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ABSTRACT

Speculative decoding has emerged as a critical technique for accelerating infer-
ence in large language models, achieving significant speedups while ensuring con-
sistency with the outputs of the original models. However, there is currently a lack
of theoretical guidance in speculative decoding. As a result, most existing works
are dualistic target-draft model paradigm, which significantly restricts the hinders
potential application scenarios. In this paper, we propose a polybasic speculative
decoding framework supported by a solid theoretical foundation. We first deduce a
theorem to control the ideal inference time of speculative decoding systems which
is then serve as a design criterion that effectively expands the original dualistic
speculative decoding into a more efficient polybasic speculative decoding. We
further theoretically analyze the sampling process, identifying variables that can
be optimized to enhance inference efficiency in multi-model systems. We demon-
strate, both theoretically and empirically, that this system accelerates inference
for the target model, and that our approach is orthogonal to the majority of ex-
isting speculative methods, allowing for independent application or combination
with other techniques. Experimentally, we conducted comprehensive evaluations
across a wide range of models, including those from the Vicuna, LLaMA2-Chat,
and LLaMA3 families. Our method achieved remarkable latency speedup ratios
of 3.31×-4.01× for LLaMA2-Chat 7B, up to 3.87× for LLaMA3-8B, and up to
4.43× for Vicuna-7B, while maintaining the distribution of the generated text.
Code is available in supplementary materials.

1 INTRODUCTION

Large Language Models (LLMs) have become the core driving force in the field of natural language
processing (NLP), demonstrating remarkable performance in various applications. However, the
scale and complexity of these models also bring significant computational challenges, especially
in real-time application scenarios. Inference acceleration has become a key issue in deploying and
applying these models. Among numerous acceleration techniques, speculative decoding(Stern et al.,
2018) (Leviathan et al., 2023) has emerged as a critical technique, gaining widespread application
in large-scale model deployment.

In recent years, the field of NLP has witnessed significant advancements in speculative sampling
methods, leading to the emergence of a “draft-then-verify” paradigm. This approach encompasses
various drafting strategies, such as the utilization of small-scale draft models to facilitate speculative
sampling in LLMs (Leviathan et al., 2023) (Xia et al., 2023a)(Chen et al., 2023a) (Kim et al., 2024)
(Svirschevski et al., 2024), the implementation of tree structures to organize tokens generated by
draft models (Miao et al., 2024) (Du et al., 2024) (Stern et al., 2018), the employment of unified
models serving as both draft and target models (Yi et al., 2024) (Cai et al., 2024), and the integra-
tion of early exiting techniques with speculative sampling methodologies (Elhoushi et al., 2024).
For token verification, researchers have predominantly employed three primary methods: greedy
sampling, speculative sampling(Leviathan et al., 2023), and typical acceptance(Cai et al., 2024).

However, existing methods are limited to a dualistic relationship of cooperation between a draft
model and a target model. The disparity in inference capabilities between these two models results
in a small token average acceptance length, restricting the speedup ratio of speculative sampling.
Although Chen et al. (2023b) propose cascading large and small models as the draft model, during

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

inference, it still utilizes a single draft model in conjunction with the target model. Meanwhile,
existing works predominantly focus on direct algorithmic improvements, without conducting the-
oretical modeling specific to speculative decoding, resulting in a framework that lacks flexibility
and controllability. Therefore, we have conducted theoretical modeling and analysis of existing
speculative sampling methods. Building upon this foundation, we extend the concept of dualistic
speculative decoding to polybasic speculative decoding. Specifically, our preliminary exploration
revealed two key rules, laying the foundation for designing an efficient polybasic speculative decod-
ing system. Firstly, we discovered that when the polybasic speculative decoding achieves optimal
inference speed, there exists a significant correlation between the number of forward propagation
executions for each model and the average token acceptance length between models. This finding
enables us to calculate the ideal inference time for the polybasic speculative decoding system, pro-
viding a solid theoretical basis for subsequent research. Secondly, we conducted an in-depth study
on the impact of speculative sampling on the performance of polybasic speculative decoding. The
results indicate that introducing a carefully designed speculative sampling strategy can significantly
improve the stability of token acceptance. This discovery not only optimizes system performance
but also provides new insights into addressing uncertainty issues in polybasic speculative decoding.

