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Abstract

Large-scale pretrained transformers have created milestones in text (GPT-3) and1

text-to-image (DALL-E and CogView) generation. Its application to video gen-2

eration is still facing many challenges: The potential huge computation makes3

it unafforable for a full training; The scarcity and weak relevance of text-video4

datasets hinder the model to understand complex movement semantics. In this5

work, we present 9B-parameter transformer CogVideo, trained by inheriting a6

pretrained text-to-image model, CogView2. We also propose multi-frame-rate7

hierarchical training strategy to better align text and video clips. As (probably)8

the first open-source large-scale pretrained text-to-video model, CogVideo outper-9

forms all publicly available models at a large margin in both machine and human10

evaluations.11
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Figure 1: Samples generated by CogVideo. The actual text inputs are in Chinese. Each sample is a
4-second clip of 32 frames, and here we sample 9 frames uniformly for display purpose.
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1 Introduction12

Autoregressive transformers, e.g. DALL-E [19] and CogView [5], have revolutionized text-to-image13

generation recently. It is natural to investigate the potential of autoregressive transformers on text-14

to-video generation. Previous works followed this basic framework [36, 9], e.g. VideoGPT [37],15

verifying its superiority over GAN-based methods [4, 27], but are still far from satisfaction.16

One common challenge is that the generated video frames tend to gradually deviate from the text17

prompt, making the generated characters hard to perform the desired actions. Vanilla autoregressive18

models might be good at synthesizing videos with regular (e.g. straightly moving cars) or random19

patterns (e.g. speaking by randomly moving lips), but fail on text prompt such as “a lion is drinking20

water”. The main difference between the two cases is that, in the former case the first frame already21

provides sufficient information for the subsequent changes, while in the latter the model has to22

precisely understand the action “drink” in order to correctly generate the desired action — the lion23

lifts the glass to its lip, drinks and then puts down the glass.24

Why do the autoregressive transformers well understand the text-image relations, but struggle to25

understand the text-action relations in videos? We hypothesize that the datasets and the way to utilize26

them are the main reasons.27

First, it is possible to collect billions of high-quality text-image pairs from Internet [19], but the28

text-video data are more scarce. The largest annotated text-video dataset, VATEX [32], has only29

41,250 videos. The retrieval-based text-video pairs, e.g. Howto100M [17], are weakly relevant and30

most of them only describe the scene without the temporal information.31

Second, the duration of videos varies a lot. Previous models split the video into many clips with a32

fixed number of frames for training, which destroys the alignment between the text and its temporal33

counterparts in the video. If a “drinking” video is split into four individual clips of “holding a glass”,34

“lifting”, “drinking” and “putting down” with the same text “drinking”, the model will be confused to35

learn the accurate meaning of drinking.36

Present Work. Here we present a large-scale pretrained text-to-video generative model, CogVideo,37

which is of 9.4 billion parameters and trained on 5.4 million text-video pairs. We build CogVideo38

based on a pretrained text-to-image model, CogView2 [6], in order to inherit the knowledge learned39

from the text-image pretraining. To ensure the alignment between text and its temporal counterparts40

in the video, we propose the multi-frame-rate hierarchical training. The flexibility of the textual41

condition makes it possible to simply prepend a piece of text describing the frame rate to the original42

text prompt for modeling different frame rates. To keep the text-video alignment, we choose a proper43

frame rate description to include the complete action in each training sample. The frame rate token44

also controls the intensity of the changes throughout continuous frames in generation. Specifically,45

we train a sequential generation model and a frame interpolation model. The former model generates46

key frames according to the text, and the latter recursively fill the middle frames by varying the frame47

rates to make the video coherent. As shown in Figure 1, CogVideo can generate high-resolution48

