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ABSTRACT

Distribution alignment methods effectively impute missing values in tabular
datasets by assuming consistent distributions across batches and minimizing dis-
crepancies among them. However, directly applying these methods to graph data
is challenging: (1) standard discrepancy measures neglect structural information,
and (2) noise in graphs tends to be propagated and amplified through structural
dependencies, ultimately degrading imputation performance. To address these
challenges, we propose the Relaxed Graph Spectral Discrepancy (RGSD), a dis-
crepancy designed to compare sets of graphs by capturing both structural patterns
and inter-node correlations through spectral decomposition, along with a selective
matching regularization to mitigate the impact of noise. Building on RGSD, we
introduce the RGSD for Imputation (RGSImp) framework, which iteratively refines
graph imputation results by minimizing the RGSD between observed and imputed
data. Experiments on multiple benchmarks demonstrate that RGSImp effectively
incorporates graph structure and node correlations, achieving superior performance
over state-of-the-art graph imputation methods in both imputation accuracy and
downstream tasks.

1 INTRODUCTION

Learning from incomplete data is a pervasive challenge in machine learning, as missing observa-
tions can distort statistical estimates and severely degrade the performance of downstream mod-
els (Stekhoven & Biithlmann, 2011; Um et al., 2023; Zhang et al., 2023). While a wide variety of
imputation strategies have been proposed, recent progress highlights distribution alignment—based
methods as a particularly promising direction (Muzellec et al., 2020; Zhao et al., 2023). These
methods exploit a simple yet powerful assumption: different batches drawn from the same dataset
should exhibit consistent distributions. By iteratively resampling incomplete batches and updating
missing entries to reduce inter-batch distributional discrepancies, they achieve imputations that are
not only statistically coherent with the overall dataset, but also efficient to train and straightforward
to implement.

Despite their effectiveness in tabular or other non-structured settings (Muzellec et al., 2020; Zhao et al.,
2023), directly applying distribution alignment methods to graph data remains highly challenging.
Our experiments reveal that existing alignment-based approaches yield unsatisfactory performance
when faced with the unique characteristics of graph-structured signals. A widely recognized principle
is that the success of distribution alignment crucially depends on the discrepancy measure employed,
which must be tailored to the structural and semantic properties of the target data (Liu et al., 2022;
Wang et al., 2023; Courty et al., 2016). Motivated by this, our goal is to develop improved discrepancy
measures that capture the distinctive nature of graph data and, in turn, enhance graph imputation
performance.

This raises several key research questions: (i) Can existing discrepancy measures adequately
account for the structural dependencies inherent in graphs? (ii) How should one design measures
specifically suited for comparing distributions of graph signals? (iii) To what extent can well-
crafted discrepancy measures translate into tangible improvements in imputation quality? The
essence of graph data resides in the interdependence among nodes, which encapsulates rich semantic
structures. However, conventional Wasserstein distance computes pairwise Euclidean discrepancies
in a node-wise manner, thereby presuming independence across nodes and overlooking cross-node
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correlations and the structural semantics intrinsic to graphs. In practice, graph data often contain
various forms of noise in node attributes, which are especially detrimental when attributes are
missing: such noise can propagate along edges, become amplified through structural dependencies,
and ultimately distort distributional alignment.

A straightforward extension is to employ node-patch—based distances, in which sliding windows or
graph convolutions aggregate local neighborhoods prior to distributional alignment. Nonetheless,
even these approaches often perform distributional matching on nodes in isolation, leaving complex
correlation patterns underexplored. To address this limitation, we propose a novel Relaxed Graph
Spectral Discrepancy (RGSD), which leverages the Graph Fourier Transform (GFT) to project spa-
tial signals into the frequency domain. Analogous to classical Fourier analysis, the GFT decomposes
graph signals into spectral components, each representing specific correlation modes. By comparing
distributions in this spectral domain, RGSD effectively captures and aligns the latent relational struc-
tures of graph signals. RGSD relaxes the mass-conservation constraint via a Flexible Mass Coupling,
which allows the transport to ignore high-cost correspondences arising from noisy or missing node
attributes and thus enhances robustness. Building on this foundation, we further introduce a Relaxed
Graph Spectral Imputation framework (RGSImp), which iteratively minimizes RGSD across
graph batches to refine missing attributes while preserving both statistical consistency and structural
patterns. Theoretically, we prove that RGSImp is robust to noise, ensuring more reliable imputations
compared with existing methods.

