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Abstract

Solid-state electrolyte batteries are expected to replace liquid electrolyte lithium-
ion batteries in the near future thanks to their higher theoretical energy density
and improved safety. However, their adoption is currently hindered by their lower
effective ionic conductivity, a quantity that governs charge and discharge rates.
Identifying highly ion-conductive materials using conventional theoretical calcula-
tions and experimental validation is both time-consuming and resource-intensive.
While machine learning holds the promise to expedite this process, relevant ionic
conductivity and structural data is scarce. Here, we present OBELiX, a database of
~600 synthesized solid electrolyte materials and their experimentally measured
room temperature ionic conductivities gathered from literature and curated by
domain experts. Each material is described by their measured composition, space
group and lattice parameters. A full-crystal description in the form of a crystallo-
graphic information file (CIF) is provided for ~320 structures for which atomic
positions were available. We discuss various statistics and features of the dataset
and provide training and testing splits carefully designed to avoid data leakage.
Finally, we benchmark seven existing ML models on the task of predicting ionic
conductivity and discuss their performance. The goal of this work is to facilitate
the use of machine learning for solid-state electrolyte materials discovery.

1 Introduction

Lithium-ion batteries (LIBs) used in most consumer electronics and electric vehicles have seen
immense progress in terms of energy density, power density, safety and durability. However, their
performance is reaching a plateau. Solid-state batteries are regarded as the next generation of batteries
that may allow significant improvement over these characteristics [[15, [16l]. The key difference
between these two technologies is their electrolyte, the medium which allows the transport of ions
during charge and discharge. A solid-state electrolyte (SSE)—as opposed to a liquid electrolyte in
LIBs—permits new design choices that ultimately lead to better battery properties [3l], let alone the
fact that they are not flammable unlike their liquid counterparts.

Ionic conductivity (o), expressed in siemens per centimeter (S/cm), measures how easily ions can
move through a medium or material. Ideal SSEs, also called “superionic” or “fast-ionic” conductors,
are electrolytes that exhibit ionic conductivity comparable to those observed in liquid electrolytes
and molten solids (> 1 mS/cm). Only a handful of room temperature ideal SSEs are known thus
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far within a small number of classes of materials: LISICON (e.g., Li;4ZnGe4O15), NASICON
(e.g., Lij 3Alp.3Tiy 7(POy4)3), garnet (e.g., LizLi3Zry015), perovskite (e.g., Lig 5Lag 5 TiO3), and
argyrodite (e.g., LigPS5Cl) [16].

Until now, the discovery of novel SSEs has largely relied on an incremental, experimental approach
which consists, for example, of substituting atoms and elements in known compounds. This has
allowed the discovery of some highly ion-conductive materials, but greatly limits the search space
given that the experimental synthesis and characterization of a new, stable, inorganic solid-state
electrolyte is a difficult and costly process that can take months to years [35].

Computational discovery, on the other hand, requires time-consuming atomistic simulations, such as
ab initio molecular dynamics (AIMD), to accurately capture the complex relationship between ionic
conductivity and the material’s structure and composition [6} 22} 14]. These calculations can take from
several hours to a few days for a single ionic conductivity and their parameters are often materials
specific. Therefore, they are not well suited for large-scale explorations of hypothetical materials.

Machine learning (ML) has the potential to greatly accelerate the discovery of novel SSEs. Naturally,
it can be used to predict ionic conductivity directly using, for example, graph neural networks (GNN5),
which have been used extensively and successfully in materials science [24} 5]. Machine-learned
force fields or interatomic potentials (MLFF or MLIP) can also be used to obtain ionic conductivity
through molecular dynamics in the “classical” way while using significantly less resources [31]].
Finally, generative frameworks can accelerate dynamics simulations [21]] and, provided that good
ionic conductivity models are developed, there exists a wide range of frameworks that could generate
new materials conditioned on that property [12, 136} 134, 20]. However, the main obstacle to the
development and validation of these models—and to some extent theoretical models—is the scarcity
of relevant experimental ionic conductivity and structural datasets. Indeed, as detailed in the next
section, the few datasets that exist contain partial material descriptions and ionic conductivity
measurements at various or unspecified temperatures. To the best of our knowledge there does
not exist another open access dataset of experimental room temperature ionic conductivities with
corresponding full crystal descriptions.