(480×480) videos. Human evaluation demonstrates that CogVideo outperforms all publicly available49

models at a large margin. Our main contributions can be concluded as follows:50

• We present CogVideo, which is the largest and the first open-source pretrained transformer51

for text-to-video generation in the general domain.52

• CogVideo elegantly and efficiently finetunes a text-to-video generative model from a pre-53

trained text-to-image generative model, avoiding the expensive full pretraining from scratch.54

• We propose the multi-frame-rate hierarchical training to better align text-clip pairs, which55

significantly improves the generation accuracy, in particular for movements of complex56

semantics. This training strategy endows CogVideo with the capacity of controlling the57

intensity of changes during the generation.58

2 Related Work59

2.1 Video Generation60

Video generation is a long-standing research topic. Most previous works focus on the next-frame61

prediction task — forecasting the future frames based on the first video frame. Early works, e.g.62
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CDNA [8] and PredRNN [33], leverage deterministic methods to directly predict the next frame63

via CNNs or RNNs. However, these deterministic models are unable to capture the stochastic64

temporal patterns and synthesize coherent complex scenes. Generative models, especially Generative65

Adversarial Networks [10] (GANs), begin to dominate the area as they can perform unconditional or66

class-conditional video synthesis without the first frames. VGAN [31] is the first one to use GAN67

for video generation. It decomposes video to a static background and a moving foreground, and68

then generates them with 2D and 3D convolutional networks respectively. TGAN[20] proposes69

to separately generate the temporal latent variables and spatial information, and MoCoGAN [27]70

similarly decomposes the latent space into context and motion subspaces. DIGAN [38] applies71

implicit neural representations for video encoding. Recently, text-to-video generation emerges as a72

promising direction. The framework of VQVAE [29] and autoregressive transformers [30, 1] quickly73

becomes the mainstream method [35, 36, 9]. Ho et al. [11] proposes video diffusion model along with74

a gradient method recently for text-to-video generation. The previous methods are basically trained75

on a specific dataset, e.g. UCF-101 [23], making the trained model domain-specific. Moreover, most76

of these models are not publicly available.77

2.2 Autoregressive Transformer78

Recent years have witnessed the autoregressive transformer emerging as a powerful generative model.79

The autoregressive models become the most prevalent framework for text generation [24]. With80

its prominent capacity of fitting, transformer [30] gradually becomes the standard neural structure81

for text generation. One milestone is GPT-3 [1]. In computer vision, van den Oord et al. [29]82

first proposes to train a VQVAE to compress the image into a sequence of tokens from a learned83

dictionary, which can be efficiently handled by autoregressive models. VQ-GAN [7] learns a more84

semantic-aware dictionary for unconditional image generation. In the text-to-image generation, pre-85

trained autoregressive transformers such as DALL-E [19] and CogView [5] have shown superiority86

in open-domain image generation. Besides the pure GPT-style generation, CogView2 [6] proposes a87

new language model CogLM for infilling in the image generation.88

Recent autoregressive transformers [18, 37, 35, 36] have also shown their superiority in video89

generation. Among them, GODIVA [35] and NÜWA [36] focus on the open-domain text-to-video90

generation. However, they simply generate frames or frame blocks one by one in a chronological91

order, and may suffer from poor text-video alignment (Cf. § 1).92

3 Method93

In this section, we first introduce multi-frame-rate hierarchical training to better align text and94

video semantics in § 3.1, and then illustrate an efficient method dual-channel attention to inherit95

the knowledge in pretrained text-image models for video generation in § 3.2. To overcome the96

large memory and time overhead caused by the large model and long sequence, we refer to Swin97

Attention [14] and extend it to autoregressive video generation in § 3.3.98

3.1 Multi-frame-rate Hierarchical Training99

Here we present the multi-frame-rate hierarchical training and generation. We follow the framework100

of VQVAE [29] and first tokenize each frame into image tokens. Each training sample consists101

of 5 frame of tokens, but our training method differs in the construction of training sequences and102

generation process.103

Training. The key design is to add a frame-rate token to the text and sample frames at this frame-rate104

to compose a fixed-length training sequence. The motivations are two folds:105

(1) Directly separating the long video into clips at a fixed frame-rate often leads to semantic mis-106

matching. We still use the full text but the truncated clip might only contain incomplete action.107