Based on the aforementioned key insights, we synthesized a unified theoretical framework for poly-
basic speculative decoding, deriving the ideal inference time. This framework enables the evalu-
ation of a model’s potential to enhance inference speed through the calculation of its capabilities.
According to this theory, we propose an innovative polybasic speculative decoding design method
and have successfully implemented a specific design scheme. Through rigorous experimental vali-
dation, our method demonstrates significant performance advantages over dualistic speculative de-
coding, achieving higher acceleration ratios. To comprehensively evaluate system performance, we
conducted extensive testing across a diverse set of tasks, including MT-bench(Zheng et al., 2023),
translation, summarization, QA, math reasoning, and retrieval-augmented generation (RAG). The
experimental results are encouraging: our system can increase inference speed to 3x-4x that of the
original model while maintaining output quality. The main contributions are summarized as follows:

• We provided a theoretical analysis for the ideal inference time in the polybasic speculative
decoding system. We can use this analysis to determine whether adding a model to the
system can improve inference speed.

• We theoretically elucidated the importance of speculative sampling in the polybasic de-
coding speculative systems. Our analysis demonstrated that speculative sampling plays a
crucial role in stabilizing the average acceptance length between models, thereby enhancing
the overall efficiency and reliability of the speculative decoding process.

• We designed polybasic speculative decoding, demonstrating both theoretically and exper-
imentally that this system can significantly accelerate the inference of the target model.
Furthermore, this method is orthogonal to most current speculative methods.

• Our method achieved remarkable latency speedup ratios of 3.31x-4.01x for LLaMA2-Chat
7B, up to 3.87x for LLaMA3-8B, and up to 4.43x for Vicuna-7B. The output of the poly-
basic system aligns with the original model while maintaining the latency speedup ratios.

2 RELATED WORK

2.1 BACKGROUND

Speculative decoding has emerged as a prominent paradigm for accelerating inference in large lan-
guage models. The field can be systematically categorized into two primary domains: drafting
methodologies and verification techniques.

Drafting Methodologies Drafting approaches are bifurcated into independent and self-drafting
strategies. Independent drafting employs distinct models for token generation, which can be either
fine-tuned or tuning-free. Fine-tuned drafters, exemplified by SpecDec (Xia et al., 2023b) and BiLD
(Kim et al., 2024), undergo task-specific optimization. Conversely, tuning-free drafters such as
Speculative Decoding (Leviathan et al., 2023) and StagedSpec (Spector & Ré, 2023) utilize pre-
existing models without additional training.
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Self-drafting methodologies leverage the intrinsic architecture of the target model. These encompass
FFN Heads approaches, including Blockwise (Stern et al., 2018) and Medusa (Cai et al., 2024); Early
Exiting techniques, such as PPD (Yang et al., 2023) and Self-Speculative (Zhang & Chen, 2023);
and Mask-Predict methods, exemplified by Parallel Decoding (Santilli et al., 2023) and Lookahead
Decoding (Zhao et al., 2024).

Verification Techniques Verification methods, crucial for maintaining the fidelity of drafted to-
kens, are categorized into three principal approaches. Greedy Decoding algorithms, both lossless
and approximate, are represented by works such as SpecDec (Xia et al., 2023b) and BiLD (Kim
et al., 2024). Speculative Sampling, introduced by Leviathan et al. (2023), offers both lossless and
approximate variants, with notable extensions including DistillSpec (Zhou et al., 2023) and Online
Speculative (Liu et al., 2023). The Token Tree Verification approach, as demonstrated by SpecIn-
fer (Miao et al., 2024) and StagedSpec (Spector & Ré, 2023), presents an alternative verification
paradigm.

2.2 PRELIMINARIES

Speculative decoding is characterized by accelerating LLM decoding while precisely maintaining
the model’s output distribution. We can introduce the process of dualistic speculative decoding
based on the “draft-then-verify” paradigm.

Drafting. Speculative decoding operates iteratively at each decoding step, efficiently generating
multiple prospective tokens as a conjecture of the target LLM’s output. More formally, given an
input sequence x1, . . . , xt and a target LLM Mq , this paradigm leverages an efficient draft model
Mp to produce the subsequent K drafted tokens:

p1, . . . , pK = DRAFT (x≤t,Mp) ,

x̃i ∼ pi, i = 1, . . . ,K,

where DRAFT(·) denotes various drafting strategies, p is the conditional probability distribution
calculated by Mp, and x̃i denotes the drafted token sampled from pi.

Verification. Subsequently, the target LLM Mq performs parallel verification of these drafted to-
kens. Given the input sequence x1, . . . , xt and the draft x̃1, . . . , x̃K , Speculative Decoding computes
K + 1 probability distributions concurrently using Mq:

qi = Mq (x | x≤t, x̃<i) , i = 1, . . . ,K + 1.

