∥2, thus µβ is a Gaussian with covariance 1

β Id. By standard results on Gaussian

concentration [34], we see we need β = Ω̃(dε) for even exact oracle access to µβ to succeed for
efficient optimization. If ε = o( dβ ), then µβ({w ∶ F (w) < ε}) is exponentially small in d.

The most general condition under which LMC has been proven to be successful is when µβ

satisfies a Poincaré Inequality [13]. A Poincaré Inequality is defined as follows:
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Definition 1 A measure µ on Rd satisfies a Poincaré Inequality with Poincaré constant CPI(µ) if
for all infinitely differentiable functions f ∶ Rd → R, we have

∫
Rd

f2dµ − (∫
Rd

fdµ)
2

≤ CPI(µ)∫
Rd
∥∇f∥2dµ.

If the above is not satisfied, following the convention, we set CPI(µ) =∞.

There is evidence that in several cases, LMC does not succeed efficiently under looser conditions on
µβ such as a weak Poincaré Inequality [25]. Ultimately, a Poincaré Inequality being satisfied by µβ

is a geometric condition on F . It is quite natural: when F is convex (µβ is log-concave), µβ satisfies
a Poincaré Inequality [5]. But a Poincaré Inequality is in fact much more general. It is stable under
bounded perturbations (at the expense of worsening the Poincar’e constant), hence covering a wide
range of cases that log-concave measures (when F is convex) does not (see Proposition 4.2.7, Bakry
et al. [3]). Poincaré Inequalities are also stable under convolutions and mixtures, in the sense that
for distributions which all satisfy a Poincaré Inequality, their mixture or convolutions between any
two of them will also satisfy a Poincaré Inequality (again, at the expense of worsening the Poincaré
constant; see Propositions 2.3.7 and 2.3.8, Chewi [12]).

However, the approach of studying optimization guarantees for GLD/SGLD via sampling is not
necessarily optimal. It does not handle stochastic gradients well (the more relevant setting for opti-
mization), only works well when F is approximately smooth, and converting sampling results back
to optimization guarantees often incurs extra runtime. Moreover, it is not clear whether sampling,
i.e. proving mixing, is necessary to study optimization. In this paper, we take a different route. We
highlight the benefit our approach brings next in Subsection B.2.

Notation. Unless otherwise specified the domain is Rd, with origin 0⃗. We denote the Laplacian
(sum of second derivatives) of a twice-differentiable function f by ∆f . Here B(p,R) denotes the
Euclidean l2 ball centered at p ∈ Rd with radius R ≥ 0. Sd−1 denotes the surface of the d-dimensional
unit sphere. Ω̃, Θ̃, Õ hide universal constants, log factors in β, d, ε, as well as w0-dependence.
Sometimes we will write exponentials as exp for readability. When we write vectors wt this denotes
time t in discrete time, and when we write w(t) this denotes time t in continuous time. Unless
indicated otherwise, E refers to expectation over the Brownian motion/random variables εεεt (as well
as the data samples zt in the SGLD case), and Ew denotes the same expectation when the stochastic
processes is initialized at w. For any set U ⊂ Rd, let the hitting time of the Langevin Diffusion
(2) initialized at w to U be τU(w). We assume that first order tensors, i.e. vectors, are equipped
with l2 Euclidean norm and that all second order tensors (i.e. matrices) and above are equipped
with operator norm. When we write ∥⋅∥ without specifying the norm, we implicitly mean the l2
Euclidean norm of a vector. For some f differentiable to k orders, we will let ∇kf denote the tensor
of all the k-th order derivatives of f , and ∥⋅∥op denotes the corresponding tensor’s operator norm.

2. Lyapunov Potentials and Optimization

In the rest of this paper, suppose F has a global minimum w⋆, which need not be unique (thus w⋆

can refer to any of these). Furthermore, without loss of generality, assume that F (w⋆) = 0.
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2.1. Our Strategy

Optimization under Langevin Dynamics can ultimately be posed as a question of hitting time: how
long does it take to reach a point w such that F (w) ≤ ε? In the probability theory and stochastic
partial differential equations (PDEs) literature, an extensive program has been devoted to studying
the connection between isoperimetric inequalities such as a Poincaré Inequality, hitting times of the
Langevin Diffusion to sets A ⊂ Rd, and Lyapunov potentials. As mentioned in Section 1, Poincaré
Inequalities are the loosest conditions under which global optimization guarantees for Langevin
Dynamics have been well-studied. This literature connects these inequalities to the geometry of F .

Definition 2 Say a non-negative function Φ ∶ Rd → R is a Lyapunov potential (for Langevin Dy-
namics at inverse temperature β given in (2)) if Φ ≥ 1 and on the set {w ∶ F (w) > ε} we have

⟨∇Φ(w),∇F (w)⟩ ≥ λΦ(w) + 1

β
∆Φ(w), (3)

where β refers to the inverse temperature of (2).

Our main method to study optimization is to track the progress of GLD/SGLD using the Lyapunov
potential Φ(w), which we outline in Section B. The geometric condition (3) turns out to be closely
linked to a Poincaré Inequality: as a corollary of Theorem 2.1 of Cattiaux and Guillin [8], we obtain
the following:

Theorem 3 Assume that µβ satisfies a Poincaré inequality with constant CPI(µβ) and has finite
second second moment for some β = Ω̃(dε). Then on Ac

ε = {w ∶ F (w) > ε},

⟨∇F (w),∇Φ(w)⟩ ≥ λΦ(w)+ 1
β
∆Φ(w) for λ ∈ [ 1

8β
min( 1

CPI(µβ)
,
1

2
), 1

4β
min( 1

CPI(µβ)
,
1

2
)],

(4)
for some non-negative Φ that is differentiable to all orders such that onAc

ε, Φ takes the explicit form

Φ(w′) = Ew′[exp(λτAε)].

Remark 4 Note that on Ac
ε, Φ ≥ 1. Also note Φ generally behaves in a ‘dimension free’ manner,

depending on how τAε(w′) behaves, as λ ≤ 1
4β min( 1

CPI(µβ)
, 12) is very small.

2.2. Results

Now, we state our results in full detail. Complete statements and proofs, including all explicit
dependencies, are in Section D. For all of our results, recall from the above that the desired toler-
ance ε = Ω̃( dβ); no results so far in literature yield meaningful optimization guarantees for smaller
tolerance levels.

Before we state our results more explicitly, we state our assumptions, which are in fact neces-
sary. Our first assumption, generalized to higher order derivatives from [15], is that the Lyapunov
potential Φ satisfies ‘self-bounding regularity’ in the following sense:

Definition 5 A k times differentiable function f ∶ Rd → R satisfies k-th order self-bounding regu-
larity if

∥∇kf(w)∥
op
≤ ρf,k(∣f(w)∣)
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for some increasing function ρf,k ∶ R→ R≥0.
We say f satisfies polynomial-like self-bounding regularity at order k if we can express ρf,k(z) =

∑n
j=0 cjz

dj where all dj ≥ 0. Note without loss of generality we can assume all cj , dj ≥ 0 and
ρf,k(z) = A(z + 1)p or ρf,k(z) = A +Azp by the AM-GM Inequality.

Assumption 1 Suppose Φ satisfies first, second, and third order polynomial-like self-bounding
regularity where the monomials in the self-bounding regularity functions have degree at most 1.

Such an assumption on the relevant Lyapunov potential is necessary to go from continuous to
discrete-time optimization: Theorem 3 from De Sa et al. [15] shows even for Gradient Flow/Gradient
Descent, there are examples where discrete-time optimization fails when continuous-time optimiza-
tion succeeds, but the Lyapunov potential did not satisfy self-bounding regularity. Analysis of the
same or similar examples hold for the Langevin Diffusion/GLD, where the Langevin Diffusion suc-
ceeds as an optimization strategy but discrete-time GLD/SGLD does not. Note Assumption 1 is
satisfied by many Lyapunov functions, e.g. when the Lyapunov function Φ has tail growth polyno-
mial in ∥w∥ or of the form er∥w∥

s

for s ≤ 1, going well beyond smoothness.
Now we state our assumptions on F . We consider the most general setting of previous works

[4, 13] for analyzing LMC where we assume F is Hölder continuous with parameter 0 ≤ s ≤ 1:

Assumption 2 (Hölder continuity) Suppose∇F satisfies L-Hölder continuity for some 0 ≤ s ≤ 1:

∥∇F (u) −∇F (v)∥ ≤ L∥u − v∥s.

When s > 0, that is F is not Lipschitz, we also require an assumption on the growth of F . This
significantly generalizes the dissipation assumption (when s = 1 and γ = 2) made in several previous
works studying non-convex optimization [24, 29, 35, 39].

Assumption 3 There exists γ ≥ 2s such that for some m,b > 0 and all w ∈ Rd,

⟨w,∇F (w)⟩ ≥m∥w∥γ − b.

Analyzing growth rates, we can see γ ≤ s + 1, which leads to no issues for 0 ≤ s ≤ 1. Note this
assumption is quite reasonable: in some sense it states that the gradient will push us towards the
origin when we are sufficiently far away. Moreover, all critical points of F are in B(0⃗, (b/m)1/γ).
However, we allow for arbitrary non-convexity inside this ball. In fact, by adding a suitable regular-
izer penalizing solutions lying outside B(0⃗, (b/m)1/γ), we can ensure F satisfies the above, which
is discussed on page 15 of Raginsky et al. [29].

Theorem 6 Suppose that F satisfies Assumption 2 and Assumption 3, µβ satisfies a Poincaré
Inequality with constant CPI(µβ) for β = Ω̃(dε), and µβ has finite second moment S < ∞. (In our
results dependence on S will be logarithmic.) Suppose Φ (from Theorem 3) satisfies Assumption 1.
Then running GLD, with probability at least 1 − δ, across all the runs we will reach a w with
F (w) ≤ ε in at most

Õ(max{d3max(CPI(µβ),1)3,
d2+

s
2 max(CPI(µβ),1)2+

s
2

ε2+
s
2

} log(1
δ
)) (5)

gradient evaluations.
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We note considering Assumption 2 for any s ≥ 0 and a Poincaré Inequality not only compatible but
natural to study in tandem, as discussed in [13].

We now move on to the stochastic gradient oracle case. Some control over the stochastic gradi-
ent estimates is necessary: if they are very inaccurate, following them will be meaningless.

Assumption 4 (Bound of variance of gradient estimates) The unbiased gradient estimate∇f(w;z)
of ∇F (w) satisfies the sub-Gaussian property that for all w ∈ Rd and t ≥ 0,

Pz(∥∇f(w;z) −∇F (w)∥2 ≥ t) ≤ e−t
2/σ2

F . (6)

Assumption 4 covers the classic setting of stochastic optimization where ∇f(w;z) = ∇F (w) + εεεt
where εεεt is sub-Gaussian with mean 0 and variance σ2

F [26]. We expect our techniques to hold when
gradient noise scales in function value, a more general setting discussed in De Sa et al. [15], but for
simplicity we work with Assumption 4.

We also need the following assumption made in Raginsky et al. [29] studying stochastic op-
timization in this setting. This is also reasonable, saying stochastic gradients contain reasonable
signal and will push us towards the origin when sufficiently far away.

Assumption 5 For every z, ∇f(w;z) satisfy Assumption 2 and Assumption 3. (Note they may be
satisfied with larger L and b and smaller m.)

Then, we have the following:

Theorem 7 Suppose µβ , F , Φ satisfy the same assumptions as in Theorem 6. Then running SGLD
with a stochastic gradient oracle satisfying Assumption 4 and Assumption 5, we obtain the same
guarantee (5) of the query complexity of our stochastic gradient oracle as in Theorem 6.

To our knowledge, our result Theorem 7 is the first finite iteration guarantee for the setting of F
Hölder-continuous and µβ satisfying a Poincaré Inequality with a stochastic gradient oracle. The
stronger assumption of smoothness is not satisfied by many canonical non-convex optimization
problems [15], so analyzing optimization with a stochastic gradient oracle in this more general
setting is highly relevant to study.

Recall from our conditions Assumption 2 and Assumption 3 that by analyzing the implied
growth rates of F , we have 2s ≤ γ ≤ s + 1. Thus when s = 1, γ = 1 is forced, so this recovers
as a special case of our assumption the smooth and dissipative setting from [19, 29, 35, 39]. In turn,
s = 1, γ = 1 actually implies µβ satisfies a Poincaré Inequality for all β ≥ 2

m [29]. In this setting we
have the following result which is stronger than directly applying Theorem 6:

Theorem 8 Suppose F is L-smooth and (m,b)-dissipative (that is, there exist m,b > 0 such that
⟨w,∇F (w)⟩ ≥ m∥w∥2 − b). Moreover suppose the resulting Φ satisfies Assumption 1. Running
either GLD or SGLD with a stochastic gradient oracle satisfying Assumption 4 and Assumption 5,
with probability at least 1 − δ, across all the runs we will reach a w with F (w) ≤ ε in at most

Õ(max{d3max(CPI(µβ),1)3,
d2max(CPI(µβ),1)2

ε2
} log(1

δ
))

gradient/stochastic gradient evaluations.

For all these results, we highlight the improvement on literature in Subsection B.2.
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Appendix A. Setup for Rest of Paper

The appendix is organized as follows. We first give a proof sketch and resulting comparison to
literature in Section B. We derive our ‘continuous time’ result Theorem 3 in Section C. Then in
Section D we prove Theorem 6, 7, and 8.

A.1. Additional Notation

In the following, log always denotes natural logarithm. The notation U([a, b]) refers to the uniform
distribution on [a, b]. The notation δA denotes the Dirac Delta on some event A. The notation Γ
refers to the Gamma function.

The notation d(p,A) refers to the minimum distance from a point p ∈ Rd to a set A ⊂ Rd. For
a set U ⊂ Rd, BU denotes its boundary. For a vector w ∈ Rd, wi refers to its i-th coordinate. For
a k-th order tensor operator T and v1, . . . ,vk ∈ Rd, T [v1, . . . ,vk] refers to applying T to the k-th
order tensor v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk, that is, ⟨T,v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk⟩.

Again, we will refer to the measure on Rd proportional to e−βF (w) by µβ (the subscript shows
the dependence on the temperature, which is crucial for optimization). When we write Z, it refers
to the normalizing constant ∫Rd e−βF (w)dw of the measure, unless specified otherwise (so it may
change line-to-line if we refer to different measures). For any set U ⊂ Rd, let the hitting time of the
SDE (7) initialized at w to U be τ ′U(w).

Before we apply results from probability regarding the continuous-time Langevin Diffusion,
consider the SDE

dw(t) = −β∇F (w(t))dt +
√
2dB(t). (7)

We refer to this SDE when we directly use results from Cattiaux et al. [9] and Cattiaux and Guillin
[8], so that our convention for Poincaré and Log-Sobolev constants will match theirs. Note (7) is
equivalent to (2). For a given realization of a Brownian motion driving both SDEs, both SDEs will
trace out the same path. However in (7) time passes ‘β times faster’ than in (2). Hence for any set
U ⊂ Rd, the hitting time of the SDE (7) to U is 1

β (i.e. faster if β ≥ 1) than that of the hitting time
of (2) to U , if both SDEs are driven by the same Brownian motion. That is, using our notation, we
have τ ′U = 1

β τU for all U ⊂ Rd.