Contributions. The main contributions of this work are as follows:

* We propose the RGSD discrepancy, which innovatively extends optimal transport to compare
distributions of graph signals by encapsulating node interdependence and ensuring robustness to
noise.

* We develop RGSImp, the first alignment-based framework for graph imputation. It avoids the need
for masking observed entries during training and circumvents the difficulties of training parametric
models on incomplete data, thereby improving both sample efficiency and usability.

* We perform extensive experiments on diverse real-world benchmarks, showing that RGSImp
consistently outperforms existing methods for MDFI on graphs.

2 RELATED WORK

Missing node features in graph data pose a fundamental challenge that can undermine graph-based
learning, motivating the development of MDFI methods (Um et al., 2023; Zhang et al., 2023). For
example, in EEG datasets (Demir et al., 2021; Hou et al., 2024), missing readings from faulty
electrodes can distort brain network patterns and impair downstream tasks. Broadly, MDFI methods
fall into two main paradigms: discriminative approaches and generative approaches, each with distinct
strategies and strengths.

Within the discriminative paradigm, missing node features are predicted directly from observed data.
Most intuitive approaches are GNN-based (Kipf & Welling, 2017; Velickovic et al., 2018; Hamilton
et al., 2018; Xu et al., 2019), which impute node features through message passing mechanisms.
Beyond this, several methods (Chen et al., 2022) introduce specialized designs to enhance imputation:
for instance, RITR (Tu et al., 2025) initializes missing values with Gaussian noise or structural
embeddings and refines them via structure—attribute consistency constraints and adaptive information
aggregation. Despite their effectiveness, these models face challenges in model selection and often
require masking observed features during training, which reduces sample efficiency under high
missingness. Beyond GNN-based strategies, traditional discriminative tabular imputation methods
can also be adapted to the MDFI setting. Round-robin models (Royston & White, 2011; Stekhoven &
Biihlmann, 2011) estimate each missing feature as a function of observed ones, while factorization-
based methods (Zhao et al., 2023; Muzellec et al., 2020) treat the node—feature matrix or tensor as a
partially observed structure, recovering missing entries by learning latent factors through optimization.

Generative approaches model the joint distribution of node features and graph structure to impute
missing values, and earlier methods such as denoising autoencoders (DAE) and GAIN can be directly
adapted to graphs. Representative models include variational graph autoencoders (VGAE) (Kipf &
Welling, 2016), graph GANs (Wang et al., 2017), and diffusion-based models ((Du et al., 2024)).
While these approaches learn probabilistic representations of nodes and edges to capture complex



Under review as a conference paper at ICLR 2026

o
]
o

w 0.80 w . WiF)
0.65 —_ P —_— P W

o
o
o

o
Y
a

Discrepancy
o
(2]
o

Discrepancy
. o
3
Discrepancy

o
I3
o
o
]
o
o
o0
o

16 32 64 128 256 512 16 32 64 128 256 512 16 32 64 128 256 512
Batch Size Batch Size Batch Size

(a) Discrepancy on MIT-BIH, PhysioBank and Mental State.

Figure 1: Case study on the discrepancies calculated in the spatial and frequency domains.

non-linear dependencies, early designs relying on single observations are limited in their ability to
model multi-node interactions. In contrast, recent generative MDFI methods (Gao et al., 2022; You
et al., 2020; Chen et al., 2025) explicitly encode such interactions and support both continuous and
discrete features, thereby overcoming limitations of prior GNN-based matrix completion techniques;
for example, GRAPE (You et al., 2020) models cross-node dependencies, while CGIR (Chen et al.,
2025) leverages clustering to enhance generation quality.

