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ABSTRACT

Document summarization is useful for quick selection and consumption of
highly subjective content of interest. Identifying salient information in a given
document, especially one covering multiple aspects, is non-trivial, which further
calls for personalized summarization. Modern Large Language Models (LLMs)
have shown promising results for in-context-learning-based summarization. How-
ever, earlier works have demonstrated their incapability to handle dynamically
evolving user-preference histories (in contrast to conventional modeling of static
personas). To address this, we propose PerDucer, a summarizer model agnos-
tic personalization booster that predicts the user’s next interaction and thereby
generates personalized key-phrases from a given query document. These key-
phrases serve as lightweight cues that guide frozen summarization models, both
small and large. Experiments on the PENS and OpenAI-Reddit datasets reveal that
four PerDucer-boosted SOTA LLMs outperform their best-performing history-
prompt baselines with an average gain of 0.47 ↑ across PSE variants. Two boosted
SLMs achieve comparable gains with best (SmolLM2-1.7B) 98.6% of DeepSeek-
14B (best LLM) performance.

1 INTRODUCTION

In an era of information deluge, modern summarizers help readers assimilate updates rapidly. Per-
sonalized summarization tailors these updates to the reader’s subjective interests, a requirement
that becomes critical for multi-aspect documents, which must serve diverging foci simultaneously
(Dasgupta et al., 2024). Existing studies typically ground personalization in static persona at-
tributes—address, gender, nationality, broad topical interests (Dou et al., 2021; He et al., 2022; Li
et al., 2023). However, empirical evidence from MS/CAS PENS reveals that user preferences evolve
at fine-grained sub-topic levels (Ao et al., 2021). Such long, complex temporal contexts challenge
even large language models (LLMs), which otherwise outperform specialized systems on many tasks
(Liu et al., 2024; Gao et al., 2024). Indeed, Patel et al. (2024) demonstrated that SOTA LLMs strug-
gle when complex reading histories are injected as prompts in an in-context-learning (ICL) setting;
richer reader information, at fixed prompt length, paradoxically degrades performance.

In this paper, we reformulate the history-injected prompt-based approach as personalized
keyphrase-guided summarization. We propose PerDucer – a Personalization Inducer that serves
as a model-agnostic booster to summarizers by providing reader-history-specific keyphrases as cues.
PerDucer generates ranked personalized keyphrases that summarize the query document in light
of the user’s evolving reading behavior. Its encoder embeds the reading history as a temporal user-
interaction trajectory, where nodes are documents and summaries (both model-generated and gold)
and edges are transition actions (click, skip, read summary). From this trajectory, the next behav-
ior embedding is predicted, incorporating the query document and its latent personalized summary.
The decoder then maps this embedding to a ranked keyphrase list, which is injected into simpli-
fied prompts for LLMs within ICL or appended to the query document to induce personalization in
otherwise frozen “vanilla” summarizers (Figure 1).

We pose three questions on PerDucer’s ability to boost personalization: RQ-1 can it improve
SOTA LLMs? RQ-2 can it raise SOTA small language models (SLMs) to LLM-like performance?
RQ-3 can it push vanilla summarizers past SOTA specialised personalized systems? For training
and evaluation, we use the real-world PENS dataset (Ao et al., 2021) and the synthetic deriva-
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tion of the multi-domain OpenAI-Reddit dataset. As of now, PENS is the only available dataset
with real-user time-stamped histories. Personalisation is assessed by the three PerSEval variants,
PSE-JSD/SU4/METEOR, which align well with human judgement (Dasgupta et al., 2024). For
RQ-1: Four frozen LLMs, Mistral-7B (Jiang et al., 2023), Zephyr-7B-β (Tunstall et al., 2023),
DeepSeek-R1-14B (DeepSeek-AI et al., 2025), and Llama2-Chat-13B (Touvron et al., 2023), gain
on average 0.45/0.44/0.53↑ (PSE-JSD/SU4/METEOR) when induced by PerDucer. For RQ-2:
Two SLMs – SmolLM2-1.7B-Instruct (Allal et al., 2025) and Qwen2.5-0.5B-Instruct (Qwen et al.,
2025) – approach LLM scores; SmolLM2 surpasses all LLMs except DeepSeek. For RQ-3: In-
jecting PerDucer into BigBird-Pegasus (Zaheer et al., 2020) and SimCLS (Liu & Liu, 2021)
elevates them above the best specialised baseline, GTP (Song et al., 2023); the top configuration
(BigBird-Pegasus + PerDucer) achieves 0.20/0.11/0.13 ↑. The results confirm that reframing
the problem as personalised key-phrase-guided summarisation is highly effective.

2 BACKGROUND

Personalized Summarization. Personalized summarization aligns outputs with user-specific ex-
pectations inferred from temporal behaviors (click, skip, summarize). Traditional accuracy metrics
fails to capture this personalization. EGISES (Vansh et al., 2023) addresses this by measuring diver-
gence between expected (gold) and model summaries but ignores model-accuracy gaps. PerSEval,
proposed by Dasgupta et al. (2024) refines EGISES by penalizing accuracy drops and is the most
stable personalization metric; we therefore use it to evaluate PerDucer.

Training/Evaluation Datasets. Personalized summarization needs datasets with (i) temporally or-
dered user interactions, (ii) user-specific gold summaries for shared content, and (iii) diverse, shift-
ing topics/subtopics. CNN/DM (Hermann et al., 2015) and MultiNews (Fabbri et al., 2019) lack
user-specific references; OpenAI-Reddit (Völske et al., 2017) lacks temporal interaction sequences.
Only PENS (Ao et al., 2021) and PersonalSum (Zhang et al., 2024) meet all criteria. We use PENS,
and utilize OpenAI-Reddit with synthetic temporal orders. PENS provides clicks/skips and sum-
maries per user, with averages of 13.6 topics, and a topic-change rate of 0.77, making it a standard
benchmark (Ao et al., 2021; Song et al., 2023; Lian et al., 2025).

Personalized Guided Summarization. Most personalized-summarization studies assume a static
user persona. Dou et al. (2021) introduced GSUM, which injects user-provided keyphrases restricted
to the query document, thus ignoring evolving preferences. CTRLSum, TMWIN, and Tri-Agent simi-
larly rely on static control signals or fixed edit preferences (He et al., 2022; Kirstein et al., 2024; Xiao
et al., 2024). PENS augments summarization with external user encoders (NRMS, NAML, EBNR)
that capture trajectories but not temporal trends, and remain tied to pointer-generator injections Wu
et al. (2019b;a); Okura et al. (2017); Ao et al. (2021). The GTP framework (Song et al., 2023)
derives latent editing controls from trajectories but its TrRMIo encoder omits short–long term dis-
tinctions, unlike PerDucer. No prior work differentiates user actions (click, skip, read-summary).
Signature-Phrase (Cai et al., 2023) reduces trajectories to keyphrases, but temporal dependencies
and full interaction patterns remain unmodeled.

3 PERSONALIZED SUMMARIZATION: FORMULATION

A key distinction in personalized summarization is between a static user persona and a dynamic
user-preference history. Static persona, such as nationality, address, or broad interests in genres and
food, tends to remain relatively unchanged over time. On the other hand, preference histories are
highly dynamic, since the interaction (or reading behavior) is a temporal sequence, spanning across
multiple topics and discourses. Static personal fails to capture the fine-grained variations observed
in real-world datasets like PENS (Section 2). To address this, we introduce the User-Interaction
Graph (UIG), a data model designed to represent evolving behavior trajectories.

3.1 PREFERENCE DATA AS USER–INTERACTION GRAPH (UIG)

We represent user histories as a User–Interaction Graph (UIG), a directed acyclic graph G =
⟨N,E⟩ where the node set N consists of three disjoint types: (i) u-nodes u(t0) denoting a user
at initial timestep t0, (ii) d-nodes d(tp) representing documents interacted at timestep tp, and (iii)
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Figure 1: PerDucer Pipeline: PerDucer-Encoder predicts the next behavior embedding, which
is then fed into a Key Phrase Extractor (MLP-based Decoder); the extracted top-k key-phrases are
used as cues injected into (frozen) summarizers.

s-nodes s
(tq)
j representing user-specific summaries requested or generated at time tq for a docu-

ment viewed at tq−1. The edge set E encodes user actions: a
(tp)
d ∈ {click, skip, summarize} on

documents, and a
(tq)
s as the follow-up summGen action connecting a document d(tq−1)

Trajectory: Given a UIG, the dynamic user preference history (termed trajectory) of uj is a se-
quence of interactions, denoted τuj , starting at t0 and ending at a d-node or s-node at tl−1, where
l is the trajectory length. Hence, a UIG is a pool of trajectories T with train-data split denoted as
Ttrain and test-data split denoted as Ttest.

Behavior Triple: Given a trajectory τuj , a behavior triple at time-step t (denoted b
(ti)
uj ) is

< hd(ti−1), a(ti), tl(ti) > where hd(ti−1) denotes head-node at time-step ti−1, tl(ti) denotes the
tail-node at time-step ti, and a(ti) denotes the user transition action-relation edge from hd-node to
tl-node. Note that any (hd(ti−1), tl(ti)) node pair can be either a (d−d), (d−s), or (s−d) node-pair.
A UIG can hence be seen as a dynamic temporal knowledge graph (TKG) of user behavior.

Challenges with LLM-based personalization. Providing the entire trajectory τuj along with a
query document to an LLM for in-context personalization, termed as In-Context-Personalization-
Learning (ICPL) (Patel et al., 2024), this approach suffers from several limitations. LLMs have
a bounded context window and their performance degrades as input length increases, with a well-
documented lost-in-the-middle effect where information in the middle of long prompts is under-
utilized (Chen et al., 2025; Liu et al., 2024; Gao et al., 2024). Empirical studies show that injecting
detailed user histories often reduces personalization quality, as richer prompts can distract the model
and dilute salient cues, illustrating the ICOPERNICUS Paradox of Less is More (Patel et al., 2024).

Problem Formulation. We therefore reformulate the task into three stages: Task 1 - predict the
next behavior triple b(q,uj) from τuj ; Task 2 - extract personalized key-phrases (top-k) from b(q,uj);
and finally, a much simpler Task 3 - guide the frozen summarizer by injecting these key phrases as
cues into vanilla models or as prompt context for LLMs.

Hierarchical Abstraction of UIG Although TKG-based UIGs are expressive, sequential-
recommendation research shows that hierarchical abstractions of base actions markedly improve
accuracy on very long histories. Layered time-scale graphs that distinguish short- and long-term de-
pendencies (Xia et al., 2022; Ou et al., 2025) and factor-node abstractions of base actions (Xue et al.,
2022; Zhang et al., 2022) compress distant influences into compact higher-level states, enabling ef-
ficient attention (Ma et al., 2019). Motivated by these findings, we introduce a bi-level UIG: each
behaviour triple b

(ti)
uj becomes a b-node in a higher-level trajectory, the b-tier τ

uj

b
1. Hence, τuj b is

the sequence ⟨b(ti)uj⟩ linked by nextBehavior edges, and Task 1 is formulated over this structure.