(2) The adjacent frames are usually very similar. A giant change over the previous frame will108

probably incur a large loss. This will lead the models less inclined to explore the long-range109

correlation because to simply copy the previous frame acts like a shortcut.110
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Figure 2: Multi-frame-rate hierarchical generation framework in CogVideo. Input sequence includes
frame rate, text, frame tokens. [B] (Begin-of-image) is a separator token, inherited from CogView2.
In stage 1, Ts frames are generated sequentially on condition of frame rate and text. Then in stage
2, generated frames are re-input as bidirectional attention regions to recursively interpolate frames.
Frame rate can be adjusted during both stages. Bidirectional attention regions are highlighted in
blue , and unidirectional regions are highlighted in green .

Therefore, in each training sample we want the text and the frames match as possible. We predefined111

a series of frame-rates, and select the lowest frame-rate for each text-video pair, as long as we can112

sample at least 5 frames at this frame-rate in the video.113

Although the above method increase the alignment of text and video, the generation at a low frame-114

rate could be incoherent. We train another frame interpolation model to insert transition frames to the115

generated samples of the sequential generation model. Thanks to the generality of CogLM [6], the116

two models can share the same structure and training process only with different attention masks.117

Generation The multi-frame-rate hierarchical generation is a recursive process, illustrated in Fig-118

ure 2. Specifically, the generation pipeline consists of a sequential generation stage and a recursive119

interpolation stage:120

(1) Sequentially generate Ts key frames based on a low frame rate and text. The input sequence121

is [{Frame Rate}{Text} [B] {Frame1} ... {Frame Ts}]. In practice, we always set122

Ts = 5 and the minimum sampling frame rate to 1 fps.123

(2) Recursively interpolate frames based on the text, frame rate and known frames. In each round124

of interpolation, we split generated frames into multiple dTs

2 e-frame blocks overlapping at the125

beginning and the end, and interpolate a frame between the successive frames in each block.126

The input sequence is [{Frame Rate}{Text} [B] {Frame1} ... {Frame Ts}], where127

Frame 2i(i = 1, 2, ..., bTs

2 c) are to be autoregressively generated. By recursively halfing {Frame128

Rate}, we can conduct finer and finer interpolation to generate videos of many frames.129

The effect of CogLM. Tasks such as frame interpolation rely heavily on bidirectional information.130

However, most previous works use GPT [35, 37, 36], which is unidirectional. To be aware of the131

bidirectional context, we adopt Cross-Modal General Language Model (CogLM) proposed in [6]132

which unites bidirectional context-aware mask prediction and autoregressive generation by dividing133

tokens into unidirectional and bidirectional attention regions. While bidirectional regions can attend134

to all bidirectional regions, unidirectional regions can attend to all bidirectional regions and previous135

unidirectional regions. As shown in 2, (1) all frames in stage 1 and the 2nd, 4th frames in stage136
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2 are in the unidirectional region; (2) {Frame Rate}, {Text} and all other frames belong to the137

bidirectional region. In this way, bidirectional attention context is fully exploited in text and given138

frames without interfering auto-regressive frame prediction.139

3.2 Dual-channel Attention140

Layer Norm

Attention-base
(Spatial Channel)

Attention-plus
(Temporal Channel)

Addition

Layer Norm

FFN

Addition
Dual-channel Attention

Figure 3: Dual-channel atten-
tion. We initialize Attention-
plus the same as Attention-base
so that the model behaves ex-
actly the same as CogView2
when it is initialized.

