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ABSTRACT

There is a strong link between the general concept of intelligence and the ability to
collect and use information. The theory of Bayes-adaptive exploration offers an
attractive optimality framework for training machines to perform complex infor-
mation gathering tasks. However, the computational complexity of the resulting
optimal control problem has limited the diffusion of the theory to mainstream
deep AI research. In this paper we exploit the inherent mathematical structure of
Bayes-adaptive problems in order to dramatically simplify the problem by making
the reward structure denser while simultaneously decoupling the learning of ex-
ploitation and exploration policies. The key to this simplification comes from the
novel concept of cross-value (i.e. the value of being in an environment while acting
optimally according to another), which we use to quantify the value of currently
available information. This results in a new denser reward structure that ”cashes in”
all future rewards that can be predicted from the current information state. In a set
of experiments we show that the approach makes it possible to learn challenging
information gathering tasks without the use of shaping and heuristic bonuses in
situations where the standard RL algorithms fail.

1 INTRODUCTION
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Figure 1: Diagram of a modular predictively cashed RL architecture.

We live in a world of information. In our daily lives, almost every novel task inevitably starts with a
series of targeted information retrieval actions, whether performing an internet search or just asking
a question to a friend. It is therefore imperative for the deployment of artificial intelligence in
the real world to develop efficient algorithms capable of learning how to find and use information
in complex environments. In the context of Bayesian reinforcement learning (RL), information
and knowledge are formalized as the concept of belief state (also known as information state)
(Ghavamzadeh et al., 2015). One of the key results of Bayesian RL is that optimal exploration
(also known as Bayes adaptive exploration), and consequently optimal information retrieval, can
be achieved by augmenting the state space with the belief state and solving a standard control
problem on this augmented space (Ghavamzadeh et al., 2015). In spite of its elegance, the very high
dimensionality of belief-augmented problems, together with the intrinsic intractability of Bayesian
inference, limits the range of applicability of this approach. Perhaps for this reason, most of the
modern deep reinforcement learning literature adopts heuristic exploration methods such as ε-greedy,
Thompson sampling (Osband & Van Roy, 2015; Osband et al., 2016; Azizzadenesheli et al., 2018),
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noisy networks (Fortunato et al., 2018), random network exploration bonuses (Burda et al., 2019)
and curiosity-based approaches (Still & Precup, 2012; Frank et al., 2014; Zhelo et al., 2018). Recent
developments in variational inference and deep reinforcement learning re-ignited the interest in
approximate Bayes-adaptive exploration as a form of meta-reinforcement learning (Duan et al., 2016;
Zintgraf et al., 2020; Dorfman et al., 2020). Nevertheless, learning targeted exploratory actions
remains a very challenging task even with modern deep RL techniques, given the high dimensionality
of the belief space and the fact that information gathering actions are only very indirectly related to
the collection of reward. Fortunately the situation is less dire than it could superficially appear as
belief-augmented RL problems inherit a considerable amount of structure from the underlying full
information control problems and the nature of iterated Bayesian inference. In this paper we exploit
this mathematical structure in order to simultaneously address two related sub-problems that make
this setting hard: I) The sparsity of the reward structure (Zintgraf et al., 2021) and II) the so called
”chicken-and-egg problem” of exploration and exploitation (Liu et al., 2021). This latter problem
arises from the fact that the value of information gathering depends on its use to collect reward but a
proper exploitation policy depends on the use of the available information. The other main problem
limiting the use of Bayes-adaptive learning is the inherent computational complexity of non-conjugate
iterated Bayesian inference. This paper does not deal with this problem and we recommend the reader
to the extensive literature on approximate Bayesian inference (Zhang et al., 2018; Blei et al., 2017;
Betancourt, 2017; Särkkä, 2013). Therefore, we limit our analysis to conjugate Bayesian models
where inference can be performed using a simple update rule. However, all techniques introduced
here can be straightforwardly applied to approximate inference settings, including modern approaches
using variational autoencoders (VAEs) such as (Zintgraf et al., 2020; Dorfman et al., 2020), possibly
in combination with training bonuses methods such as in (Zintgraf et al., 2021).