Subsequently, each drafted token x̃i undergoes verification through a specific criterion
VERIFY (x̃i, pi, qi). Only tokens satisfying this criterion are retained as final outputs, thereby en-
suring consistency with the target LLM’s quality standards. In the event of verification failure, the
first non-compliant drafted token x̃c is subject to correction via the strategy CORRECT (pc, qc). To
maintain output integrity, all drafted tokens subsequent to position c are discarded. Conversely, if
all tokens pass verification, an additional token xt+K+1 is sampled from qK+1 by:

xt+K+1 ∼ qK+1 = Mq (x | x≤t+K) .

Speculative sampling. Speculative sampling (Leviathan et al., 2023) is a method to sample from
a target distribution q(x) using an auxiliary distribution p(x). We draw x from p(x) and accept it
with probability min(1, q(x)

p(x) ). If rejected, we repeat the process. This is equivalent to accepting

when p(x) ≤ q(x), and rejecting with probability 1 − q(x)
p(x) when p(x) > q(x), drawing from

q′(x) = norm(max(0, q(x) − p(x))) upon rejection. As proven in Appendix A.1 of speculative
sampling, this method equates to sampling directly from the target LLM Mq .

3 POLYBASIC SPECULATIVE DECODING

In this section, we will introduce our polybasic speculative decoding theory. Specifically, in Sec-
tion 3.1, we provide a detailed exposition of our theoretical framework. In Section 3.2, we present
the construction of polybasic speculative decoding along with its algorithmic workflow.
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Figure 1: A comparison of the dualistic and polybasic speculative decoding. Our polybasic spcula-
tive decoding incorporates multiple draft models strategically selected based on Theorems 3.2 and
3.3, and achieve a 4.41× speedup ratio and an improved average acceptance length of 8-12 tokens.

3.1 THEORETICAL FRAMEWORK

In Section 2.2, we delineated the algorithmic workflow of dualistic speculative decoding and con-
ducted a comprehensive analysis. Through this analysis, we discerned that, to analyze the acceler-
ation ratio of polybasic speculative decoding, it is essential to model the acceptance tokens length
and the number of inference iterations between models. Therefore, we begin by postulating that
the acceptance tokens length, denoted as L, can be characterized as a random variable following a
Gaussian distribution with mean µ and variance σ2, expressed as L ∼ N (µ, σ2), where N (µ, σ2)
represents the normal distribution.

For the convenience of discussion, we construct a polybasic speculative decoding system involv-
ing a sequence of models {Mi}ni=1, where models with higher inferential capacity and larger
parameter counts serve as “target models” for their immediate successors. Specifically, for any
i ∈ {1, . . . , n − 1}, model Mi acts as the target model for Mi+1. The resulting “draft model”, de-
noted as Di, is composed of the models (Mi, . . . ,Mn) and exhibits inferential capabilities more
closely aligned with the next higher-level model Mi−1. This hierarchical structure can be for-
mally expressed as Di = (Mi, . . . ,Mn), for i ∈ {1, . . . , n − 1}. This design principle aims to
incrementally increase the token acceptance length of the entire system, denoted as LDi

, such that
E[LDi

] > E[LDi+1
], for i ∈ {1, . . . , n− 2} where E[·] denotes the expected value operator. Then,

to optimize the performance of our polybasic speculative decoding, we introduce the concept of ideal
forward count, denoted as ϕi for model Mi, which represents the optimal number of forward passes
required to generate tokens that are likely to be accepted by the previous model Mi−1. Through
empirical analysis, we found that the system achieves its maximum acceleration ratio when the ϕi

satisfies:

ϕi =


N
L1

if i = 1
N

Li·
⌈

Li−1
Li

⌉ if 1 < i < n

α · ϕn−1 if i = n

where N is the total number of tokens, α is a scaling factor related to the inferential capability of
the smallest model Mn and the specific speculative decoding method employed. To further analyze
the ideal inference time of polybasic speculative decoding, we can first propose the lemma A.1
Lemma 3.1. We can substitute L with its expected value E[L].

The rigorous proof of this substitution is provided in Appendix A.3. Combined with the ϕi and
LemmaA.1, we can now express the ideal inference time T , which represents the theoretical optimal
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inference time of our polybasic speculative decoding system:
T = TM1

+ TD2

= ϕ1 · T1 +

n∑
i=2

ϕi · Ti

=

n−1∑
i=1

N

E[Li] ·
⌈
E[Li−1]
E[Li]

⌉ · Ti + α · N

E[Ln−1] ·
⌈
E[Ln−2]
E[Ln−1]

⌉ · Tn

where Ti is the average inference time of the i-th model, and E[L0] = 0.