In this work, we construct the UIG u/b-tier from two different sources – (i) PENS forming the train
trajectory pool T PENS

train and the test T PENS
test , and (ii) OpenAI-Reddit (Völske et al., 2017) forming T OAI

train
and T OAI

test . UIG construction methodology (and algorithm) has been detailed in Appendix B.3.

1The original sequence is termed the u-tier; Detailed notation list: Table 6.
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Figure 2: PerDucer-Encoder: A b-node (behavior triplet) is represented as a b-cell containing
head-cell, action-cell, and tail-cell. b-cell generates the b-node embedding e

(ti)
bu

at timestep ti using

the head-node embedding e
(ti)
hd fused to the action-embedding e

(ti)
a via a projection, and that then

injected into the tail-node embedding e
(ti)
tl via another projection.

4 PERDUCER : PERSONALIZATION INDUCER FOR SUMMARIZERS

PerDucer is a personalized keyphrase extractor that operates in two stages: Task-1 predicts the
next b-node embedding via the encoder, and Task-2 extracts user-expected keyphrases from this
embedding via the decoder. Since such keyphrases can not be directly evaluated, they are passed
to an external LM (Task-3) with the query document to generate and assess personalized sum-
maries. Thus, instead of end-to-end fine-tuning of LLMs/SLMs, PerDucer focuses on producing
high-quality personalized keyphrases for downstream use. Hence, PerDucer acts as a booster by
guiding summarizers with personalized key-phrases as cues.

4.1 TASK-1: NEXT B-NODE PREDICTION(PERDUCER ENCODER)

Initialization of u-Tier. To enable Task 1 at the b-tier, we initialize the u-tier trajectory τuj by
embedding each document (d) and summary (s) node with PromptRank KPE (220M, 768-d) (Kong
et al., 2023). For each behavior triple b

(ti)
uj , the hd and tl nodes are seeded as e

(ti−1)
hd and e

(ti)
tl .

KPE seeding aligns with central themes for keyphrase extraction and outperforms SBERT (Ap-
pendix E.2). The initial u-node e

(t0)
uj uses the title embedding of the first d-node to mitigate cold

start. Action-transition edges use a 4-d one-hot vector: click, skip, summarize, summGen.

b-Tier Encoder. PerDucer uses an RNN-style stack of b-cells for τuj

b . At step ti, a b-cell emits
e
(ti)
buj

and has three sequential components:

(i) the head-cell,where the prior tail content c(ti−1)
tl with the hd-node to get head-cell content c(ti)hd

as follows: c(ti)hd = tanh (Wh · c(ti−1)
tl + bh) + tanh (Whd · e(ti)hd + bhd)

(ii) the action-cell, representing one of the four possible transition actions, projects c
(ti)
hd onto the

action hyperplane, inspired by Wang et al. (2014) to generate c
(ti)
a :

c(ti)a = tanh (Wh · proje′(ti)
a

c
(ti)
hd + bhd⊥a) + e′

(ti)
a ; e′

(ti)
a = tanh (Wa · e(ti)a + ba) (1)

(iii) the tail-cell finally fuses c
(ti)
a with the tl-node embedding e

(ti)
tl by projecting back c

(ti)
a onto

the node-hyperplane to form the tail-cell content c(ti)tl as:

c
(ti)
tl = tanh (Wh · proje′(ti)

tl

c(ti)a + ba⊥tl) + e′
(ti)
a ; e′

(ti)
tl = tanh (Wtl · e(ti)tl + btl) (2)

The tail-cell content c(ti)tl represents the content of the b-cell flowing onto the next b-cell. The last b-
cell content embedding represents τ (uj). The b-node embedding is e(ti)buj

= tanh (Wb · c(ti)tl + bb).
While ebuj

captures fine-grained behavior semantics at each step, it remains a local representation
sensitive to the current behavior and near-past historical span.
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History Aware Encoding via Decay-EMA. Building on MEGA’s damped-EMA (Ma et al., 2023),
we introduce a content-aware Decay-EMA (D-EMA) that tracks slow interest drift by blending the
current behavior with a smoothed history to form a cumulative “snapshot” representation e

(t1:i)
bD-EMA
uj

as:

e
(t1:i)
bD-EMA
uj

= α(ti) ⊙ e
(ti)
buj

+ (1− α(ti) ⊙ δ(ti))⊙ e
(t1:i−1)

bD-EMA
uj

;

α(ti) = tanh (Wα · [e(ti−1)

bD-EMA
uj

; e
(ti)
bD-EMA
uj

] + bα); δ
(ti) = tanh (Wδ · [e(ti−1)

bD-EMA
uj

; e
(ti)
bD-EMA
uj

] + bδ)
(3)

Here, α(ti) is a learnable content-aware decay, and δ(ti) is a content-aware damping gate. They
enable adaptive control over how much recent history influences the state at ti. To illustrate, consider
Alice’s trajectory: at t1 she clicks on global-markets, at t2 skips celebrity-gossip, and at t3 clicks
on AI-policy. At t4 she requests a summary of that piece, receives it at t5, and at t6 clicks into a
related semiconductors article. By t7 she skips a sports-roundup, and at t8–t10 returns to AI-policy
with further clicks and summaries. D-EMA blends these steps into cumulative snapshots where
repeated interest in AI-policy is reinforced, while distractions like celebrity-gossip or sports-roundup
are down-weighted. However, sequential blending still fails to capture non-local dependencies. In
Alice’s case, her renewed attention to AI-policy at t8 is semantically tied to her earlier click at t3,
despite intervening detours.

Contextualizing D-EMA with Self-Attention. We address the above by enriching D-EMA with
forward-masked self-attention (FM-Attn) to model long-range dependencies among cumulative
snapshots. Given the residual transform e′

(t1:i)
bD-EMA
uj

= WD-EMAe
(t1:i)
bD-EMA
uj

+ bD-EMA, the contextualized

state is:

e
(t1:i)

bc-EMA
uj

= ϕSiLU

Wc-EMA ·

ϕSiLU

(
e′(t1:i)

bD-EMA
uj

)
+ f (ti) ⊙ FM-Attn

(
e
(t1:i)

bD-EMA
uj

)+ bc-EMA


forget gate at ti: f (ti) = ϕSiLU

(
Wf · e′(t1:i)

bD-EMA
uj

+ bf

)
; e′(t1:i)

bD-EMA
uj

= WD-EMA · e(t1:i)

bD-EMA
uj

+ bD-EMA; e
′(t1:i)
bD-EMA
uj

(4)

For Alice, this means that her renewed interest in AI-policy at t8–t10 can explicitly attend back to the
earlier interaction at t3, rather than relying only on the sequentially decayed trace. FM-Attn therefore
captures her cyclical preference – a hallmark of real-world behavior where themes re-emerge after
gaps. Finally, we add a calibrated residual (using the input gate i) to recount the current time-step
b-node information, and generate the content-aware MEGA (c-MEGA) representation of btiuj

as:

e
(ti)

bc-MEGA
uj

= i(ti) ⊙ e
(t1:i)

bc-EMA
uj

+ (1− i)⊙ e
(ti)
buj

; i(ti) = σ

(
Wi · e′(t1:i)

bD-EMA
uj

+ bi

)
(5)

Predicting Next b-Node. Given the final contextualized b-node embedding e
(tl)

bc-MEGA
uj

(where l is the

length of τuj ), we apply a prediction head to obtain the query b-node at tl+1 as:

e
(tl+1)

bq
uj

= Wpred e
(tl)

bc-MEGA
uj

+ bpred.

For Alice, this corresponds to predicting that, after her latest sequence ending at t10 (summarizing
AI-policy), her next likely behavior at t11 will again involve clicking on a related AI-policy document
– say, a committee report – since the contextualized state has reinforced this thematic preference
through both local evidence and long-range attention. The action-cell content of e(tl)

bc-MEGA
uj

includes

the embedding of the genSumm action on the query document d(tl)q , which is integrated within the
tail-cell content (see Figure. 3; Details in Appendix A.3).

4.2 TASK-2: PERSONALIZED KEY PHRASE EXTRACTION (PERDUCER DECODER)

MLP Decoder for Key-Phrases. In the final PerDucer step, the predicted query b-node e
(tl+1)

bq
uj

is mapped by an MLP to a distribution over a KPE-derived key-phrase vocabulary.2 The decision
2YAKE Ricardo Campos (2020) is applied on PENS train to build the vocabulary; size: 2680K.
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Figure 3: PerDucer Encoder: b-node progressive enrichment via D-EMA, c-EMA, and c-MEGA.
For b-cell architecture see Figure 2.

head outputs P̂KP , from which we select the top-k phrases:

P̂KP = SoftMax
(

MLP(e(tl+1)

b
q
uj

)

)
; {kp}k = argsortk(P̂KP ) (6)

Compilations of all PerDucer notations, parameters, and hyperparameters are in Tables 6 and 10.

4.3 TASK 3: GUIDED PERSONALIZED SUMMARIZATION VIA KEY-PHRASE INJECTION

To assess and guide the frozen summarizers, we incorporate task 3 – to feed the extracted top-k
key-phrases into a summarizer for boosting personalization.

Vanilla Summarizers. Following Vansh et al. (2023), we score each sentence
in dq by key-phrase frequency, select the top-m theme sentences, and prepend:
[Doc. Body: · · · ; Theme Sentences: · · · ] before encoding dq .

Large (& Small) Language Models. For LLMs/SLMs, we provide key-phrases directly in the
prompt: [Task: · · · ; Document: · · · ; Key-Phrases: · · · ; Conditions: · · · ] (templates: Appx. F).

5 EVALUATION

5.1 TRAINING SETUP

Training Data. We build UIGs from PENS (T PENS-D) and OpenAI-Reddit (T OAI) (Appendix B.3).
From these, we sample 150K PENS trajectories (|d| = 123, |s| = 15) and 45K OAI trajectories
(|d| = 37, |s| = 12) for training.3 Each train instance slices a trajectory before a (d−s) pair to form
user history τ

uj

h , query dq , and target summary s∗q .

Test Data. For PENS test T PENS-D
test , we merge clicked docs (stage-1) with (d − s) pairs (stage-2),

then create 150 test trajectories, with 150 trajectories per 103 users (≈ 15k test rows) by sliding a
cut after the first 50 pairs: τuj

h ends at pair t, dq is the next d, and s∗q its s (Fig. 4). For openAI test
T OAI

test , we sample 10K trajectories and slice before each (d− s) pair to obtain (τ
uj

h , dq, s
∗
q).

PerDucer Training. PerDucer is trained with losses defined at two levels – the Decoder
loss (i.e., the KPE Loss (LKPE)) and the Encoder Loss (LENC). We first extract all the top-k
key-phrases ({kpi}1:k) in the target summary s∗q . We create a target multi-hot label vector
1(k×1), where each component represents probability of 1 for each extracted target key-phrase
from the ground-truth s-node (by SpaCy v3). We then apply Mean NLL Loss as: LKPE = − 1

k ·∑k
i=1 log p̂(kpi); ideally, p̂(kpi) = 1. LKPE is backpropagated to the Encoder and gets added up

3Sizes: T PENS-D: 360K, T OAI: 45K; Max steps: PENS train 200, OAI train 50.
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Table 1: RQ-1/2: PerDucer-boost consistency across LLMs/SLMs for all architectural pro-
gressions on PENS dataset; OpenAI-Reddit results in Table 5 Obs.-1: c-MEGA outperforms all
versions of PerDucer, highlighting the need for Residual Fusion of D-EMA with D-EMA+FM-
Attn; Obs.-2: DeepSeek leads, but SLMs are competitive on narrower tasks; Stat. sig. p ≤ 0.05.