2 RELATED WORK

The theoretical framework for optimal control on a belief-augmented state space was first developed
in the control theory literature under the name of dual control theory (Feldbaum, 1960a;b; 1961;
Filatov & Unbehauen, 2000). The high computational complexity of the approach, stemming from
the very high dimensionality of the state space, limited the diffusion of the theory. However, the
approach was re-introduced in the context of model-based Bayesian reinforcement learning (Rieder,
1975; Ross et al., 2007) where the domain of applicability was greatly increased by the introduction
of Monte Carlo tree search methods (Guez et al., 2012; 2013; Asmuth & Littman, 2012; Katt et al.,
2017). The use of belief-augmentation in model-free RL methods is very limited. To the best of
our knowledge, the first use of temporal difference (TD) learning to solve dual control problems is
in Santamar & Ram (1997). Until recently, the deep reinforcement learning literature ignored the
concept of Bayes-adaptive exploration, belief-augmentation and dual control. However, important
progresses have been made in the related field of model-free meta-RL (Wang et al., 2016; Duan et al.,
2016; Gupta et al., 2018). For example, RL2 involves the training of a recurrent meta-network in
order to learn optimal exploration in novel environments (Duan et al., 2016). This can be seen as
a model-free form of Bayes-optimal learning since the information encoded in a Bayesian belief
state is fully contained in the sequence of past transitions that are fed into the recurrent network.
However, this results in redundant encoding as it ignores the exchangability of the observations,
which in turn can make an already difficult learning problem into something substantially harder.
The recently proposed variBAD method is the first work using modern deep learning techniques in
an explicitly belief-augmented setting Zintgraf et al. (2020). This work uses VAEs for performing
the approximate inference and hence obtaining the belief-state and then exploits a policy gradient
method in order to obtain an approximate Bayes-adaptive policy. Unfortunately, the extremely
sparse reward structure of most useful optimal exploration tasks makes methods such as variBAD
very challenging to train. The HyperX method addresses this problem with a shaping approach by
adding a series of reward bonuses to promote (meta-)exploration of the belief-augmented state space
during training (Zintgraf et al., 2021). While our paper deals with the same underlying problem,
our solution involves the reformulation of the reward structure into an equivalent one without the
use of any heuristic shaping bonus. In this sense, our approach and HyperX are orthogonal and
potentially complementary and can be used together to solve more challenging targeted exploration
tasks. Similarly to our work, the recently introduced DREAM method decouples the learning of the
exploitation and exploration modules so as to ameliorate the ”chicken-and-egg” problem that arises
from their interdependence (Liu et al., 2021). However, the approach used in DREAM is radically
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different from ours, as it exploits the environment ID and uses an information bottleneck loss to
extract task relevant information. Our predictively cashed reward bears some superficial resemblance
to curiosity-based approaches such as (Schmidhuber, 1991; Oudeyer et al., 2007; Frank et al., 2014;
Stadie et al., 2015; Bellemare et al., 2016; Tang et al., 2017; Ostrovski et al., 2017; Zhao & Tresp,
2019) since it directly rewards the discovery of new information. However, while curiosity rewards
information in itself, the predictively cashed reward only values the difference in predicted reward
that the new information allows to collect.

3 PRELIMINARIES

Markov decision processes (MDPs) are a mathematical formalization of sequential decision making
in stochastic environments. A MDP is defined by: 1) a family of stochastic processes specified by a
set of transition probabilities p(xt+1 | xt, at) between states xt that are conditional on a sequence of
action variables at and 2) a family of reward probabilities p(rt | xt, at). In a RL problem, transition
and reward probabilities are not known in advance. Without loss of generality, we can formalize this
uncertainty by making the transition and reward probabilities dependent on a set of ”environment”
parameters e:

p (xt+1 | xt, at) = T (xt+1 | xt, at, e) , (1)
p (rt | xt, at) = R (rt | xt, at, e) . (2)

This model describes a family of Markov decision processes parameterized by the environment
variable e, which is not directly accessible to the agent and can only be inferred from the observed
transitions/rewards. A policy π(at | { xτ , aτ , rτ}t−1τ=0) is a distribution over actions conditional on a
previous sequence of state transitions. Every policy π defines a π-controlled process where the actions
are sampled according to the policy and state transitions and rewards are sampled accordingly. We
denote the expectation under a π-controlled process in an environment e as Eπ|e[·]. The discounted
expected value (often simply referred to as just the value) of a policy π in an environment e is defined
as:

vπ(xt; e) = Eπ|e

[ ∞∑
τ=t

γτ−trt

]
, (3)

where γ ∈ (0, 1) is a discounting factor and the sequence of states and rewards is sampled from the
π-controlled stochastic process. The optimal value ve(xt; e) is defined as the global optimum of
Eq. 3 with respect to the policy (the reason for this unusual notation will be clear later on). Now
assume that environment e is sampled from a prior distribution p(e; b0), parameterized by the initial
”belief state” b0. This initial belief state summarizes all the information available to the agent at time
zero. After each transition xt, at, rt → xt+1 the belief state is updated using Bayes rule:

p(e; bt+1) = p(e | xt, xt+1, at, rt) ∝ R (rt | xt, at, e)T (xt+1 | xt, at, e) p(e; bt) . (4)