In this work, we assembled OBELiX (Open solid Battery Electrolytes with Li: an eXperimental
dataset), a curated database of 599 synthesized solid electrolyte materials and their experimentally
measured room temperature ionic conductivity along with descriptors of their space group, lattice
parameters, and chemical compositiorﬂ The database is analyzed in terms of the distribution of
ionic conductivity, space groups, elements, and repeated compositions. We also propose a training
and testing split that avoids data leakage between similar entries while balancing distributions of
properties across splits. We use this split to benchmark the performance of 7 machine learning models
at directly predicting room temperature ionic conductivity (ogrr).

We believe that this dataset and benchmark can significantly spur the use of ML for the discovery
of novel solid-state battery materials. The size seems small but it is important to realize that the
database represents a large fraction of all materials whose ionic conductivity has been characterized
experimentally. Importantly, this database has been carefully curated by domain experts and formatted
by machine learning scientists to facilitate its use by this community. Finally, we believe that this
benchmark can encourage novel machine learning research tailored to low-data regimes.

2 Related work

Crystal structure databases such as the Materials Project [[13] or the Inorganic Crystal Structure
Database (ICSD) [2, [11] contain large amounts of potential candidates for solid-state electrolytes.
For example, Sendek et al. [28]] screened more than 12,000 Li-containing crystals for Li-ion SSEs
using multiple criteria, thereby identifying 317 candidates, among which 21 crystals that showed
promise as SSEs were selected from an ML-guided model. The ionic conductivity of these 21
structures was estimated theoretically. Jalem et al. [14] annotated 318 compounds by calculating
ion migration energy barriers (E}), a less accurate but computationally lighter property that relates
to ionic conductivity. Bayesian optimization was employed to screen candidate compounds with
low E}. He et al. [[10] compiled a database of over 90,000 crystal structures, including more than
7,000 structures with preliminary ion-transport data obtained through geometric analysis, and 12,000
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Table 1: Comparison of our dataset (OBELiX) with existing ones based on key features and labels.
For features, the numbers represent the number of entries with that feature that are labeled with at
least one experimental or computational ion transport property (not necessarily ionic conductivity).
Numbers in parentheses represent proprietary or private data.

Dataset Labels Features

omy C P Comp.  Spg Lattice ~ CIFs
Sendek et al. 0 0 317 317 317 317
Jalem et al. 0 0 318 318 318 318
He et al. (SPSE) 0 0 75 (12k) 75 (12k) 75 (12k) 75 (12k)
Hargreaves et al.(Lilon) 465 820 820 0 0 0
Laskowski et al. 1346 1346 1346 0(344) 0@344) 0349
Shon and Min n.a. 4032 4032 0 0 0
Yang et al.[(DDSE) (1939) (2448) 2448 0 0 0
OBELiX 599 599 599 599 599 321

activation energy values (F}) calculated using the bond valence site energy method. Additionally,
they manually extracted 75 CIF files from literature data. They employed empirical and geometrical
methods to estimate the minimum energy paths of these structures and obtain Ej, but they did not
predict o.

On the exprimental side, the Liverpool Ionics (Lilon) Dataset [9]] reports 820 entries containing
chemical composition, structural family, and ionic conductivity at different temperatures (from 5 to
873°C') measured by alternating current impedance spectroscopy, among which 465 entries were
at room temperature. Laskowski et al. [17] gathered a dataset of 1346 entries with compositions,
space group, and corresponding orr, with a subset of 344 compounds whose structures are manually
matched with an ICSD ID. The full dataset, including references, is only available as a pdf file. Shon
and Min [29] used text mining to extract more than 4000 ionic conductivity measurements from 1457
papers. Each ionic conductivity measurement is associated with a composition and about 350 are also
associated with a “structure type”. Measurement temperature is not specified and compositions are
not always fully described. A recent study by Yang et al. [33]] introduced the Dynamic Database of
Solid-State Electrolyte (DDSE) to facilitate the exploration of structure-performance relationships and
accelerate the discovery of high-performance solid-state electrolytes (SSEs). The database contains
performance data for 2448 materials (at time of writing), including ionic conductivity obtained from
experimental reports, across a broad temperature range (132.40-1261.60 K). Ionic conductivity data
is only available upon request to the authors.