LLM/SLM 2-shot B-tier Vanilla D-EMA D-EMA+FM-Attn C-MEGA

JSD SU4 METEOR JSD SU4 METEOR JSD SU4 METEOR JSD SU4 METEOR JSD SU4 METEOR

Mistral-7B 0.23 0.09 0.08 0.48 0.27 0.31 0.59 0.35 0.42 0.57 0.38 0.44 0.67 0.52 0.6
DeepSeek-R1 0.24 0.09 0.1 0.51 0.292 0.32 0.6 0.362 0.43 0.58 0.39 0.45 0.71 0.54 0.62
Zephyr-7B-β 0.23 0.08 0.08 0.5 0.28 0.32 0.56 0.35 0.4 0.59 0.36 0.43 0.69 0.53 0.6
LLaMA-13B 0.22 0.07 0.08 0.43 0.26 0.3 0.48 0.36 0.41 0.5 0.37 0.43 0.68 0.53 0.61
Qwen2.5-0.5B NA* NA* NA* 0.34 0.23 0.26 0.55 0.32 0.39 0.52 0.33 0.38 0.65 0.46 0.58
smolLM2-1.5B NA* NA* NA* 0.43 0.28 0.33 0.59 0.36 0.42 0.54 0.38 0.44 0.7 0.53 0.61

with the auxiliary LENC as: LPerDucer = α ·LKPE+(1−α)·LENC. LENC is the loss defined on the in-
correct encoding of the provided user history τ

uj

h of length l. We add a learnable position extractor
Wpos on each b-node embedding e

(ti)

bc-MEGA
uj

to generate the occurrence probability distribution P̂pos of

b(ti) over all possible steps i = [1 : lmax] as: P̂pos = SoftMax
(
Wpos · e(ti)bc-MEGA

uj

)
; ideally, p̂(ti) = 1.

Hence, LENC can be defined across τuj

h for each time-step ti as: LENC = −
∑l

i=1 log p̂(ti). In our
train dataset, lmax = 200. Wpos explicitly aligns each b-cell embedding to its actual time-step.

5.2 BASELINE SUMMARIZATION MODELS

LLMs-as-summarizers. For RQ-1, we benchmark four frozen LLMs—Mistral-7B-Instruct (Jiang
et al., 2023), DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI et al., 2025), LLaMA-2-13B-Chat-HF
(Touvron et al., 2023), and Zephyr-7B (Tunstall et al., 2023)—using the strongest 0-/2-shot prompts
from Patel et al. (2024) and prompt chaining where applicable. Rather than seeking a “best LLM,”
our aim is to show that PerDucer consistently boosts frozen LLMs, acting as a model-agnostic
personalization adapter without retraining. Any LM that stands out can be further PEFT-tuned as
per case constraints. Hence, we also pose PerDucer as an energy/cost-efficient selection method.

Non-personalized summarizers with cue injection (Oracle). We also include two generic SOTA
summarizers: BigbirdPegasus (Zaheer et al., 2020) and SimCLS (Liu & Liu, 2021) (RQ-1b). Fol-
lowing Vansh et al. (2023), we augment the query with gold cues, effectively giving these models
an oracle-style upper bound on personalization.

Small language models. For RQ-2, we test frozen SLMs Qwen2.5-0.5B-Instr. (Qwen et al., 2025)
and SmolLM2-1.7B-Instr. (Allal et al., 2025). Their limited context windows make them ideal for
comparison against boosted LLMs under identical conditions.

Personalized summarizers. Finally, for RQ-3 we evaluate three SOTA personalized frameworks:
PENS (Ao et al., 2021), GTP (Song et al., 2023), and Signature-Phrase (Cai et al., 2023). PENS uses
external user encoders (Transformer-based NAML (Wu et al., 2019a) and NRMS (Wu et al., 2019b),
and GRU-based EBNR (Okura et al., 2017)). GTP integrates Transformer-based TrRMIo internally,
and since Signature-Phrase models user-specific keyphrases, it is an important baseline. All base-
lines are fine-tuned end-to-end for two epochs under the same training regime as PerDucer.

All baseline details are in Appendix C.

5.3 EVALUATION METRICS

To evaluate the efficacy of PerDucer w.r.t the boost in the degree-of-personalization, we choose
PerSEval (PSE), the only known evaluation metric for personalized summarization proposed by
Dasgupta et al. (2024). Also, results therein show that PerSEval explicitly captures accuracy, thereby
rendering a separate accuracy leaderboard redundant. PSE-SU4/METEOR/JSD are selected as the
three variants due to their high human-judgment correlation and computational efficiency.

Accuracy Evaluation. We report standard content-overlap scores (ROUGE-SU4 (Lin, 2004),
ROUGE-L (Lin & Och, 2004)) against gold summaries. We complement the intrinsic metrics with
human rating judgment. We assess how generated summaries align with what users prefer. Us-
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Table 2: Personalized Summarization Performance w.r.t Accuracy & Human-Judgment Rat-
ings: Avg. interpolated rating on OpenAI (Reddit) dataset; Details in Table 14; Stat. sig. p ≤ 0.05.

Category Model Rouge-SU4 Rouge-L HJ-Interpolated Ratings

Best Specialized (Personalized)
PENS-NRMS-T2 13.64 21.03 2
GTP-TrRMIo 21.91 28.31 2
SP-Individual 19.54 25.18 3

Best LLMs (2-shot history) DeepSeek-14B 19.57 29.72 5
LLaMA-2 18.31 29.54 5

Best in PerDucer PerDucer+DeepSeek14B 65.14 67.82 7
PerDucer+LLaMA 63.55 67.16 7

Table 3: RQ-3: Performance of Vanilla Summarizers and Comparison w.r.t. SOTA specialized
models on PENS dataset. Observation-1: PerDucer-guided keyphrases boost them to near parity
personalization in terms of Vanilla Models as Upper Bound Oracle; Observation-2: Boosted Vanilla
outperforms all baseline SOTA personalized summarizers; Stat. sig. p ≤ 0.05.

Type Model PSE-JSD PSE-SU4 PSE-METEOR

Specialized Models

PENS-NAML-T1 0.021 0.014 0.016
PENS-EBNR-T1 0.015 0.010 0.011
PENS-EBNR-T2 0.011 0.008 0.009
PENS-NRMS-T1 0.015 0.011 0.011
PENS-NRMS-T2 0.008 0.007 0.007
GTP 0.024 0.017 0.019
SP-Individual 0.017 0.015 0.014

Generic + Title (Oracle) BigbirdPegasus 0.253 0.143 0.168
SimCLS 0.157 0.032 0.016

Generic + PerDucer Keyphrase BigbirdPegasus 0.228 0.136 0.154
SimCLS 0.104 0.026 0.014

ing the multi-domain non-news OpenAI-Reddit dataset, which contains multiple human-rated sum-
maries of 9 models, we identify the top-rated (i.e., 7) one per user as the human-preferred reference.
We then measure the SBert-embedding-space RMSD-divergence of the model-generated summaries
from the reference and create a ground rating-to-RMSD-range map table, where each rating row has
its corresponding average min-max range. Using this table, we interpolate the HJ-rating of our
baseline models as in Table 14.

6 RESULTS: PERSONALIZATION BOOST CONSISTENCY

6.1 RQ-1: PERFORMANCE W.R.T. BOOSTING LLMS (PERSONALIZATION GAIN)

We evaluate how effectively PerDucer boosts personalization capabilities of the baseline LLMs
(temperature: 0.2 to ensure faithfulness; details: Appendix E.2.) when compared to their 2-prompt-
based baseline (Section 5.2) performance (prompt structure comparison details: Appendix F). The
default top-k key-phrases extracted are 10. We find a significant improvement in personalization
performance, with average gains of 0.45/0.44/0.53 ↑ w.r.t PSE-JSD/SU4/METEOR, respectively
(Table 1). The results strengthen our claim that simplifying the personalized summarization task
is a more promising direction. We also observe that PerDucer-boosted LLMs beat best LLM
baseline (DeepSeek-14B) in both the accuracy metrics with 0.42 and 0.38 boost w.r.t Rouge-SU4
and Rouge-L (see Table 11), and that it achieves 7/7 in terms of human ratings (see Table 14).

Inducing Personalization in Vanilla Summarizers (Approximating Oracle). In order to analyze
the performance of personalized KPE (task-2), we compare the PSE-scores of the personalized
key-phrases injected vanilla summarizers (Section 4.3) with their corresponding oracle version’s
performance (as described in Section 5.2). We find that PerDucer boosts the models close to their
best-possible PSE-scores, with the best result (BigBirdPegasus) achieving 90.12/95.1/91.67% of the
oracle-performance w.r.t PSE-JSD/SU4/METEOR (Table 3 for detailed results).

6.2 RQ-2: PERFORMANCE W.R.T. BOOSTING SLMS (PERSONALIZATION GAIN)

It has been observed that Small Language Models (SLMs) can approximate the performance of
LLMs on specific, simpler tasks (Fu et al., 2024; Xu et al., 2025). Since the personalized summa-
rization task has been reduced to guided summarization, we analyze the SOTA baseline SLMs when
boosted with PerDucer (Table 1). We find that SmolLM2-1.7B-Instruct slightly outperforms 3
LLMs, except DeepSeek, where it achieves near-parity with a marginal difference of 0.01 w.r.t PSE-
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Table 4: Top-k Key-phrase Ablation: k = 10 consistently outperforms; Stat. sig. p ≤ 0.05.
LLMs 5 Keyphrases 10 Keyphrases 15 Keyphrases

PSE-JSD PSE-SU4 PSE-METEOR PSE-JSD PSE-SU4 PSE-METEOR PSE-JSD PSE-SU4 PSE-METEOR
Mistral-7B 0.075 0.045 0.052 0.676 0.524 0.604 0.632 0.523 0.573
DeepSeek-R1 0.077 0.048 0.055 0.710 0.543 0.627 0.682 0.540 0.611
Zephyr-7B-β 0.066 0.044 0.051 0.695 0.530 0.607 0.673 0.503 0.587
LLaMA-13B 0.065 0.043 0.039 0.685 0.533 0.614 0.671 0.532 0.413
Qwen2.5-0.5B 0.063 0.037 0.039 0.652 0.467 0.585 0.658 0.477 0.537
smolLM2-1.5B 0.068 0.047 0.054 0.700 0.536 0.615 0.628 0.515 0.586

Table 5: Cross-domain Generalizability: PerDucer trained in OpenAI-Reddit; p ≤ 0.05.
Model w/ history PENS Test OpenAI Test

JSD SU4 METEOR JSD SU4 METEOR JSD SU4 METEOR
DeepSeek-R1 0.243 0.095 0.109 0.517 0.374 0.437 0.632 0.473 0.524
Zephyr-7B-β 0.214 0.087 0.104 0.485 0.352 0.373 0.624 0.471 0.518
LLaMA-13B 0.232 0.093 0.107 0.504 0.381 0.451 0.627 0.473 0.521
Mistral-7B 0.226 0.088 0.103 0.487 0.362 0.418 0.612 0.452 0.504
smolLM2-1.5B NA* NA* NA* 0.513 0.373 0.431 0.628 0.470 0.521
Qwen2.5-0.5B NA* NA* NA* 0.476 0.343 0.406 0.584 0.434 0.458

JSD/SU4/METEOR, and Qwen2.5-0.5B-Instruct trails behind at an average of just 0.06/0.08/0.04
w.r.t PSE-JSD/SU4/METEOR. The results show that PerDucer effectively boosts SLMs to approx-
imate LLMs w.r.t personalized summarization, given that the SLMs are incapable of exhibiting ICL
via prompt-based history injection. This again supports that reducing the problem to personalized
guided summarization is a superior approach (see Table 14 for qualitative assessment).