Here we assumed that the posterior distribution can be parameterized by the belief variables bt+1

given any possible transition. This is only approximately possible in non-conjugate cases, unless we
allow for the use of infinite dimensional belief states (in that case the belief state can be chosen to be
the posterior density itself). The appropriate objective function for learning optimal exploration is
then simply the average of the environment specific values under the belief state:

vπ(xt, bt) = Ee∼bt [vπt (xt; e)] = Ee∼bt

[
Eπ|e

[ ∞∑
τ=t

γτ−trτ

]]
. (5)

A Bayes-adaptive policy is a global maximizer of Eq. 5. We denote the optimal belief-augmented
value as v∗(xt, bt). In order to maximize the expected value, the agent needs to perform exploratory
actions to update its belief state and then use the information to collect reward. Roughly speaking,
these dynamics can be separated into an initial exploration phase and a subsequent exploitation
phase. The optimal policy is non-Markov with respect to the state variable since the information
at time t concerning the environment e depends on past transitions. However, the policy is Markov
if state xt is augmented by the belief state bt. The computational challenge of belief-augmented
reinforcement learning led the community towards more tractable alternatives. A simple option is
Thompson sampling, where the belief-augmented policy is approximated by the optimal policy of
an environment e′ sampled from the belief state: π(xt, bt) ≈ π(xt; e

′), with e′ ∼ bt . However, a
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posterior sampling agent cannot learn how to perform actions that are not optimal in any known
environment in the full information regime. In other words, the agent cannot learn to perform actions
such as asking questions, consulting a map or performing an internet search as these actions are solely
aimed at acquiring new information. Belief-augmentation allows us to solve the optimal exploration
problem, also known as the exploration/exploitation dilemma, using standard reinforcement learning
techniques. For example, given a belief-augmented transition xt, bt, at, rt → xt+1, bt+1 under a
belief-augmented policy π(xt, bt), we can learn the expected value of the policy using the standard
TD learning (tabular) update rule

vπ(xt, bt) � vπ(xt, bt) + η
(
rt + γvπt+1(xt+1, bt+1)− vπ(xt, bt)

)
, (6)

where η is a learning rate. The key difference when compared with standard TD learning is that the
value is now a function of the belief state. This allows to assign high values to belief states where the
agent has precise information concerning how to collect reward. For example, the value of being on a
Caribbean island and knowing that it hides a buried pirate treasure is higher than the value of being in
the same island without that knowledge. This is true both because the belief correlates with the actual
state of the world and because it affects the optimal policy (e.g. digging vs sunbathing).

4 CROSS-VALUES AND THE VALUE OF CURRENT AND FUTURE INFORMATION

We are now in the position to introduce our main contribution. Here we will show that a simplified
version of the posterior sampling policy can be used to quantify the value of the information currently
held by the agent. The expected value of a posterior sampling policy is not easy to quantify as each
action leads to new belief updates. However, we can evaluate the value of a simplified sampling
policy where the environment is sampled once from the belief and then the policy acts optimally until
the end of the episode according to the sampled environment. In this case, the expected value is

Ee′∼bt
[
ve

′
(xt; e)

]
. (7)

We refer to the quantity ve
′
(xt; e) as the cross-value, which is defined as the expected reward collected

in environment e under the optimal policy of environment e′. The cross-value plays a crucial role
in the present work as it will allow us to quantify the penalty that the agent has to pay when acting
under ”wrong beliefs”. Our starting point is Eq. 5, which expresses the optimal belief-augmented
value as an average of environment-specific values:

v∗(xt, bt) = Ee∼bt

[
Eπ|bt;e

[ ∞∑
τ=t

γτ−trτ

]]
= Ee∼bt [v∗(xt, bt | e)] , (8)

where v∗(xt, bt | e) is the value of the optimal belief-augmented policy when the agent is in
environment e. The value v∗(xt, bt | e) still depends on the belief state through the belief-augmented
policy. However, an interesting belief independent approximation can be obtained by replacing the
belief-augmented value v∗(xt, bt, | e) with the posterior sampling value given in Eq. 7:

vc(xt, bt) = Ee∼bt
[
Ee′∼bt

[
ve

′
(xt; e)

]]
= Ee,e′∼

iid
bt

[
ve

′
(xt; e)

]
. (9)