To facilitate the optimal selection of models for polybasic speculative decoding, we propose a set
of design guidelines. To elucidate the efficacy of these guidelines, we extend our analysis from a
two-model system to a three-model configuration, using this expansion as an illustrative example.
Specifically, we propose Theorem 3.2, which serves as a foundational principle for our framework.
Theorem 3.2. If either of the following conditions is satisfied:

T ′
2

T1
< 2E[L2]

′ ·
(

1

E[L1]
− 1

E[L1]′

)
or

T ′
2

T2
< α ·

(
E[L1]

2E[L2]′
− 1

)
where E[L1]

′ > E[L1] and 2E[L2]
′ > E[L1], then the total inference time of the three-model

speculative decoding is less than the dualistic speculative decoding.

Proof. For i = 2:

T =
N

E[L1]
· T1 + α · N

E[L1]
· T2 (1)

For i = 3:

T =
N

E[L1]′
· T1 +

N

E[L2]′ ·
⌈
E[L1]′

E[L2]′

⌉ · T ′
2 + α · N

E[L2]′ ·
⌈
E[L1]′

E[L2]′

⌉ · T ′
3 (2)

where Ti is the inference time of the i-th model, α is considered to be equal in both equations, and
T2 = T ′

3.

Because
⌈
E[L1]

′

E[L2]′

⌉
≥ 2, we can calculate the difference between Equation 1 and Equation 2:

N ·
(

1

E[L1]′
− 1

E[L1]

)
· T1 +

N

2E[L2]′
· T ′

2 + α ·N ·
(

1

2E[L2]′
− 1

E[L1]

)
· T2 < 0

The expression is less than 0 if either of the following conditions is met:

Condition 1: Sum of the first two terms is less than 0

N ·
(

1

E[L1]′
− 1

E[L1]

)
· T1 +

N

2E[L2]′
· T ′

2 < 0

⇔T ′
2

T1
< 2E[L2]

′ ·
(

1

E[L1]
− 1

E[L1]′

)
OR

Condition 2: Sum of the last two terms is less than 0
N

2E[L2]′
· T ′

2 + α ·N ·
(

1

2E[L2]′
− 1

E[L1]

)
· T2 < 0

⇔T ′
2

T2
< α ·

(
E[L1]

2E[L2]′
− 1

)
Therefore, the entire expression is less than 0 when either of the following inequalities is satisfied:

T ′
2

T1
< 2E[L2]

′ ·
(

1

E[L1]
− 1

E[L1]′

)
OR

T ′
2

T2
< α ·

(
E[L1]

2E[L2]′
− 1

)
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This theorem provides a theoretical foundation for model selection in polybasic speculative decod-
ing and establishes a basis for computing the ideal acceleration ratio. Then we use Theorem 3.2
to construct a polybasic speculative decoding model. However, we discovered instances of unsta-
ble acceptance token length, which affected the method’s acceleration. Therefore, we conduct an
analysis of the sampling method.

Specifically, we found that using speculative sampling can lead to more stable acceptance token
length. By using speculative sampling, the number of tokens produced can be modeled as a capped
geometric variable (Leviathan et al., 2023), with success probability 1− α and cap n.

µ = E[L] =
1− αn+1

1− α
(3)

where α represents the failure probability in each step, and n is the maximum number of steps.
The detailed derivation and proof of Equation 3 can be found in Appendix A.1. Building upon this
definition, we proposed Theorem 3.3 during our comparative analysis of speculative sampling.

Theorem 3.3. When the success probability 1−α is high, the acceptance token length exhibits very
low relative variability.

Having established the expected value µ, we can employ a similar approach to calculate the vari-
ance σ2 of the token generation process. The detailed derivation and proof for σ2 are presented in
Appendix A.2.

σ2 = V ar(L) =
α[1− (n2 − 1)αn]− (n2 − 1)αn+1

(1− α)2

Based on the expressions for µ and σ2, we can now derive a measure of relative variability in our
polybasic speculative decoding:

σ

µ
=

√
α[1− (n2 − 1)αn]− (n2 − 1)αn+1

(1− α)(1− αn)
(4)

As α → 0, σ
µ → 0. This indicates that when the success probability is high (i.e., 1− α is high), the

system exhibits very low relative variability (Appendix A.3). This means the token generation pro-
cess becomes highly stable and predictable, thus supporting the conclusion that speculative sampling
can effectively reduce variability in the polybasic speculative decoding. This stability contributes to
improving the overall efficiency and performance of the system.