RQ-1/2 Ablation: Effectiveness of c-MEGA-based User Preference Modeling. In order to un-
derstand the effect of the c-MEGA architecture of PerDucer Encoder, we ablate on all the four
design progressions as described in Section A.3.1– (i) vanilla b-tier (without any EMA modeling
or FM-Attn), (ii) b-tier+D-EMA, (iii) b-tier+FM-Attn (i.e., c-EMA), and (iv) c-MEGA. We ob-
serve that c-MEGA outperforms all other versions with a margin of 0.128/0.154/0.171↑ w.r.t PSE-
JSD/SU4/METEOR in comparison to the next best c-EMA version (for details, see Table 1).

RQ-1/2 Ablation: Key-Phrase Count. We vary extracted key-phrases [5,10,15] (ground-truth avg.:
20.23) and find k=10 performs best, giving gains of 0.32/0.25/0.29↑ on PSE-JSD/SU4/METEOR
(Table 4). We match the generated keyphrases w.r.t. ground truth keyphrase tokens and find a match
of 78.76% and 0.8 Precision/Recall, underscoring the quality of personalized keyphrase generation.

Cross-domain applicability. We train PerDucer on OpenAI-Reddit T OAI
train (29 non-news domains)

and test T OAI
test , where c-MEGA yields strong gains (e.g., Mistral-7B: 0.386/0.364/0.4 ↑). To vali-

date domain transfer, we further test on real PENS (T PENS-D
test ), still observing notable improvements

(0.26/0.27/0.32 ↑), confirming PerDucer’s generalizability beyond news-centric data (Table 5).

6.3 RQ-3: BOOSTED VANILLA SUMMARIZERS W.R.T PERSONALIZED SUMMARIZERS

We study the efficacy of PerDucer as a booster by further comparing the personalization induced
in the (frozen) vanilla summarizers with that of specialized finetuned baseline models. We observe
that the induced BigBird-Pegasus outperforms the best-performing specialized model (GTP) by a
massive margin of 0.196/0.11/0.131 w.r.t PSE-JSD/SU4/METEOR. This further reinforces that re-
ducing the problem to personalized guided summarization is more effective than pure self-attention,
or RNN-styled user history modeling as adopted by GTP and PENS (see Table 3).

7 CONCLUSION

Personalized summarization is challenging due to long, mixed user histories combining positive
(click, read) and negative (skip) signals. Current LLMs struggle to encode such structures in-context.
In this paper, we propose PerDucer, which reframes the task as personalized key-phrase-guided
summarization: user-behavior encoders predict a latent personalized embedding, decode it into key
phrases, and inject them into the summarizer. Experiments show consistent personalization gains
(0.44↑ on average), especially for LLMs otherwise weak at personalization. Preliminary studies
on recommendations beyond summarization are in Table 15. Remaining challenges include cross-
domain data scarcity and ensuring safeguards against leakage and opinion manipulation.
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privacy by not using personally identifiable or sensitive information in our datasets. (viii) used LLMs
(GPT-5) limited to structural changes (paraphrasing and summarization of our own content, which
has not been used verbatim in most of the paper), table format corrections, and extensive literature
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rations, and training details are documented in Appendix D.2 and Table 10. Dataset descriptions,
preprocessing steps, and evaluation metrics (PSE-JSD, SU-4, METEOR) are clearly specified in
Sections 2 and 5.3, Appendices B and A.2.1. We also provide ablation studies (Tables 4, 5, & 13)
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A MEASURING DEGREE-OF-PERSONALIZATION

A.1 MOTIVATION

Vansh et al. (2023) proposed EGISES– a metric to measure the degree of insensitivity-to-
subjectivity for relative benchmarking of how much models lack personalization (i.e., a lower
score is better within the range [0, 1]) instead of assigning an absolute goodness score. Based on
this notion, they defined (summary-level) “deviation” of a model Mθ,u(later termed as Degree-of-
Responsiveness (DEGRESS) by Dasgupta et al. (2024)) as follows:

Summary-level DEGRESS. Given a document di and a user-profile uij (user j’s ex-
pected summary), the summary-level responsiveness of a personalized model Mθ,u, (i.e.,
DEGRESS(suij |(di, uij))), is defined as the proportional divergence between model-generated sum-
mary suij of di for j-th user from other user-specific summary versions w.r.t a corresponding diver-
gence of uij from the other user-profiles.

DEGRESS(suij
|(di, uij)) is formulated as:

DEGRESS(suij |(di, uij)) =
1

|Udi |

|Udi
|∑

k=1

min(Xijk, Yijk) + ϵ

max(Xijk, Yijk) + ϵ

Xijk =
exp(w(uij |uik))

|Udi
|∑

l=1

exp(w(uij |uil))

· σ(uij , uik); Yijk =
exp(w(suij |suik ))

|Udi
|∑

l=1

exp(w(suij |suil))

· σ(suij , suik )

w(uij |uik) =
σ(uij , uik)

σ(uij , di)
; w(suij |suik ) =

σ(suij , suik )

σ(suij , di)

(7)

Here, |D| is the total number of documents in the evaluation dataset, |U| is the total number of
users who created gold-reference summaries that reflect their expected summaries (and thereby,
their subjective preferences), and |Udi | (= |Sdi |) is the number of users who created gold-references
for document di. w is the divergence of the model-generated summary suij

(and the correspond-
ing expected summary uij) from document di itself in comparison to all the other versions. It
helps to determine how much percentage (therefore, the softmax function) of the divergence (i.e.,
σ(suij

, suik
) should be considered for the calculation of DEGRESS. If suij

is farther than suik
w.r.t di

then DEGRESS(suij
|(di, uij)) < DEGRESS(suik

|(di, uik)), implying that Mθ,u is more responsive
to the k-th reader. A lower value of DEGRESS(suij

|(di, uij)) indicates that while reader-profiles
are different, the generated summary suij

is very similar to other reader-specific summaries (or vice
versa), and hence, is not responsive at the summary-level. The system-level DEGRESS and EGISES
have been formulated as follows:

DEGRESS(Mθ,u) =

|D|∑
i=1

|Udi
|∑

j=1
DEGRESS(suij

|(di,uij))

|Udi
|

|D| (8)

A.2 PERSEVAL : FORMULATION

As can be noted, the DEGRESS formualtion does not enforce any penalty on accuracy drop. To
rectify this Dasgupta et al. (2024) proposed PerSEval. The design of PerSEval had two key
goals: (i) to penalize models for poor accuracy, while simultaneously (ii) ensuring that the evaluation
of responsiveness (i.e., DEGRESS) is not overshadowed by high accuracy. This penalty is referred to
as the Effective DEGRESS Penalty Factor (EDP). If a model achieves 100% accuracy, no EDP will
be applied, and the PerSEval score will equal the DEGRESS score. The following formulatiown
of PerSEval guarantees these properties:

PerSEval(suij |(di, uij)) = DEGRESS(suij |(di, uij))× EDP(suij |(di, uij))

where, EDP(suij |(di, uij)) = 1− 1

1 + 10α≥3 · exp
(
−(10β≥1 · DGP(suij |(di, uij)))

) ,
DGP(suij |(di, uij)) = ADP(sui* |(di, ui*)) + ACP(suij |(di, uij))

(9)
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Here, ADP is a document-level penalty due to a drop in accuracy for the best-performance of the
model (i.e., the model-generated summary of document di (suij

) is closest to the corresponding
reader’s expected summary uij). ADP is formulated as follows:

ADP(sui* |(di, ui*)) =
1

1 + 10γ≥4 · exp
(
−10 · σ∗(sui• ,ui•)|di−0

(1−σ∗(sui• ,ui•)|di)+ϵ

)
where, σ∗(sui• , ui•)|di =

|Udi
|

min
j=1

σ(suij , uij)|di

and {ϵ : An infinitesimally small number ∈ (0, 1)}

(10)

ADP ensures that even if the DEGRESS score is acceptable, a penalty due to accuracy drop can
still be imposed as a part of EDP. ADP, however, fails to address the scenario where the best-case
scenario is acceptable (i.e., accuracy is fairly high) but is rather an outlier case – i.e., for most of
the other model-generated summary versions, there is a considerable accuracy drop. To address
this issue, the second penalty component within EDP called Accuracy-inconsistency Penalty (ACP)
was introduced which evaluates whether a model consistently performs w.r.t accuracy for a specific
generated summary compared to its average performance. ACPis formulated as:

ACP(suij |(di, uij)) =
1

1 + 10γ≥4 · exp
(
−10 ·

σ(suij
,uij)|di−σ∗(sui• ,ui•)|di

(σ(sui• ,ui•)|di−σ∗(sui• ,ui•)|di)+ϵ

)

where, σ(sui• , ui•)|di =
1

|Udi |

|Udi
|∑

j=1

σ(suij , uij)|di

(11)

The system-level PerSEval score is as follows:

PerSEval(Mθ,u) =

|D|∑
i=1

|Udi
|∑

j=1
PerSEval(suij

|(di,uij))

|Udi
|

|D| (12)

The system-level PerSEval ∈ [0, 1] and is bounded by the system-level DEGRESS score.

A.2.1 PSE METRICS

PerSEval-RG-SU4 (or PSE-SU4) is the PerSEval variant that uses ROUGE-SU4 (Lin, 2004)
as a distance metric (i.e., σ) in the PerSEval formula. PSE-SU4 has been reported to have high
human-judgment correlation (Pearson’s r: 0.6; Spearman’s ρ: 0.6; Kendall’s τ : 0.51) (Dasgupta
et al., 2024). The ROUGE-SU4 score is based on skip-bigrams, which are pairs of words that
appear in the same order within a sentence but can have up to four other words between them. The
formula is as follows:

For a given generated summary G and reference summary R, the ROUGE-SU4 score is calculated
as:

Skip-Bigram Recall (RSU4):

RSU4 =
Count of matching skip-bigrams between G and R

Total skip-bigrams in R

Skip-Bigram Precision (PSU4):

PSU4 =
Count of matching skip-bigrams between G and R

Total skip-bigrams in G

F1 Score (F1SU4): The F1 score is the harmonic mean of precision and recall:

F1SU4 =
2× PSU4 ×RSU4

PSU4 +RSU4

Where:
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• A skip-bigram consists of two words in the correct order but with zero to four words
skipped in between.