Appendix B. Proof Sketch

B.1. Proof Sketch

The fundamental idea of how we use Theorem 3 is as follows. Consider τAε(w0), the hitting time
of GLD/SGLD initialized at w0 to Aε. Denote this by τ for short in the following. Consider the
random variable X ∶= 1

τ ∑
τ−1
t=0 λΦ(wt). Suppose that Φ is L-smooth and L-Hessian Lipschitz. The

idea is that, by the following, we can make X relatively small if τ is relatively large, by Taylor
expanding Φ to third order and using (8) (it turns out to be possible to control the higher order
discretization terms). However, by definition none of w0, . . . ,wτ−1 lie in Aε. Clearly X is lower-
bounded by λ, since Φ ≥ 1. But we just showed X is small if τ is relatively large. This gives
contradiction! Hence, we can upper bound τ . This idea, while currently informal, can be made
rigorous (using discrete-time Dynkin’s formula, Theorem 11.3.1, page 277 of Meyn and Tweedie
[23]). See Section D for details. To show how X can be made small, using definition (1), we Taylor

11
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expand Φ to third order (using that it is L-smooth and L-Hessian Lipschitz) to obtain

Φ(wt+1) = Φ(wt − η∇F (wt) +
√
2ηβ−1εεεt)

≤ Φ(wt) + ⟨−η∇F (wt),∇Φ(wt)⟩ + ⟨
√
2ηβ−1εεεt,∇Φ(wt)⟩

+ 1

2
⟨∇2Φ(wt)(−η∇F (wt) +

√
2ηβ−1εεεt),−η∇F (wt) +

√
2ηβ−1εεεt⟩

+ L

6
∥−η∇F (wt) +

√
2ηβ−1εεεt∥

3
.

We first use (3), which gives

⟨−η∇F (wt),∇Φ(wt)⟩ ≤ −ηλΦ(wt) −
η

β
∆Φ(wt).

Now, take expectations with respect to εεεt. The term ⟨
√
2ηβ−1εεεt,∇Φ(wt)⟩ disappears, in addition

to the cross term −2η
√
2ηβ−1⟨∇2Φ(wt)εεεt,∇F (wt)⟩ from the second-order term. Note now that

E[1
2
⟨∇2Φ(wt) ⋅

√
2ηβ−1εεεt,

√
2ηβ−1εεεt⟩] =

η

β
∆Φ(wt).

Therefore, the Laplacian terms η
β∆Φ(wt) cancel in the above after taking expectations, and what

we obtain is (upon dividing by η)

λE[Φ(wt)] ≤ E[Φ(wt)] −E[Φ(wt+1)] + {higher order discretization error terms}.

Summing and telescoping this relation, and using that Φ is non-negative, we obtain

E[X] = 1

τ

τ−1

∑
t=0

λE[Φ(wt)] ≤
Φ(w0)

τ
+ 1

τ
⋅ {higher order discretization error terms}.

If we can control higher order discretization error terms, which it turns out we can do as discussed
in Section D, then if τ is large then E[X] will be small. But as discussed earlier X ≥ λ pointwise,
hence E[X] ≥ λ. This lets us control τ , the hitting time of GLD/SGLD to the set Aε. One might
note this idea of considering the hitting time of SGLD toAε bears resemblance to the style of proof
from Chen et al. [10], Zhang et al. [38]. However, Chen et al. [10], Zhang et al. [38] considered
the hitting time to second-order stationary points, and so our results (in addition to the techniques)
are fairly different. To fully generalize this, using Lemma 16, this idea can be extended to cover
essentially all Lyapunov functions of interest (far beyond when Φ is smooth and Hessian Lipschitz).
Due to the stochasticity already present in GLD, our analysis for GLD vs SGLD is extremely similar.

B.2. Comparison of our Results to Literature

In our work, we prove optimization results for GLD/SGLD through Lyapunov potentials that are
implied by Poincaré Inequalities. To our knowledge, this is the first time such a proof has been
used to analyze global convergence of GLD/SGLD. Techniques to analyze sampling of GLD/SGLD
generally go through a Girsanov change of measure style argument [4, 13, 29]. This is both fragile,
and does not work as well for the more natural case of stochastic gradients (SGLD). In contrast, our

12
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Lyapunov-potential based method is more direct, robust, and naturally handles stochastic gradients.
Rather than in sampling or even expected suboptimality, our geometric properties allow us to study
the hitting time of GLD/SGLD. This leads to better bounds for optimizing non-convex functions,
both in general and especially via SGLD. We highlight these improvements as follows; earlier the
full statements were given in Subsection 2.2:

1. Theorem 6 and Theorem 7: Consider the case where F is s-Hölder continuous for some
0 ≤ s ≤ 1, there exists γ ≥ 2s such that for some m,b > 0 we have ⟨w,∇F (w)⟩ ≥m∥w∥γ − b,
and µβ satisfies a Poincaré Inequality with constant CPI(µβ) for β = Ω̃(dε). This is the
setting of Balasubramanian et al. [4] and Chewi et al. [13]1. For both GLD and SGLD, with
probability at least 1− δ we will reach a w with ε-suboptimality to the global minimum using
at most

Õ(max{d3max(CPI(µβ),1)3,
d2+

s
2 max(CPI(µβ),1)2+

s
2

ε2+
s
2

} log(1/δ))

gradient/stochastic gradient evaluations. Here, the Õ hides universal constants and polyno-
mial log factors in β, d, ε.

2. Theorem 6 and Theorem 7, special case: Consider the case where F is Lipschitz and µβ

satisfies a Poincaré Inequality with constant CPI(µβ) for β = Ω̃(dε). Here, unlike the above,
we do not need lower bounds on the tails of F . For both GLD and SGLD, with probability at
least 1 − δ we will reach a w with ε-suboptimality to the global minimum using at most

Õ(max{d3max(CPI(µβ),1)3,
d2max(CPI(µβ),1)2

ε2
} log(1/δ))

gradient/stochastic gradient evaluations.

3. Theorem 8: Consider the case when F is smooth (∇F is Lipschitz) and (m,b)-dissipative
(that is, there exist m,b > 0 such that ⟨w,∇F (w)⟩ ≥ m∥w∥2 − b; see Raginsky et al. [29],
Xu et al. [35], Zou et al. [39], and Mou et al. [24] for more details on dissipativeness). By F
smooth and dissipative, one can show that µβ satisfies a Poincaré Inequality for β = Ω̃(dε);
see Proposition 9 of Raginsky et al. [29]. For both GLD and SGLD, with probability at least
1 − δ we will reach a w with ε-suboptimality using

Õ(max{d3max(CPI(µβ),1)3,
d2max(CPI(µβ),1)2

ε2
} log(1/δ))

gradient/stochastic gradient evaluations.

4. Theorem 3: We show a tight connection between µβ satisfying a Poincaré Inequality and the
hitting time of the Langevin Diffusion to the set of ε-suboptimal global minima of F . This is
a corollary of literature in probability theory and partial differential equations (PDEs) [8, 9];
we believe we are the first to connect these results to optimization.

1. Although these works do not make our assumption on the tail growth of F , this assumption is mild and natural for
non-convex optimization problems motivated by machine learning.

13
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Additionally, sampling and optimization runtime guarantees are not the same. As mentioned
above, as done in Raginsky et al. [29], Xu et al. [35], Zou et al. [39], and Kinoshita and Suzuki [19],
one uses the sampling result to upper bound Ew∼µT

[F (w)]−Ew∼µβ
[F (w)]. However, techniques

to do this can and often do pick up extra dependence in d, ε, and isoperimetric constants such as
CPI(µβ), depending on the information metric the sampling guarantee is for. Moreover, for papers
such as Chewi et al. [13], Balasubramanian et al. [4], and Yang and Wibisono [36] which study
sampling in the constant temperature regime, when converting their results to optimization, we must
scale their smoothness parameter by β, which again changes the runtime. Therefore, the runtime
for optimization for other papers may not reflect the runtime written in said paper for sampling,
as we compute the rate implied by the literature for our task of optimization (which requires low
temperature, that is, large β = Ω(dε)): refer to Subsection D.2 for full derivation of the rates of
literature.

We summarize the comparison to literature in Table 1 on page 17. Note in our comparisons, we
assume other results in literature are done with an O(1) warm-start, which is the most favorable for
pre-existing literature (i.e. the least favorable comparisons for our results).2

Remark 9 We additionally note that unlike the strategy for converting sampling to optimization
guarantees outlined in Raginsky et al. [29] and followed in Xu et al. [35], Zou et al. [39], and
Kinoshita and Suzuki [19], which is to upper bound Ew∼µT

[F (w)] − Ew∼µβ
[F (w)] using sam-

pling guarantees, there is a more elegant and faster approach. To our knowledge it has not been
mentioned in literature. The approach is to simply sample until TV (µT , µβ) ≤ 0.1 = O(1). For any
ε > 0, denote the set {w ∶ F (w) ≤ ε} by Aε. For β = Ω(dε), one can show (see Lemma 14) that
µβ(Aε) ≥ 0.5. Therefore µT (Aε) ≥ 0.4 by definition of TV distance – that is, the probability our
iterate wT ∈ Aε is at least 0.4. When β = o(dε), µβ(Aε) can be exponentially small in d as seen
from the Gaussian example, so this strategy still requires large β. Table 1 on page 17 shows the
results using the strategy from Raginsky et al. [29] known in the literature, but below we discuss the
comparisons using both methods. While the rates of literature do improve, our rates are still more
favorable.

Here we expand on these comparisons:

1. Consider the case where F is s-Hölder continuous, there exists γ ≥ 2s such that ⟨w,∇F (w)⟩ ≥
m∥w∥γ − b, and µβ satisfies a Poincaré Inequality for β = Ω̃(dε). This case has been studied
in Chewi et al. [13] and Balasubramanian et al. [4].

In the GLD case, using the strategy of Raginsky et al. [29], Theorem 7 of Chewi et al. [13]

obtains a rate of Õ(d
2+ 3

s CPI(µβ)
1+ 1

s

ε
4
s

). Following the method suggested by Remark 9, the rate

becomes Õ(d
1+ 2

s CPI(µβ)
1+ 1

s

ε
2
s

). When s ≤ 1
2 , our result from Theorem 6 is always better or

equal to both of these in all parameters. When s ∈ (12 ,1], our result from Theorem 6 is supe-

rior to the rate obtained following the strategy of Raginsky et al. [29] when ε < d
1
4 (3−s)

CPI(µβ)
1
2 (s−

1
2 )

.

Theorem 6 is superior to the rate obtained following Remark 9 when ε < d1−s

CPI(µβ)
s− 1

2
.

2. For simplicity, in our comparisons we assume CPI(µβ) = Ω̃(1), which is generally the case (for example this is true
if µβ is isotropic and F is convex, and perturbations to F will increase CPI(µβ)). All explicit expressions for our
rates and those of the literature are given, so one can still perform these comparisons when CPI(µβ) = o(1).
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When s ≤ 1
2 , Corollary 19 of Balasubramanian et al. [4] improves on Chewi et al. [13].

Using the strategy of [29], the rate is Õ(d
6

1+s+8−3sCPI(µβ)
3

ε
16−2s
1+s

), which is using s ≤ 1
2 at least

Õ(d
10.5CPI(µβ)

3

ε10
). Following Remark 9, the rate becomes Õ(d

3+ 6
1+s−2sCPI(µβ)

3

ε
6

1+s
), which using

s ≤ 1
2 is at least Õ(d

8CPI(µβ)
3

ε6
). Our result from Theorem 6 is superior or equal to both of

these in all parameters, oftentimes by a significant amount.

In the SGLD case, our rate from Theorem 7 is the first finite gradient complexity guarantee.

2. Consider the case when F is Lipschitz and µβ satisfies a Poincaré Inequality for β = Ω̃(dε).
This has not been well-studied in the sampling or optimization literature, and the only work
we know of with finite gradient complexity is Balasubramanian et al. [4], namely s = 0
in Corollary 19, in the GLD case. The rate here using the strategy of Raginsky et al. [29]

is Õ(d
14CPI(µβ)

3

ε16
), or following Remark 9, is Õ(d

9CPI(µβ)
3

ε6
). Our rate from Theorem 6 is

superior or equal to both of these in every parameter, oftentimes by a significant amount.
Again, Theorem 7 is the first finite gradient complexity guarantee for the SGLD case.

3. Consider the case for SGLD and when F is smooth and dissipative, which has been well-
studied in the works Raginsky et al. [29], Xu et al. [35], Zou et al. [39], Yang and Wibisono
[36], and Kinoshita and Suzuki [19]. Theorem 1 of Raginsky et al. [29] requires gradient
noise δ to be potentially exponentially small in d, which does not make sense (we only re-
quire gradient noise of constant order, which is more realistic). Similarly, the relevant result
of Yang and Wibisono [36] which are Theorems 2, 3 also require gradient noise σF to be
potentially exponentiall small in d. Their gradient noise εmgf is lower bounded by our σF
from Assumption 4.

In particular their results give sampling results in KL divergence that, with constant gra-
dient noise/score estimation error, are of order at least O(σ2

FCLSI(µβ)) where CLSI(µβ)
denotes the Log-Sobolev constant. A Log-Sobolev Inequality is a stronger functional in-
equality which implies a Poincaré Inequality, with the corresponding Log-Sobolev constant
CLSI(µβ) ≥ CPI(µβ). CLSI(µβ) is worst-case exponentially large in d (in fact in β), while
using either the strategy of Raginsky et al. [29] or Remark 9, we need at most O(1) sampling
error in KL divergence, necessitating that σF be tiny for their results to be meaningful for opti-
mization. It should be noted, however, that Yang and Wibisono [36] does not assume dissipa-
tivity; it only assumes a Log-Sobolev Inequality. Recall the stronger Log-Sobolev Inequality
is implied by dissipativeness [29], although dissipativeness (i.e. quadratic tail growth) can
also be thought of as a canonical case of a Log-Sobolev Inequality.

For using the results from Xu et al. [35] and Zou et al. [39], we must account for total gra-
dient complexity for a stochastic gradient oracle with O(1) noise. After doing so we obtain
Õ( d7

ε5λ5
∗
) for Xu et al. [35] and a rate of Õ( d5

λ4
∗ε

4 ) for variance-reduced SGLD from Xu et al.

[35]. Here, λ∗ is a quantity similar to 1
CPI(µβ)

(but not directly comparable)3. Our rate from
Theorem 8 thus is generally superior to both of these in every parameter. (The results of

3. It is the spectral gap of discrete-time SGLD.
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Xu et al. [35], being phrased directly in optimization, can’t be directly improved using Re-

mark 9.) The rate from Zou et al. [39] is, using Cheeger’s Inequality, at least Õ(d
8CPI(µβ)

2

ε4
)

using the strategy of Raginsky et al. [29]. Thus our rate is superior when ε < d1.25

CPI(µβ)
0.25 .