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Let G = (V, ) be a fixed graph with [V| = N nodes and edge set £. Denote by A € RV*Y the
adjacency matrix of G and by Deg = diag(ds, . .., dy) its degree matrix. We consider a collection
of B realizations of node attributes. The ideally complete attribute matrix of the b-th realization
is denoted by X (1d:0) ¢ RN*P where D is the feature dimension. Each realization is subject to

missing entries, indicated by a binary mask matrix M®) € {0,1}¥*P, where M") = 1 if the
attribute of node n in feature dimension d is missing, and O otherwise. The observed attribute matrix
is then given by

x(obsb) . x(idd) o (1— M(b)) +nan® M®,
where © denotes the Hadamard product.

The goal of graph imputation is to reconstruct imputed matrices X ("P:0) ¢ RN*P for p =
1,..., B, leveraging both the observed entries in each X (obs,0) and the structural prior encoded in G,
such that X (imp:0) ~ X (id,b) holds across all realizations.

3.2 GRAPH FOURIER TRANSFORM

The (unnormalized) graph Laplacian is defined as L = Deg — A, which is symmetric and positive
semi-definite. It admits the eigen-decomposition L = UAU T, where U = [u1, ..., uy] contains
the orthonormal eigenvectors and A = diaggé\l, ..., An) the correspondmg elgenvalues The Graph
Fourier Transform (GFT) of a signal x € R" is deﬁned as # = U "z, and the inverse GFT is given
by z =Uz.

3.3 OPTIMAL TRANSPORT

Optimal Transport (OT) provides a rigorous framework to measure the discrepancy between two
probability distributions by identifying the most cost-effective way to transform one into the other.
The original formulation, proposed by Monge (1781), posed the problem as finding an optimal
mapping between continuous distributions, which suffered from difficulties related to existence and
uniqueness. To address these issues, Kantorovich (2006) introduced a relaxation that allows for
probabilistic couplings, leading to the well-known formulation:

Definition 3.1 (Optimal Transport). For empirical distributions o = {z;, a; }]-; and 8 = {y;, b;}72,
with n and m samples, respectively, the Kantorovich problem (Kantorovich, 2006) seeks a feasible
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Figure 2: Overall framework of RGSImp.

transport plan 7" € R’*™ to map « to § at minimum cost:

W(a, B) = Terlril(igﬁ)<D7T>, (1)

where the admissible set is
Mo, f) = {T €RY™ Y Ty =as, i =1,ooom 3Ty =bj, j=1...om}. ()
=1 i=1

Here, W(a, ) € R denotes the transport cost (a.k.a. the Wasserstein discrepancy), D € R™*™ is the
cost matrix with entries D;; = ||z; — y;||?, and a = [a1,...,a,], b = [by,...,by,] are the sample
masses of « and 3.

In our setting, the graph topology G is fixed, while multiple realizations of node attributes
{X (Obs’b)}szl can be regarded as empirical distributions supported on the same vertex set. Ap-
plying OT thus provides a principled mechanism to align attribute distributions across realizations.

However, the classical OT problem enforces exact mass conservation between distributions. When
some attributes are missing or corrupted, this strict requirement forces the transport plan to assign
mass to noisy or unobserved entries, thereby distorting the alignment. To mitigate this limitation,
subsequent works (Wang et al., 2023; Chizat et al., 2020; Fatras et al., 2021b) have proposed relaxed
variants of OT that soften the marginal constraints, allowing high-cost mass to be ignored. Such
relaxations enhance robustness to noise and missing attributes while preserving the ability of OT to
capture shared structural patterns.

4 METHOD

4.1 MOTIVATION

Distribution alignment has proven effective for imputing missing data in tabular datasets, offering
advantages in sample efficiency and implementation simplicity. These methods operate by iteratively
sampling subsets of the incomplete dataset and updating missing entries to minimize distributional
discrepancies between these subsets. This ensures that the imputed values preserve statistical
properties consistent with the entire dataset, under the assumption that different subsets from the
same dataset share the same distribution.

However, applying distribution alignment to graph imputation presents significant challenges. Ex-
isting alignment-based methods perform poorly on graph-structured data. In particular, standard
discrepancy measures fail to account for the complex dependencies among nodes, and they are
sensitive to noisy or missing attributes, which are common in real-world graphs.