Large-scale pretraining usually demands a large dataset. For open-141

domain text-to-video generation, ideally we need the dataset to142

cover sufficient text-video pairs to infer both spatial and tem-143

poral correlation between video and text. However, to collect144

high quality text-video pairs is often difficult, expensive and time-145

consuming.146

A natural idea is to make use of the image data to facilitate the147

learning of spatial semantics. Video Diffusion Model [11] and148

NÜWA [36] try to add text-image pairs into text-video training,149

which achieves better results on multiple metrics. However, as150

for training a video-only generation model, adding image data151

will significantly increase training cost, especially in large-scale152

pretraining scenarios.153

In this paper, we propose to leverage pretrained image generation154

models instead of image data. Pretrained text-to-image models,155

e.g. CogView2 [6], already have a good command of the text-156

image relations. The coverage of the dataset to train these model157

is also larger than that of videos.158

The proposed technique is dual-channel attention, where we only159

add a new spatial-temporal attention channel to the pretrained CogView2 [6] at each transformer160

layer. All the parameters in the CogView2 are frozen in the training, and only the parameters in the161

newly added attention layer(See the Attention-plus in Figure 3) are trainable.162

Here we also emphasize that directly finetuning CogView2 for text-to-video generation cannot well163

inherit the knowledge, because the temporal attention follows a different attention pattern and quickly164

ruins the pretrained weights during the initial phase of training with large gradients.165

Specifically, a Transformer layer with dual-channel attention can be computed as166

x̂l = LayerNorm(xl), (1)
x̃l = α · Attention-base(x̂l) + (1− α), ·Attention-plus(x̂l), (2)

xl+1 = FFN(LayerNorm(xl + x̃l)), (3)

where xl denotes input features of layer l; Attention-base and Attention-plus denote two attention167

channels; FFN and LayerNorm represent Feed-Forward Networks and LayerNorm respectively; α168

is a vector with length of hidden-size and normalized to (0, 1). The whole structure is the same as169

CogView2 when ignoring Attention-plus.170

Both channels are computed as normal multi-head attention with a certain receptive field formulated171

as follows. For token at (t, x, y) in frame block of size (Ts, X, Y ) (where (t, x, y) corresponds to172

coordination along time, height and width dimension), receptive field RF is a 3D block with extent173

lt, lx, ly ∈ N+:174

RF(t,x,y) = {(k, i, j)
∣∣∣ |x− i| < lx, |y − j| < ly, |t− k| < lt, (k, i, j) /∈ Mask(t,x,y)}, (4)

where Mask(t,x,y) represents CogLM attention mask for token (t, x, y). For Attention-base, we175

restrict receptive field to current frame, i.e, lx = X, ly = Y, lt = 1, to fully use CogView2’s spatial176

modeling ability (therefore referred to as spatial channel). For Attention-plus, which is the only177

new parameters in CogVideo, we set receptive field to a 3D local block throughout the whole time178

dimension, i.e. lx = Ax, ly = Ay, lt = Ts (therefore referred to as temporal channel). Ax, Ay179

are hyper-parameters satisfying Ax ≤ X,Ay ≤ Y . With Ax and Ay, CogVideo is able to flexibly180

trade off between quadratic attention cost and size of receptive field. In practice, we use shifted181

window attention [15] as a approximation of 3D block attention and extend it to CogLM scenario, as182

illustrated in subsection 3.3.183
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It is worth noting that two channels are fused and share the same FFN in each layer, because FFN184

is a module of heavy parameters containing much vision knowledge. Due to similarity between185

images and videos, bringing its knowledge to temporal channel will facilitate video modeling. Finally,186

sharing FFN can reduce parameters, thus speed up training and reduce memory overhead.187

3.3 Shifted Window Attention in Auto-regressive Generation188

To overcome large time and memory overhead in temporal channel during training and inference,189

we refer to Swin Attention proposed in [14] and extend it to auto-regressive scenario by applying190

auto-regressive attention mask in shifted windows.191

t=i t=i+1 t=i+2

Figure 4: Receptive field (in yellow
or green) for the token in red box.
Shifted window size is 2× 2 in this
example.