We refer to vc as the value of current information as it can it interpreted as the value of a policy
that stops acquiring information and starts acting on a fixed environment sampled according to its
current belief. This quantity has some important and intuitive properties. If we denote a deterministic
belief state as δe (dirac measure), we have that vc(xt, δe) = ve(xt; e). In words, the value of future
information is equal to the optimal value in the full information regime. More generally, the value of
current information tends to increase as the entropy of the belief state decreases since the cross-values
tend to converge to the optimal values. From the optimality of the value in Eq. 8 it follows that the
value of current information is a lower bound on the optimal belief-augmented value:

vc(xt, bt) ≤ v∗(xt, bt) . (10)
Therefore, we can express the optimal belief-augmented value as a sum of the value of current
information and a positive-valued term:

v∗(xt, bt) = vc(xt, bt) + vf (xt, bt) . (11)
We refer to vf (xt, bt, at) as the value of future information. Since the value of current information
can be computed in a non-augmented state space, the belief-augmented problem reduces to learning
the value of future information.
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Predictive reward cashing. The central result of this paper is that, once we have an expression
for the cross-values, the full belief-augmented problem can be reduced to a simpler problem where
information acquisition is directly rewarded. We can achieve this by plugging the decomposition of
the value in Eq. 11 into the belief-augmented update rule in Eq. 6. This results in a similar update
rule for the value of future information:

vf (xt, bt) � vf (xt, bt) + η
(
λt + γvft+1(xt+1, bt+1)− vf (xt, bt)

)
, (12)

where λt is the predictively cashed reward

λt = rt + γvc(xt+1, bt+1)− vc(xt, bt) . (13)

This can been seen by plugging Eq. 11 into the TD target:

rt + γvπt+1(xt+1, bt+1)− vπ(xt, bt)
= rt + γ

(
vc(xt+1, bt+1) + vf (xt+1, bt+1)

)
−
(
vc(xt, bt) + vf (xt, bt)

)
= λt + γvft+1(xt+1, bt+1)− vf (xt, bt) .

This quantity can be interpreted as the difference between the future expected reward collected in the
past and present belief states if the agent were to stop updating its belief and act optimally according
to an environment sampled from the belief. This can be seen by evaluating its expected value:

Ert,xt+1
[λt] = Ert [rt] + γvc(xt+1, bt+1)− vc(xt, bt)

= Ee,e′
[
Ert|e[rt] + γExt+1|π(e)

[
ve

′
(xt+1; e)

]]
− vc(xt, bt)

≈ Ee,e′
[
Ert|e[rt] + γExt+1|πe′ (e)

[
ve

′
(xt+1; e)

]]
− vc(xt, bt)

= vc(xt+1, bt)− vc(xt, bt) , (14)

where the approximation comes from the fact that we took the expectation with respect to the optimal
policy under the environment e′ instead of the Bayes-adaptive policy. Therefore, the predictively
cashed reward allows to immediately ”cash in” future reward coming from an increase of available
information. In practice, this transformation converts the very sparse reward structure of a belief-
augmented problem into a much denser reward structure where reward is delivered directly as soon
as relevant information is acquired.

A key feature of the value of future information is that it can be bounded by full information quantities
(i.e. quantities that can be computed without solving the belief-augmented problem). This is important
as it means that we can bound function approximations of the value of future information without
need for training, thereby ensuring the proper convergence of the belief-augmented values to the
environment-specific optimal values as soon as the agent acquires information. The starting point is
the inequality:

v∗(xt, bt) = vc(xt, bt) + vf (xt, bt) ≤ Ee∼bt [ve(xt; e)] . (15)
This result is obvious, it simply says that on average an optimal agent with full information collects
at least as much reward as a belief-augmented agent with potentially incomplete knowledge of its
environment. Therefore, 0 ≤ vf (xt, bt) ≤ B(xt, bt) , where the upper bound is given by

B(xt, bt) = Ee∼bt
[
ve(xt; e)− Ee′∼bt

[
ve

′
(xt; e)

]]
. (16)

This is the difference between the average expected future reward that can be acquired under the
current information state and the average optimal expected reward.