Following Remark 9, Zou et al. [39] yields a rate of Õ(d
6CPI(µβ)

2

ε2
); our rate is superior when

ε < d1.5

CPI(µβ)
0.5 .

For Kinoshita and Suzuki [19], we directly apply their Theorem 3 which applies their re-

sults on sampling to non-convex optimization to obtain a rate of at least Õ(d
3CLSI(µβ)

3

ε3
) ≥

Õ(d
3CPI(µβ)

3

ε3
) (their γ is our β), which our rate is always superior to. Using their sampling

result and then Remark 9 improves their result to Õ(d
3CPI(µβ)

2

ε2
); our rate is superior when

ε < 1
CPI(µβ)

0.5 . We note their result uses a variance reduction technique, analogous to variance
reduction in convex optimization, to discretize the Langevin Diffusion in a slightly different
way. We also note that Kinoshita and Suzuki [19] also assumes dissipativity for optimization,
see the statement of their Theorem 3.

4. We additionally touch on other discretizations of the Langevin Diffusion. To our knowledge,
the only other discretization of (2) successful beyond log-concavity is the Proximal Sampler
first introduced in Lee et al. [21], Titsias and Papaspiliopoulos [32]. With exact gradients,
Altschuler and Chewi [1] showed it succeeds under a Poincaré Inequality when F is smooth;
the Proximal Sampler can only be implementable with smoothness for non-convex F . In the
stochastic gradient setting, the only work we are aware of showing its success is Theorems 4.1
and 4.2 of Huang et al. [16], showing the Proximal Sampler succeeds under smoothness and
a Log-Sobolev Inequality (which is satisfied in the smooth and dissipative setting as shown in
Proposition 9 of Raginsky et al. [29]). The rate from there is, using the strategy of Raginsky

et al. [29], Õ(d
5.5CPI(µβ)

3

ε5
). Or following Remark 9, the rate is Õ(d

3.5CPI(µβ)
3

ε3
). Our rate

from Theorem 8 is superior or equal in every parameter, often by a significant amount.

Appendix C. Proofs for Continuous Time

C.1. Proof of Theorem 3 and Related Results

Now we restate Theorem 3 formally here. Note Theorem 10 requires us to control µ(Aε) in the
λ from Theorem 3, for which we need Lemma 14. Lemma 14 is precisely where we need ε =
Ω̃( dβ). This leads to consistency between our results and our discussion from the Introduction. We
defer Lemma 14 to later in this section and note Theorem 3 follows immediately from combining
Theorem 10 and Lemma 14.

Theorem 10 Assume that µβ satisfies a Poincaré inequality with constant CPI(µβ). Then there
exists a non-negative Lyapunov function Φ differentiable to all others such that on Ac

ε, we have
Φ ≥ 1 and

−⟨∇F (w),∇Φ(w)⟩ + 1

β
∆Φ(w) ≤ −λΦ(w), (8)
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Problem Setting Our Result Best in Literature
GLD Poincaré & Lips-
chitz Õ(max{d3CPI(µβ)3, d

2CPI(µβ)
2

ε2
}) Õ(d

14CPI(µβ)
3

ε16
)

[4]

SGLD Poincaré & Lips-
chitz Õ(max{d3CPI(µβ)3, d

2CPI(µβ)
2

ε2
}) No finite guarantee

SGLD smooth & dissi-
pative Õ(max{d3CPI(µβ)3, d

2CPI(µβ)
2

ε2
}) Õ(min{d

8CPI(µβ)
2

ε4
, d7

ε5λ5
∗
,
d3CPI(µβ)

3

ε3
})

[19, 35, 39]

Table 1: Gradient complexity comparisons. We compare our optimization results to those obtained
by proving sampling results and then converting back to optimization using the strategy
known from pre-existing literature, from Raginsky et al. [29]. In the table, d refers to
dimension and ε refers to tolerance. β = Θ̃(dε), and CPI(µβ) denotes the Poincaré constant
of µβ . λ∗ is a spectral gap comparable to 1

CPI(µβ)
.

where

λ = 1

β
µβ(Aε)min( 1

4CPI(µβ)
,
1

8
).

In fact, on Ac
ε, Φ has the explicit form

Φ(w′) = Ew′[exp(λτAε)].

Proof We first need to introduce some concepts from Markov processes and Partial Differential
Equations (PDEs). First, we introduce the concept of the (infinitesimal) generator of a Markov
process, which will make this exposition much more natural. We give only what is needed for our
proof and refer the reader to Chewi [12] for more details.

Definition 11 The (infinitesimal) generator of a Markov process w(t) is the operator L defined on
all (sufficiently differentiable) functions f by

Lf(w) = lim
t→0

E[f(w(t))] − f(w)
t

.

It is well-known and can be easily checked that for the Langevin Diffusion given in the form (7),
the generator

Lf(w) = −⟨β∇F (w),∇f(w)⟩ +∆f(w). (9)

For example, this calculation can be found in Example 1.2.4 of Chewi et al. [13].
Note the similarity of the above to (3). This is no coincidence; our discrete-time proofs, specifi-

cally Lemma 17 and Lemma 19, are essentially re-deriving the generator of the Langevin diffusion.
In Lemma 17 and Lemma 19 we Taylor expand to third order (so we have the full second order
quadratic form); intuitively that is all that is needed by Itô’s Lemma.
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We also need to introduce the idea of symmetry of the measure µβ with respect to the stochastic
process. In particular, we say µβ is symmetric (with respect to the Langevin Diffusion (7)) if for all
infinitely differentiable f, g,

∫ fLgdµβ = ∫ Lfgdµβ.

Here L refers to the generator (9) for the Langevin Diffusion (7). It is well-known and can be easily
checked again that µβ is symmetric, see Example 1.2.18 of Chewi et al. [13] or the discussion on
page 3 of Cattiaux and Guillin [8].

Finally, we need to introduce some ideas from PDE theory. Consider a second-order differential
operator

P = 1

2
∑

1≤i<j≤d

aij
B2

BwiBwj
+ ∑

1≤i≤d

bi
B

Bwi
+ c.

The following definitions generalize far beyond second-order differential operators, but this is all
we need for our work. We say that P is elliptic if, for every w ≠ 0 ∈ Rd,

∑
1≤i,j≤d

aijwiwj ≠ 0.

We say P is uniformly elliptic if we can write

P = 1

2
∑

1≤i<j≤d

(σσT )
ij

B2

BwiBwj
+ ∑

1≤i≤d

bi
B

Bwi
+ c,

for some σ ∈ Rd where uniformly on Rd we have

σσT ≽ a > 0

in the PSD order [8, 30].
A canonical example of P that is uniformly elliptic is the Laplacian, where aij = 2δi=j [37].

Beyond this, note for the Langevin Diffusion (7), we have aij = 2δi=j as well, from (9). Thus, it is
clear that L for the Langevin Diffusion (7) is uniformly elliptic.

Ellipticity is well-known to imply that solutions u to the Dirichlet problem Pu = f in some
open domain Ω ⊂ Rd are smooth, which is all we need here [37].4 Ellipticity implies maximal
hypoellipticity, which in turn implies strong hypoellipticity/Hormander’s condition from Cattiaux
et al. [9], as discussed in Yang [37]. Thus uniform ellipticity implies strong uniform hypoellipticity
as defined in Cattiaux et al. [9]. Using the results of Cattiaux et al. [9] requires strong uniform
hypoellipticity and symmetry with respect to the stochastic process, and Cattiaux and Guillin [8]
requires uniform ellipticity and symmetry. We have uniform ellipticity and symmetry, and so can
use all those results.

Now we move to the main proof. Our main tool is Theorem 2.1 of Cattiaux and Guillin [8],
which connects Poincaré Inequalities to more explicit geometric conditions that we can use in an
‘optimization-styled’ proof analysis later.5 Specialized to the Langevin Diffusion (7) on the domain
D = Rd, it states the following:

4. For this, ellipticity is sufficient but not necessary. The loosest such condition for this is hypoellipticity [30, 37], which
is not relevant for this work.

5. We presume here F is sufficiently differentiable to use the results of Cattiaux et al. [9] and Cattiaux and Guillin [8],
for example this holds if F is infinitely differentiable. The careful reader will notice that F can be approximated by

18



LANGEVIN DYNAMICS: A UNIFIED PERSPECTIVE ON OPTIMIZATION VIA LYAPUNOV POTENTIALS

Theorem 12 (Theorem 2.1 of Cattiaux and Guillin [8]) Suppose that µβ satisfies a Poincaré In-
equality with constant CPI(µβ). Then for all open subsets U of Rd, there exists a function Φ differ-
entiable to all orders such that on Uc we have Φ ≥ δ′ > 0 for some δ′, as well as

LΦ(w) = −⟨β∇F (w),∇Φ(w)⟩ +∆Φ(w) ≤ −λ′Φ(w), (10)

where λ′ = µβ(U)min( 1
4CPI(µβ)

, 18).

Note to prove this result in D = Rd all that is needed is ellipticity, which is clearly satisfied here
in the case of the Langevin diffusion (following the discussion on page 9 of Cattiaux and Guillin
[8]). Hence, applying Theorem 12 with U = {w ∶ F (w) < ε} which is clearly open, this gives the
existence of such a Φ.

Suppose {w ∶ Φ(w) ≤ δ′

2 } ≠ ∅. In this case, consider {w ∶ Φ(w) ≤ δ′

2 } ⊂ {w ∶ Φ(w) <
3δ′

4 } ⊂ {w ∶ F (w) < ε}. Apply the standard construction of bump functions to the compact set
{w ∶ Φ(w) ≤ δ′

2 } contained in the open set {w ∶ Φ(w) < 3δ′

4 } to obtain a function χ differentiable to
all orders supported on {w ∶ Φ(w) < 3δ′

4 } and identically 1 on {w ∶ Φ(w) ≤ δ′

2 }. Let B = inf Φ ≤ δ′

2 .

It is easy to check that Φ+( δ′2 +max(0,−B))χ ≥ δ′

2 , and differentiable to all orders as Φ and χ are,

and is identical to Φ on {w ∶ F (w) ≥ ε}. Taking Φ ← Φ + ( δ′2 +max(0,−B))χ ≥ δ′

2 , this gives us

the existence of Φ ≥ δ′

2 differentiable to all orders where we know on {w ∶ F (w) ≥ ε}, it satisfies
(10).

Notice µβ({w ∶ F (w) < ε}) = µβ(Aε), since µβ(BAε) = µβ({w ∶ F (w) = ε}) is simply a
positive constant times the Lebesgue measure of BAε, and hence is 0. Therefore we know for this
Φ,

LΦ(w) = −⟨β∇F (w),∇Φ(w)⟩ +∆Φ(w) ≤ −λ′Φ(w) = −βλΦ(w). (11)

We claim with such a Φ, the moment generating function Ew′[exp(βλτ ′Aε
)] exists (i.e. is finite).

The argument is done explicitly on page 8 of Cattiaux et al. [9] (connectivity of A is not necessary,
as one will see below). We write it here explicitly here for the reader. Clearly this MGF is finite
for w′ ∈ Aε, so consider any w′ ∈ Ac

ε. Consider any t < ∞, any R < ∞ and consider the hitting
time τ ′

Aε∪B(0⃗,R)
c . Denote τ ′t,ε,R ∶= t ∧ τ ′

Aε∪B(0⃗,R)
c for short, which is clearly a stopping time.

Apply Dynkin’s Formula to the map (s,w) → eβλsΦ(w) with the stopping time τ ′t,ε,R; thus for all
s < τ ′t,ε,R, we know Φ(w(s)) satisfies (11). We obtain:

δ′

2
Ew′[exp(βλτ ′t,ε,R)] ≤ Ew′[exp(βλτ ′t,ε,R)Φ(w(τ ′t,ε,R))]

= Φ(w′) +Ew′[∫
τ ′t,ε,R

0
exp(βλs)(βλΦ(w(s)) +LΦ(w(s)))ds]

≤ Φ(w′) +Ew′[∫
τ ′t,ε,R

0
exp(βλs)(βλΦ(w(s)) − βλΦ(w(s)))ds]

an infinitely differentiable function to arbitrary precision. We also assume the boundary BAε = {w ∶ F (w) = ε}
is differentiable to all orders, non-characteristic for (7) in the sense described in Cattiaux et al. [9] and Cattiaux and
Guillin [8], and has Lebesgue measure 0. In the F Lipschitz case we assume this set is bounded and hence compact;
boundedness and hence compactness follows from Assumption 3 in all other cases. Since we can approximate F by
an infinitely differentiable function to arbitrary precision, this boundary in turn will be infinitely differentiable.
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= Φ(w′).

For justification, the first line above follows as Φ(w) ≥ δ′

2 . Dynkin’s Formula and then Chain Rule
and Itô’s Lemma are used in the second line (an analogous calculation is done formally on page 121,
Peskir and Shiryaev [27]). The third line uses the geometric condition (11) that we know Φ(w(s))
satisfies for s < τ ′t,ε,R.

Thus, we have for all t <∞, R <∞ that

Ew′[exp(βλτ ′t,ε,R)] ≤
2Φ(w′)

δ′
<∞.

Recalling δ′ > 0 is independent of R, t, letting first R → ∞ and then t → ∞, Dominated Conver-
gence Theorem gives the result Ew′[exp(βλτ ′Aε

)] ≤ 2Φ(w′)
δ′ < ∞ (since the right hand side above

is a finite upper bound independent of R, t).
We now claim the moment generating function Ew′[exp(βλτ ′Aε

)], which we now know exists,
satisfies (8). In fact this holds as an equality on Ac

ε (although we don’t need this). This is shown on
page 8 of Cattiaux et al. [9] and discussed on page 12 of Cattiaux and Guillin [8]. Thus, here we
just give a sketch; it follows by literature on PDEs, specifically Dirichlet problems. The result used
to prove this is result 1 of Section 7.2 of Peskir and Shiryaev [27]:

Theorem 13 (Result 1 of Section 7.2 of Peskir and Shiryaev [27]) Let U be a bounded, open sub-
set of Rd. Given a continuous function L ∶ U → R define

F (w) = Ew[∫
τ ′Uc

0
L(w(t))dt],

where w(t) here denotes the iterates of any diffusion process and τ ′Uc denotes the hitting time of
w(t) to Uc. Then F solves the Dirichlet problem

LF = −L in U , F ∣BU = 0.

Here, L is the generator of this diffusion.