Different from non-autoregressive scenario which original Swin192

Transformer explores, we propose that Swin Attention can fur-193

ther accelerate auto-regressive inference because of restricted194

receptive field. As shown in Figure 4, receptive field is re-195

stricted by196

• Auto-regressive mask. A token can only attend to pre-197

vious frames or tokens before itself in current frame.198

• Shifted window. Only tokens within distance of win-199

dow size in both width and height dimension can be200

directly attended to.201

SupposeX ,Y is the height and width of each frame, andAx,Ay202

are the height and width of shifted window. For two tokens at (t1, x1, y1) and (t2, x2, y2), t1 < t2,203

the latter cannot attend to the former either directly or indirectly if204

(x1 − x2)Y + (y1 − y2) ≥ (t2 − t1 + 1)(AxY +Ay) (5)

is satisfied. That is to say, the i-th token in frame t1 can be generated with the (i−AxY +Ay)-th205

token in frame t1 + 1 in parallel. In this way, we can generate b XY
AxY+Ay

c tokens in parallel at most,206

thus greatly enhance parallelism and accelerate inference compared to auto-regressive with standard207

attention which can only generate one token at a time.208

4 Training209

Based on methods above, the training details of CogVideo are listed as follows:210

Model. The backbone of CogVideo in both stages is a Transformer with dual-channel attention.211

The Transformer has 48 layers, with the hidden size of 3072 in each attention channel, 48 attention212

heads and 9.4 billion parameters in total. Among them, 6 billion parameters are fixed to CogView2’s213

parameters, which includes Position-wise Feed-Forward Networks (FFN), spatial channel of dual-214

channel Attention, first frame’s positional embeddings and all image and text vocabulary embeddings.215

The specific implementation of Transformer structure is almost identical to CogView [5] such as216

using Sandwich LayerNorm and PB-Relax to stablize training. Shifted CogLM attention window is217

adoppted in recursive interpolation model with window size 10× 10.218

Dataset. We pretrain our model on a dataset of 5.4 million captioned videos with a spatial resolution219

of 160x160. For sequential generation model (Stage-1), we adjust frame rate in each sample to220

accomodate the whole video, while the minimum frame rate is set to 1 fps. For recursive interpolation221

model(Stage-2), we split videos into clips of different length to accomodate prediction on multiple222

frame rates including 2,4,8 fps.223

Pretraining. The sequence lengths in both stages are 2065, consisting of 64 text tokens, 5 (frames)224

x 400 (per frame) image tokens, and 1 seperator token. Both text and images are tokenized with225

icetk1.The parameters are updated by Adam with max learning rate = 2×10−4, β1 = 0.9, β2 = 0.95,226

weight decay = 1× 10−2. See Appendix for pretraining details.227

1https://github.com/THUDM/icetk
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Table 1: (Left) Video generation performance on UCF-101. Class labels are used as text inputs.
* denotes the model is trained on the training split of UCF-101 only. (Right) Video generation
performance on Kinetics-600. Metrics are measured on generated videos of 16 frames priming on
first 5 frames, following settings in [18]. ** denotes groundtruth used in FVD testing is blurred with
our image tokenizer icetk.

Method IS (↑) FVD (↓)
VideoGPT[37] 24.69 -
DVD-GAN[4] 27.38 -
TGANv2[21]* 28.87 1209
MoCoGAN-HD[25] 32.36 838
DIGAN[38]* 29.71 655
DIGAN[38] 32.70 577
TATS-base[9] 79.28 332

CogVideo (Ours) 50.46 626
CogVideo (Ours)** - 545

Method FVD

Latent Video Tranformer[18] 224.73
Video Transformer[34] 170
DVD-GAN-FP[4] 69.15
TriVD-GAN-FP[16] 25.74