• Matching skip-bigrams are counted between the generated summary and the reference sum-
mary.

The final ROUGE-SU4 score is typically reported as the F1 measure, balancing precision and recall.

PerSEval-JSD (or PSE-JSD) is the PerSEval variant that uses the Jensen–Shannon Diver-
gence (JSD) (Menéndez et al., 1997) as the distance metric σ in the PerSEval formula. JSD is a
smoothed and symmetric version of Kullback–Leibler divergence between the unigram (or n-gram)
distributions of the generated summary G and reference summary R. Its formulation is:

JSD(P ∥Q) = 1
2
KL
(
P
∥∥∥M) + 1

2
KL
(
Q
∥∥∥M) where M = 1

2
(P +Q) (13)

here, P and Q are the normalized n-gram probability distributions of G and R respectively, and

KL(P∥M) =
∑
x

P (x) log
P (x)

M(x)
.

We then define the divergence as: σJSD(G,R) = JSD
(
PG∥PR

)
and plug σJSD into all occurrences

of σ in Equations equation 7–equation 12 to obtain PSE-JSD.

PerSEval-Meteor (or PSE-Meteor) uses the METEOR score (Banerjee & Lavie, 2005; Lavie &
Agarwal, 2007) as the similarity metric; we convert it into a distance by 1 −METEOR. METEOR
aligns unigrams (with synonymy, stem, and paraphrase matching) and combines precision, recall,
and a fragmentation penalty. Its formulation is:

P =
|matched unigrams|
|unigrams(G)|

, R =
|matched unigrams|
|unigrams(R)|

, (14)

Fα =
P R

αP + (1− α)R
, α ∈ [0, 1], (15)

Penalty = γ

(
#chunks

|matched unigrams|

)β

, γ, β > 0, (16)

METEOR(G,R) = (1− Penalty)× Fα. (17)

We then set σMeteor(G,R) = 1 − METEOR(G,R), and substitute σMeteor for σ in Equations
equation 7–equation 12 to yield PSE-Meteor.

A.3 DETAILED BUILDUP OF PERDUCER ENCODER

Initialization of u-Tier. To enable Task 1 at the b-tier, we first initialise the user trajectory τuj

(u-tier). Each document (d) and summary (s) node receives an internal embedding from the SOTA
KPE model PromptRank (220M param., 768-d) (Kong et al., 2023). Thus, for any behaviour triple
b
(ti)
uj , the hd and tl nodes are seeded as e

(ti−1)
hd and e

(ti)
tl . KPE seeding aligns embeddings with

central themes and outperforms SBERT baselines (Appendix E.2). The initial u-node embedding
e
(t0)
uj is the title embedding of the first d-node, mitigating cold-start since no preference shift exists

at t0. Action-transition edges are seeded with a 4-d one-hot vector indicating click, skip, genSumm,
or summGen.

A.3.1 B-TIER ENCODER

The Base Model. PerDucer has an RNN-styled recurrent base network of b-cells representing
τ
uj

b , where each b-cell at time-step ti generates the b-node embedding e
(ti)
buj

. Each b-cell has three
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sequential components– (i) the head-cell, (ii) the action-cell, and (iii) the tail-cell. The ti-th head-
cell fuses the incoming behavior history (i.e., the previous b-cell’s tail-cell content c(ti−1)

tl ) and
the hd-node embedding e

(ti−1)
hd to generate the head-cell content c

(ti)
hd as follows (Wh,Whd are

learnable):
c
(ti)
hd = tanh (Wh · c(ti−1)

tl + bh) + tanh (Whd · e(ti)
hd + bhd) (18)

The action-cell, representing one of the four possible transition actions, then fuses c(ti)hd with the a-
edge embedding e

(ti)
a by projecting c

(ti)
hd onto the action hyperplane5 to generate action-cell content

c
(ti)
a :

c(ti)a = tanh (Wh · proj
e′

(ti)
a

c
(ti)
hd + bhd⊥a) + e′(ti)

a ; where: e′(ti)
a = tanh (Wa · e(ti)

a + ba) (19)

Note that Wa projects the 4-d 1-hot action-edge embedding onto a higher dimension equal to the
head-cell content embedding. Finally, the tail-cell fuses c

(ti)
a with the tl-node embedding e

(ti)
tl by

projecting back c
(ti)
a onto the node-hyperplane to form the tail-cell content c(ti)tl :

c
(ti)
tl = tanh (Wh · proj

e′
(ti)
tl

c(ti)a + ba⊥tl) + e′(ti)
a ; where: e′(ti)

tl = tanh (Wtl · e(ti)
tl + btl) (20)

The tail-cell content c(ti)tl represents the content of the b-cell flowing onto the next b-cell. The last
b-cell content embedding represents τ (uj). In the case of the first b-cell, the head-cell starts with
the u-node embedding as input (see Section A.3; Figure 2). The ti-th b-node embedding e

(ti)
buj

is as
follows:

e
(ti)
buj

= tanh (Wb · c(ti)tl + bb); where: Wb is encoder header (21)

While ebuj
captures fine-grained behavior semantics at each step, it remains a local representation

sensitive to the current behavior and near-past historical span. To model longer-term preference
evolution and suppress spurious noise, we require a robust temporal aggregation mechanism. This
motivates augmenting the b-tier architecture with a smooth yet adaptive history-aware encoding.

History Aware Encoding via Decay-EMA. Inspired by the damped-EMA module of the MEGA
architecture proposed by Ma et al. (2023), we propose a b-cell content-aware Decay-based Expo-
nential Moving Average (D-EMA) to capture the slow-drifting evolution of a user’s interest over τuj

b .
D-EMA recursively blends the current behavior representation with the smoothed history to form a
cumulative ”snapshot” representation e

(t1:i)
bD-EMA
uj

as follows:

e
(t1:i)

bD-EMA
uj

= α(ti) ⊙ e
(ti)
buj

+ (1− α(ti) ⊙ δ(ti))⊙ e
(t1:i−1)

bD-EMA
uj

;

where: α(ti) = tanh (Wα · [e(ti−1)

bD-EMA
uj

; e
(ti)

bD-EMA
uj

] + bα); δ
(ti) = tanh (Wδ · [e

(ti−1)

bD-EMA
uj

; e
(ti)

bD-EMA
uj

] + bδ)
(22)

Here, α(ti) is a learned decay coefficient that is, unlike MEGA, content-aware since it modulates
at every time-step based on the b-cell content inflow so far. In the same way, δ(ti) is a content-
aware additional damping gate that modulates the degree of moving average, thereby making it
possible for PerDucer encoder to give less weightage to near-past content on certain steps if re-
quired. This allows adaptive control over how past behaviors influence the present at ti. However,
the sequential blending inherently limits the ability to capture non-local dependencies - i.e., seman-
tically similar behaviors that occur far apart in time but share conceptual themes or latent goals. In
realistic user scenarios, preferences re-emerge or shift cyclically (e.g., returning to a topic after a
gap), which D-EMA cannot model effectively.

Contextualization of D-EMA via Self-Attention. We augment D-EMA with self-attention mech-
anism to explicitly capture dependencies across all time steps, regardless of their temporal distance.
This enables the model to contextualize the snapshot e(t1:i)bD-EMA

uj

in terms of how each of the past cumu-

lative behavior snapshots independently influences it. The updated contextualized embedding e
(t1:i)
bc-EMA
uj

5The projection operation, inspired by TransH (Wang et al., 2014), distinguishes different cases of (hd−tl)-
pair as determined by the type of transition-action, particularly differentiating the click from the skip action.
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is generated using a single-head forward-masked Self Attention (FM-Attn) as6:

e
(t1:i)

bc-EMA
uj

= ϕSiLU

Wc-EMA ·

ϕSiLU

(
e′(t1:i)

bD-EMA
uj

)
+ f (ti) ⊙ FM-Attn

(
e
(t1:i)

bD-EMA
uj

)+ bc-EMA


where: Wc-EMAis learnable; and a forget gate at ti: f (ti) = ϕSiLU

(
Wf · e′(t1:i)

bD-EMA
uj

+ bf

) (23)

Although contextualized D-EMA provides a skip-gram modeling of discrete cumulative snapshots,
the current time-step b-node information may get suppressed. We, therefore, add a calibrated resid-
ual (using the input gate i) to generate the content-aware MEGA (c-MEGA) representation of btiuj

as:

e
(ti)

bc-MEGA
uj

= i(ti) ⊙ e
(t1:i)

bc-EMA
uj

+ (1− i)⊙ e
(ti)
buj

; i(ti) = σ

(
Wi · e′(t1:i)

bD-EMA
uj

+ bi

)
(24)

Predicting Next b-Node. We apply a next node prediction header Wpred on the last b-node em-
bedding e

(tl)

bc-MEGA
uj

(l: length of the trajectory τuj ) to predict the query b-node embedding at tl+1

(e(tl+1)

bq
uj

) as:

e
(tl+1)

b
q
uj

= Wpred · e
(tl)

bc-MEGA
uj

+ bpred (25)

Note that the action-cell content of e(tl)
bc-MEGA
uj

incorporates the embedding of the genSumm action on

the query document d(tl)q which itself is incorporated within the tail-cell content (Figure 3).

B DATASETS

B.1 PENS DATASET

The PENS dataset (Ao et al., 2021) includes 113,762 news articles across 15 topics. Each article
contains an ID, title (avg. 10.5 words), body (avg. 549 words), and category, with titles linked to
WikiData entities. The dataset also includes user interaction data, such as impressions and click
behaviors, combined with news bodies and headlines from the MIND dataset (Wu et al., 2020)

PENS training set. For training, 500k user-news impressions were sampled from June 13 to July
3, 2019. Each log records user interaction as [uID, tmp, clkNews, uclkNews, clkedHis], where
‘clkNews’ and ‘uclkNews’ represent clicked and unclicked news, and ‘clkedHis’ refers to the user’s
prior clicked articles, sorted by click time. The training data for PerDucer, as discussed in Sec-
tion ??, shows high preference shift. This inherently supports that personalizing UX is strongly
dependent on the temporal dynamics of the user. The stats are in the table 9.

PENS test set. To create an offline testbed, 103 English-speaking students reviewed 1,000 head-
lines in stage-1, and then selected 50 articles, and created preferred headlines (i.e., expected gold-
reference summaries) for 200 unseen articles in stage-2 (see Figure 4). Each article was reviewed
by four participants. Editors checked for factual accuracy, discarding incorrect headlines. The high-
quality remaining headlines serve as personalized gold-standard references in the PENS dataset.

B.2 OPENAI (REDDIT) DATASET

The OpenAI (Reddit) dataset (Völske et al., 2017) comprises 123,169 Reddit posts collected from 29
distinct subreddits. This dataset provides both OpenAI-generated and human-written summaries and
is organized into two splits: Comparisons, used for training and validation, and Axis, designated for
validation and testing. A curated subset of 1,038 posts was processed by 13 different summarization
policies, resulting in the generation of 7,713 summaries. These summaries underwent evaluation
by 64 annotators who rated paired summaries based on selection preferences, confidence in their
ratings, and dimensions such as accuracy, coherence, coverage, and overall quality. Notably, unlike
datasets like PENS, these summaries are not linked to individual annotators or their reading histories,
which means they lack elements of personalization and contextual user information.