3.2 ALGORITHM

We propose a theoretical framework for polybasic speculative decoding, founded on the compo-
sition of dualistic speculative decoding units. This framework establishes a hierarchical structure
of models, where combinations of varying model sizes yield draft models with enhanced inference
capabilities. By calculating the average acceptance token length and ideal inference time for each
dualistic unit, and applying the criteria established in Theorems 3.2 and 3.3, we can optimize the
selection of dualistic processes to construct polybasic speculative decoding systems with superior
acceleration ratios. This approach allows for the systematic design of more efficient large language
model inference systems. Based on the framework, we propose a construction method for a poly-
basic speculative decoding that can reduce the inference time of the original dualistic system and
improve the acceleration ratio.

First, we can select a suitable dualistic speculative decoding, such as EAGLE (Li et al., 2024a;b),
SpS (Leviathan et al., 2023), etc. We choose EAGLE as the smallest draft model. EAGLE is
a method that performs speculative sampling at the feature layer, achieving impressive inference
acceleration.

Then, we selected a 4-bit quantization LLM as the intermediate model M2. This choice is motivated
by both Theorem 3.2 and Theorem 3.3. The 4-bit quantization LLM can maintain good accuracy
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while achieving fast inference speeds after deployment. Through calculations presented in Table 1,
we can verify that its post-processing time (Tpost) is indeed less than the pre-processing time (Tpre)
of the target model M1, satisfying the necessary condition outlined in Theorem 3.2. Additionally,
Theorem 3.3 suggests that the efficiency of speculative sampling is optimized when adjacent models
have similar capabilities. In this case, we use AffineQuant (Ma et al., 2024) and OmniQuant (Shao
et al., 2023) to quantize the target model M1, ensuring that M1 and M2 have comparable capabilities
while maintaining the performance advantages of the original model.

Finally, we use speculative sampling to ensure the stability of accepted tokens. This approach satis-
fies the necessary condition from Theorem 3.2 and aligns with the efficiency optimization principle
from Theorem 3.3, potentially contributing to the overall acceleration and performance of the poly-
basic speculative decoding.

Table 1: Comparison of Single Model Performance (Ti) and Dualistic Model Metrics (µi). Based
on these , we can calculate and compare the T values for both the dualistic and polybasic systems.

Single Model Dualistic Model
Model Ti Combination µi

M1: Vicuna-7B 25ms M1 −M2 6.26
M2: Affinequant Quantized 7ms M1 −M3 4.34
M3: EAGLE 4ms M2 −M3 4.36

We present the algorithm1 of our polybasic speculative decoding.

4 EXPERIMENTS

Models and tasks. We conducted experiments on Vicuna-7B, LLaMA2-chat-7B, and LLaMA3-
7B-Instruct. We evaluated our multi-model speculative system in SpecBench(Xia et al., 2024),
across multiple tasks including multi-turn conversation, translation, summarization, question an-
swering, mathematical reasoning, and retrieval-augmented generation, employing the MT-bench
(Zheng et al., 2023), WMT14 DE-EN, CNN/Daily Mail (Nallapati et al., 2016), Natural Questions
(Kwiatkowski et al., 2019), GSM8K (Cobbe et al., 2021), and DPR Karpukhin et al. (2020). Specu-
lative sampling (Leviathan et al., 2023) conducted experiments with a batch size of 1, similarly, the
majority of our experiments also adopted this setting.

Metrics. Like other speculative sampling-based methods, we assess acceleration effects using the
following metrics:

• Walltime speedup ratio c : The actual test speedup ratio relative to vanilla autoregressive
decoding.

• Average acceptance length µ : The average number of tokens accepted per forward pass of
the target LLM.

Training and Quantization. For training, we follow the setup outlined in EAGLE (Li et al., 2024a),
conducting training on the ShareGPT dataset. We trained a corresponding draft model for both the
target model and its respective quantized model. For quantization, we primarily use Affinequant
(Ma et al., 2024) as our quantization method. We set both the weight quantization bits and activation
quantization bits to 4, with a group size of 128. All our experiments, including training, inference,
and the reproduction of EAGLE results, were conducted on NVIDIA A800 80G GPUs, ensuring
consistent and comparable performance across all aspects of our study.