5 PRACTICAL ALGORITHMS

The predictively cashed reward (13) can rarely be computed analytically even when the cross-value
function is available. However, it is straightforward to obtain an unbiased stochastic estimator
by replacing the exact expectation with an average over a finite number of samples: λ(M,N)

t =

rt+
1

MN

∑M
m=1

∑N
n=1 v

en(xt; em), with all the ek sampled independently from the belief state. We
can therefore use this stochastic estimator as reward during training in place of the true λt without

5



Under review as a conference paper at ICLR 2022

affecting the asymptotic convergence. This is equivalent to switching from expected rewards to
sampled rewards in conventional RL algorithms. In practice, we suggest to useM = 1. This generally
provides a strong reward signal even when N is small since the cross-value usually decreases sharply
as the difference between the two environments increases, delivering strong reward signals when
relevant information is acquired. All standard value-based RL algorithms can be used to learn
the value of future information from this modified reward structure. The main difference between
the predictively cashed training and standard training is that the policy should maximize the total
value v∗(xt, bt) = vc(xt, bt) + vf (xt, bt) instead of just the learned value vf (xt, bt). In practice,
vc(xt, bt) has to be estimated from the cross-values using a finite number of samples. This leads to a
stochasticity in the policy similar to standard Thompson sampling, which can potentially facilitate
(meta-)exploration during training. Convergence of the tabular algorithm follows from the standard
convergence results of RL. Tabular approaches in finite deterministic inference settings: For
the sake of simplicity, so far we presented the approach by its tabular update rule. Unfortunately,
tabular algorithms are rarely feasible in a belief-augmented setting as there usually are infinitely
many belief states even for very simple inference problems. However, there is an interesting class of
problems where the full belief-augmented state space has a finite number of states. This happens
when there is a finite number of possible environments and inference is deterministic, meaning that
the belief variable can only transition from its prior value to a full information state. For a set of S
possible environments, the belief state can be parameterized by an array of posterior probabilities
bt = (ρ

(1)
t , ..., ρ

(S)
t ). When inference is deterministic, the belief state can either stay on its prior

value or ”collapse” on a one-hot-encoded array representing a full information state. This implies that
the belief space has S + 1 different states and, assuming that the environments have H many states,
the belief-augmented value can be represented by a table of H numbers. This is true because we
know that the value of future information is zero for full information states. Thus, the only non-zero
values are in the starting prior belief state. While deterministic inference can sound very restrictive, it
can effectively represent many different experimental behavioral and cognitive tasks in animals and
humans where cues offer an unambiguous disambiguation of the latent state (Friston et al., 2016).
Function approximations with approximate value bound: In most realistic scenarios the belief-
augmented state space has an exponentially large or infinite number of states and tabular algorithms
become unfeasible. In these situations we can use standard function approximation techniques to
estimate vf (xt, bt). We can also obtain a functional approximation of the value of future information
that automatically satisfies the bound:

vf (xt, bt) = B(xt, bt)w(xt, bt) , (17)

where w(xt, bt) ∈ (0, 1) is the output of a parameterized function approximation such as a deep
neural architecture. In practice, the bound B(xt, bt) can be estimated using a finite number of samples.
This approximation ensures that the policy switches from exploratory to the optimal exploitative
policy automatically as soon as enough relevant information has been collected. This is because the
belief-augmented value is the sum of the value of current information, which converges to the optimal
full-information value as the belief converges to a deterministic measure, and a term vf ≤ B that
is guaranteed to vanish under this limit. Additionally and perhaps more importantly, the use of the
bound in a functional approximation means that the agent does not need to learn how the predictively
cashed reward coming from the same state is down-scaled when information is acquired. This is
crucially important as the apparent inconsistency of the reward schedule makes the learning problem
particularly hard.

6 LEARNING THE CROSS-VALUES

So far we assumed the cross-values to already be available before training. Here we will present
some methods to either pre-compute the cross-values or to jointly train them together with the value
of future information. When the expected reward and transition distributions are known, the optimal
expected values can be obtained by solving the Bellman equation. It is straightforward to extend
the approach in order to compute the cross-values, as described in Appendix A. Importantly, the
resulting recursive system of equations can be efficiently parallelized on GPUs in a manner similar
to convolutional neural networks. This allows to efficiently compute a batch of cross-values in
order to estimate the expectations in Eq. 13 and Eq. 16. In the stationary infinite horizon case, the
time dependent system of equations is replaced by steady state value iterations as usual. When the
reward and transition distributions are not available the cross-values can be learned using standard
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on-policy RL methods from sampled transitions. If the ground truth environment e of each transition
is available, the cross-value with respect to an arbitrary environment e′ can be updated using the
tabular rule

ve
′
(xt; e) � ve

′
(xt; e) + η

(
rt + γve

′

t+1(xt+1; e)− ve
′
(xt; e)

)
, (18)

where the action at is chosen to maximize the current estimate of the optimal value ve
′
(xt; e

′) through
on-policy techniques such as policy gradients. In practice, the environment e′ can be sampled before
each action from the belief state bt, resulting in a Thompson sampling policy.