6e′(t1:i)
bD-EMA
uj

= WD-EMA · e(t1:i)

bD-EMA
uj

+ bD-EMA; e′(t1:i)
bD-EMA
uj

is the transformed residual; WD-EMA is learnable.
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Table 6: Symbol Table
Symbol Meaning
UIG:⟨N,E⟩ User-Interaction Graph as a DAG with nodes N and edges E
u
(t0)
j j-th user node (u-node) at initial time t0

d(tp) Document node (d-node) interacted at time-step tp
s
(tq)
j User-specific expected summary node (s-node) at time-step tq

a
(tp)
d Interaction edge on d-node at time-step tp (click/skip/genSumm)

a
(tq)
s Follow-up edge from d-node to s-node at time-step tq (summGen)

τuj User trajectory (sequence of interactions) for user uj

T Pool of user trajectories in the UIG
Ttrain, Ttest Train and test splits of trajectory pool
T PENS Trajectory pool from PENS dataset (click/skip based)
T PENS-D Derived trajectory pool with test s-nodes incorporated
T OAI UIG-modeled trajectory pool from OpenAI-style dataset
b
(ti)
uj Behavior triple at time ti: ⟨hd(ti−1), a(ti), tl(ti)⟩
hd(ti−1) Head node of the behavior triple at time ti−1

tl(ti) Tail node of the behavior triple at time ti
a(ti) Action edge connecting head and tail at time ti
τ
uj

b b-tier trajectory for user uj (sequence of behavior triples)
b(q,uj) Query behavior triple to be predicted for user uj

e
(ti−1)
hd Embedding of head node at time ti−1

e
(ti)
tl Embedding of tail node at time ti

e
(t0)
uj Initial user embedding from first document title

e
(ti)
a Action edge embedding at time ti

c
(ti)
hd Head-cell content at time ti

c
(ti)
a Action-cell content at time ti

c
(ti)
tl Tail-cell content at time ti

proj
e′(ti)

a
Projection onto action hyperplane

e′
(ti)
a Projected action embedding

Wh,Whd,Wa Learnable weight matrices for head/action embeddings
bh,bhd,ba Bias vectors for head and action projections
clkNews, uclkNews Clicked and unclicked news entries in PENS
genSumm, summGen Generation/follow-up edges for s-node interaction

Figure 4: Stages of creation of testing dataset consisting of personalized headlines

B.3 UIG CONSTRUCTION FROM PREFERENCE DATASETS

In the parlance of UIG, preference datasets suitable for personalized summarization training and
evaluation are of two categories– (i) those which can be directly modeled into a trajectory pool T
(e.g., PENS dataset (Ao et al., 2021)) and (ii) those which lack user trajectories but contain discrete
d-nodes, model-generated s-nodes (in contrast to user-generated s-nodes as per UIG definition), and
subjective user feedback in the form of rating and the associated confidence score for that rating
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Table 7: MS/CAS PENS Dataset and Interaction Statistics
Characteristic Dimension Value

Article Stats

General Stats

# Topics 15
# Articles 113,762
Avg. Title Length 10.5 words
Avg. Body Length 549 words

Train Dataset Statistics

Interaction Data

# User–News Impressions (anon.) 500,000
# Users (anon.) 445,000
Time Period June 13–July 3, 2019
User Interaction Fields [uID, tmp, clkNews, uclkNews, clkedHis]

Test Dataset Statistics

Participant Stats

# Participants 103
Participant Category English-speaking college students
# Articles 3,940
Browsed Headlines (Click + Skip) 1,000 per participant
Min. Interested (Click) Headlines 50 per participant

Gold Reference Summarized Article Bodies 200 per participant
(Participant-written Headlines) Avg. Summaries per Article 4

Table 8: OpenAI TL;DR (Reddit) Dataset Statistics
Characteristic Dimension Value

Dataset Overview

General Stats

# Reddit Posts 123,169
# Subreddits (Domains) 29
Policy-Generated Summaries 115,579
Human-Written Summaries Available

Train + Validation Dataset Statistics

Article Stats

# Reddit Posts 21,111
# Policies 81
# Generated Summaries 107,866
# Annotators 76
# Summary-Pairs Rated 64,832

Validation Subset Statistics

Subset Details

# Reddit Posts 1,038
# Policies 13
# Generated Summaries 7,713
# Annotators 32

Test Dataset (RLHF-Tuned Policies) Statistics

Evaluation Stats
# Evaluated Policies 4
# Evaluated Reddit Posts 57 (out of 1,038)
Evaluation Method Indirect Benchmarking

Annotation and Feedback

Feedback Collection

Rating Scale 1–7
Confidence Scale 1–9
Avg. Ratings per Annotator 1,176
Annotation Format Summary-Pairs Selection

(e.g. OpenAI-Reddit dataset (Völske et al., 2017)). We describe the UIG (i.e., the base u-tier)
construction method for both types as follows:

PENS-styled Datasets. The construction of UIG is straightforward in the first case and is done in
two steps. In the first step, click and skip interactions in the train dataset are mapped to document
nodes (d-nodes) as incoming edges, forming the corresponding u-tier pool T . As an example, for
the PENS dataset, the clkNews interaction corresponds to a click edge and uclkNews to a skip edge,
forming T PENS. However, PENS dataset lacks user-specific s-nodes (i.e., true interest evolution over
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Table 9: User-Interaction Graph Statistics for our T PENS-D
train and T OAI

train only.

Characteristic T PENS-D
train T OAI

train

# u-nodes (trajectories) 150,000 45,000
# d-nodes per trajectory 123.7 36.92
# s-nodes per trajectory 15.10 11.44

Average trajectory length 129.8 48.37
# Max. trajectory length 200 50
# Min. trajectory length 5 25

Rate of Topic Shift 0.77 0.48

Figure 5: UIG Construction: Construction of User-Interaction Graph from preference datasets.

time), rendering T PENS an incomplete representation of the user dynamic preference7. We address
this issue in the second step, where we incorporate the s-nodes from the test dataset (Ttest) at their
associated time-steps into T with the addition of genSumm and summGen edges, forming a derived
(and more diverse) user-profile pool T PENS-D.

OpenAI-styled Datasets. For the second category of datasets, we first do a pre-construction clas-
sification of clicked and skipped d-nodes for every human rater uj . This is done based on a simple
heuristic of selecting those d-nodes as clicked which has at least one corresponding model-generated
summary (note that there can be multiple models) that received a confidence score above a chosen
threshold (in the case of OpenAI-Reddit we chose that to be 6 out of 9). We then select the best
model-generated summary (i.e., one with the highest rating given by uj) as the surrogate expected
s-node for uj . We then randomly sequence all such (d − s)-node pairs along with the skipped
d-nodes to form τuj (thereby T OAI). This method makes UIG-modeling compatible with most sum-
marization datasets that are not PENS-styled.

C BASELINES

C.1 BASELINE LLMS

1. Zephyr 7B β. Zephyr(Tunstall et al., 2023) is a 7B-parameter transformer model fine-tuned
from Mistral-7B using Direct Preference Optimization (DPO) on publicly available and synthetic
data. It removes some traditional alignment constraints to improve raw performance, achieving
strong results on benchmarks like MT-Bench (7.34 vs. 6.86 for LLaMA2-70B-Chat). Zephyr is
optimized for helpful dialogue and is openly available under an MIT license. Its design focuses
on efficiency and high-quality responses without relying on reinforcement learning from human
feedback.

Mistral 7B. Mistral-Instruct(Jiang et al., 2023) is a dense transformer model using grouped-query
attention (GQA) and sliding window attention (SWA) to efficiently scale with long context inputs.
Pretrained on around 2 trillion tokens, it delivers strong performance across NLP and coding bench-
marks and surpasses larger models like LLaMA2-13B in many areas. It is fully open-source (Apache

7It is important to note that despite this, most recent frameworks train on T PENS using history or document
titles as ”pseudo-targets” or via unsupervised learning (Ao et al., 2021; Song et al., 2023; Yang et al., 2023;
Lian et al., 2025).
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Algorithm 1 UIG Construction
0: function CONSTRUCT UIG(train data, test data, dataset type)
0: Initialize TPENS ← ∅, TOAI ← ∅
0: for each user u in train data do
0: Initialize τuP ← ∅, τuOAI ← ∅
0: for each interaction in user u’s data do
0: if dataset type is PENS then
0: if interaction is clkNews then
0: Map to d-node with a click edge
0: else if interaction is uclkNews then
0: Map to d-node with a skip edge
0: end if
0: Append mapped d-node to τuP
0: else
0: if model-generated summary rating < 6 then
0: Map to d-node with a skip edge
0: else if model-generated summary rating > 6 then
0: Map to d-node with a click edge
0: end if
0: if confidence for rating = max then
0: Map to d-node with a gensum edge
0: Map to s-node with a sumgen edge
0: end if
0: Append mapped d-node to τuOAI
0: end if
0: end for
0: if dataset type is PENS then
0: Add τuP to TPENS
0: else
0: Add τuOAI to TOAI
0: end if
0: end for
0: if dataset type is PENS then
0: for each trajectory τuP in TPENS do
0: Retrieve corresponding s-nodes from test data at associated time-steps
0: Insert s-nodes into τuP using genSumm and sumgen edges
0: end for
0: T PENS-D ← TPENS
0: return T PENS-D

0: else
0: return TOAI
0: end if
0: end function=0

2.0) and includes an instruction-tuned variant, making it widely adopted for fine-tuning and deploy-
ment.

LLaMA 2 13B. LLaMA-2(Touvron et al., 2023) LLaMA 2 13B by Meta is a 13B-parameter
autoregressive transformer trained on 2 trillion tokens of public data, with a context length of 4096.
It supports chat via instruction tuning and RLHF. Though once state-of-the-art among open models,
newer models like Mistral 7B now outperform it in many tasks. LLaMA 2 remains a strong, widely
used foundation model with full documentation and open access under Meta’s license.

DeepSeek-R1 14B. DeepSeek-R1(DeepSeek-AI et al., 2025) is a 14.8B-parameter model distilled
from Qwen 2.5-14B, specifically optimized for math, code, and reasoning tasks. It was fine-tuned
on 800K examples generated by a larger DeepSeek R1 model and is released under an MIT license.
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Despite being smaller, it rivals much larger models on benchmarks like AIME and MATH, offering
strong step-by-step reasoning while remaining efficient and open for further customization.

C.2 BASELINE SLMS

SmolLM2-1.7B. SmolLM2 (Allal et al., 2025) is a lightweight language model with 1.7B param-
eters, designed for efficient performance on devices with limited resources. It offers fast inference
and handles common NLP tasks well, making it a strong baseline for compact models. SmolLM2
was trained primarily on a mix of general-domain text tasks, including language modeling, next-
word prediction, and basic text classification. The training involved supervised learning on curated
datasets combined with unsupervised pretraining on large text corpora to build foundational lan-
guage understanding while keeping the model compact.