It is well-recognized that the effectiveness of distribution alignment heavily depends on the choice
of discrepancy measure, which must be adapted to the specific properties of the data and the task.
Accordingly, for graph imputation, it is crucial to design a discrepancy measure that captures both
the structural correlations and the attribute distributions across nodes. This raises several important
questions: Do existing discrepancy measures adequately reflect the dependencies in graph data? How
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should a discrepancy measure be formulated to compare distributions of node attributes across graphs?
Does the proposed discrepancy improve the imputation of missing attributes in graph-structured
datasets?

4.2 PAIRWISE GRAPH SPECTRAL DISCREPANCY

Graph data are inherently structured, with node interdependencies providing rich semantic information
crucial for comparison. However, the standard Wasserstein discrepancy overlooks this structure by
computing distances node by node, thereby ignoring correlations. A straightforward extension is
to introduce message passing prior to the comparison step, allowing each node representation to
aggregate information from its neighbors. Alternatively, one may construct node sequences through
mechanisms such as sliding windows or fixed-length random walks, and then perform comparisons at
the sequence level. Although these strategies partially incorporate neighborhood information, they
remain essentially node-centric, failing to capture the more complex structural dependencies inherent
in graph data and being susceptible to the risk of over-smoothing.

To address this limitation, we propose the Pairwise Graph Spectral Discrepancy (PGSD), which
leverages the Graph Fourier Transform (GFT) to project graph signals from the spatial domain into
the spectral domain. Specifically, GFT decomposes each graph into a set of spectral components
corresponding to the eigenvectors of the graph Laplacian, also known as graph harmonics, with each
component capturing distinct modes of variation across the graph topology. By comparing graphs
in the spectral domain, PGSD effectively exploits the structural information encoded in the graph.
Building on PGSD, we further introduce a graph-frequency—enhanced Wasserstein distance, defined
in Definition 4.1, which combines the statistical rigor of optimal transport with the expressive power
of spectral representations.

Definition 4.1 (Pairwise Graph Spectral Wasserstein Discrepancy). The distance between two
distributions «, § of graph signals is defined as

W(G)(a7ﬁ) — Werﬁl(igﬂ) <D(G),7T> ,

where N is the number of nodes, and D(®) is the pairwise distance matrix with elements computed
using the Pairwise Graph Spectral Discrepancy (PGSD):

DY = ||Fg(a) — Fo (B, ,

with Fg denoting the Graph Fourier Transform (GFT), which projects node attributes into the spectral
domain defined by the eigenvectors of the graph Laplacian.

Case Study. Figure 1 compares the standard Wasserstein distance )V with the graph-
frequency—enhanced Wasserstein JW(©). Remarkably, W(©) decreases consistently with increasing
batch size and achieves comparable performance to YV using substantially smaller batches. For
instance, W(G) with a batch size of 128 closely approximates the value of W computed with a batch
size of 1024. These findings demonstrate the effectiveness of W(S) for graph-structured data, as it
better preserves structural patterns.

4.3 FLEXIBLE MASS COUPLING FOR ROBUST GRAPH ALIGNMENT

Graph data are often affected by noise in node attributes or edges, which can propagate through the
graph due to inter-node dependencies. For instance, in sensor networks, a faulty reading from one
sensor may influence neighboring sensors through spatial correlations; in social networks, unreliable
connections can spread misleading information across communities. This diffusion amplifies the
impact of noise, complicating the reliable computation of distributional discrepancies.

The canonical Wasserstein discrepancy (Definition 3.1) is highly sensitive to such noise. It may
erroneously align samples from distinct modes, yielding inaccurate discrepancy estimates and
misleading imputation updates. This vulnerability stems from the strict mass-matching constraints
in standard OT, which require transporting the entire mass from « to 5 (Wang et al., 2023). As a
result, when a sample from a new mode, denoted as ¢, is introduced into «, the OT plan is forced
to pair J, with elements in /3, distorting the alignment and producing biased discrepancy values.
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Lemma Theorem 4.2 formalizes this behavior, showing that the Wasserstein distance }V increases as
the injected mode ¢, deviates further from typical samples in /.