CogVideo (Ours) 109.23
CogVideo (Ours)** 59.55

5 Experiments228

5.1 Machine Evaluation229

Machine evaluation is conducted on two popular benchmarks for video generation, i.e., UCF101 [23]230

and Kinetics-600 [3]. Following Rakhimov et al. [18], Yu et al. [38], we use Fréchet Video Dis-231

tance(FVD) [28] and Inception score(IS) [22] as metrics in the evaluation. FVD is calculated based232

on I3D model[2] trained on Kinetics-400, and IS is based on C3D model [26] which was first trained233

with Sports-1M dataset [12] and then fine-tuned on the UCF101 dataset. Our evaluation code is the234

same as the official TGAN-v2 implementation2.235

UCF-101 is a human action dataset consisted of 13,320 videos annotated with 101 action classes.236

Due to the image style and frame rate gap between CogVideo’s training set and UCF-101, we use237

class labels as the input text and fine-tune CogVideo on the whole dataset for 10,000 iterations with238

batch size = 192. During inference, we sample class labels according to the class distribution. FVD239

and IS are evaluated over 2048 and 10,000 samples respectively, following Yu et al. [38]. Results are240

shown in Table 1 (Left).241

Kinetics-600 dataset contains 600 classes of human action videos, with roughly 350k train and242

50k test videos in total. We use the action category as input text, and fine-tune CogVideo on the243

training set for 12,000 iterations with batch size of 640. Following the setup of Weissenborn et al.244

[34], Rakhimov et al. [18], we center-crop and down-sample each frame to 64x64, and measure with245

FVD. Results are shown in Table 1 (Right).246

5.2 Human Evaluation247

To further evaluate CogVideo, we invite 90 anonymous evaluators to rate for CogVideo and other open-248

source baselines including GAN-based model TGANv2 [21] and GPT-based model VideoGPT [37].249

30 classes in UCF101 are randomly picked as text conditions, and several aspects are rated (See250

Appendix for details). For VideoGPT, we use the official unconditonal pretrained model3 to generate251

samples. For TGANv2, we use the official source code to train an unconditional generation model252

under the same setting as that in Saito et al. [21]. To assign unconditionally generated samples into253

corresponding categories, we choose TSM [13] as the action recognition model and only samples254

with confidence >80%. Results in Figure 5 show that CogVideo significantly outperforms baselines255

on multiple important aspects including frame texture, motion realism and semantice relevance, and256

achieves the top score by overall quality. It can be seen that 49.53% evaluators choose CogVideo as257

the best method, and only 15.42% and 5.6% favor VideoGPT and TGANv2, respectively.258

2https://github.com/pfnet-research/tgan2
3https://github.com/wilson1yan/VideoGPT
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(c) Scores (1-5) on three important aspects. (b) Overall scores (1-10) for each method.(a) Human preference. The percentage 
of being chosen as the best. 

Figure 5: Human evaluation results. "CogVideo 1Stage" refers to the method in ablation study, which
generates videos sequentially with CogVideo’s Stage-1 Model only by recursively reinserting last 2
generated frames into input and generate future frames.

Table 2: Ablation study on a 5,000-sample subset of Kinetcis-600’s testset. FVD is evaluated on
generated 11-frame samples priming on 5 frames and ground-truth blurred by our image tokenizer.
The setting column indicates the difference between each method and CogVideo. Models of each
setting are trained on Kinetics-600 trainset for 10,000 iterations with batch size of 320.

Method Setting FVD (↓)
CogVideo None 108.27

1-stage Generation(Noverlap = 1) − hierarchical 137.13
1-stage Generation(Noverlap = 2) − hierarchical 120.82

Initialzed to CogView2 − Pretrain 124.92
Randomly Initialzed − Pretrain − CogView 166.13

5.3 Ablation Study259

To verify the effectiveness of hierarchical multi-frame-rate generation and incorporating CogView2,260

we conduct ablation study quantitatively and qualitatively on Kinetics-600 and UCF-101 datasets.261

Hierarchical multi-frame-rate generation. In comparison with CogVideo, we fine-tune a 1-stage262

video generation model on Kinetics-600 from the sequential generation model in CogVideo, which263

generates long videos by recursively reinserting last Noverlap frames into the input to sample next264

Ns − Noverlap frames. Larger Noverlap means more previous frames can be utilized during the265

inference, but will increase time overhead.266

Dual-channel attention with CogView2’s weights. We additionally train (1) A randomly initialized267

model; (2) A model incorporating CogView2’s weights but leaving temporal channel randomly268

initialized and unfixed (equivalent to CogVideo without pretraining on videos) on Kinetics-600.269

5.3.1 Quantitative Evaluation270

Figure 6: Training loss in ablation study.