Consider any R <∞. Consider Uε,R ∶= Ac
ε ∩ {w ∶ ∥w∥ < R}, which is clearly open. Now, we apply

the same reasoning as Result 4 of Section 7.2 of Peskir and Shiryaev [27] (the killed version of
the Dirichlet problem), except now we want to study the created version of the Dirichlet problem6.
There is not much difference, thus we just give a sketch and refer the reader to Result 4 of Section
7.2 of Peskir and Shiryaev [27] and again page 8 of Cattiaux et al. [9]. Let L ≡ βλ be a constant
function and now let w(t) denotes the iterates of the Langevin diffusion (7). Consider

F (w) = Ew[∫
τ ′Uc

ε,R

0
eβλtβλdt] = Ew[∫

τ ′Uc
ε,R

0
eβλtL(w(t))dt].

where τ ′Uc now is consistent with our definition from Section A, being for the Langevin Diffusion
(7). Observe that

F (w) + 1 = Ew[1 + ∫
τ ′Uc

ε,R

0
eβλtβλdt] = Ew[e

βλτ ′Uc
ε,R ] ≤ Ew[eβλτ

′
Aε ] <∞,

6. See Section 5.4, [27].
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since B
Bte

βλt = βλeβλt, τ ′Uc
ε,R
≤ τ ′Aε

. Hence, F (w) <∞ and so we may continue to analyze it.

Now consider w̃(t) ∶= eβλtw(t) (the created process). By the same reasoning as in Result 4
of Section 7.2 of Peskir and Shiryaev [27] but for the created rather than killed process, we have

F (w) = Ew[∫
τ̃ ′Uc

ε,R

0 L(w(t))dt] where τ̃ ′Uc
ε,R

denotes the hitting time of w̃(t) to Uc
ε,R. Let the

generator of w̃(t) be L̃. Now, Theorem 13 implies that F (w) solves the Dirichlet problem

L̃F = −L = −βλ in Uε,R, F ∣BUε,R = 0.

It can be readily seen that by Chain Rule that L̃ = L + βλ; this calculation is done formally on page
121, Peskir and Shiryaev [27]. Therefore, we have

−βλ = L̃F = LF + βλF in Uε,R, F ∣BUε,R = 0.

Therefore, ΦR = F + 1 satisfies (note LΦR = LF )

LΦR = LF = −βλ(F + 1) = −βλΦR in Uε,R,ΦR∣BUε,R = 1.

Note we showed earlier

ΦR(w) = F (w) + 1 = Ew[1 + ∫
τ ′Uc

ε,R

0
eβλtβλdt] = Ew[e

βλτ ′Uc
ε,R ].

Finally, since we’ve already shown Ew[eβλτ
′
Aε ] <∞, the same argument of page 8 of Cattiaux et al.

[9] shows that the pointwise limit

Φ(w) ∶= Ew[eβλτ
′
Aε ] = lim

R→∞
Ew[e

βλτ ′Uc
ε,R ]

exists and solves the Dirichlet Problem

LΦ = −βλΦ in lim
R→∞

Uε,R ∩ {w ∶ ∥w∥ < R} = Ac
ε.

Thus, it satisfies (8). Moreover, since L is elliptic (and therefore hypoelliptic), the resulting solution

Φ(w) = Ew[eβλτ
′
Aε ]

is differentiable to all orders in limR→∞Ac
ε ∩ {w ∶ ∥w∥ < R} = Ac

ε. Note since the quantity in the
exponential is always non-negative pointwise, Φ(w) ≥ 1 on Ac

ε.
Since the boundary BAε = {w ∶ F (w) = ε} is compact and differentiable to all orders, through

a standard compactness and δ − ε argument we can show by defining

Φ(w) = lim
w′→w,w′∈Ac

ε

Φ(w′) for all w ∈ BAε,

the resulting Φ is differentiable to all orders on Ac
ε ∪ BAε (when we define derivatives as the limits

coming from outsideAc
ε). (Compactness here is important.) AsAc

ε ∪ BAε is closed, applying Whit-
ney’s Extension Theorem as mentioned in [9], Φ above can be extended to a function differentiable
to all orders on all of Rd so that (8) holds on {w ∶ F (w) ≥ ε}. Note Φ ≥ 1 on {w ∶ F (w) ≥ ε}.
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Suppose the resulting Φ from the extension was not non-negative. Let B ∶= inf Φ < 0. Observe
{w ∶ Φ(w) ≤ 0} ⊂ {w ∶ Φ(w) < 1

2} ⊂ Aε. Apply the standard construction of bump functions to
the compact set {w ∶ Φ(w) ≤ 0} contained in the open set {w ∶ Φ(w) < 1

2} to obtain a function
χ differentiable to all orders supported on {w ∶ Φ(w) < 1

2} and identically 1 on {w ∶ Φ(w) ≤ 0}.
Then Φ − Bχ is non-negative (recall B < 0) and differentiable to all orders, and is identical to Φ
on Ac

ε. Taking Φ ← Φ −Bχ, this gives us the existence of Φ ≥ 0 differentiable to all orders where
we have its explicit form and know it satisfies (11) and therefore (8) (upon dividing both sides by
β > 0) on Ac

ε.
To conclude, note from our remarks from Section A that

τ ′Aε
(w′) = 1

β
τAε(w′).

Therefore on Ac
ε we can also write

Φ(w′) = Ew′[exp(λτAε)] ≥ 1.

This completes the proof.

Now we prove Lemma 14.

Lemma 14 Suppose F satisfies Assumption 2 and µβ has finite second moment S < ∞. Then for
ε ≥ 2d

β log(4πeβLdS), we have µβ(Aε) ≥ 1
2 .

Proof As F (w) is non-negative, by Markov’s Inequality, we have

µβ(Ac
ε) = µβ({w ∶ F (w) > ε}) ≤

Ew∼µβ
[F (w)]
ε

.

Now we compute Ew∼µβ
[F (w)] with the same strategy as in the proof of Proposition 11 of Ragin-

sky et al. [29]. Write

Ew∼µβ
[F (w)] = ∫

Rd
F (w)µβ(w)dw =

1

β
(h(µβ) − logZ).

Here Z is the partition function of µβ and

h(µβ) = −∫
Rd

µβ(w) logµβ(w)dw

is the differential entropy of µβ .
To upper bound the differential entropy of µβ , we use the same derivation as the proof of Propo-

sition 11 of Raginsky et al. [29]. The assumption that ∫Rd∥w∥2dµβ(w) ≤ S, as well as the fact that
the differential entropy of a measure with finite second moment is upper bounded by the differential
entropy of a Gaussian with the same second moment, yields

h(µβ) ≤
d

2
log(2πeS

d
).

Now we aim to lower bound the partition function Z. Using Lemma 25 and Lemma 26, we obtain

logZ = log∫
Rd

e−βF (w)dw
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≥ log∫
Rd

e−βL∥w−w
⋆∥s+1dw

= log∫
Rd

e−βL∥w∥
s+1

dw

= log( 2πd/2

Γ(d/2) ⋅
1

s + 1 ⋅ (βL)
− d

s+1 ⋅ Γ( d

s + 1)).

It is well known that on R>0, Γ(⋅) attains a constant lower bound of at least 1
2 (the real value is

around 0.8856, but this is all we need for our purposes). Moreover, by well-known properties of
Γ(⋅), we have Γ(d/2) = d

2 ⋅
d−2
2 ⋅ ⋯ ⋅

d−2⌊d/2⌋+r′+2
2 ⋅ Γ(d−2⌊d/2⌋+r

′

2 ), where r′ = 2(1 − d (mod 2)).
Since d−2⌊d/2⌋+r′

2 ∈ {1/2,1} and Γ(1/2) = √π, Γ(1) ≤ 1, this gives Γ(d−2⌊d/2⌋2 ) ≤ dd/2
√
π. This

implies (since βL ≥ 1) the following very loose bound:

logZ ≥ log( 2πd/2

Γ(d/2) ⋅
1

s + 1 ⋅ (βL)
− d

s+1 ⋅ Γ( d

s + 1))

≥ log( πd/2

2
√
π(βL)ddd/2

)

≥ −d log(2βLd).

Hence, we see

Ew∼µβ
[F (w)] = 1

β
(h(µβ) − logZ) ≤

d

β
(1
2
log(2πeS

d
) + log(2βLd)) ≤ d

β
log(4πeβLdS).

The conclusion follows from our condition on β and the original application of Markov’s Inequality.
Note it suffices to just take ε ≥ 2Ew∼µβ

[F (w)] to make this proof work; most of our work was
to find a suitable upper bound for Ew∼µβ

[F (w)]. Also, ε = Ω(Ew∼µβ
[F (w)]) is necessary, as

demonstrated by the Gaussian example in Subsection B.2.

Appendix D. Proofs for Section 2

In this section, we state all guarantees with constant probability. To obtain those results with prob-
ability 1 − δ, one can simply use the standard log-boosting trick.

D.1. Proofs of Theorem 6, 7, and 8

Here we formally state and prove Theorem 6, 7, and 8, which are all subsumed by the following
result.

Theorem 15 Suppose that F satisfies Assumption 2 and Assumption 3. Suppose µβ has second
moment S <∞ and satisfies a Poincaré Inequality with constant CPI(µβ) with β = Θ̃(dε), namely

ε ≥ 2d

β
log(4πeβLdS).

Suppose Φ (from Theorem 3) satisfies Assumption 1 (hence 0 ≤ p ≤ 1). Define ρΦ =max(ρΦ,1, ρΦ,2, ρΦ,3).
We can assume without loss of generality that ρΦ(z) = A(z + 1)p for some constant A > 0.
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Then consider running either GLD, or SGLD using a stochastic gradient oracle ∇f satisfying
Assumption 4 and Assumption 5, with constant step size for T iterations. We will reach a w in
{w ∶ F (w) ≤ ε} with probability at least 0.8 in at most T gradient (for GLD) or stochastic
gradient (for SGLD) evaluations respectively, where we set

T ≤ 83C0max(1, 4L
2

m
,
4max(L,B)

m
,
4B2

m
,6B,1202A2B2M2,120AC0M)

⋅max(βmax(CPI(µβ),2), d3max{CPI(µβ),2}
3
, β2+s/2max(CPI(µβ),2)

2+s/2).

(An explicit expression can be found in our proof.)
Here we define the above constants as follows:

L2 ∶=
⎛
⎜⎜
⎝
∥w0∥4 + 8

⎛
⎜
⎝

4(m + b + 4d+2
β )

m ∧ 1
⎞
⎟
⎠

1+γ
γ
∨2⎞
⎟⎟
⎠

s/2

, L3 ∶=
⎛
⎜⎜
⎝
∥w0∥4 + 8

⎛
⎜
⎝

4(m + b + 4d+2
β )

m ∧ 1
⎞
⎟
⎠

1+γ
γ
∨2⎞
⎟⎟
⎠

3s/4

,

B =max(Lmax(1, ∥w⋆∥), σF ),C0 = 50Aθ(Φ(w0)) ∨ 1,C =
4A2p(p + 1) + 2Ap + 1

3
,

M =max(1
2
,2C) ⋅ (8σ3

F + 16max(L,B)3(max(L2, L3) + 1)).

Here θ = 1
ρΦ

, as defined in Lemma 16. (Take L←max(1, L), σF ←max(σF ,1) if necessary.)
Moreover, this generalizes to s = 0,1 as follows:

1. In the case when s = 0, this result holds with no dependence on L2, L3 and instead we have

M =max(1
2
,2C) ⋅ (8σ3

F + 16max(L,B)3).

2. In the case when s = 1, we no longer need to make assumptions on µβ: as 2s ≤ γ ≤ s + 1,
s = 1 forces γ = 1, the setting of F being L-smooth and (m,b) dissipative from Raginsky et al.
[29], Xu et al. [35], and Zou et al. [39]. As shown in Raginsky et al. [29], these conditions
imply µβ satisfies a Poincaré Inequality for β ≥ 2

m , and also that µβ has finite second moment

S ≤ b+d/β
m .

Moreover, our guarantees improve as follows. Instead letting

L2 ∶= ∥w0∥2 +
2

m
(b + 2B2 + d

β
), L3 ∶= (∥w0∥4 +C ′′ ∨

2C ′′

m
)
3/4

,

where
C ′′ = 4

m
(2C ′2(4 + 1

m
) ∨ 1

m
(3mB +C ′)2),C ′ =m + b + 4d + 2

β
,

we have a runtime guarantee of

T ≤ 83C0max(1, 4L
2

m
,
4max(L,B)

m
,
4B2

m
,6B,1202A2B2M2,120AC0M)

⋅max(βmax(CPI(µβ),2), d3max{CPI(µβ),2}
3
, β2max(CPI(µβ),2)

2).
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First, note from our assumption that ε ≥ 2d
β log(4πeβLdS), we may apply Theorem 3 (in particular,

by combining Theorem 10, Lemma 14) to obtain Φ satisfying the properties described in Theorem 3.
Now, we need to show that with self-bounding regularity, by composing with the appropriate

function, we can obtain some analogue of third-order smoothness in order to perform optimization-
style discretization. We detail this as follows via the following Lemmas.

Lemma 16 Let Φ be any non-negative function that satisfies polynomial self-bounding regularity
to first, second, and third orders7, that is we have ∥∇iΦ(w)∥

op
≤ ρΦ,i(Φ(w)) for 1 ≤ i ≤ 3, where

ρΦ,i(z) = ∑ni
j=1 ci,jz

di,j for all z ≥ 0 (where all the di,j ≥ 0). Then there exists some θ ∶ R≥0 → R≥0
such that θ′(z) > 0, θ′′(z) < 0, θ′′′(z) ≥ 0 for all z ≥ 0, and

θ(Φ(w + u)) ≤ θ(Φ(w)) + θ′(Φ(w))⟨∇Φ(w),u⟩ + 1

2
θ′(Φ(w))⟨∇2Φ(w)u,u⟩ + C

6
∥u∥3,

for some constant C that depends only on the form of the functions ρ1, ρ2, and ρ3.
Moreover, we also have

θ(Φ(w + u)) ≤ θ(Φ(w)) + θ′(Φ(w))⟨∇Φ(w),u⟩ + 1

2
∥u∥2,

and
∥∇Φ(w)∥ ≤ ρΦ(Φ(w))

√
2θ(Φ(w)).

Proof Note we can assume without loss of generality that all the ci,j ≥ 0, and thus again we can
assume without loss of generality that for all z ≥ 0 we have

max(ρΦ,1(z), ρΦ,1(z)3, ρΦ,2(z), ρΦ,3(z), ρΦ,1(z)ρΦ,2(z)) ≤ A +Azp ≤ 2A(z + 1)p

for some A ≥ 0, p ≥ 0. The last step follows from Lemma 27.
Next, define ρΦ(z) ∶= 2A(z + 1)p, which is clearly non-negative and increasing. Thus for all

z ≥ 0 we have

ρΦ(z) ≥max(ρΦ,1(z), ρΦ,1(z)3, ρΦ,2(z), ρΦ,3(z), ρΦ,1(z)ρΦ,2(z)).