4.1 EFFECTIVENESS

Figures 2 and 3, along with Table 2, display the speedup ratios of our polybasic speculative decoding
system. We have demonstrated that constructing polybasic speculative decodling system based on
our two proposed claims can achieve superior acceleration compared to dualistic systems. In special-
ized categories such as MT-bench, Translation, QA, and Math, our approach consistently achieves
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Algorithm 1 Three-model Speculative Model
Require: Target language model M1, draft model M2 and M3, input sequence x1, . . . , xn, block size K,

target sequence length N , drafting strategy DRAFT, verification criterion VERIFY, and correction strategy
CORRECT;

1: initialize cnt← 0,m← n
2: while n < N do

// Drafting: obtain distributions from M3 efficiently
3: Set p1, . . . , pK ← DRAFT (x≤n,M3)

// Drafting: sample K drafted tokens
4: Sample x̃i ∼ pi, i = 1, . . . ,K

// Verification: compute K + 1 distributions in parallel
5: Set qi ←M2 (x | x≤n, x̃<i) , i = 1, . . . ,K + 1

// Verification: verify each drafted token by M2

6: for i = 1 : K do
7: if VERIFY (x̃i, pi, qi) then
8: Set xn+i ← x̃i and n← n+ 1
9: else

10: xn+i ← CORRECT (pi, qi)
11: and Exit for loop.
12: end if
13: end for
14: If all drafted tokens are accepted, sample next token xn+1 ∼ qK+1 and set n← n+ 1.

// Verification: verify each drafted token by M3

15: if cnt < µ1 then
16: cnt← cnt+ accepted drafted tokens
17: continue
18: else
19: Set qi ←M3 (x | x≤m, x̃<i) , i = 1, . . . , cnt+ 1
20: for i = 1 : cnt do
21: if VERIFY (x̃i, pi, qi) then
22: Set xm+i ← x̃i and m← m+ 1
23: else
24: xm+i ← CORRECT (pi, qi)
25: and Exit for loop.
26: end if
27: end for
28: n← m
29: If all drafted tokens are accepted, sample next token xm+1 ∼ qcnt+1 and set n← m+ 1.
30: end if
31: end while

over 3x acceleration, with notable peaks in performance. The LlaMA2chat 7B model attains a 4.10×
acceleration in the MT-bench, while the Vicuna 7B model reaches an impressive 4.43× acceleration
in the Math task. These task-specific results represent substantial improvements over existing tech-
niques like EAGLE, which typically achieve acceleration ratios between 2× and 3×. Overall, our
method maintains strong acceleration ratios above 3× for all tested models (3.16× for Vicuna 7B,
3.31× for LlaMA3 8B Instruct, and 3.66× for LlaMA2chat 7B). This consistent performance across
varied tasks and models underscores the versatility and effectiveness of our polybasic speculative
decoding system.

As show in Table 2, our method demonstrates remarkable efficiency through significantly increased
average acceptance lengths across all tasks. We approach consistently achieves average acceptance
lengths above 9.4 tokens, with LlaMA2chat 7B model showcasing exceptional performance. This
model reaches an impressive average acceptance length of 10.47 tokens in the MT-bench and main-
tains high efficiency across other tasks, with an overall average of 9.84 tokens. These acceptance
lengths significantly surpass those of existing speculative sampling methods.

4.2 ABLATION STUDY

To investigate the impact of speculative sampling and greedy sampling on the stability of average
acceptance length in our multi-tier system, we conducted an ablation study. We randomly selected

8
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Figure 2: Speedup ratio of Vicuna, LLaMA2-Chat and LLaMA3 Instruct inference latency on the
Spec-Bench. Our approach consistently achieves the highest speedup ratios, ranging from 3.16× to
an impressive 3.66×, significantly outperforming both the EAGLE method and the vanilla baseline.
The consistent outperformance over existing methods, culminating in the highest overall speedup
on the Spec-Bench.

Figure 3: Performance Comparison across different tasks. Our method demonstrates its peak per-
formance in the math task, achieving an impressive 4.43× speedup with the Vicuna 7B model.

50 questions and applied both sampling methods to generate acceptance length lists. To visualize
the results, we plotted the variances of these two datasets, as shown in the figure 4.

The graph clearly demonstrates that the speculative sampling method exhibits significantly lower
variance compared to the greedy sampling method. This indicates that speculative sampling pro-
duces more consistent and stable acceptance lengths across different queries. In contrast, greedy
sampling shows higher variance, implying greater fluctuations in acceptance lengths between
queries. These findings highlight the advantage of speculative sampling in maintaining the stability
of our polybasic system’s performance.