All aforementioned models have been trained for 11,000271

iterations with batch size of 160. Quantitative results are272

shown in Table 2. We can see that the hierarchical method273

is clearly superior to 1-stage generation with different Ns,274

and model initialized with CogView2’s weights has lower275

FVD than randomly initialized one.276

Figure 6 plots the training loss curve of (1) finetuning277

CogVideo; (2) training model from random initialization;278

(3) training model initialized to CogView2 and partially279

fixed. We can see that CogView2 endows model with a280
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(c) Randomly Initialized

(d) Finetuned CogVideo, 1-Stage

(e) Finetuned CogVideo, 1-Stage(b) Initialized with CogView2 

(a) Finetuned CogVideo, hierarchical generation

Input Text: Lunge
Given frames:

Figure 7: Video samples in ablation study, which are generated priming on class label and first 5
frames in Kinetics-600. All samples are down sampled by extracting one in every three frames for
display purpose. (a) Use fine-tuned CogVideo to hierarchically generate samples. (b) Train a model
on Kinetics-600 which is initialized as and partially fixed to CogView2, and hierarchically generate
samples. (c) Train a model on Kinetics-600 which is randomly initialized, and hierarchically generate
samples. (d)(e) Use fine-tuned CogVideo to generate frames in 1 stage with different Noverlap.

good initialization point from which the loss function can converge faster to a lower value. Also,281

fixing part of the parameters to CogView2 reduce optimization cost, which gains more than 2x282

acceleration when using optimization CPU-offload mode in deepspeed.283

5.3.2 Qualitative Evaluation284

Qualitative comparison is shown in Figure 7. While model trained from random initialization tends to285

produce irrational deformation, model incorporating CogView2 is able to model objects better. And286

samples generated hierarchically performs better on content consistency and motion rationalization.287

We also conduct human evaluation between 1-stage and hierarchical video generation model under288

the same setting as 5.2. As shown in 5, hierarchical model, i.e. CogVideo, outperforms 1-stage model289

on semantic relevance, motion realism as well as texture quality. This is probably because 1-stage290

model tends to constantly generate small movements which make the whole video unrealistic, and if291

one generated frame collapses, the subsequent frames often suffer from severe degradation.292

6 Conclusion293

We present CogVideo, to the best of our knowledge, the largest and the first open-source pretrained294

transformer for text-to-video generation for the general domain. CogVideo is also the first attempt295

to efficiently leverage pretrained text-to-image generative model to text-to-video generation model296

without hurting its image generation capacity. With the proposed multi-frame-rate hierarchical297

training framework, CogVideo is endowed with better understanding of text-video relation and ability298

to control the intensity of changes during generation. We extend swin attention to CogLM, which299

achieves acceleration in both training and inference. There are still some limitations in CogVideo, e.g.300

restriction on length of the input sequence still exists due to the large scale of model and limitation of301

GPU memory, and we leave them for future work.302

Broader Impact. This paper aims to advance the open-domain text-to-video generation, which303

will ease the effort of short video and digital art creation. The efficient training method transfers304

knowledge from text-to-image models to text-to-video models, which helps avoid training from305

scratch, and thus reduce the energy consumption and carbon emission. A negative impact is the risk306

of misinformation. To alleviate it, we can train an additional classifier to discriminate the fakes. We307

believe the benefits outweigh the downsides.308
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