Now let θ(z) be defined by θ′(z) = 1
ρΦ(z)

and θ(0) = 0. The potential Φ we consider is non-negative
and so we only consider z ≥ 0; thus, θ is differentiable to all orders. Clearly θ′(z) > 0. We can also
check that θ′′(z) = − p

2A(z + 1)
−p−1 < 0, thus

∣θ′′(z)∣ρΦ(z) =
p

2A
(z + 1)−p−1 ⋅ 2A(z + 1)p ≤ p(z + 1)−1 ≤ p.

for all z ≥ 0. Finally, we can compute θ′′′(z) = p(p+1)
2A (z + 1)−p−2, thus

∣θ′′′(z)∣ρΦ(z) = θ′′′(z)ρΦ(z) =
p(p + 1)

2A
(z + 1)−p−2 ⋅ 2A(z + 1)p = p(p + 1)

(z + 1)2 ≤ p(p + 1)

for all z ≥ 0.

7. This implicitly assumes Φ is differentiable through third order.
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Now define for all 0 ≤ α ≤ 1,

l(α) ∶= θ(Φ(w + αu)).

Recall Φ is non-negative, so all the inputs here to θ are non-negative. l(α) is differentiable to third
order, since Φ is and θ is for non-negative inputs.

By standard calculation using the Chain Rule (this is also done in the proof of Lemma 11 of
[15]),

l′(α) = θ′(Φ(w + αu))⟨∇Φ(w + αu),u⟩.

We also have, from similar calculation (also done in the proof of Lemma 11 of [15]) and using that
θ′′(z) ≤ 0 for all z ≥ 0 which was established earlier,

l′′(α) = θ′′(Φ(w + αu))⟨∇Φ(w + αu),u⟩2 + θ′(Φ(w + αu))⟨∇2Φ(w + αu)u,u⟩
≤ θ′(Φ(w + αu))⟨∇2Φ(w + αu)u,u⟩.

Similar calculation, noting θ′(z) ≥ 0 and the bounds we established earlier on ∣θ′′(z)∣ρΦ(z) and
∣θ′′′(z)∣ρΦ(z), gives

l′′′(α) = θ′′′(Φ(w + αu))⟨∇Φ(w + αu),u⟩ ⋅ ⟨∇Φ(w + αu),u⟩2

+ θ′′(Φ(w + αu)) ⋅ 2⟨∇Φ(w + αu),u⟩⟨∇2Φ(w + αu)u,u⟩
+ θ′′(Φ(w + αu))⟨∇Φ(w + αu),u⟩ ⋅ ⟨∇2Φ(w + αu)u,u⟩
+ θ′(Φ(w + αu))∇3Φ(w + αu)[u,u,u]

= θ′′′(Φ(w + αu))⟨∇Φ(w + αu),u⟩3

+ 3θ′′(Φ(w + αu))⟨∇2Φ(w + αu)u,u⟩⟨∇Φ(w + αu),u⟩
+ θ′(Φ(w + αu))∇3Φ(w + αu)[u,u,u]

≤ ∣θ′′′(Φ(w + αu))∣ρΦ,1(Φ(w + αu))3∥u∥3

+ 3∣θ′′(Φ(w + αu))∣ρΦ,1(Φ(w + αu))ρΦ,2(Φ(w + αu))∥u∥3

+ θ′(Φ(w + αu))ρΦ,3(Φ(w + αu))∥u∥3

≤ ρΦ(Φ(w + αu))(∣θ′′′(Φ(w + αu))∣ + 3∣θ′′(Φ(w + αu))∣ + θ′(Φ(w + αu)))∥u∥3

≤ (p2 + p + 3p + 1)∥u∥3.

From here, we consider Taylor expansion of l(1) around 0. By Taylor’s formula for the remainder,
we know for some α ∈ [0,1] that

l(1) = l(0) + l′(0) + 1

2
l′′(0) + 1

6
l′′′(α).

Plugging in the above inequalities, we get

θ(Φ(w + u)) ≤ θ(Φ(w))+θ′(Φ(w))⟨∇Φ(w),u⟩+ 1
2
θ′(Φ(w))⟨∇2Φ(w)u,u⟩+ p

2 + 4p + 1
6

∥u∥3.

The result follows since C = p2 + 4p + 1 only depends on the form of the functions ρΦ,1, ρΦ,2, and
ρΦ,3.
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The second part follows from noticing that ρΦ as defined here is an upper bound on ρΦ,1 and
ρΦ,2, so the same derivation as in the proof of Lemma 11 of De Sa et al. [15] suffices.

Finally, if maxj(di,j) ≤ 1 for all 1 ≤ i ≤ 3 (i.e. the max degree of the self-bounding regularity
functions is at most 1), we can be a bit tighter in how we define θ. Instead we can just say

max(ρΦ,1(z), ρΦ,1(z), ρΦ,1(z)) ≤ A +Azp ≤ 2A(z + 1)p

where 0 ≤ p ≤ 1, and we define ρΦ(z) = A(z + 1)p. Defining θ by θ′(z) = 1
ρΦ(z)

, θ(0) = 0
analogously as before, note we have for any z ≥ 0 that

θ′(z) > 0, θ′′(z) < 0, θ′′′(z) > 0,

∣θ′′′(z)∣ρΦ,1(z)3 =
p(p + 1)

A
(z + 1)−p−2 ⋅ 8A3(z + 1)3p = 8A2p(p + 1)(z + 1)2p−2 ≤ 8A2p(p + 1),

∣θ′′(z)∣ρΦ,1(z)ρΦ,2(z) =
p

A
(z + 1)−p−1 ⋅ 4A2(z + 1)2p = 4Ap(z + 1)p−1 ≤ 4Ap,

∣θ′(z)∣ρΦ,3(z) =
1

A(z + 1)p ⋅ 2A(z + 1)
p = 2.

The above three lines all use p ≤ 1 in the last inequality of those lines. Therefore, an analogous
derivation as above gives

θ(Φ(w + u)) ≤ θ(Φ(w)) + θ′(Φ(w))⟨∇Φ(w),u⟩ + 1

2
θ′(Φ(w))⟨∇2Φ(w)u,u⟩

+ 4A2p(p + 1) + 2Ap + 1
3

∥u∥3.

Lemma 17 For one iteration of GLD starting at arbitrary wt,

Eεεεt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt))λΦ(wt)

+ 1

2
η2∥∇F (wt)∥2 +

2C

3
η3∥∇F (wt)∥3 + 2C(ηd/β)3/2,

where p and C are defined from Lemma 16.

Proof First, apply Lemma 16 with w =wt and u = −η∇F (wt) +
√
2η/βεεεt to obtain

θ(Φ(wt+1)) = θ(Φ(wt − η∇F (wt) +
√
2η/βεεεt))

≤ θ(Φ(wt)) + θ′(Φ(wt))⟨∇Φ(wt),−η∇F (wt) +
√
2η/βεεεt⟩

+ 1

2
θ′(Φ(wt))⟨∇2Φ(wt)(−η∇F (wt) +

√
2η/βεεεt),−η∇F (wt) +

√
2η/βεεεt⟩

+ C

6
∥−η∇F (wt) +

√
2η/βεεεt∥

3

where C is defined in the proof of Lemma 16.
We take expectations of this inequality with respect to εεεt. Let’s consider what each term of the

upper bound becomes when we take expectations.
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• First order term: Since εεεt has mean as the 0 vector,

Eεεεt[θ′(Φ(wt))⟨∇Φ(wt),−η∇F (wt) +
√
2η/βεεεt⟩] = −ηθ′(Φ(wt))⟨∇Φ(wt),∇F (wt)⟩.

• Second order term: Note

Eεεεt[θ′(Φ(wt))⟨∇2Φ(wt)(−η∇F (wt) +
√
2η/βεεεt),−η∇F (wt) +

√
2η/βεεεt⟩]

= η2θ′(Φ(wt))⟨∇2Φ(wt)∇F (wt),∇F (wt)⟩
− 2η(2η/β)1/2θ′(Φ(wt))⟨∇2Φ(wt)∇F (wt),Eεεεt[εεεt]⟩
+ (2η/β)θ′(Φ(wt))Eεεεt[⟨∇2Φ(wt)εεεt,εεεt⟩].

In the above, the cross terms cancel because εεεt has mean of the 0 vector.

Now, consider Eεεεt[⟨∇2Φ(wt)εεεt,εεεt⟩]. We perform similar analysis as in the derivation and
application of Ito’s Lemma. This is where we see how the Laplacian term here actually helps.
To make the parallels and motivation to Stochastic Calculus clear, here η corresponds to dt,
and
√
η(εεεt)i corresponds to (dBt)i. Note

Eεεεt[⟨∇2Φ(wt)εεεt,εεεt⟩] = ∑
1≤i,j≤d

Eεεεt[(εεεt)i(εεεt)j(∇2Φ(wt))ij]

= ∑
1≤i,j≤d

∇2Φ(wt)ijEεεεt[(εεεt)i(εεεt)j].

We break into cases:

1. When i ≠ j: Note by symmetry of the unit sphere that

Eεεεt[(εεεt)i(εεεt)j] = 0.

In particular this follows because for any x ∈ Sd−1, (εεεt)j has equal probability of being
x or −x.

2. When i = j: This is where we pick up the Laplacian. Note by symmetry,

Eεεεt[(εεεt)2i ] = Eεεεt[(εεεt)2j] for all i, j, and d = Eεεεt[
d

∑
i=1

(εεεt)2i ] =
d

∑
i=1

Eεεεt[(εεεt)2i ].

Therefore,
Eεεεt[(εεεt)2i ] = 1 for all 1 ≤ i ≤ d.

Hence, we obtain the Laplacian ∆Φ(wt): we have plugging this into the above that

Eεεεt[⟨∇2Φ(wt)εεεt,εεεt⟩] =
d

∑
i=1

(∇2Φ(wt))ii =∆Φ(wt).

Hence,

Eεεεt[θ′(Φ(wt))⟨∇2Φ(wt)(−η∇F (wt) +
√
2η/βεεεt),−η∇F (wt) +

√
2η/βεεεt⟩]

= η2θ′(Φ(wt))⟨∇2Φ(wt)∇F (wt),∇F (wt)⟩ + (2η/β)θ′(Φ(wt))∆Φ(wt).
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• Third order term: By AM-GM, we can prove for all a,b ∈ Rd,

∥a + b∥3 ≤ (∥a∥ + ∥b∥)3 ≤ 4∥a∥3 + 4∥b∥3.

Thus using this inequality pointwise we obtain

Eεεεt[∥−η∇F (wt) +
√
2η/βεεεt∥

3
] ≤ 4η3∥∇F (wt)∥3 + 4(2η/β)3/2d3/2.

The last step is because deterministically ∥εεεt∥ ≤
√
d always.

Using the geometric property (3) and θ′(Φ(wt)) ≥ 0 from Lemma 16,

−ηθ′(Φ(wt))⟨∇Φ(wt),∇F (wt)⟩ ≤ −ηθ′(Φ(wt))(λΦ(wt) +
1

β
∆Φ(wt)).

Putting these together, this gives

Eεεεt[θ(Φ(wt+1))]
≤ θ(Φ(wt)) − ηθ′(Φ(wt))⟨∇Φ(wt),∇F (wt)⟩

+ 1

2
(η2θ′(Φ(wt))⟨∇2Φ(wt)∇F (wt),∇F (wt)⟩ + (2η/β)θ′(Φ(wt))∆Φ(wt))

+ C

6
(4η3∥∇F (wt)∥3 + 4(2η/β)3/2d3/2)

≤ θ(Φ(wt)) − ηθ′(Φ(wt))(λΦ(wt) +
1

β
∆Φ(wt))

+ 1

2
(η2θ′(Φ(wt))⟨∇2Φ(wt)∇F (wt),∇F (wt)⟩ + (2η/β)θ′(Φ(wt))∆Φ(wt))

+ C

6
(4η3∥∇F (wt)∥3 + 4(2η/β)3/2d3/2).

Note the terms ηθ′(Φ(wt)) ⋅ 1β∆Φ(wt) and 1
2(2η/β)θ

′(Φ(wt))∆Φ(wt) cancel out. Moreover,
note by definition of operator norm and since we set θ′(z) = 1

ρΦ(z)
≤ 1

ρΦ,2(z)
, we obtain

1

2
η2θ′(Φ(wt))⟨∇2Φ(wt)∇F (wt),∇F (wt)⟩ ≤

1

2
η2θ′(Φ(wt))∥∇F (wt)∥2ρ2(Φ(wt))

≤ 1

2
η2∥∇F (wt)∥2.

Thus our above bound becomes

Eεεεt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt)) ⋅ λΦ(wt)

+ 1

2
η2∥∇F (wt)∥2 +

2C

3
η3∥∇F (wt)∥3 + 2C(ηd/β)3/2.

This is the desired result.

In the SGLD setting, we also need the following to control the error of the gradient estimates to
adapt to the stochastic gradient setting.
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Lemma 18 Suppose Assumption 4 holds. Letting {wt}0≤t≤T−1 be the sequence of iterates gen-
erated by any of the variants of SGLD used in our algorithms on F , using stochastic gradient
estimates based on {zt}0≤t≤T−1. Then we have

Ezt[∥∇f(wt;zt) −∇F (wt)∥2] ≤ σ2
F ,

and moreover

Ezt[∥∇f(wt;zt)∥2] ≤ 2σ2
F + 2∥∇F (wt)∥2,Ezt[∥∇f(wt;zt)∥3] ≤ 8σ3

F + 4∥∇F (wt)∥3.

Also with probability at least 1 − δ we have

∥∇f(wt;zt)∥ ≤ ∥∇F (wt)∥ + σF
√
log(T /δ) for all 0 ≤ t ≤ T − 1.

Here, all probabilities and expectations are taken over the zt.

Proof Clearly ∥∇f(wt;zt) −∇F (wt)∥2 is non-negative, therefore

E[∥∇f(wt;zt) −∇F (wt)∥2] = ∫
∞

t=0
P(∥∇f(wt;zt) −∇F (wt)∥2 ≥ t)dt

= ∫
∞

t=0
P(∥∇f(wt;zt) −∇F (wt)∥ ≥

√
t)dt

≤ ∫
∞

t=0
e−t/σ

2
F dt

= σ2
F .

Now by Young’s Inequality we have pointwise

∥∇f(wt;zt)∥2 ≤ 2∥∇f(wt;zt) −∇F (wt)∥2 + 2∥∇F (wt)∥2,

and combining with the above gives

E[∥∇f(wt;zt)∥2] ≤ 2σ2
F + 2E[∥∇F (wt)∥2].

Analogously, note

E[∥∇f(wt;zt) −∇F (wt)∥3] = ∫
∞

t=0
P(∥∇f(wt;zt) −∇F (wt)∥3 ≥ t)dt

= ∫
∞

t=0
P(∥∇f(wt;zt) −∇F (wt)∥ ≥ t1/3)dt

≤ ∫
∞

t=0
e−t

2/3/σ2
F dt

≤ 2σ3
F .

The inequality ∥a + b∥3 ≤ 4∥a∥3 + 4∥b∥3 thus yields

E[∥∇f(wt;zt)∥3] ≤ 8σ3
F + 4E[∥∇F (wt)∥3].