Lemma 4.2. Suppose that & = (6, + (1 — )« is obtained by perturbing o with a Dirac mass at z
of relative weight ¢ € (0, 1). For any support point y, of B,Fatras et al. (2021a) demonstrate:

W(@.5) = (1= ) Wi )+ ¢(Dlevw) ~ gly) + [ 9d5).

where D(z,y.) denotes the ground cost between z and y., and (f, g) are the optimal dual potentials

of W(a, B).

To mitigate the influence of noisy or anomalous node attributes, it is natural to relax the strict mass-
matching constraints of standard OT, allowing each graph to contribute only a flexible portion of
its total mass to the alignment. Motivated by this idea, we introduce the Relaxed Graph Spectral
Discrepancy (RGSD), which preserves the ability of OT to capture dominant structural and attribute
patterns while reducing the impact of outliers or rare modes. This design accommodates multiple
coexisting patterns within graph distributions and improves the robustness of discrepancy estimation
under noise.

Definition 4.3 (Relaxed Graph Spectral Wasserstein Discrepancy). The RGSD seeks a transport plan
7 € R™™ that aligns the distribution o to 3 at minimal cost under relaxed marginal constraints:

R(a, ) = min <D<G>, Tr> + )\(DKL (71mla) + Dxr (7" 1n|\b)), 3)

where D(G) is the pairwise distance matrix computed using PGSD, X > 0 controls the relaxation
strength, and a and b are the mass vectors of « and f3, respectively. R denotes the RGSW discrepancy.

Here, we provide theoretical analysis to demonstrate the robustness of RGSD to noisy graphs; detailed
proofs can be found in the appendix.:

Theorem 4.4 (Robustness of RGSD to Noisy Graphs). Let o = {aq, ..., an} be a batch of clean
graphs and (3 a reference batch. Suppose a noisy graph &, with relative mass ¢ € (0, 1) is injected
into o, forming

G=(1-Ca+Cd..

Then the RGSW discrepancy (Definition 4.3) satisfies the linear upper bound
R(a,B) < (1= QR(a, B) + ACd(z),

where d(z) = (D(©)(z, B), A, ) denotes the average spectral-domain distance between the noisy
graph z and the graphs in (3, and ) is the relaxation strength.

4.4 RGSIMP: RGSD FOR GRAPH IMPUTATION

While the Relaxed Graph Spectral Discrepancy (RGSD) effectively measures and balances distribu-
tions across graphs, it does not directly perform graph imputation. To bridge this gap, we propose
the RGSImp framework, which leverages RGSD to iteratively refine missing node attributes by
minimizing distributional discrepancies between batches of graphs. The core procedure is illustrated
in Fig. 3 and described as follows.

Initialization. The incomplete graph dataset X (°P) = {X(©Ps0)1 B is first initialized by filling
each missing entry with zeros, producing initial imputation matrices X*=°. These imputed values are
treated as learnable parameters, with gradients tracked during optimization.

Forward Pass. Two batches of graphs, a, 3 € REXN*P are sampled from X* with batch size B.

The RGSD discrepancy R (Definition 4.3) is computed between these batches, capturing both node
attribute differences and structural variations in the spectral domain.

Backward Pass. Gradients of the RGSD discrepancy with respect to the imputed node attributes are
computed using automatic differentiation:
OR  OR

- 4,j=1,...,B
8051',’ a/@]? 2] ) ’ ’
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Table 2: Imputation performance in terms of MSE and MAE on 6 datasets.
Datasets MEFAR Mental State ~ MIT-BIH  PhysioBank =~ PEMSO03 FACED
Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Sinkhorn 0.749 0.995 0.647 0.994 0.649 0.985 0.764 0.971 0.760 0.975 0.771 0911