Belief horizon sampling. As we have shown, it is straightforward to estimate the cross-value
function when the ground truth environment e is available at training time. However, in the most
interesting settings the true environment can only be inferred through the agent’s observations. In
this situation, we propose the use of a method we call belief horizon sampling where the ”ground
truth” environment is sampled from the terminal belief state of the episode bT , with T the last time
point of the episode. This is equivalent to training with the actual ground truth for T tending to
infinity, as long as the π-controlled process satisfies the convergence conditions of the posterior to
the maximum likelihood estimate. However, this approach also works well when the posterior is
far from convergence since, loosely speaking, the sequence { xτ , aτ , rτ}Tτ=0 has high probability
under all the conditional distributions p({ xτ , aτ , rτ}Tτ=0 | e′) with e′ in the high probability region
of the posterior p(e | { xτ , aτ , rτ}Tτ=0). In appendix B we show that this converges to the correct
cross-values in the special case of deterministic inference.

7 MODULAR BAYES-ADAPTIVE DEEP REINFORCEMENT LEARNING

From the point of view of deep RL, the simultaneous learning of cross-values through belief horizon
sampling and of the value of future information using predictively cashed rewards results in a
modular architecture with components trained with separate loss functions from the same experienced
transitions, as visualized in Fig. 1. On one hand, the cross-values are estimated by a deep net that
takes e, e′ and x and outputs the cross-value (red module in the figure). On the other hand, another
deep RL architecture is used to approximate the value of future information from predictively cashed
rewards estimated using the cross-values (violet module). When inference cannot be performed in
closed-form, an additional inference network needs to be trained using techniques such as variational
inference Zintgraf et al. (2020) (blue module). Finally, the policy network is trained to maximize the
estimated belief-augmented value (green module).

8 EXPERIMENTS

In this section we investigate the performance of the approach in a series of problems with closed-
form Bayesian updates. In particular, we focus on problems where there is either an action or a state
whose purpose is to reveal the location of reward.

Disambiguation from a finite set of environments. We start with a single experimental set up
inspired by animal neuroscience research (Friston et al., 2016; Wauthier et al., 2021). The environment
is a T-shaped maze with the bifurcation at the upper end (see Fig. 2 A). Each arm either contains
a reward (+1) or a punishment (-7) while the other arm has the opposite. The bottom part of the
maze contains a disambiguation cue that allows to distinguish whether the reward is in the right
or in the left arm. Since the are only two possible environments (which we assume to have equal
prior) and the cue and rewards are deterministic, the belief state is a single number in {0, 0.5, 1}.
This allows us to organize the belief-augmented values into a 3 × S table, where S is the number
of states (length of the maze). In this case, the dynamics of the belief state are very simple. The
belief transitions from its starting 0.5 to either 0 or 1 once either the cue or the reward/punishment
locations are visited. The agent always starts in the middle of the maze, equally distant from the cue
end and the reward/punishment ends. The agent can move up or down in the middle of the maze
and down, left or right in the upper end. Each episode lasts T = 20 time steps. The agent collects
reward/punishment at each time point as long as it is in the proper location in the maze. The optimal
course of action is to reach the cue (information gathering) and then move to the other end to collect
reward. In this problem there are S × 3 possible belief-augmented states, where S is the number of
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Figure 2: Maze disambiguation experiment. A) The two possible environments. The green square
represents reward (+1) while the red square represents punishment (-7). The blue/purple circles are
disambiguation cues that indicate the location of the reward. The optimal course of action is to visit
the cue and then go towards the reward. B) Results of tabular PCR q-learning. The black line denotes
the median collected reward (q-loss for bottom panel) over 15 repetitions as a function of epoch.
The shaded blue area shows the median absolute deviation from the median. Individual transparent
lines are the result of individual repetitions. C) Results of the standard tabular q-learning algorithm.
D) Visualization of the (median) trained policy of PCR-TD (left diagram) and TD (right diagram)
in the maze with left reward. The terminal black dot signifies that the agent stays at the location
until the end of the episode. The PCR-TD policy is optimal. The TD policy learns to approach the
reward region and then stops as it cannot disambiguate reward from punishment, resulting in zero
total collected reward.

locations. As baseline, we use the classical (belief-augmented) tabular q-learning algorithm (Eq. 6)
with ε-greedy policy (ε = 0.5) and decreasing learning rate ηn = 0.01/(1 + 0.001n), where n is
the epoch number. Our method is a tabular q-learning algorithm with PCR rewards. The value of
future information is stored as a table of S values since only the belief 0.5 has non-zero value of
future information. The cross-values are learned together with the value of future information from
belief-augmented transitions without accessing the known ground truth environment using our belief
horizon sampling approach. The value of future information is updated only after 100 epochs so as
to ensure some convergence of the cross q-values. Learning rates and ε were equal to the vanilla
baseline. The results are visualized in Fig. 2. These results are obtained using the greedy policy.
The baseline algorithm quickly learns the correct deterministic dynamics but it does not learn the
information gathering policy, leading to zero reward collection (see Fig.2 C). On the other hand,
q-learning with PCR reward quickly learns the correct value function, leading to optimal reward
collection in most repetitions (see Fig.2 B).