For a high probability statement, note for any 0 ≤ t ≤ T −1, we have ∥∇f(wt;zt) −∇F (wt)∥ ≥
σF
√
log(T /δ) with probability at most δ/T . A Union Bound and Triangle Inequality implies that

with probability at least 1 − δ we have

∥∇f(wt;zt)∥ ≤ ∥∇F (wt)∥ + σF
√
log(T /δ) for all 0 ≤ t ≤ T − 1.
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Now analogously as before with Lemma 17, we prove a one-step discretization result. The main
difference now is that we have to do the argument in a way that handles the stochasticity of the
gradient estimates, but the same idea goes through.

Lemma 19 For one iteration of SGLD starting at arbitrary wt,

Eεεεt,zt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt))λΦ(wt)

+ 1

2
η2Ezt[∥∇f(wt;zt)∥2] +

2C

3
η3Ezt[∥∇f(wt;zt)∥3] + 2C(ηd/β)3/2

where p and C are defined from Lemma 16.

Proof First, apply Lemma 16 with w =wt and u = −η∇f(wt;zt) +
√
2η/βεεεt to obtain

θ(Φ(wt+1)) = θ(Φ(wt − η∇f(wt;zt) +
√
2η/βεεεt))

≤ θ(Φ(wt)) + θ′(Φ(wt))⟨∇Φ(wt),−η∇f(wt;zt) +
√
2η/βεεεt⟩

+ 1

2
θ′(Φ(wt))⟨∇2Φ(wt)(−η∇f(wt;zt) +

√
2η/βεεεt),−η∇f(wt;zt) +

√
2η/βεεεt⟩

+ C

6
∥−η∇f(wt;zt) +

√
2η/βεεεt∥

3

where C is defined in the proof of Lemma 16.
We take expectations of this inequality with respect to εεεt and zt. Let’s consider what each term

of the upper bound becomes when we take expectations.

• First order term: Since ∇f(wt;zt) is unbiased, Eεεεt,zt[∇f(wt;zt)] = ∇F (wt). Thus as εεεt
has mean of the 0 vector,

Eεεεt,zt[θ′(Φ(wt))⟨∇Φ(wt),−η∇f(wt;zt) +
√
2η/βεεεt⟩]

= θ′(Φ(wt))(⟨∇Φ(wt),−ηEεεεt,zt[∇f(wt;zt)]⟩ + ⟨∇Φ(wt),
√
2η/βEεεεt,zt[εεεt]⟩)

= −ηθ′(Φ(wt))⟨∇Φ(wt),∇F (wt)⟩.

• Second order term: Note

Eεεεt,zt[θ′(Φ(wt))⟨∇2Φ(wt)(−η∇f(wt;zt) +
√
2η/βεεεt),−η∇f(wt;zt) +

√
2η/βεεεt⟩]

= η2θ′(Φ(wt))Eεεεt,zt[⟨∇2Φ(wt)∇f(wt;zt),∇f(wt;zt)⟩]
− 2η(2η/β)1/2θ′(Φ(wt))⟨∇2Φ(wt)Eεεεt[εεεt],Ezt[∇f(wt;zt)]⟩
+ (2η/β)θ′(Φ(wt))Eεεεt,zt[⟨∇2Φ(wt)εεεt,εεεt⟩]

= η2θ′(Φ(wt))Ezt[⟨∇2Φ(wt)∇f(wt;zt),∇f(wt;zt)⟩] + (2η/β)θ′(Φ(wt))∆Φ(wt).

Here we used that εεεt has zero mean as a vector and that εεεt,zt are clearly independent to
compute the cross term. The calculation of

Eεεεt,zt[⟨∇2Φ(wt)εεεt,εεεt⟩] =∆Φ(wt)

is the same as before. Note this expectation has no zt dependence.
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• Third order term: Again we use for all a,b ∈ Rd,

∥a + b∥3 ≤ 4∥a∥3 + 4∥b∥3.

Using this inequality pointwise we obtain

Eεεεt,zt[∥−η∇f(wt;zt) +
√
2η/βεεεt∥

3
] ≤ 4η3Ezt[∥∇f(wt;zt)∥3] + 4(2η/β)3/2d3/2.

The last step is because ∥εεεt∥ =
√
d always holds deterministically.

We put this together, noting θ′(Φ(wt)) ≥ 0 from Lemma 16 which means we can use the admiss-
ability condition (3) which we use to upper bound the first order term. This gives

Eεεεt,zt[θ(Φ(wt+1))]
≤ θ(Φ(wt)) − ηθ′(Φ(wt))⟨∇Φ(wt),∇F (wt)⟩

+ 1

2
(η2θ′(Φ(wt))Ezt[⟨∇2Φ(wt)∇f(wt;zt),∇f(wt;zt)⟩] + (2η/β)θ′(Φ(wt))∆Φ(wt))

+ C

6
(4η3Ezt[∥∇f(wt;zt)∥3] + 4(2η/β)3/2d3/2)

≤ θ(Φ(wt)) − ηθ′(Φ(wt))(λΦ(wt) +
1

β
∆Φ(wt))

+ 1

2
(η2θ′(Φ(wt))∥∇2Φ(wt)∥opEzt[∥∇f(wt;zt)∥2] + (2η/β)θ′(Φ(wt))∆Φ(wt))

+ C

6
(4η3Ezt[∥∇f(wt;zt)∥3] + 4(2η/β)3/2d3/2).

The second inequality follows analogously as in the proof of Lemma 17; pointwise we have

∇f(wt;zt)T∇2Φ(wt)∇f(wt;zt) ≤ ∥∇f(wt;zt)∥2∣∣∇2Φ(wt)∣∣op,

and the fact that
θ′(z) ≤ 1

ρΦ,2(z)

always holds. Also note the terms ηθ′(Φ(wt)) ⋅ 1β∆Φ(wt) and 1
2(2η/β)θ

′(Φ(wt))∆Φ(wt) cancel
out. Thus our above bound becomes

Eεεεt,zt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt))λΦ(wt)

+ 1

2
η2Ezt[∥∇f(wt;zt)∥2] +

2C

3
η3Ezt[∥∇f(wt;zt)∥3] + 2C(η/β)3/2d3/2.

Next, we show a Lemma showing the iterates of GLD and SGLD are controlled. We will need
this only when s > 0. Similar results have been shown in [29] and [4].

Lemma 20 Suppose F satisfies Assumption 2 and Assumption 3. Consider the {wt}t≥0 generated
by GLD / SGLD (for SGLD we need Assumption 5), run for T iterations for T <∞ (we only use
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this for the T we set later). If the step size η ∈ (0,1 ∧ m
4L2 ∧ m

4max(L,B) ∧
m
4B2 ∧ 1

6B ), then we have
the following bounds:

E[∥wt∥2s] ≤ L2max(ηT,1)s/2,E[∥wt∥3s] ≤ L3max(ηT,1)3s/4,

where we define

L2 ∶=
⎛
⎜⎜
⎝
∥w0∥4 + 8

⎛
⎜
⎝

4(m + b + 4d+2
β )

m ∧ 1
⎞
⎟
⎠

1+γ
γ
∨2⎞
⎟⎟
⎠

s/2

, L3 ∶=
⎛
⎜⎜
⎝
∥w0∥4 + 8

⎛
⎜
⎝

4(m + b + 4d+2
β )

m ∧ 1
⎞
⎟
⎠

1+γ
γ
∨2⎞
⎟⎟
⎠

3s/4

.

Here B = max(Lmax(1, ∥w⋆∥), σF ), where σF comes from Assumption 4. (Recall we took L ←
max(L,1) if necessary earlier in the statement of Theorem 15.)

Moreover, if s = 1 (which implies F is L-smooth and (m,b) dissipative), we have the following
uniform bounds:

E[∥wt∥2] ≤ L2,E[∥wt∥3] ≤ L3

for

L2 ∶= ∥w0∥2 +
2

m
(b + 2B2 + d

β
), L3 ∶= (∥w0∥4 +C ′′ ∨

2C ′′

m
)
3/4

where
C ′′ = 4

m
(2C ′2(4 + 1

m
) ∨ 1

m
(3mB +C ′)2),C ′ =m + b + 4d + 2

β
.

Proof Our goal is to use Proposition 14 of Balasubramanian et al. [4] to control the second and
fourth moments of the ∥wt∥. Intuitively, our result should be the same as theirs except their V
is replaced with βF , and then the relevant parameters change (except for d, the rest of them are
all scaled by β). However, this gives some unnecessary β dependence which arises for technical
reasons in their analysis (intuitively, they should cancel), so we need to modify their proof slightly
to improve this dependence.

As done in the sampling literature [12], define the continuous-time interpolation of (1) by

wr =wt − (r − tη)∇F (wt) +
√

2

β
(B(r) −B(tη)) for all r ∈ [tη, (t + 1)η).

This appears somewhat different than the interpolation defined in the literature, but it is actually
the same. Our process (1) with step size η is equivalent to theirs with their V = βF and their step
size h = η

β . They index by ‘time’ where the subscript th corresponds to the t-th iterate whereas we
index iterates simply by the iteration count (which is at ‘time’ tη in the above interpolation) and are
indexing time by r to avoid confusion.8

For the stochastic gradient case, this will be instead

wr =wt − (r − tη)∇f(wt;zt) +
√

2

β
(B(r) −B(tη)) for all r ∈ [tη, (t + 1)η).

8. Using this correspondence one can actually carefully track the proof of Proposition 14 of Balasubramanian et al. [4]
to show a similar result to what we show here.
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Note for both these interpolations, all functions of quantities at time tη/iteration count t are constant
(including zt), the randomness being over the Brownian motion B(r) −B(tη).

We will do the proofs in the stochastic gradient case, and the proofs in the exact gradient case
are the exact same.

First, we control the second moment. Define Ft by the natural filtration with respect to wj ,εεεj ,zj
for all j ≤ t. Analogously to the proof of Proposition 14 of [4], Itô’s Lemma applied to ∥w∥2
conditioned on Ft yields for all r ∈ [tη, (t + 1)η],

d

dr
E[∥wr∥2∣Ft] = 2E[⟨wr,−∇f(wt;zt)⟩∣Ft] +

1

2
⋅
√

2

β

2

⋅ 2tr(Id)

= −2E[⟨wt − (r − tη)∇f(wt;zt) +
√

2

β
(B(r) −B(tη)),∇f(wt;zt)⟩∣Ft] +

2d

β

= −2E[⟨wt − (r − tη)∇f(wt;zt),∇f(wt;zt⟩∣Ft] +
2d

β

≤ 2b − 2m∥wt∥γ + 2(r − tη)∥∇f(wt;zt)∥2 +
2d

β

≤ 2b − 2m∥wt∥γ + 4η ⋅L2max(1, ∥w⋆∥)2s(∥wt∥2s + 1) +
2d

β

≤ 4m + 2b + 2d

β
. (12)

In the above we use that E[⟨(B(r) −B(tη)),∇f(wt;zt)⟩∣Ft] = 0, Assumption 5, Lemma 24,
γ ≥ 2s, η ≤ m

2B2 , and r − tη ≤ η. Integrating this over r ∈ [tη, (t + 1)η] and iterating yields

E[∥wt∥2] ≤ ∥w0∥2 + (4m + 2b +
2d

β
) ⋅ ηt ≤ (∥w0∥2 + 4m + 2b +

2d

β
)max(ηT,1).

We now control the fourth moment with the same idea. Applying Itô’s Lemma to ∥w∥4 = (∥w∥2)2,
we obtain

d

dr
E[∥wr∥4∣Ft]

= −4E[∥wr∥2⟨wr,∇f(wt;zt)⟩∣Ft] +
1

2
⋅
√

2

β

2

⋅ (4d + 2)E[∥wr∥2∣Ft]

= −4E[∥wr∥2⟨wt − (r − tη)∇f(wt;zt) +
√

2

β
(B(r) −B(tη)),∇f(wt;zt)⟩∣Ft] +

4d + 2
β

E[∥wr∥2∣Ft].

Let x = B(r)−B(tη)
√
r−tη

be a standard Gaussian vector. Using Gaussian Integration by Parts on h(x) =

∥wt − (r − tη)∇f(wt;zt) +
√

2
β ⋅
√
r − tηx∥

2
= ∥wr∥2, we have

E[∥wr∥2⟨
√

2

β
(B(r) −B(tη)),∇f(wt;zt)⟩∣Ft]

=
√

2

β
⋅
√
r − tη ⋅ ⟨E[xh(x)∣Ft],∇f(wt;zt)⟩
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=
√

2

β
⋅
√
r − tη ⋅ ⟨E[∇h(x)∣Ft],∇f(wt;zt)⟩

= 4

β
(r − tη)⟨wt − (r − tη)∇f(wt;zt),∇f(wt;zt)⟩.

The above follows since ∇h(x) =
√

2
β ⋅
√
r − tη ⋅ (wt − (r − tη)∇f(wt;zt) +

√
2
β ⋅
√
r − tηx) and

as x is independent of Ft and has mean of the 0 vector.
Hence, we have for all r ∈ [tη, (t + 1)η],

d

dr
E[∥wr∥4∣Ft] = 4E[∥wr∥2∣Ft](−⟨wt,∇f(wt;zt)⟩ + (r − tη)∥∇f(wt;zt)∥2 +

4d + 2
β
)

− 16

β
(r − tη)⟨wt − (r − tη)∇f(wt;zt),∇f(wt;zt)⟩

≤ 4(E[∥wr∥2∣Ft] +
4

β
(r − tη))(−⟨wt,∇f(wt;zt)⟩ + (r − tη)∥∇f(wt;zt)∥2 +

4d + 2
β
)

≤ 4(E[∥wr∥2∣Ft] +
4

β
(r − tη))(−m∥wt∥γ + b + 2η ⋅L2max(1, ∥w⋆∥)2s(∥wt∥2s + 1) +

4d + 2
β
)

≤ 4(E[∥wr∥2∣Ft] +
4

β
(r − tη))(−m

2
∥wt∥γ +m + b +

4d + 2
β
). (13)

The above follows as r ≥ tη and so the first factor in the above is always non-negative, as well as
η ≤ m

4B2 and γ ≥ 2s.

Define C ′ ∶=m+ b+ 4d+2
β for convenience. If ∥wt∥ ≥ (2C

′

m )
1/γ

, this means d
drE[∥wr∥4∣Ft] ≤ 0.

Otherwise if ∥wt∥ ≤ (2C
′

m )
1/γ

, using our upper bound on d
drE[∥wr∥2∣Ft] gives

E[∥wr∥2∣Ft] +
4

β
(r − tη) ≤ ∥wt∥2 + (4m + 2b +

2d

β
)(r − tη) + 4

β
(r − tη) ≤ (2C

′

m
)
1/γ

+ 4C ′,

as r − tη ≤ η ≤ 1. Note ∥wt∥ ≤ (2C
′

m )
1/γ

implies the second factor in (13) is non-negative, and the
second factor is at most C ′ clearly. Thus, in this case we have

d

dr
E[∥wr∥4∣Ft] ≤ 4C ′

⎛
⎝
(2C

′

m
)
1/γ

+ 4C ′
⎞
⎠
≤ 8( 4C ′

m ∧ 1)
1+γ
γ
∨2

.