TDM 0.745 0.996 0.645 0.977 0.631 0.962 0.761 0.968 0.754 0.965 0.675 0.753
GCN 0.751 1.004 0.634 0.969 0.498 0.733 0.728 0.900 0.725 0.903 0.796 0.973
GAT 0.754 1.007 0.607 0.912 0.535 0.705 0.696 0.828 0.663 0.774 0.743 0.863
GraphSAGE 0.792 1.113 0.699 1.075 0.704 1.091 0.815 1.088 0.807 1.088 0.838 1.085
PCNet 0.818 1.188 0.746 1.170 0.746 1.169 0.853 1.181 0.844 1.178 0.872 1.175
MagiNet 0.786 1.139 0.575 0.811 0.441 0.587 0.742 0.939 0.668 0.796 0.549 0.507
RITR 0.755 1.026 0.627 0.954 0.520 0.753 0.640 0.707 0.705 0.861 0.761 0.895
CGIR 0.859 1.324 0.568 0.831 0.452 0.596 0.669 0.800 0.718 0.895 0.549 0.509
MissForest  0.741 0.992 0.574 0.862 0.415 0.495 0.666 0.747 0.603 0.665 0.551 0.514
MICE 1.081 1.945 0.705 0.953 0.390 0.351 0.650 0.720 0.540 0.537 0.407 0.367

RGSImp 0.694 0.989 0.473 0.644 0.262 0.450 0.533 0.561 0.444 0.418 0.131 0.163

Kindly Note: Each entry represents the average results at four missing ratios: 0.1, 0.3, 0.5, and 0.7.
The best and second-best results are bolded and underlined, respectively.

where gradients are calculated via the spectral decomposition of each graph and the optimal transport
plan 7 (ignoring higher-order dependencies for efficiency and stability). Only missing entries are
updated via gradient descent with learning rate 7, while observed entries remain fixed.

Iteration. The forward and backward passes are repeated until early stopping criteria are met on
a validation set. By progressively minimizing RGSD across batches, RGSImp refines the imputed
values to better preserve both attribute consistency and graph structural patterns.

Theoretical Justification.We show that the RGSD defines a valid metric over graph distributions
(Theorem 4.4), is robust to noisy graphs (Theorem 4.4), and that its empirical estimate concentrates
around the population discrepancy with high probability (Theorem C.2). Detailed proofs are provided
in Appendix C.

5 EXPERIMENTS

5.1 EXPERIEMTAL SETTINGS

Datasets: Experiments are conducted on

publicly available graph datasets, including

MIT-BIH (Moody & Mark, 2001), ME- Table 1: Graph structure statistics of datasets. Each
FAR (Derdiyok et al., 2024), Mental State (Bird ~ dataset is represented as multiple graphs with vary-
et al., 2018), PEMSO03 (Liu et al., 2023), ing node and edge counts.

FACED2 (Chen et al, 2023), and Phys- Dataset Graphs Nodes Edges
ioBank (Goldberger et al., 2000). To simulate PEMSO03 76.208 358 360
missing node attributes, a binary mask matrix is FACED 7’20 150 12,054
generated by sampling from a Bernoulli distri- PhysioBank | 31,000 19 192
bution yvith a.sp.eciﬁec! mean corresponding to MIT-BIH 21:892 188 14,884
the desired missing ratio. Mental State | 2,479 989 347,158
MEFAR 27,531 18 98

Baselines: RGSImp is compared against
representative  MDFI methods, including:
(1) classical tabular imputation approaches:
Sinkhorn (Muzellec et al., 2020), TDM (Zhao et al., 2023), MICE (Royston & White, 2011), and
MissForest (Stekhoven & Biihlmann, 2011); (2) GNN-based methods: GCN (Kipf & Welling, 2017),
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Table 3: Varying graph distance results. Table 4: Varying discrepancy results.
MIT-BIH MIT-BIH
Distances MAE AMAE | MSE AMSE | WASS AWASS  Distances | MAE AMAE | MSE AMSE | WASS  AWASS