4.3 LIMITATIONS AND DISCUSS

In dualistic speculative decoding systems, the KV cache size grows linearly with text length, present-
ing a critical bottleneck for inference acceleration. This challenge similarly applies to our polybasic
speculative decoding system. As show in Figure 3 and the table 2, acceleration ratios for RAG
and summarization tasks are notably lower compared to other tasks. Therefore, while implement-
ing our two claims to construct a polybasic speculative decoding system, it is crucial to consider
the KV cache issues introduced by incorporating additional models(Xiao et al., 2023)(Zhang et al.,

9
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Table 2: Average acceptance length and speedup ratio on different tasks

MT Trans. Sum. QA

Model c µ c µ c µ c µ

Our
Vicuna 7B 3.77x 11.22 3.07x 7.76 2.01x 10.18 3.65x 9.53
LlaMA3 8B Instruct 3.70x 9.97 3.39x 8.86 3.02x 9.38 3.16x 9.08
LlaMA2chat 7B 4.10x 10.47 3.46x 9.15 3.41x 9.86 3.61x 9.49

EAGLE
Vicuna 7B 3.19x 4.76 2.07x 3.22 2.59x 3.96 2.45x 3.71

LlaMA3 8B 2.69x 3.99 2.37x 3.53 2.23x 3.58 2.21x 3.42

LlaMA2chat 7B 3.04x 4.48 2.61x 3.96 2.50x 4.04 2.55x 4.05

Math RAG Overall

Model c µ c µ c µ

Our
Vicuna 7B 4.43x 10.28 1.78x 10.31 3.16x 9.88
LlaMA3 8B 3.87x 10.08 2.71x 9.24 3.31x 9.44
LlaMA2chat 7B 4.02x 9.99 3.31x 10.08 3.66x 9.84

EAGLE
Vicuna 7B 3.19x 4.72 2.15x 3.95 2.61x 4.34

LlaMA3 8B 2.83x 4.20 2.23x 3.95 2.44x 3.82

LlaMA2chat 7B 3.04x 4.68 2.40x 4.19 2.70x 4.30

Figure 4: Variance Comparison of Greedy vs. Speculative Sampling.

2024b)(Zhang et al., 2024a)(Jin et al., 2024)(Jiang et al., 2023)(Ge et al., 2023). We plan to conduct
further research on this aspect in our future work.

5 CONCLUSION

In this papaer, we introduce the polybasic speculative decoding system, an efficient framework for
speculative sampling. Within this framework, we deduce a theorem to control the ideal inference
time of speculative decoding systems. And we theoretically demonstrate the benefits of speculative
sampling for enhancing the stability of average token acceptance length in polybasic speculative
systems. We conducted extensive evaluations using various LLMs across Spec-Bench with multiple
datasets. In our experiments, we achieved the highest average token acceptance and substantial
speedup ratios.

10
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Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference accel-
eration framework for large language model with lossless generation accuracy. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6344–6355,
2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Yichong Zhou, Genta Indra Wang, Yuxin Cao, Tianyu Hu, Yan Zhang, and Lingpeng Zhang.
Distillspec: Improving speculative decoding via knowledge distillation. arXiv preprint
arXiv:2311.08180, 2023.

A STATISTICAL ANALYSIS OF ACCEPTANCE LENGTH

A.1 CALCULATION OF MEAN ACCEPTANCE LENGTH

Given a geometric distribution truncated after n trials, where the probability of success is p = 1−α.

We want to calculate:

S =

n−1∑
k=1

k · (1− p)k−1

Using the method of differences:

1. Define:

T =

n−1∑
k=1

(1− p)k−1 =
1− (1− p)n−1

p

2. Calculate S using shifted difference.

Consider the series:

S = 1 + 2(1− p) + 3(1− p)2 + · · ·+ (n− 1)(1− p)n−2

(1− p)S = (1− p) + 2(1− p)2 + 3(1− p)3 + · · ·+ (n− 1)(1− p)n−1

Subtract the two equations:

S − (1− p)S = 1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−2 − (n− 1)(1− p)n−1

pS = T − (n− 1)(1− p)n−1

3. Substitute T :

pS =
1− (1− p)n−1

p
− (n− 1)(1− p)n−1

S =
1− (1− p)n−1 − n(1− p)n−1 + (1− p)n

p2

The expectation E(N) is:

E(N) =

n−1∑
k=1

k · p · (1− p)k−1 + n · (1− p)n−1
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Substitute for S:

E(N) =
1− n(1− p)n−1 + (n− 1)(1− p)n

p
+ n · (1− p)n−1

Simplifying:

E(N) =
1− (1− p)n

p

This formula gives the expected number of trials until success, assuming the n-th trial is successful.