These recent reports greatly increased the amount of readily available experimental ionic conductivity
data. However, they contain limited structural information: the databases by Shon and Min [29] and
Yang et al. [33]] contain only a qualitative structure description for some materials, the Lilon dataset
only includes the structural family and the dataset by Laskowski et al. [17] is limited to space group
information. Although the full crystallographic information of the 344 compounds of the Laskowski
dataset for which the ICSD ID is provided could be retrieved, the proprietary ICSD is not available to
most researchers in the ML community. Table|l|summarizes the differences in terms of available
features across the databases discussed above.

The lack of precise structural information labeled with ionic conductivity makes it difficult (1) to
compare experimental values with theoretical predictions which require full crystal descriptions and
(2) to train machine learning models to accurately predict ionic conductivity.

3 Data

3.1 Background

All the solid-state electrolyte materials in OBELiX are crystal structures. Crystals are materials
with a repeating arrangement of the same atoms. The composition (or chemical formula) describes
which atoms are present in what proportion. The repeating pattern in a crystal, the unit cell, is
contained within a parallelepiped (lattice) with edges a, b, ¢ and angles «, (3, -y that, together, form



the lattice parameters. The symmetry of a crystal is described by its space group, of which there
are 230, representing all possible combinations of symmetry operation in 3D. Space groups are
usually denoted as a string of numbers and letters representing their symmetry operations or a number
between 1 and 230, e.g. Fm3m for space group 225.

While the combination of the composition, lattice parameters and space group is often sufficient to
qualify materials, they do not fully describe the crystal structure because in general they do not specify
the positions of each atom. Some experimental papers perform an analysis (Rietveld refinement) of
the X-ray powder diffraction pattern of their materials to estimate atomic positions. This information
is necessary to perform molecular dynamics simulations, for example.

In contrast to theory-based data found in the Materials Project, for example, experimental compo-
sitions often feature fractional numbers (real numbers rather than integers) resulting from partially
vacant sites or disorder associated with partial cation substitution. Consider, for example, composition
Ko.1Lig.9SbO3. At a specific location in the crystal (a site) there is a 90% probability of finding a
lithium (Li) atom and a 10% probability of finding a potassium (K) atom. Site occupancy does not
need to add up to one since sites are often partially empty.

Such partial occupancy is ubiquitously observed
in Li-ion SSEs [19] and it plays a crucial role in
creating diffusion pathways. For example, the
orr of tetragonal LiyLi3ZroO1o with a space
group of I41/acd (no. 142) is two orders of
magnitude smaller than that of the same garnet
framework of cubic Li;Li3Zr,012 with Ia-3d
(no. 230) (see Figure ma). In this case, the dis-
ordering and partial occupation of Li (at the
96h site) promotes the Li-ion conduction. In
the halide structure of LizInClg (Figure [Tp), the

substitution of one Li+ with the In3+ cation in- Lita;Zr,0., LiInClg
trOduceS tWO intrinSiC VaCﬁnCieS, tO Wthh iS at— O 1 94% occupancy of Li at 96h site ? : 87.5% occupancy of In at 2a site
tributed the hlgh O'RT ()f that material_ In sum, in a) ") :35% occupancy of Li at 24d site b) w’\’/‘ : 7% occupancy of In at 4g site
order to screen SSEs with high o, it is highly
desirable to include partial occupancy as a key
feature of the materials.

Figure 1: Examples of solid state electrolyte mate-
rials with partial occupancies.

3.2 Data collection

We built our dataset starting from the Liverpool Ionics Dataset and the Laskowski dataset by selecting
materials for which the experimental room temperature ionic conductivity, space group and lattice
parameters could be obtained. We manually retrieved missing information (e.g. lattice parameters or
o rr) from the original paper’s table or figures. Through this procedure, we obtained a total of 599
distinct entries including an additional 15 entries from other sources. Figure[Zb shows the number of
common entries between these two datasets and ours.

Ionic conductivity is usually reported as a property of the materials in the powder form, which
includes the effect of defects and grain boundaries. It is referred to as “total” ionic conductivity.
The ionic conductivity of individual grain is sometimes reported as the “bulk” ionic conductivity.
When both were available we recorded both. This is relevant because the total ionic conductivity of
materials not only depends on their crystal structure but also on factors such as the size of particles.