Qwen2.5-0.5B Qwen2.5 (Qwen et al., 2025) is a smaller language model of 0.5B parameters, that
balances scale and performance. It delivers better accuracy and versatility across NLP tasks, serv-
ing as a solid baseline for research and development without requiring massive computing power.
Qwen2.5 was trained on a broader and more diverse set of tasks such as language modeling, question
answering, summarization, and dialogue generation. It used a combination of large-scale unsuper-
vised pretraining on extensive text data followed by supervised fine-tuning on specific downstream
tasks to improve accuracy and contextual comprehension.

C.3 BASELINE GENERIC SUMMARIZERS

1. BigBirdPegasus. BigbirdPegasus, proposed by (Zaheer et al., 2020) is an extension of Trans-
former based models designed specifically for processing longer sequences. It utilizes sparse atten-
tion, global attention, and random attention mechanisms to approximate full attention. This enables
BigBird to handle longer contexts more efficiently and, therefore, can be suitable for summarization.

2. SimCLS. A Simple Framework for Contrastive Learning of Abstractive Summarization (Liu
& Liu, 2021) uses a two-stage training procedure. In the first stage, a Seq2Seq model (Lewis et al.,
2020) is trained to generate candidate summaries with MLE loss. Next, the evaluation model, initi-
ated with RoBERTa is trained to rank the generated candidates with contrastive learning.

C.4 BASELINE PERSONALIZED MODELS

PENS-NRMS Injection-Type 1. The PENS framework (Ao et al., 2021) generates personalized
summaries by incorporating user embeddings along with the input news article. For this variant,
user embeddings are derived using NRMS (Neural News Recommendation with Multi-Head Self-
Attention) (Wu et al., 2019b), which includes a multi-head self-attention based news encoder to
represent news titles, and a user encoder that captures browsing behavior through multi-head self-
attention over clicked articles. Additive attention mechanisms are employed to highlight important
words and articles. In Injection-Type 1, the NRMS user embedding is injected by initializing the
decoder’s hidden state, thereby directly influencing the summary generation process from the start.

PENS-NRMS Injection-Type 2. This variant also uses NRMS for user embedding, but personal-
ization is introduced differently. Instead of initializing the decoder, the user embedding is injected
into the attention mechanism of the PENS model. This modulates the attention weights over the
news body, enabling the model to focus on content aligned with the user’s preferences.

PENS-NAML Injection-Type 1. NAML (Neural News Recommendation with Attentive Multi-
View Learning) (Wu et al., 2019a) generates news representations by attending over multiple views,
including titles, bodies, and topic categories. The user encoder learns from interacted news and
selects the most informative content for personalization. The resulting user embedding is integrated
into the PENS decoder using Injection-Type 1, i.e., by initializing the decoder’s hidden state.

PENS-EBNR Injection-Type 1. EBNR (Embedding-based News Recommendation) (Okura
et al., 2017) models user preferences using an RNN over browsing histories to produce user em-
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beddings. These embeddings are injected into the PENS model via Injection-Type 1 by initializing
the decoder, thereby influencing the initial decoding steps with user-specific information.

PENS-EBNR Injection-Type 2. This configuration uses the same user encoder from EBNR but
applies Injection-Type 2. Here, the user embedding is incorporated into the decoder’s attention
layers, allowing the model to personalize attention distributions over the news body during decoding.

General Then Personal (GTP). General Then Personal (GTP) (Song et al., 2023) is a two-stage
framework for personalized headline generation. In stage-1, a Transformer-based encoder–decoder
model is pre-trained on large-scale news article–headline pairs to learn robust, content-focused head-
line generation without personalization. In stage-2, a separate “headline customizer” refines the gen-
eral headline by incorporating user-specific preferences, which are encoded as a control code by the
user encoder TrRMIo. To bridge the gap between general generation and personalized refinement,
GTP introduces two mechanisms: (i) Information Self-Boosting (ISB), which reintroduces relevant
content details from the article to prevent information loss during customization; and (ii) Masked
User Modeling (MUM), which randomly masks parts of the user embedding during training and
reconstructs them, reducing the model’s over-reliance on its general parameters.

Signature Phrase. Another line of personalization focuses on condensing a user’s reading history
into a collection of signature phrases (Cai et al., 2023). These phrases, derived through contrastive
learning over news articles without annotated data, act as dynamic user profiles that adapt as interests
evolve. Such phrases need not appear verbatim in the user’s history but instead encode higher-level
signals. Using these phrases, the model learns to generate personalized headlines that connect new
articles with the user’s inferred interests, yielding outputs that are engaging, relevant, and grounded
in article content rather than drifting toward clickbait.

C.5 BASELINE GENERIC SUMMARIZERS

BigBirdPegasus. BigbirdPegasus, proposed by (Zaheer et al., 2020) is an extension of Trans-
former based models designed specifically for processing longer sequences. It utilizes sparse atten-
tion, global attention, and random attention mechanisms to approximate full attention. This enables
BigBird to handle longer contexts more efficiently and, therefore, can be suitable for summarization.

SimCLS. A Simple Framework for Contrastive Learning of Abstractive Summarization (Liu &
Liu, 2021) uses a two-stage training procedure. In the first stage, a Seq2Seq model (Lewis et al.,
2020) is trained to generate candidate summaries with MLE loss. Next, the evaluation model, initi-
ated with RoBERTa is trained to rank the generated candidates with contrastive learning.

D TRAINING DETAILS

D.1 COMPUTE RESOURCES

All preprocessing and embedding tasks were run on CPU-only machines, while model train-
ing utilized dedicated GPU servers. We utilized 16GB CPU cores for seeding embeddings with
PromptRank on each node, for extracting keyphrase vocabulary with YAKE across all d-nodes, and
for generating keyphrase ground-truth (distribution of keyphrases) for s-nodes using spaCy3.7. The
training of each version of PerDucer, inferencing, and computing results were run with mixed-
precision (FP16) training on NVIDIA L40 and L40S GPUs8, alongside CPU-based preprocessing
and data loading.

D.2 TRAINING

Model training comprised two sequential phases: first, PerDucer was trained end-to-end for 6
epochs, then the decoder was finetuned for 10 epochs. A batch size of 128 was used throughout,

8We gratefully acknowledge Lightning.ai for providing virtual compute resources using L40 and L40S
GPUs.
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Algorithm 2 End-to-End Training Loop of PerDucer
0: function TRAIN MODEL
0: for each epoch do
0: for each batch (Bhist, Clabel) do
0: LENC, LKPE, Ltotal ← 0
0: Initialize bc-MEGA

0 ← eseed
0: for t = 1 to n do
0: bc-MEGA

t ← ENCODE BEHAVIOR(Bt)
0: p̂pos(t)← SoftMax(Wposb

c-MEGA
t + bpos)

0: Lpos ← − log p̂pos(t)
0: LENC ← LENC + Lpos

0: bnext ←Wpredb
c-MEGA
t + bpred

0: p̂kp ←Wmlpbnext + bmlp

0: LKPE ← LKPE − 1
k

∑k
i=1 log p̂(kpi)

0: end for
0: Ltotal ← α · LENC + (1− α) · LKPE
0: optimizer.zero grad()
0: Ltotal.backward()
0: optimizer.step()
0: end for
0: end for
0: end function=0

and optimization employed PyTorch’s AdamW9 with learning rate 1 × 10−4 during encoder-only
training and 1× 10−5 for joint fine-tuning, betas (0.9, 0.999), epsilon 1× 10−8, weight decay 0.01,
a fixed learning rate policy, and dropout probability 0.1 on all self-attention and feed-forward layers.
Total training steps were computed as (Ntrain/128) × 6, where Ntrain is the size of the training set.
The vocabulary of keyphrases from training data is approximately 2252K, and the average number
of keyphrases extracted from each s-node is 20. The total number of behaviors in the training data
is 20700K. We used sampling softmax during training to speed up the training.

E DETAILED RESULTS

E.1 PERSONALIZATION BOOSTING IN LLMS

We find that there is a consistent boost of personalization across all LLMs when PerDucer-
guided keyphrases are supplied progressively with each build-up. The vanilla b-tier as Base
Model shows effective boost of 25.3/18.1/22.5↑ wrt PSE-JSD/SU4/METEOR across all LLMs.
T OAI

test also shows boost of 13.14/9.34/15.25↑ when Base Model is used. D-EMA further boosts
the results with best increase of 0.212/0.089/0.133↑ w.r.t. PSE-JSD/SU4/METEOR in PENS and
0.134/0.089/0.108↑ in OpenAI. FM-Attn on D-EMA results in slight boosting (sometimes drop) and
further c-MEGA boosts the results in both PENS and OpenAI by approximately 0.105/0.154/0.174↑
and 0.143/0.151/0.157↑ in OpenAI. SBERT seeding boosts overall PSE in both datasets in terms of
their with-history counterpart baselines, by an average of 0.0.34/0.0.36/0.42↑. Detailed results are
in Table 12.

E.2 ABLATION STUDIES

RQ-1 Ablation: Effect of the History Encoding Methods We find a steady boost over LLM
baselines (2-shot user history) when the Base model is used to encode the user history τ

uj

b , with an
average increase of 0.245/0.245/0.245↑ w.r.t. PSE-JSD/SU4/METEOR. Further, D-EMA on top of
the Base model boosts the performance significantly, thereby indicating the importance of historical
snapshots over purely RNN-styled snowball accumulation of histories. FM-Attn shows a slight
boost, which might indicate that the long-term dependencies are captured. In fact, it is possible that
long-term dependencies are already captured via D-EMA. Contextualization and residual connection

9AdamW implementation: torch.optim.AdamW (version 1.13.1)
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Table 10: Learned Weights, Hyperparameters, and Dataset Statistics of PerDucer
Parameter Value / Shape
Training Configuration

Batch size 128
Optimizer AdamW (PyTorch-1.13.1)
Learning rate (encoder only) 1× 10−4

Learning rate (joint fine-tuning) 1× 10−5

Dropout 0.1
Epochs 6 (1 encoder only + 5 joint)
Negative sampling Enabled (10000 negs per pos)
Total training steps (Ntrain/128)× 6

Model Architecture

d 1560
Eseed 768 (220M params)
a 4
Wpos 20.7M × 1560
Wkp 2.252M × 1560
Wpred 1560 × 1560
MLP before scoring 1560 → 512 → 1560

b-Tier Learned Weights

Wh 768 × 768
Whd 768 × 768
Wa 4 × 768
Wtl 768 × 768
Wb 768 × 768

D-EMA and c-MEGA Gates

Wα 1536 × 768
Wδ 1536 × 768
WD-EMA 768 × 768
Wf 768 × 768
Wc-EMA 768 × 768
Wi 768 × 768

Data Preparation Statistics

Npos 20.7M
Nkp 2.252M
Avg. keyphrases per node 20

of FM-Attn and D-EMA lead to a significant boost again, indicating that both historical snapshots,
as well as FM-Attn, are needed. SLMs reflect similar performance, and cross-domain experiments
on OpenAI Reddit data further establish our point. Detailed results are discussed in Table 1.

RQ-1 Ablation: Seed Embedding via SBERT. We ablate on the quality of seed embedding using
SBERT (Reimers & Gurevych (2019)) also to initialize the nodes. We find that there is an average
drop of 11.21/7.32/10.86↓ w.r.t. PSE-JSD/SU4/METEOR across all models. This supports out
hypothesis that since the final downstream task of PerDucer is keyphrase extraction, PromptRank
or similar type of model generates better quality of seed embeddings. Detailed results in Table 12.