A.2 CALCULATION OF VARIANCE IN ACCEPTANCE LENGTH

We begin by recalling the expectation of this distribution:

E(N) =

n−1∑
k=1

k · p · (1− p)k−1 + n · (1− p)n−1 =
1− (1− p)n

p

To derive the variance, we need to calculate E(N2). Let’s define:

E(N2) =

n−1∑
k=1

k2 · p · (1− p)k−1 + n2 · (1− p)n−1

To simplify our calculations, we introduce an auxiliary sum:

S =

n−1∑
k=1

k2 · (1− p)k−1

We can now apply the method of differences:

S = 1 + 4(1− p) + 9(1− p)2 + · · ·+ (n− 1)2(1− p)n−2

(1− p)S = (1− p) + 4(1− p)2 + 9(1− p)3 + · · ·+ (n− 1)2(1− p)n−1

Subtracting these equations yields:

pS = 1 + 3(1− p) + 5(1− p)2 + · · ·+ (2n− 3)(1− p)n−2 − (n− 1)2(1− p)n−1

We can further simplify this expression by splitting the sum and recognizing geometric series:

pS = [1 + (1− p) + (1− p)2 + · · ·+ (1− p)n−2]

+ [2(1− p) + 4(1− p)2 + · · ·+ (2n− 4)(1− p)n−2]

− (n− 1)2(1− p)n−1

This simplifies to:

pS =
1− (1− p)n−1

p
+ 2(1− p)

1− (1− p)n−2

p
− (n− 1)2(1− p)n−1

Further algebraic manipulation leads to:
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S =
1− (1− p)n−1

p2
+

2(1− p)[1− (1− p)n−2]

p2
− (n− 1)2(1− p)n−1

p

Substituting back into the expression for E(N2):

E(N2) = pS + n2(1− p)n−1

We arrive at the final expression for E(N2):

E(N2) =
1− (1− p)n(n2 + 2n− 1) + 2(1− p)n+1(n− 1)

p2

Now we can calculate the variance using the formula V ar(N) = E(N2)− [E(N)]2:

V ar(N) = E(N2)− [E(N)]2

=
1− (1− p)n(n2 + 2n− 1) + 2(1− p)n+1(n− 1)

p2
−

[
1− (1− p)n

p

]2
After simplification, we obtain the final expression for the variance:

V ar(N) =
(1− p)[1− (1− p)n(n2 − 1)]− (1− p)n+1(n2 − 1)

p2

This formula provides the variance of the truncated geometric distribution in terms of the success
probability p and the truncation point n.

A.3 ANALYSIS OF ACCEPTANCE TOKEN LENGTH

Lemma A.1. We can substitute L with its expected value E[L].

To analyze the ideal forward count in our polybasic speculative decoding, we introduce a probabilis-
tic framework to account for the variability in token generation across different models. Let Li be
a random variable representing the number of tokens generated by the model, with E[Li] = µi and
Var(Li) = σ2

i .

We focus on the term 1/Li, which is a critical component influencing the ϕi value. To analyze this
term, we apply a second-order Taylor series expansion of the function f(Li) = 1/Li around µi:

f(Li) ≈ f(µi) + f ′(µi)(Li − µi) +
1

2
f ′′(µi)(Li − µi)

2

where f(µi) = 1/µi, f ′(µi) = −1/µ2
i , and f ′′(µi) = 2/µ3

i .

Taking the expectation of the expanded function, we obtain:

E[f(Li)] ≈
1

µi
− 1

µ2
i

E[Li − µi] +
1

µ3
i

E[(Li − µi)
2]

Given that E[Li − µi] = 0 and E[(Li − µi)
2] = σ2

i , we arrive at:

E[f(Li)] ≈
1

µi
+

σ2
i

µ3
i

The term σ2
i /µ

3
i represents the additional expected value of 1/Li due to the variability of Li. The

significance of this term depends on the relative magnitude of the variance σ2
i compared to the square
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of the mean µ2
i . If σ2

i ≪ µ2
i , indicating that the variability of Li is small relative to its expected

value, then the σ2
i /µ

3
i term becomes negligible compared to 1/µi. This observation provides a

basis for potential simplification of our model in cases where the variability of Li is sufficiently low
relative to its mean.

This analysis demonstrates that E[1/Li] ≈ 1/E[Li] when the coefficient of variation is small. Con-
sequently, we can substitute L with its expected value E[L] in the ideal inference time equation
without significant loss of accuracy, as the effect of variability becomes negligible under these con-
ditions.
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