For each material, we recorded the total composition including the number of formula unit Z. For
example, the unit cell compositions of LisPOy4 could be LigP20g and Li;2P,016 with Z=2 for the
space group pnm21 (no. 31) and Z=4 for pnma (no. 62), respectively. This added information makes
the computation of density and volumetric density possible for every material in the dataset.

To the best of our capacity, we have ensured that the reported structural information in OBELiX
corresponds exactly to the same material for which the ionic conductivity was measured. We also
filtered the dataset for exact duplicates and ensured that near duplicates were truly different materials.
It is common for papers to report ionic conductivity measured elsewhere when synthesizing a material
and vice versa for structural information. If not caught, this can lead to two entries with the exact
same ionic conductivity, only one of which is the actual material for which it was measured.
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Figure 2: a) Distributions of ionic-conductivity values for the training and testing sets along with
proportions of crystal families and space groups. Only space groups that represent more than 1%
of the sets are labeled. b) Venn diagram showing shared entries between our dataset and others c)
Proportion of entries that contain each element in the periodic table. Elements that are not present in
the dataset are shaded. Generated with pymatviz [23]].

The ICSD is a large database of experimental data in the form of crystal information files (CIF)
that contain full crystal descriptions including atomic positions. Given that a significant portion of
publications in this field have crystal information in the ICSD, we searched the database for all entries
matching the lattice, parameters composition and associated publication. We found 234 exact matches
with our entries, for which we obtained the CIFs. We also manually retrieved crystal information
for 27 entries. Finally, we searched the ICSD and the Materials Project for structures that matched
the space group and closely matched the composition (£ 0.05) and lattice parameters (£ 3%) of our
entries and found 60 additional CIF files (labeled as close matches). This forms a total of 321 entries
with CIF information.

Because the ICSD is a proprietary database, we are not able to publish 292 of the CIF files and
can only link our entries to their corresponding ICSD ID. However, to reach a broader audience, in
agreement with the ICSD, we openly publish a set of 292 CIF files for which a normally distributed
random noise with standard deviation 0.01 (e ~ N (0,0.01)) in fractional coordinates was added to
the original atomic positions. This noise was added while making sure that the full symmetry of the
crystal was preserved. We measured the effect of noise on model performance (see section[d) and
found that it made little to no difference (see the SI for more details).

3.3 Data splits

Experimental papers in this field often measure ionic conductivity for several variations of the same
materials while changing the composition slightly. This can lead to multiple entries that are very
similar and often have similar ionic conductivities. There are also several entries in our dataset that
have the same composition, which may also lead to similar ionic conductivities. To avoid data leakage
when testing machine learning models on OBELIiX and to fairly compare new models in the future,
we provide a split of the data where entries from the same paper or that have the same composition
must be in the same set (training or testing).

To obtain this split, we used a Monte Carlo method that moved groups of entries from one set to the
other to minimize (1) the difference between the distribution of log ionic conductivity between the
two sets and (2) the difference between their respective subsets containing CIF files. The algorithm
also ensured that the final test set represented between 20% and 30% of the data. The obtained
distribution of log ionic conductivity in each set and subset is presented in Figure 2h along with the
proportion of each crystal family and space group. The test set represents 20.2% of the full dataset
and 20.9% of the subset that has CIF files.
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Figure 3: Ionic conductivity of entries in the dataset that have the same composition and space group.
The color shows the largest relative difference between lattice parameters within a set of entries with
same space group and composition. The inset shows the distribution of differences with the mean
ionic conductivity of the sets in log scale. It is scaled proportionally to the rest of the plot.

The distributions in log space of ionic conductivity for the two sets are very similar. Note that
the entries plotted at 10~ '° were reported as having a conductivity of “less than 10~1°” without a
quantitative value. The proportion of crystal families and space groups is also fairly similar between
the two sets, except for space group 167, which is much more prevalent in the training set. This is
due to the fact that a large group of entries (106) with space group 167 were either from the same
paper or had the same composition. This meant that the entire group could not be split between the
two sets without leaking either a paper or a composition.

The dataset contains 55 space groups, 4 of which are only in the test set. Figure 2k shows the
prevalence of the 55 different elements that are present in the dataset. All entries contain lithium (by
design) and most of them contain oxygen. Phosphorus, lanthanum, sulfur and titanium follow as the
most prevalent elements. Silver is the only element that is not found in the training set (it is only in
the test set).