Hence the above is an upper bound on d
drE[∥wr∥4∣Ft] in all cases, and iterating this gives the

desired fourth moment bound

E[∥wt∥4] ≤ ∥w0∥4 + 8(
4C ′

m ∧ 1)
1+γ
γ
∨2

ηt ≤
⎛
⎜
⎝
∥w0∥4 + 8(

4C ′

m ∧ 1)
1+γ
γ
∨2⎞
⎟
⎠
max(ηT,1).

From here, to obtain the desired conclusion, use monotonicity of moments (as s ≤ 1):

E[∥wt∥2s] ≤ E[∥wt∥4]
2s/4 ≤

⎛
⎜
⎝
∥w0∥4 + 8(

4C ′

m ∧ 1)
1+γ
γ
∨2⎞
⎟
⎠

s/2

max(ηT,1)s/2.
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E[∥wt∥3s] ≤ E[∥wt∥4]
3s/4 ≤

⎛
⎜
⎝
∥w0∥4 + 8(

4C ′

m ∧ 1)
1+γ
γ
∨2⎞
⎟
⎠

3s/4

max(ηT,1)3s/4.

When s = 1 and hence γ = 2 (which implies (m,b) dissipativeness), we can be tighter in the above
analysis. First, using Lemma 18, we have

Ezt[∥∇f(wt;zt) −∇F (wt)∥2] ≤ σ2
F ≤ B2.

With the above, identically as the steps of the proof of Lemma 3 of Raginsky et al. [29], using (m,b)
dissipativeness and our constant upper bound on η, we can show a uniform bound on the second
moment for both exact and stochastic gradients:

E[∥wt∥2] ≤ ∥w0∥2 +
2

m
(b + 2B2 + d

β
).

We also claim we have a uniform upper bound on the fourth moment. We break into two cases, both
using a similar strategy.

1. ∥wt∥ ≤ (2C
′

m )
1/2

: In this case, the second factor in (13) is non-negative. Recall the upper
bound we showed from (12):

d

dr
E[∥wr∥2∣Ft] ≤ 4m + 2b +

2d

β
.

This implies

E[∥wr∥2∣Ft] ≤ ∥wt∥2 + (4m + 2b +
2d

β
)(r − tη).

Now as the second factor in (13) is non-negative, we obtain using r − tη ≤ η ≤ 1,

d

dr
E[∥wr∥4∣Ft] ≤ 4(E[∥wr∥2∣Ft] +

4

β
(r − tη))(−m

2
∥wt∥2 +m + b +

4d + 2
β
)

≤ 4(∥wt∥2 + (4m + 2b +
2d

β
)(r − tη) + 4

β
(r − tη))(−m

2
∥wt∥2 +m + b +

4d + 2
β
)

≤ 4(∥wt∥2 + 4C ′)(−
m

2
∥wt∥2 +C ′)

≤ 4(−m
2
∥wt∥4 +C ′∥wt∥2 + 4C ′2)

≤ 4(−m
4
∥wt∥4 +C ′2(4 +

1

m
)) = −m∥wt∥4 + 4C ′2(4 +

1

m
).

The last step uses AM-GM.

2. ∥wt∥ > (2C
′

m )
1/2

: This time, the second factor in (13) is negative, so we aim to lower bound

E[∥wr∥2∣Ft]. Recalling the intermediate steps in (12), we have

d

dr
E[∥wr∥2∣Ft] = −2E[⟨wt − (r − tη)∇f(wt;zt),∇f(wt;zt⟩∣Ft] +

2d

β
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≥ −2⟨wt,∇f(wt;zt)⟩
≥ −2∥wt∥∥∇f(wt;zt)∥
≥ −2B∥wt∥(∥wt∥ + 1)
≥ −3B(∥wt∥2 + 1),

where we upper bound ∇f(wt;zt) via Lemma 24 and use AM-GM in the last step.

This implies

E[∥wr∥2∣Ft] ≥ ∥wt∥2 − 3B(∥wt∥2 + 1)(r − tη) ≥
1

2
∥wt∥2 − 3B,

since r − tη ≤ η, η ≤ 1
6B ≤ 1.

The second factor in (13) is negative, so we may apply this in (13) to give

d

dr
E[∥wr∥4∣Ft] ≤ 4(E[∥wr∥2∣Ft] +

4

β
(r − tη))(−m

2
∥wt∥2 +m + b +

4d + 2
β
)

≤ 4(1
2
∥wt∥2 − 3B)(−

m

2
∥wt∥2 +C ′)

= 4(−m
4
∥wt∥4 + (

3mB

2
+ C ′

2
)∥wt∥2 − 3BC ′)

≤ 4(−m
8
∥wt∥4 +

(3mB +C ′)2
2m

) = −m
2
∥wt∥4 +

2

m
⋅ (3mB +C ′)2.

Again, the last step uses AM-GM.

From the above we see that in either case we have

d

dr
E[∥wr∥4∣Ft] ≤ −

m

2
∥wt∥4 +C ′′

where C ′′ = 4C ′2(4 + 1
m
) ∨ 2

m ⋅ (3mB +C ′)2.
Iterating the above for one step and then taking full expectation yields the recursion

E[∥wt+1∥4] ≤ E[∥wt∥4] + η(−
m

2
E[∥wt∥4] +C ′′) = (1 −

ηm

2
)E[∥wt∥4] + ηC ′′.

If 1 − ηm
2 ≤ 0 we obtain E[∥wt∥4] ≤ C ′′, and otherwise if 1 − ηm

2 ∈ (0,1), iterating the above and
summing the resulting geometric series gives

E[∥wt∥4] ≤ (1 −
ηm

2
)
t

∥w0∥4 +
2ηC ′′

ηm
= ∥w0∥4 +

2C ′′

m
.

The desired upper bound on the third moment in this case now just comes from monotonicity of
moments.

We now are ready to prove Theorem 15. We do the proof when 0 < s ≤ 1 (when s > 0, γ ≥ 2s > 0
so we can certainly use Lemma 20), and we discuss the simple extension to s = 0 and the tighter
results when s = 1 at the end.
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Proof Consider θ and C = Ap2+4Ap+1
6 defined in terms of ρΦ in Lemma 16 for the p ≤ 1 case.

We set

C0 = 50Aθ(Φ(w0)) ∨ 1,M =max(1
2
,2C) ⋅ (8σ3

F + 16max(L,B)3(max(L2, L3) + 1)),

η =min(1, m

4L2
,

m

4max(L,B) ,
m

4B2
,
1

6B
,

1

1202A2B2M2
⋅ β

3λ2

d3
,

λ1+s/2

120AC0M
),

T = C0

ηλ
.

Here λ ∈ [ 1
8β min( 1

CPI(µβ)
, 12),

1
4β min( 1

CPI(µβ)
, 12)], as with Φ, comes from Theorem 3. Thus, using

T = C0max( 1
λ
max{1, 4L

2

m
,
4max(L,B)

m
,
4B2

m
,6B},1202A2B2M2 ⋅ d3

β2λ3
,120AC0M

1

λ2+s/2
)

and
1

λ
≤ 8βmax(CPI(µβ),2),

we see that our definition of T above is consistent with the statement of Theorem 15. Moreover,
note ηT = C0

λ ≥ 1.
As with before let Ft be the natural filtration with respect to εεεt′ ,zt′ for all 0 ≤ t′ ≤ t in the SGLD

case, and with respect to εεεt′ for all 0 ≤ t′ ≤ t in the GLD case.
Define

τAε,T (w0) =min(τAε(w0), T ),
where in a slight abuse of notation, τAε now denotes the hitting time of discrete-time GLD/SGLD
to Aε with the choice of η above. Note τAε,T (w0) is a stopping time that is at most T <∞.

Consider wt for t < τAε,T (w0), thus wt ∈ Ac
ε. By Theorem 3, this implies for this wt, (4) holds:

⟨∇F (w),∇Φ(w)⟩ ≥ λΦ(w) + 1

β
∆Φ(w).

Recall θ′ > 0 from Lemma 16, including in this case where p ≤ 1. By Lemma 17, which uses the
geometric condition (3), we obtain

Eεεεt,zt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt)) ⋅ λΦ(wt)

+ 1

2
η2∥∇F (wt)∥2 +Cη3∥∇F (wt)∥3 + 2C(

ηd

β
)
3/2

.

This uses Lemma 16 in the p ≤ 1 case.
In the stochastic gradient case we have by Lemma 19 that

Eεεεt,zt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt)) ⋅ λΦ(wt)

+ 1

2
η2Ezt[∥∇f(wt;zt)∥2] +Cη3Ezt[∥∇f(wt;zt)∥3]

+ 2C(ηd
β
)
3/2

.
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(Note these results can be proved for either εεεt ∼ Sd−1 or εεεt ∼ N (0, Id) by the exact same proof as
Lemma 17, Lemma 19.)

Applying Lemma 18 and then Lemma 24, Young’s Inequality, and ∥a + b∥3 ≤ 4∥a∥3 + 4∥b∥3,
and noting σF ≥ 0, we see in both the GLD and SGLD cases that

Eεεεt,zt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt)) ⋅ λΦ(wt)

+ 1

2
η2(2σ2

F + 2∥∇F (wt)∥2) +Cη3(8σ3
F + 4∥∇F (wt∥3)

+ 2C(ηd
β
)
3/2

≤ θ(Φ(wt)) − ηθ′(Φ(wt)) ⋅ λΦ(wt)

+ 1

2
η2(2σ2

F + 4max(L,B)2(∥wt∥2s + 1))

+Cη3(8σ3
F + 16max(L,B)3(∥wt∥3s + 1)) + 2C(

ηd

β
)
3/2

.

Recall that θ′(z) = 1
A(z+1)p where p ≤ 1, which is increasing on z ≥ 0. Therefore, zθ′(z) =

z
A(z+1)p ≥

1
2A for z ≥ 1. Recall Φ(wt) ≥ 1 from Remark 4, because t < τAε,T (w0) and so wt ∈ Ac

ε.

Thus, Φ(wt)θ′(Φ(wt)) ≥ 1
2A . Therefore we can rearrange the above as

Eεεεt,zt[θ(Φ(wt+1))] ≤ θ(Φ(wt)) − ηθ′(Φ(wt)) ⋅ λΦ(wt) +
1

2
η2(2σ2

F + 4max(L,B)2(∥wt∥2s + 1))

+Cη3(8σ3
F + 16max(L,B)3(∥wt∥3s + 1)) + 2C(

ηd

β
)
3/2

≤ θ(Φ(wt)) −
ηλ

2A
+ 1

2
η2(2σ2

F + 4max(L,B)2(∥wt∥2s + 1))

+Cη3(8σ3
F + 16max(L,B)3(∥wt∥3s + 1)) + 2C(

ηd

β
)
3/2

= θ(Φ(wt)) −
ηλ

2A
+ err(wt), (14)

where we define

err(w) ∶= 1

2
η2(2σ2

F + 4max(L,B)2(∥w∥2s + 1))+Cη3(8σ3
F + 16max(L,B)3(∥w∥3s + 1))+2C(ηd

β
)
3/2

> 0.

Now with (14), the idea is to sum and telescope this relations over τAε,T+1 time steps, as dis-
cussed in Subsection 2.1. The way to do this is using discrete-time Dynkin’s Formula, stated in
Theorem 11.3.1 of [23]:

Theorem 21 (Theorem 11.3.1 of [23]) Let Zt be any Ft-measurable function of w0, . . . ,wt. Con-
sider any stopping time τ and define τn ∶=min{n, τ, inf(t ≥ 0 ∶ zt ≥ n)}. Then we have for all n ≥ 0
and w0 ∈ Rd that

E[Zτn] = E[Z0] +E[
τn

∑
t=1

(E[Zt∣Ft] −Zt−1)].
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As a simple corollary of Theorem 21, we have the following, Proposition 11.3.2 of [23]. Unlike the
above, it holds for any stopping time.

Corollary 22 (Proposition 11.3.2 of [23]) Suppose there exists non-negative functions st, ft9 such
that

E[Zt+1∣Ft] ≤ Zt − ft(wt) + st(wt). (15)

Then for any w0 ∈ Rd and any stopping time τ ,

E[
τ−1

∑
t=0

ft(wt)] ≤ Z0 +E[
τ−1

∑
t=0

st(wt)].

Apply Corollary 22 for the stopping time τ = τAε,T+1, Zt = θ(Φ(wt)), and the functions ft, st
defined as follows. Take

ft(w) =
⎧⎪⎪⎨⎪⎪⎩

ηλ
2A if w ∈ Ac

ε

0 otherwise
.

In the GLD case take

st(w) =
⎧⎪⎪⎨⎪⎪⎩

err(w) if w ∈ Ac
ε

Eεεε,z[θ(Φ(w − η∇F (w) +
√

2η
β εεε))] otherwise

,

and in the SGLD case take

st(w) =
⎧⎪⎪⎨⎪⎪⎩

err(w) if w ∈ Ac
ε

Eεεε,z[θ(Φ(w − η∇f(w;z) +
√

2η
β εεε))] otherwise

.

where εεε ∼ N (0, Id) and z is an arbitrary data sample. Note the {ft}, as well as the {st}, are the
same function for all t. Since θ ≥ 0, the ft and st are non-negative. As Eεεεt,zt[⋅] is the same as
E[⋅∣Ft], (14) proves that (15) holds if wt ∈ Ac

ε, and (15) holds for wt ∈ Aε as the Zt ≥ 0 and as the
st(wt) = E[Zt+1∣Ft]10. Thus, Corollary 22 yields

E
⎡⎢⎢⎢⎢⎣

τAε,T (w0)−1

∑
t=0

ηλ

2A

⎤⎥⎥⎥⎥⎦
= E
⎡⎢⎢⎢⎢⎣

τAε,T (w0)−1

∑
t=0

ft(wt)
⎤⎥⎥⎥⎥⎦
≤ Z0+E

⎡⎢⎢⎢⎢⎣

τAε,T (w0)−1

∑
t=0

st(wt)
⎤⎥⎥⎥⎥⎦
= θ(Φ(w0))+E

⎡⎢⎢⎢⎢⎣

τAε,T (w0)−1

∑
t=0

err(wt)
⎤⎥⎥⎥⎥⎦
,

since wt ∈ Ac
ε for all t ≤ τAε,T (w0) − 1, and using the definition of ft, st in that case.