Ablation: Influence of LLM Temperature. Varying temperature ([0.2, 0.5, 0.8]) shows that higher
values degrade PSE (0.13/0.16/0.2↓, PSE-JSD/SU4/METEOR) as randomness increases, diluting
key-phrase influence (Table 13).

Human-Judgment Interpolation from OpenAI-Reddit dataset. The interpolation of human judg-
ment scores is performed by leveraging the OpenAI-Reddit dataset, which provides multiple human-
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Table 11: Accuracy Performance: Comparison with Specialized and Vanilla Models.
Category Model Rouge-SU4 Rouge-L

Specialized (Personalized)

PENS-NAML-T1 13.12 21.62
PENS-EBNR-T1 12.16 20.73
PENS-EBNR-T2 12.41 20.82
PENS-NRMS-T1 13.15 20.75
PENS-NRMS-T2 13.64 21.03
GTP-TrRMIo 21.91 28.31
SP-Individual 19.54 25.18

LLMs w/ 2-shot history)

LLaMA-13B 18.31 29.54
Mistral-7B 16.42 22.85
DeepSeek-14B 19.57 29.72
Zephyr-7B 18.45 26.45

PerDucer

PerDucer+DeepSeek 65.14 67.82
PerDucer+Mistral 62.19 65.34
PerDucer+LLaMa 63.55 67.16
PerDucer+Zephyr 61.09 64.71

rated summaries for each article. For every article, the highest-rated human summaries which are
7 are designated as the benchmark reference. All candidate summaries, including the benchmark,
are first embedded into a high-dimensional semantic space using a SentenceTransformer (Reimers
& Gurevych, 2019) model. The semantic deviation between the benchmark embedding Vb and any
other summary embedding Vo is quantified via the Root Mean Square Deviation (RMSD), which in
this context is equivalent to the Euclidean distance:

RMSD(Vb, Vo) =

√√√√ n∑
i=1

(bi − oi)2 .

In practice, this computation is implemented efficiently using NumPy’s linear algebra module,
np.linalg.norm. The resulting RMSD values are then grouped according to the original hu-
man rating of each summary (e.g., 7/7, 6/7). By averaging the RMSD values within each rating
group, we obtain a mapping between human-judged quality scores and embedding-space distances.
Notably, the RMSD for summaries rated 7/7 is not always zero, as there may exist multiple distinct
summaries with a top score for the same article; while all such summaries are judged as equally
high-quality by humans, their semantic embeddings can still differ due to variations in phrasing,
emphasis, or lexical choices. These aggregated averages form the scoring thresholds used for inter-
polating human judgment in our evaluation framework.

F PROMPT TEMPLATE

As discussed in 4.3, we contrast our PerDucer-guided summarization with 0/2-shot user history and
prompt-chaining w/user history-based summarization by LLMs. We provide a structured input by
leveraging T PENS-D as the user histories. On the other-hand, we just supply the main article along
with the extracted keyphrases to the LLM to generate summaries. The detailed prompt structure is
depicted in Figure 9.

G LICENSE AND USAGE STATEMENT

In this work, we utilize the following pre-trained large language models (PLMs) and small language
models (SLMs):

• LLMs: DeepSeek-R1 14B (MIT License), Mistral-7B-Instruct (Apache 2.0), LLaMA2-
13B (Llama 2 Community License), and Zephyr 7B (β) (MIT License).

• SLMs: SmolLM2 1.7B (Apache 2.0) and Qwen2.5 0.5B (Apache 2.0).
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Table 12: Performance of LLMs when prompted with 2-shot user history, vs. when guided
with different versions of PerDucer encoder. Observation-1: All PerDucer versions beat the
baseline 2-shot prompting across all LLMs; Observation-2: c-MEGA outperforms all other ver-
sions of PerDucer, thereby indicating the need of Residual Fusion of D-EMA with D-EMA+FM-
Attn; Observation-3: Although DeepSeek outperforms all other models, the significant performance
of smaller models at par with LLMs indicate that even SLMs can perform equivalent to LLMs when
the task is narrowed down; Observation-4: Seed embeddings with SBERT results in performance
drop across all the models, thereby establishing the fact that PromptRank seeding is a superior seed-
ing since the final task is keyphrase extraction. [*SLMs are not benchmarked with user history due
to lower context size.]

Context-Source LLM/SLM MS/CAS PENS Test OpenAI Reddit Test
PSE-JSD PSE-SU4 PSE-METEOR PSE-JSD PSE-SU4 PSE-METEOR

2-shot History

Mistral-7B 0.235 0.087 0.084 0.226 0.088 0.103
DeepSeek-R1 0.248 0.094 0.097 0.243 0.095 0.109
Zephyr-7B-β 0.231 0.085 0.086 0.214 0.087 0.104
LLaMA-13B 0.227 0.078 0.081 0.232 0.093 0.107
Qwen2.5-0.5B NA* NA* NA* NA* NA* NA*
smolLM2-1.5B NA* NA* NA* NA* NA* NA*

B-tier Vanilla

Mistral-7B 0.484 0.275 0.319 0.343 0.177 0.258
DeepSeek-R1 0.513 0.292 0.322 0.377 0.202 0.244
Zephyr-7B-β 0.505 0.281 0.322 0.341 0.171 0.153
LLaMA-13B 0.435 0.269 0.303 0.356 0.187 0.266
Qwen2.5-0.5B 0.347 0.238 0.264 0.282 0.137 0.154
smolLM2-1.5B 0.431 0.284 0.338 0.362 0.200 0.231

D-EMA

Mistral-7B 0.597 0.359 0.425 0.437 0.285 0.338
DeepSeek-R1 0.602 0.362 0.429 0.453 0.246 0.276
Zephyr-7B-β 0.566 0.352 0.401 0.422 0.244 0.518
LLaMA-13B 0.482 0.361 0.417 0.445 0.294 0.366
Qwen2.5-0.5B 0.559 0.327 0.397 0.416 0.221 0.276
smolLM2-1.5B 0.599 0.360 0.427 0.446 0.240 0.288

D-EMA + FM-Attn

Mistral-7B 0.572 0.382 0.445 0.473 0.314 0.386
DeepSeek-R1 0.583 0.390 0.453 0.501 0.326 0.284
Zephyr-7B-β 0.591 0.364 0.433 0.467 0.293 0.346
LLaMA-13B 0.509 0.379 0.439 0.482 0.338 0.385
Qwen2.5-0.5B 0.522 0.333 0.384 0.448 0.273 0.302
smolLM2-1.5B 0.544 0.383 0.443 0.502 0.329 0.348

C-MEGA

Mistral-7B 0.676 0.524 0.604 0.612 0.452 0.503
DeepSeek-R1 0.710 0.543 0.627 0.632 0.473 0.524
Zephyr-7B-β 0.695 0.530 0.607 0.624 0.471 0.518
LLaMA-13B 0.685 0.533 0.614 0.627 0.473 0.521
Qwen2.5-0.5B 0.652 0.467 0.585 0.584 0.434 0.458
smolLM2-1.5B 0.700 0.536 0.615 0.628 0.470 0.521

C-MEGA (SBert Seed)

Mistral-7B 0.622 0.472 0.497 0.521 0.357 0.435
DeepSeek-R1 0.642 0.487 0.538 0.545 0.392 0.446
Zephyr-7B-β 0.579 0.453 0.523 0.503 0.322 0.374
LLaMA-13B 0.533 0.431 0.482 0.533 0.356 0.421
Qwen2.5-0.5B 0.513 0.402 0.463 0.474 0.316 0.354
smolLM2-1.5B 0.576 0.441 0.482 0.495 0.375 0.363

All models are used according to their respective licenses and terms provided by their original cre-
ators. Proper attribution is given to each model’s developers as cited in our references.

We also use the following datasets:

• MS/CAS PENS dataset: We comply with the dataset’s terms of use, which is de-
rived from the Microsoft Research License (https://github.com/msnews/MIND/
blob/master/MSR%20License_Data.pdf).

• OpenAI Reddit dataset: We comply with the MIT License specifications as set
by OpenAI (https://github.com/openai/summarize-from-feedback/
blob/master/LICENSE)

We have ensured that all datasets and models are used responsibly, respecting privacy, consent,
and ethical guidelines. When applicable, data is anonymized and handled according to the ethical
standards set forth by NeurIPS.

30

https://github.com/msnews/MIND/blob/master/MSR%20License_Data.pdf
https://github.com/msnews/MIND/blob/master/MSR%20License_Data.pdf
https://github.com/openai/summarize-from-feedback/blob/master/LICENSE
https://github.com/openai/summarize-from-feedback/blob/master/LICENSE


1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Table 13: Ablation with temperature values across different LLMs.

Temperature LLMs PSE-Scores

PSE-JSD PSE-SU4 PSE-METEOR

0.2

Mistral-7B 0.676 0.524 0.604
DeepSeek-R1 0.710 0.543 0.627
Zephyr-7B-β 0.694 0.53 0.607
LLaMA-13B 0.685 0.533 0.614

0.5

Mistral-7B 0.581 0.415 0.463
DeepSeek-R1 0.651 0.476 0.529
Zephyr-7B-β 0.608 0.384 0.431
LLaMA-13B 0.593 0.489 0.496

0.8

Mistral-7B 0.502 0.314 0.325
DeepSeek-R1 0.516 0.322 0.365
Zephyr-7B-β 0.472 0.304 0.353
LLaMA-13B 0.497 0.319 0.368

Table 14: RMSD w.r.t. gold reference summaries and approximated HJ Rating from annotated
OpenAI-Reddit dataset for Different Models

Model RMSD HJ Rating
EBNR-1 0.9319 2
EBNR-2 0.9378 2
NAML-1 0.9260 2
NRMS-1 0.9108 2
NRMS-2 0.9187 2
GTP 0.9382 2
SP 0.8814 3
Mistral (2-shot) 0.7913 5
DeepSeek (2-shot) 0.7786 5
PerDucer + DeepSeek 0.3361 7
PerDucer + Mistral 0.3418 7

Figure 6: 0-shot prompting Patel et al. (2024))
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Figure 7: 0-shot prompting Patel et al. (2024))

Figure 8: chain-based prompting
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Figure 9: PerDucer Top-k Key-Phrase Guidance: Cue injection in LLM/SLM

Table 15: Sequential Recommendation Task on Perducer+Language Model on Ama-
zon Beauty. We utilize Amazon Beauty dataset (public: https://cseweb.ucsd.edu/
˜jmcauley/datasets/amazon/links.html) for sequential recommendation task. We
find as a set of preliminary results that PerDucer can boost the sequential recommendation task
too, performing at par with SOTA sequential recommenders, with the best performing DeepSeek
(and SmolLM2) with just 0.03 and 0.01 behind w.r.t nDCG@20. This shows that PerDucer frame-
work can boost any kind of personalization when fitted/adapted with LLMs (or similar models).

Model nDCG@20
BSARec Shin et al. (2024) 0.07
TiM4Rec Fan et al. (2024) 0.05
Perducer+DeepSeek 0.04
Perducer+Mistral 0.03
Perducer+SmolLM2 0.04
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