About 75% (245/321) of the entries with atomic information have some level of partial occupancy
(disorder). The proportion of partially occupied structures in each split was not controlled for
explicitly, but it is similar in the test (53/67) and train (192/254) splits. For the rest of the entries,
when atomic positions and occupations are unknown, it is not always possible to tell if a structure is
disordered.

4 Benchmarks

In this section, we benchmarked how well existing models perform on the new dataset. This evaluation
is essential for determining whether these models can be effectively applied or if there is a need to
develop new models better suited for the task.

We note that experimental data intrinsically embeds errors and uncertainty associated not only
with various sources of measurement techniques but also with data extraction from figures and
inconsistent labeling (e.g., bulk, grain boundary, or total ionic conductivity are often indistinguishably
reported). Before assessing the performance of predictive models it makes sense to quantify the
uncertainty (“performance”) of experimental data acquisition. Thankfully, our dataset contains 48 sets
of compositions and space groups that have multiple entries, spanning a total of 122 entries. These
entries and their corresponding ionic conductivities are plotted in Figure 3] The color represents the
maximum difference in lattice parameters between any two entries of a same set. The maximum
difference is of only 1.2% for all sets, which gives us confidence that grouped materials are in fact the
same. This means that these materials were synthesized and their ionic conductivity measured two or



more times, most likely by different researchers. This represents a unique opportunity to quantify
experimental uncertainty and reproducibility. The inset of Figure [3]shows the distribution of log ionic
conductivities with respect to the mean of each set of repeated materials. The root mean squared
deviation from the set averages is of 0.63 log(S/cm) and the mean absolute deviation from the set
medians is of 0.41 log(S/cm). The latter can be compared to the model’s mean absolute error when
predicting log ionic conductivity and represents its lower bound. Therefore, any model that would be
reported as having lower MAE that that value would most likely be over-trained.

4.1 Baselines

To evaluate the performance of ML models on OBELiX, we tested five widely adopted graph neural
networks developed specifically for materials science applications, PaiNN [25]], SchNet [27], M3GNet
[7], SO3Net [26], and CGCNN [32]] on the subset of the dataset that contains CIF files. These graph-
based models, where each node represents an atom, effectively capture atomic interactions while
preserving molecular invariance, enabling accurate material property predictions when trained on
large datasets [[18]. On the full dataset, where atomic positions are not always available, we also
tested two standard machine learning models, a random forest (RF) and a multilayer perceptron
(MLP).

The RF and the MLP use the composition, space group and lattice parameters as inputs where the
composition is a vector containing the occurrence (€ R) of each element of the periodic table. The
3D geometric models use the crystal structure as their input and build different representations from
that structure. The crystal structure contains the composition and space group information implicitly,
but the models are not given that information explicitly. None of the model can take into account
partial occupancy of the sites, therefore occupations are rounded to the nearest integer before being
fed to the models.

4.2 Setup

To optimize the training process and assess the stability of the models, we implemented a 5-fold
cross-validation strategy. For hyperparameter optimization, we employed a grid search strategy
across a predefined space of 100 randomly sampled hyperparameter sets for each model. This
number was selected to strike a balance between comprehensive exploration of the hyperparameter
space and computational feasibility. In the case of RF and MLP where training is extremely fast;
all hyperparmeter sets were tested. The hyperparameter space was carefully designed for each
model based on its unique architecture and requirements (see Table [S2|in the SI for a complete
list). For example, PaiNN’s search space included parameters such as the cutoff distance, number of
interactions, and batch size.

We computed the mean absolute error (MAE) between the predicted and the measured ionic con-
ductivities to evaluate the performance of each configuration. Specifically, the average validation
MAE across all folds in the cross-validation process was used to assess each setup’s effectiveness.
The hyperparameter set that achieved the lowest average validation MAE was selected as the best-
performing configuration. After choosing the best hyperparameters, each model was retrained on the
entire training set and evaluated on the test set. A detailed table of the selected hyperparameters for
each model is included in the SI (Table [S2).