Clearly we can simplify the left hand side as ηλ
2AE[τAε,T (w0)]. For the right hand side, note

pointwise we have ∑τAε,T (w0)−1
t=0 err(wt) ≤ ∑T−1

t=0 err(wt) by definition of τAε,T (w0) and as the
err(w) ≥ 0. Moreover, all the relevant expectations are finite (by Lemma 20 and as τAε,T+1 ≤ T <
∞). Therefore we see

ηλ

2A
E[τAε,T (w0)] ≤ θ(Φ(w0)) +E[

T−1

∑
t=0

err(wt)].

We now show that the random variable τAε,T is well-controlled.

9. The result in [23] states this for positive st, ft, but it is clear their proof still works when the functions are non-
negative.

10. But this is not relevant, since we apply Corollary 22 with τ = τAε,T+1.
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Lemma 23 We have
E[τAε,T (w0)] <

T

10
.

Proof Suppose otherwise that E[τAε,T (w0)] ≥ T
10 > 0. Rearranging the above gives

λ

2A
≤ θ(Φ(w0))
ηE[τAε,T (w0)]

+ 1

ηE[τAε,T (w0)]
E[

T−1

∑
t=0

err(wt)]

= θ(Φ(w0))
ηE[τAε,T (w0)]

+ 1

ηE[τAε,T (w0)]
T−1

∑
t=0

E[err(wt)]. (16)

By Lemma 20, which we may apply as our choice of η is small enough, we have

E[∥wt∥2s] ≤ L2max(ηT,1)s/2,E[∥wt∥3s] ≤ L3max(ηT,1)3s/4.

Therefore,

E[err(wt)] ≤
1

2
η2(2σ2

F + 4max(L,B)2(L2max(ηT,1)s/2 + 1))

+Cη3(8σ3
F + 16max(L,B)3(L3max(ηT,1)3s/4 + 1)) + 2C(ηd

β
)
3/2

≤M((ηd/β)3/2 + η2 ⋅ (ηT )s/2 + η3 ⋅ (ηT )3s/4).

The last line follows as ηT ≥ 1 and from definition of M (recall we took σF ← max(σF ,1) if
necessary); recall

M =max(1
2
,2C) ⋅ (8σ3

F + 16max(L,B)3(max(L2, L3) + 1)).

Recall our choice of T such that ηT = C0

λ , and also our choice of C0 = 50Aθ(Φ(w0))∨1. Therefore,
(16) becomes

λ

2A
≤ θ(Φ(w0))
ηE[τAε,T (w0)]

+ 1

ηE[τAε,T (w0)]
T−1

∑
t=0

E[err(wt)]

≤ 10θ(Φ(w0))
ηT

+ 10

ηT
⋅ T ⋅M((ηd/β)3/2 + η2 ⋅ (ηT )s/2 + η3 ⋅ (ηT )3s/4)

= 10
⎛
⎝
θ(Φ(w0))λ

C0
+M
⎛
⎝
η1/2(d/β)3/2 + η ⋅ C

s/2
0

λs/2
+ η2 ⋅ C

3s/4
0

λ3s/4

⎞
⎠
⎞
⎠

< 10( λ

40A
+MC0(η1/2(d/β)3/2 +

η

λs/2
+ η2

λ3s/4
))

< 10 ⋅ λ

20A
= λ

2A
.

In the second inequality we use E[τAε,T (w0)] ≥ T
10 which we are supposing for contradiction. The

last ienquality uses

η ≤min( 1

1202A2B2M2
⋅ β

3λ2

d3
,

λ1+s/2

120AC0M
).
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Note as we have λ ≤ 1 and A ≥ 1, C0 ≥ 1, M ≥ 1
2 , this implies

λ1+s/2

120AC0M
≤ λ

1
2
+ 3s

8

(120AC0M)1/2
,

which we also use to show MC0 ⋅ η2

λ3s/4 ≤ λ
120A . This yields contradiction, and so we have the

Lemma.

With Lemma 23, the finish is straightforward. By Markov’s Inequality, with probability at least
0.8,

τAε,T (w0) ≤ 5E[τAε,T (w0)] <
T

2
.

However, τAε,T (w0) < T implies τAε,T (w0) = τAε(w0). Thus, with probability at least 0.8, we
have τAε(w0) < T . That is, with probability at least 0.8 we hit Aε = {w ∶ F (w) ≤ ε} within T
steps.

When s = 0 and γ = 0, we cannot use Lemma 20 anymore. But just note whenever s =
0, we can use the upper bound E[∥∇F (wt)∥p] ≤ Lp ≤ L3 for p = 2,3 in our upper bound of
Eεεεt,zt[θ(Φ(wt+1))]. Defining instead

err(w) ∶= 1

2
η2(2σ2

F + 4max(L,B)2) +Cη3(8σ3
F + 16max(L,B)3) + 2C(ηd

β
)
3/2

> 0,

we see the rest of the proof goes through the same, with no use of Lemma 20.
The tighter results in the case when s = 1 (the L-smooth and (m,b)-dissipative setting) are also

proved identically. They follow from plugging in the uniform moment bounds from Lemma 20
rather than the general ones into the proof of Lemma 23. Then, L2, L3 (which are different in this
case) appear in the proof of Lemma 23 with no max(ηT,1) term present, and again we finish the
same as above.

D.2. Details for Comparison to Literature

Here, we discuss how we derived optimization results using sampling results from literature, that
we discussed in Subsection B.2. As mentioned there, we assume an O(1) warm-start for all of the
literature, which is the least favorable for us. Consider as an example how we obtained results for
SGLD the smooth and dissipative case from Raginsky et al. [29], Xu et al. [35], and Zou et al. [39].
We analogously obtained results in this way from Yang and Wibisono [36], and directly cited the
results of Kinoshita and Suzuki [19] as they were directly phrased in the same optimization setting
as what we study.

Theorem 1 of Raginsky et al. [29] requires gradient noise δ to be exponentially small in d, which
does not make sense (we only require gradient noise of constant order, which is more realistic).
Theorem 3.6, Corollary 3.7, and Remark 3.9 of Xu et al. [35] reports an iteration count of K =
Õ( d

ελ∗
) where λ∗ is spectral gap of the discrete-time Markov Chain given by (1), however they do

not count the iteration count B to compute each stochastic gradient from B data samples. Either they
also require exponentially small gradient noise, or B = Õ( d6

ε4λ4
∗
), and their total gradient complexity

should be

K ⋅B = Õ( d7

ε5λ5
∗

).
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Similarly, for the same paper’s claimed runtime for Stochastic Variance Reduced Gradient Langevin
Dynamics (SVRG-LD) in Theorem 3.10 and Corollary 3.11, noting the correct runtime should be
K ⋅B, we obtain a runtime of

Õ( Ld
5

λ4
∗ε4
) ≥ Õ( d5

λ4
∗ε4
).

The last step simply follows from noting their L ≥ 1, being the length of an inner loop.
This accounting must also for the result Theorem 4.5 and Corollary 4.7 of Zou et al. [39].

Accounting for K ⋅B, they obtain a rate of at least Õ(d
4β2

ρ4ε2
), where ρ is the Cheeger constant of µβ ,

to obtain a TV distance of ε to the Gibbs measure. By Cheeger’s Inequality, we have 1
ρ4
≥ CPI(µβ)2.

However to convert from TV distance results to optimization results using Corollary 4.8 of their
same paper Zou et al. [39], we need a TV distance of ε

d (and this is necessary due to dissipativeness)
to obtain an optimization result, which leads to additional dimension dependence. Combined with
noting β is (at least) on the same order as d

ε up to log factors, this gives a rate of at least

Õ(d
8CPI(µβ)2

ε4
).

for optimizing F to Õ( dβ + ε) = Õ(ε) tolerance.
We now discuss how we obtained results from the rest of literature. Generally the rest of litera-

ture handles exact gradients and so does not have the problem of those above two works. One point
of note is that in some of the sampling literature, such as Balasubramanian et al. [4], Huang et al.
[16], Vempala and Wibisono [33], sampling is done from e−f /Z. That is, sampling is presumed to
be done at constant temperature, a different setting than optimization. In our setting f = βF , and
the smoothness parameter L or condition number in these works is that of f . Thus their smoothness
parameter L scales like Ω̃(dε). The rest of the rates from literature were then derived by convert-
ing KL divergence guarantees into TV distance guarantees via Pinkser’s Inequality, and then using
Corollary 4.8 of Zou et al. [39], analogously to the above example. In more detail, by Pinkser’s
Inequality, if F is s-Hölder continuous we need KL divergence to be at most ε2

ds+1 .
Following Remark 9, it follows that the ε in the sampling results can be taken to be Θ(1).

However, where ε denotes the desired optimization tolerance, the smoothness parameter L still
scales like Ω̃(dε). Plugging in these choices, we obtained the results from Section 1.

As another example, we mention how we derived a rate from Corollary 19 of Balasubramanian
et al. [4] (which still requires exact knowledge of gradient) in the GLD, Poincaré, and Lipschitz
case. Taking s = 0 in Corollary 19 of Balasubramanian et al. [4], and even supposing a warm start
of K0 = O(1) is possible, we see they obtain a TV distance of

√
ε in

Õ(β
6d3CPI(µβ)3

ε5
).

However, since F is Lipschitz, we require a TV distance of ε√
d

, the dimensionality again coming
from Remark 4.6 of Zou et al. [39]. This yields a rate of

Õ(β
6d8CPI(µβ)3

ε10
).
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We must have β = Ω̃(dε), so in this case this gives a rate of at least Õ(CPI(µβ)
3d14

ε16
) for optimizing

F to Õ(ε) tolerance. We can derive a faster rate from this result using Remark 9, which is also
mentioned in Section 1.

Finally, we mention that we can compare the above results from Zou et al. [39], Chewi et al.
[13], and Balasubramanian et al. [4] for general β = Ω̃(dε); as mentioned in Section 1, to use the
results of Chewi et al. [13] and Balasubramanian et al. [4] of optimization, their β dependence will
be their stated dependence on the smoothness parameter L. Our dependence on β is always better
than that of Zou et al. [39], and using β = Ω̃(dε), we see for any such β our dependence in all
parameters is better than that of Balasubramanian et al. [4], Chewi et al. [13] when s ≤ 1

2 .

Appendix E. Additional Proofs

E.1. Additional Helper Results

Here we establish many of the results we used in the main discretization proofs.

Lemma 24 Suppose F satisfies Assumption 2. Then for all w ∈ Rd,

∥∇F (w)∥ ≤ Lmax(1, ∥w⋆∥)s(∥w∥s + 1),

where w⋆ is any global minima of F . Moreover, if Assumption 5 holds, the above also holds for the
stochastic gradient estimates ∥∇f(w;z)∥.

Proof Note ∇F (w⋆) = 0. By Triangle Inequality and Assumption 2,

∥∇F (w)∥ = ∥∇F (w) −∇F (w⋆)∥
≤ L∥w −w⋆∥s

≤ L(∥w∥ + ∥w⋆∥)s

≤ Lmax(1, ∥w⋆∥)s(∥w∥s + 1).

The last two steps used the following elementary inequalities:

(az + b)s ≤max(a, b)s(z + 1)s for all a, b, z ≥ 0.

(z + 1)1/s′ ≤ z1/s′ + 1 ⇐⇒ z + 1 ≤ (z1/s′ + 1)s′ for all s′ ≥ 1.

The extension to stochastic gradients given Assumption 5 is immediate.

The following result is used to control the values of F using Assumption 2.

Lemma 25 Suppose F satisfies Assumption 2. Then for all w ∈ Rd,

F (w) ≤ L∥w −w⋆∥s+1.

Proof The proof is very similar to Lemma 3.4 of Bubeck et al. [6]. Let w⋆ be any global minima
of F , thus F (w⋆) = 0 and ∇F (w⋆) = 0. We see from calculus and Cauchy-Schwartz that

F (w) = ∣F (w) − F (w⋆) − ⟨∇F (w⋆),w −w⋆⟩∣
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= ∣∫
1

t=0
⟨∇F (w⋆ + t(w −w⋆)) −∇F (w⋆),w −w⋆⟩dt∣

≤ ∣∫
1

t=0
∥∇F (w⋆ + t(w −w⋆)) −∇F (w⋆)∥∥w −w⋆∥dt∣

≤ ∣∫
1

t=0
Lts∥w −w⋆∥s∥w −w⋆∥dt∣

≤ L∥w −w⋆∥s+1,

where we apply Cauchy-Schwartz to obtain the first inequality and Assumption 2 for the second.

We also need the following simple integral to prove Lemma 14.

Lemma 26 We have for any 0 ≤ s ≤ 1 and M ≥ 0 that

∫
Rd

e−M∥w∥
s+1

dw = 2πd/2

Γ(d/2) ⋅
1

s + 1 ⋅M
− d

s+1 ⋅ Γ( d

s + 1).

Proof The surface area of Sd−1 is 2πd/2

Γ(d/2) , which scales by rd−1 for an arbitrary radius r. Consider

partitioning Rd into spheres of radius r: upon making this change of variables, which formally is
dw = 2πd/2

Γ(d/2)r
d−1dr, we obtain

∫
Rd

e−M∥w∥
s+1

dw = 2πd/2

Γ(d/2) ∫
∞

0
e−Mrs+1rd−1dr.

Let u = rs+1, therefore r = u 1
s+1 and dr = 1

s+1u
− s

s+1du. Thus

∫
Rd

e−M∥w∥
s+1

dw = 2πd/2

Γ(d/2) ⋅
1

s + 1 ∫
∞

0
e−Muu

d−1−s
s+1 du

= 2πd/2

Γ(d/2) ⋅
1

s + 1 ⋅M
− d

s+1 ⋅ Γ( d

s + 1).

Here, the last equality is a well known integral essentially following from definition of the Gamma
function, specifically

M−tΓ(t) = ∫
∞

0
e−Muut−1du.

It follows since d ≥ 1 ≥ s and s ≥ 0, hence d−1−s
s+1 =

d
s+1 − 1 ≥ −1, so we may apply these results

regarding the Gamma function.

The last lemma is used to upper bound zp + 1 for all z ≥ 0 and any p ≥ 0.

Lemma 27 For all z ≥ 0 and any p ≥ 0, zp + 1 ≤ 2(z + 1)p.

Proof First suppose p ≥ 1. Here we show zp + 1 ≤ (z + 1)p, which clearly suffices. Letting
f(z) = (z + 1)p − (zp + 1), we see f ′(z) ≥ 0 always. Therefore f(z) ≥ f(0) = 0, proving this case.

Now suppose 0 ≤ p < 1. Let f(z) = (z+1)
p

zp+1 . Then,

f ′(z) = p(z + 1)p−1 ⋅ (zp + 1) − (z + 1)p ⋅ pzp−1
(zp + 1)2 =

p(z + 1)p−1(1 − zp−1)
(zp + 1)2 .
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Therefore f ′(z) ≤ 0 for z ∈ [0,1] and f ′(z) ≥ 0 for z ∈ [1,∞), so f(z) is minimized on [0,∞)
when z = 1. Hence, f(z) ≥ f(1) = 2p−1. Thus, zp + 1 ≤ 21−p(z + 1)p ≤ 2(z + 1)p as desired.
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