PCR-TD
TD
VI-TD

A) B)

Epoch

C
um
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3 x 3 5 x 5

7 x 7

Figure 3: The ”treasure map” experiment. A) Total training reward as function of the epoch of
PCR-TD (red), TD (blue) and Vi-TD (green) for the three grid-world environments. The dashed
line denotes the average over the runs. B) Example trajectory of trained PCR-TD. No other method
learned how to systematically reach the map.
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PRC-TD TD VI-TD VI-Thompson VI-Greedy
3× 3 10.78± 0.24 7.30± 0.31 8.28± 0.21 10.41± 0.16 9.39± 0.16
5× 5 15.17± 0.22 10.46± 0.37 11.02± 0.75 11.72± 0.12 9.91± 0.11
7× 7 15.33± 0.16 10.42± 0.26 9.55± 0.82 10.41± 0.15 9.64± 0.10

Table 1: Quantitative results of the treasure map experiment.

The treasure map problem. We now move to a more complex task where the agent needs to find
a ”treasure map” that reveals the reward distribution in a 2d environment. This is conceptually very
similar to the ”treasure mountain” problem used in (Zintgraf et al., 2021). We formalize this task
as a spatial multi-armed bandit, where the rewards follow Bernoulli distributions and each cell in
the grid-world has an independent reward probability. As in the conventional Bernoulli multi-armed
bandit problem, the belief state can be updated analytically and is given by the counting parameters
of the beta posterior distribution of each cell. When the agent visits a cell, reward is sampled from the
appropriate Bernoulli distribution. Furthermore, the agent also observes 5 additional simulated ”pulls”
that update the belief state but do not give reward (this is an operationalization of the act of looking
around and exploring the cell). Importantly, the central cell is a ”treasure map” that allows the agent
to observe 5 simulated ”pulls” for each cell. In our proposed method (denoted as PRC-TD), the value
of future information is given by the output of a convolutional network with two hidden layers that
takes the spatial array of belief variables as input. Specifically, the network outputs the w(xt, bt)
function as in Eq. 17 and the bound B(xt, bt) is estimated using M = 1 and N = 40. Instead of
learning the cross-values with belief horizon sampling we compute them with (cross-)value iterations
(see Appendix A). As main baseline, we use a more standard deep belief-augmented TD learning
approach where the total belief-augmented value is given by the output of a deep network trained on
the original reward structure. Since our method exploits the output of the value iterations, we also
compared the results with a more sophisticated baseline (VI-TD) with the belief-augmented value
given by the sum of the network output and the output of the value iterations applied to the expected
reward probabilities (as inferred by the belief state). We also included VI-Greedy and VI-Thompson
baselines, which implement greedy and Thompson sampling policies respectively on the values
obtained by value iteration. All networks were trained for 2000 epochs. In each epoch, a batch of
10 environments (reward probabilities) were generated from the beta prior (a = 0.1, b = 1) and
controlled sequences were simulated from the ε-greedy policies. The TD loss was summed over all
transitions and then backpropagated. Training performance was stored for each epoch. We selected
the epoch with highest training performance for the test run. Test performance was quantified as
(non-discounted) average total reward collected during 20 trials on newly generated environments
(averaged over a batch of 10 environments per trial). Additional details about task, training and
architectures are given in Appendix C. The total reward as function of the epoch can be seen in Fig. 3
A for the 7× 7 environments. All results are given in Table 8 for the three environment sizes. Only
our PCR-TD method was able to learn to visit the ”treasure map” cell at the center in order to collect
information and then switch to the optimal exploitation policy. A typical learned trajectory of this
kind can be seen in Fig. 3 B.