Pretraining can enhance model performance by initializing weights with knowledge from larger
datasets and related tasks, which is then fine-tuned on a smaller, task-specific dataset. We pretrained
PaiNN and SchNet on the Materials Project with a band gap prediction task. In this case we fixed
the trained representation (PaiNN or SchNet) and trained the output model (an MLP followed by a
pooling layer) on OBELiX. For M3GNet and CGCNN we use pretrained models that were available
on their public repositories. The M3GNet model was trained on formation energy per atom whereas
CGCNN was trained on Fermi energy both from the Materials Project. As recommended in their
respective documentation, we fine-tuned the models by training all model parameters starting from
the trained models.

4.3 Discussion

Figure 4 and Table [ST]present our benchmarking results and Figure [ST|presents the corresponding
parity plots. The MLP and the RF were trained on the full training set, but tested on both the full
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Figure 4: Benchmarking of various ML models. The same data is tabulated in Table[ST]} Simpler
models outperform geometric GNNS.

test set (in orange) and the subset of the test set that has CIF files (in red). The goal is to be able to
compare their performance directly with geometric models, given that the variance of the CIF subset
is larger.

The two simple models, RF and MLP, outperform all 3D geometric models both in the cross-validation
and the test performance even when comparing with the subset of the test set that has CIF files. There
are two factors that could explain this result. First, the RF and the MLP used the full training set of
478 structures while the other models were limited to the subset of 254 entries that have CIF files.
Second, the geometric models use crystal information to infer properties of the crystal, but they do not
properly handle partial occupancies which, as discussed before, are very common in SSE materials
and are present in about 3/4 of our CIF files. In order to use these models without modification on
our dataset we rounded occupancies to the nearest integers which can lead to important changes in
the composition.

To partly verify the above claim that dataset size and the presence of partial occupancy can explain
the increased performance of the simple models, we retrained them on the subset of entries that
have CIF files only. Doing so, the MAE of the MLP increased to 3.15 while that of the RF was
maintained at 1.87. Therefore, dataset size does seem to have a significant impact on the MLP and
may explain the difference in performance between that model and the larger models. Random forest
still performs well even given less data. Rounding compositions to the nearest integer on the other
hand, had little effect on both the RF and the MLP. Rounding compositions is similar to rounding site
occupancy, but it does not have exactly the same effect. Nevertheless, it indicates that the absence of
partial occupancy likely does not explain the difference in performance between the simple models
and the more complex ones.

To further explore the effects of partial occupancy, which, as explained in Section[3.1] is an important
concept in this field, we introduce new implementations of both CGCNN and SO3Net (dis-CGCNN
and dis-SO3Net) that take into account partial occupation (disorder). In both cases, the atomic
embedding is replaced with a site embedding that is an average over the element embeddings
weighted by occupancy. We trained these models using the same optimal hyperparameters as their
original version. The results presented in Figure [4| and at the bottom of Table [S1| show a small
improvement in cross-validation performance but it does not translate into significantly better test
performance.

The 3D geometric models not only performed poorly compared to simple ML models using less
structural information, but their performance on the test set was barely better or sometimes worse
than predicting the median of the training set (doted line in Figure 4| This shows that these large
models can easily overfit small experimental datasets which was also observed in other studies [8]].
Moreover, given that the cross-validation splits were chosen randomly within the training set and
that the test set was build using the method described in Section[3.3] the relatively large difference in
performance between the validation and testing sets illustrate the importance of carefully building



leakage-free test sets and that choosing the test set randomly would have most likely led to a false
impression of performance.

Finally, pretraining of 3D geometric models offers some marginal improvements for PaiNN, SchNet
and CGCNN. As mentioned in Section[4.2} the pretraining of PaiNN and SchNet restricts the trainable
model size which may reduce accuracy while increasing generalizability. This would explain their
slightly higher validation MAE and lower training MAE. A better pretrained representation might
compensate for the reduced expressivity and increase both accuracy and generalizability, but a much
more in-depth analysis of the possible pretraining labels and datasets would be required. In the case
of CGCNN and M3GNet which were fine-tuned by allowing all model parameters to change, it is
possible that the pretraining property used for CGCNN was “closer” (or more relevant) to ionic
conductivity which allowed it to stay in the same weight “basin” and take advantage of the pretrained
model’s generalizability. It is important to bear in mind that the variability of the prediction accuracy
is high in this small data regime as illustrated by the validation MAEs’ standard deviations and that
much of the difference between these models falls within that variability. Therefore one must be
careful when interpreting the results.

5 Limitations

We have built OBELiX as carefully as possible making sure that all features match the measured
ionic conductivity correctly. However, since data is reported and measured in very different ways
across journals and decades, there most probably remains inconsistencies between some of the entries
especially in terms of atomic positions which are particularly difficult to measure and report. We will
continue to improve the dataset as these issues come to light.

OBELIX is small for ML standards. The difficulty of building an experimental dataset is that there is
only a limited number of experiments that were actually performed. Section[d]shows how challenging
it is to train existing models on such a small data regimes. Ultimately, it highlights the need for
models, training architectures and benchmarks tailored for small data regimes, that could benefit
numerous applied fields with similarly limited experimental data (e.g. [1]]).

We benchmarked ionic conductivity prediction on our dataset with popular existing models as is
and using standard training and hyperparameter tuning. We are aware that performance could be
improved by modifying the model architectures, training procedure or with data augmentation, but
we consider that these methods would not be “baselines” and are outside the scope of this paper.

6 Conclusion and outlook

In this paper, we presented OBELiX, a dataset of 599 materials with experimental room temperature
ionic conductivities curated by domain experts, including 321 structures with full crystallographic
information. We gathered these materials from existing databases and manually extracted data
from the literature to build a consistent, easy-to-access database of solid-state electrolyte materials.
We benchmarked several ML models and found that the simple random forest model had the best
predictive performance. Modern geometric GNNs on the other hand, likely over-fit and were unable
to perform well on our carefully designed test set. These findings highlight the immense opportunity
for improvement in ML methods specific to this task and tailored for low data regimes.

We hope that OBELiX will serve as a reference point to train and test ionic conductivity models for
the ML and computational materials science community in general, ultimately advancing solid-state
battery technology.

7 Data availability

All data is freely available on our public reposito as a single csv or xIsx file accompanied by a set
of 321 CIF files, including 291 with added random noise. The same data is also available on Kaggleﬂ
All experiments were performed with OBELiX version 1.0.0 [30].

2github.com/NRC-Mila/OBELiX
*www.kaggle.com/datasets/flixtherrien/obelix


https://github.com/NRC-Mila/OBELiX
https://www.kaggle.com/datasets/flixtherrien/obelix
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Supplemental Information

A Parity plots and data from Figure [

Table[ST| contains the information from Figured]in a tabulated form. Figure[ST| presents parity plots
for benchmarking experiments discussed in Section 4]

B Baseline models

We trained and tested 7 ML models which are briefly described below:

1. REF, as an ensemble of decision trees, is robust to noisy data and provides feature importance
insights, making it a strong baseline for structured datasets.

2. MLP, a neural network-based approach, captures complex nonlinear relationships, offering
a comparison to deep learning-based methods.

3. PaiNN [25] enforces E(3)-equivariance, enabling accurate modeling of atomic interactions
and force predictions.

4. SchNet [27] learns continuous filter representations, making it effective for capturing atomic
environments.

5. M3GNet [[7]integrates message passing with three-body interactions, improving property
predictions for crystalline materials.

6. SO3Net [26]] leverages spherical harmonics to enhance equivariant representations for
molecular and solid-state systems.

7. CGCNN [32] models crystal structures directly as graphs, making it a strong baseline for
learning structure-property relationships.

Table [S2]shows the best hyperparameter sets for each model presented in Table[ST]

C Effects of added random noise

Table [S3|presents the cross-validation and test MAEs for the models trained on randomized atomic
positions. The models were trained on the randomized data and tested on the original CIFs. There
is no significant difference in performance between models trained on the original data and models
trained on data with added random noise on atomic positions.

D Computational resources used for benchmarking

Table [S4| presents the resources used to find optimal hyperparameters and train each model.
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Table S1: Benchmarking of various ML models with and without pretraining. For the median
prediction, the random forest (RF) and the multilayer perceptron (MLP), results are presented for
the full dataset and numbers in parenthesis are results for the subset of the test set that has CIF files.
All other results apply only to entries with CIF files. "p-" indicates a model that was pretrained and
"dis-" indicates a model that was modified to take partial occupancy (disorder) into account.