9 CONCLUSION & FUTURE WORK

In the paper we showed that predictive reward cashing, with its associated policy that decouples
the exploitation and exploration component, dramatically facilitates learning the Bayes-adaptive
policy. While we developed the methods with a modular deep learning architecture in mind (see
Fig. 1), in order to isolate the key contribution of the paper we limited our attention to settings where
inference can be performed in closed-form. However, all approaches introduced here can in principle
work together with approximate inference networks such as those used in (Zintgraf et al., 2020) and
(Zintgraf et al., 2021).
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A COMPUTING CROSS-VALUES BY BELLMAN EQUATION AND VALUE
ITERATIONS

In a finite horizon problem with known transition and reward distributions, the cross-values can be
computed by backward iterations that are a straightforward extension of the bellman equation:

ve1t (xt; e1) = R (rt | xt, at, e1) + γ
∑
xt+1

T (xt+1 | xt, at, e1) ve1t+1(xt+1; e1)

ve1t (xt; e2) = R (rt | xt, at, e2) + γ
∑
xt+1

T (xt+1 | xt, at, e2) ve1t+1(xt+1; e2)

at = argmax
α

(
R (rt | xt, at, e1) + γ

∑
xt+1

T (xt+1 | xt, at, e1) ve1t+1(xt+1; e1)
) . (19)
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This algorithm allows to efficiently compute the cross-values for an arbitrary pair of environments e1
and e2 in a highly parallelizable manner. As usual, the system of equations can be turned into value
iterations in the infinite horizon setting simply by dropping the explicit time dependency from the
value function.

B CONVERGENCE OF BELIEF HORIZON SAMPLING

Here we will prove that tabular TD learning training with belief horizon sampling convergences to
the true cross-value table under the usual conditions of TD learning. Like the rest of this paper, this
section will have a rather informal tone. However, all reasoning can be easily rigorously formalized.

We define the deterministic inference setting as a belief-augmented Markov decision process where
the belief state can only transition from its initial prior state b0 into one of the S possible deterministic
states, here denoted as δj . These terminal states correspond to posterior distributions with zero
entropy. In other words, each of them corresponds to a unique (non-augmented) Markov decision
process. After a sequence of observed transitions { xτ , aτ , rτ}t−1τ=0, the belief state bτ can either be
equal to b0 or to one of the δjs. In the latter case, at least one of the observed transitions has zero
probability under all environments but one. On the other hand, in the former case all transitions have
equal probability under all environments (this follows from the fact that the prior belief state has not
been updated).

In belief horizon sampling, the ground truth environment e1 is sampled from the terminal belief state
bT . This environment is then used to select the proper entry of the cross-values table and to perform
a TD update. The sampled environment e1 can either be equal or different from the (inaccessible)
true environment e∗ that generated the transitions. If it is equal then standard TD convergence results
apply directly. Since all the δjs represent deterministic posterior distributions, e1 can be different
from e∗ only when bT is equal to b0. In this case, the sequence { xτ , aτ , rτ}t−1τ=0 could be generated
by any of the possible environments with equal probability and, consequently, the transitions can be
used to update any of the cross-values tables as if they were sampled from their own environments
without affecting convergence.

C DETAILS OF THE TREASURE MAP EXPERIMENT

Task details. In each episode, the agent starts in a random location in the grid-world and stays
in the environment for T = 25 time steps. At each time step, the agent can move to each of the 8
(except at the borders/corners) neighboring cells or stay in place. Reward is collected at each time
step and is discounted with γ = 0.96.

Architecture details. The network output is a 2d array of value of future information, one for each
spatial location. The network input was a tensor with two spatial dimensions and two channels, one
for each parameter of the beta distributions. The network had two convolutional layers, the first
with kernel sizes (3, 3) and 20 output channels and the second with kernel sizes (1, 1) and 1 output
channels. Relu activation functions were applied after the first convolutional layer. The output tensor
was scaled by 0.01 and then summed to a learnable constant table of values, one for each spatial
location.

Policy details. Predictively cashed reward λ̃t was computed from the cross-values using the approx-
imation in Eq. 14 and N = 80 samples. We used an ε-greedy training policy with respect to the value
function. This does not require the training of a policy network since the transition model is known and
deterministic. The TD loss for each transition was L(w) = (λ̃t+ γv(xt+1, bt+1;w)− v(xt, bt;w))2.

Baseline architecture details. The baseline TD algorithm has to learn a substantially more complex
value function which, loosely speaking, includes both the exploitation and the exploration part of
the value. For these reasons, we thought it more effective to use a fully connected architecture as it
is in theory capable of learning arbitrarily complex dependencies between the input variables. We
therefore used a two-layers fully connected architecture and 4H2 hidden layers, where H is the linear
size of the grid-world. To facilitate learning, the output of the network corresponding to the j, k − th
grid point was ρjk+ fjk(bt), where fjk(bt) denotes the output of the network and ρjk is the expected
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reward probability of the cell given the current belief. This significantly improves performance. Since
our method uses the solution of the value iterations, we also used an alternative method (VI-TD) with
the belief-augmented value given by v(ρjk) + fjk(bt), with v(ρjk) being the value obtained from the
expected values by value iteration.
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