Model Cross-val. MAE Test MAE
Avg. + SD
Experiment 0.41
Median pred. 2.16 (2.81)
RF 1.04 + 0.06 1.59 (1.85)
MLP 1.35+0.27 1.72 (2.10)
PaiNN 1.65 £ 0.21 2.88
SchNet 1.79 + 0.23 2.89
M3GNet 1.89 £ 0.31 2.74
SO3Net 2.02 +0.25 2.76
CGCNN 1.87 +0.35 2.84
p-PaiNN 2.05 £ 0.25 2.69
p-SchNet 2.17 + 0.68 2.61
p-M3GNet 1.85 +£0.25 3.08
p-CGCNN 1.84 + 0.33 2.52
dis-CGCNN 1.52 +0.29 2.71
dis-SO3Net 1.72 £ 0.07 2.86
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Table S2: The selected hyperparameters for the baseline models.

Model Hyperparameter Value Model Hyperparameter Value
RF max_depth 36 PaiNN cutoff 5
max_features sqrt n_interactions 2
min_samples_leaf 1 n_atom_basis 80
n_estimators 50 batch_size 32
MLP activation relu mag_epochs 100
batch_size 16 weight_decay 0.0001
early_stopping True Schnet cutoff 5
hidden_layer_sizes [64, 64, 64, n_interactions 3
- - 64] n_atom_basis 80
learning_rate adaptive batch_size 32
learning_rate_init 0.01 max_epochs 100
max_iter 1000 weight_decay 0.01
n_iter_no_change 100 M3GNet  cutoff 50
solver adam threebody_cutoff 5.0
is_intensive True
readout_type "set2set"
nblocks 3
dim_node_embedding 128
dim_edge_embedding 128
units 64
batch_size 35
max_epochs 50
1r 0.001
weight_decay 0.01
SO3Net  cutoff 5.0
is_intensive True
nmax 2
lmax 1
target_property "graph"
readout_type "set2set"
nblocks 3
dim_node_embedding 64
nlayers_readout 3
units 32
batch_size 35
max_epochs 80
1r 0.001
weight_decay 0
CGCNN n_conv 3
n_h 1
atom_fea_len 64
h_fea_len 64
batch_size 35
epochs 50
1r 0.001
weight_decay 0
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Table S3: Performance of the 5 geometric models on the public dataset with added random noise to
the atomic positions. Test results are on the original test set.

Model Cross-validation MAE Test MAE

PaiNN 2.03 £0.27 2.95
SchNet 1.99 +£0.22 2.78
M3GNet 1.83 £0.29 291
SO3Net 1.98 +0.23 2.79
CGCNN 1.94 £ 0.42 2.95

Table S4: Resource usage for benchmarking

Model Hardware Hyperparameter tuning Final training
RF AMD EPYC 7502 (1 core) 7min 1s
MLP AMD EPYC 7502 (1 core) 50min 14s
PaiNN NVidia A100 GPU 2h40min 2min
SchNet NVidia A100 GPU 1h55min 2min
M3GNet NVidia A100 GPU 3h35min 2min
SO3Net NVidia A100 GPU 2h25min 2min
CGCNN NVidia A100 GPU 1h40min Imin
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim to present a dataset of experimental ionic conductivity which we do
in Section[3land to benchmark 7 ML models on it which we do in Section 4]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Section[3}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The models and the training process we used for benchmarking are fully
described in the paper and in the SI (Section]and Section[B]). All scripts used to run the
experiments are available in our repository.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All code and config files used to perform benchmarks, to create figures as well
as the dataset itself are available on our public repository.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The splits are discussed extensively in Section[3.3] the training and hyperpa-

rameter optimization are detailed in Section and the final hyperparameters are presented
in Table

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For each experiment in the paper we performed a 5-fold cross validation and
reported the validation MAE along with its standard deviation (1-sigma) across the 5 folds

(Table

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Timing and hardware information for each model is presented in Table
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The paper presents experimental data that does not involve humans. It’s limited
impacts are listed in the impact statement.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The introduction and conclusion discuss how the release of our dataset can
have an impact on battery materials discovery and how these materials can, in turn, impact
society. The dataset itself does not have direct societal impacts.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The data released here does not have high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Papers corresponding to each benchmarking model are properly cited. Each
entry in our dataset is associated with its original DOI. Our dataset and code are accompanied
by a license file.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: All code and data are well documented and easy to use.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were used to suggest some rephrasing and to accelerate the coding of
some scripts (code completion tool).

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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