RGSImp-M | 1.389 - 4.689 - 51.799 - oT 0.288 - 0.455 - 6.708 -

RGSImp-S | 0.494 64.4%] [ 0.782 83.3%/ | 7.860 84.8%] EMD 0.270 6.3%| [ 0448 1.5%]) | 5479 183%/
RGSImp-W | 0.542 61.0%/ | 1.027 78.1%] | 9.466 81.7% uoT 0.288 0.1%] [0452 0.7%]) | 4703 29.9%]
RGSImp 0.222 84.0%J | 0.752 84.0%/ | 2.343 95.5%] Ours 0.194 32.6%] 0354 222%] | 3.811 43.2%]
PhysioBank PhysioBank
Distances MAE AMAE | MSE AMSE | WASS AWASS Distances | MAE AMAE | MSE AMSE | WASS AWASS
RGSImp-M | 1.012 - 1.970 - - oT 0.433 - 0.449 - -
RGSImp-S | 0.708 30.0% | 0.853 56.7%] | 0.930 43.5%] EMD 0474 19%| 0441 1.8%] | 0490 4.1%]
RGSImp-W | 0.778 23.1%/ | 1.169 40.7%/ | 1.350  18.0%/ uoT 0472 23%] 10444 1.1%] | 0484 53%]
RGSImp 0.440 56.5%] | 0.868 55.9%/ | 0916 44.4%] Ours 0405 16.2%] |0.374 16.7%/] | 0468  8.4%)

GAT (Velickovic et al., 2018), GIN (Xu et al., 2019), GraphSAGE (Hamilton et al., 2018), PCINet (Li
etal., 2024), RITR (Tu et al., 2025), MagiNet (Zhou et al., 2024) and CGIR (Chen et al., 2025).

Implementation Details: For all methods, we set the batch size to 512, learning rate to 0.01, and
train for 500 epochs. No additional noise is added. The maximum number of optimal transport
iterations is set to 1000 with a stopping threshold of 10~3. All input features are normalized prior to
training. All experiments were conducted on a server equipped with an Intel Xeon processor and an
NVIDIA GeForce RTX 3090 Ti GPU. Performance is evaluated using modified mean absolute error
(MAE) and mean squared error (MSE), focusing on imputation errors over missing entries (Chen
et al., 2025; Tu et al., 2025). Batch Size is tuned within 64,128,256,512,1024, the learning rate is
tuned within0.2,0.1,0.001,0.0001,0.00001

5.2 OVERALL PERFORMANCE

Table 2 presents the average imputation results of KPI and baseline methods under missing ra-
tios215pmiss = 0.1, 0.3, 0.5, and 0.7. Key observations are summarized as follows:

* Tabular imputers. Classical imputation methods designed for tabular data exhibit competi-
tive performance. For example, MICE substantially outperforms simple imputers on most
datasets. In contrast, traditional distribution alignment methods such as Sinkhorn (Muzellec
et al., 2020) and TDM (Zhao et al., 2023) achieve only suboptimal results, mainly due to the
inadequacy of their discrepancy measures for graph data.

* GNN-based approaches. Graph neural networks have also been applied to the imputation
task. Vanilla architectures like GCN and GAT perform poorly because they lack designs
tailored to missing data. In contrast, methods explicitly designed for imputation, such as
RITR and CGIR, deliver much more promising results.

* Our method (RGSImp). RGSImp achieves the best performance across all datasets. Unlike
existing MDFI methods, it neither requires masking observed entries during training nor
relies on training parametric models on incomplete data. Moreover, RGSImp overcomes the
key limitations of alignment-based methods by effectively capturing structural information
and being robust to noise.

5.3 IMPACT OF THE DISCREPANCY MEASURE

Our method relaxes the OT formulation to better handle noise, resulting in consistent improvements
over standard OT (Table 4). Standard OT’s strict marginal constraints are ill-suited for graph imputa-
tion with partially missing or corrupted node features. By relaxing mass conservation, our approach
effectively ignores outliers and emphasizes alignment of shared structural patterns. Compared with
unbalanced OT (UOT), our mass relaxation more directly addresses uncertainty in missing data, while
avoiding entropic regularization produces sharper transport plans, preserving informative gradient
signals necessary for accurate imputation.
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Figure 3: Varying learning rate and batch size results with missing ratios 0.1 and 0.3.

5.4 IMPACT OF THE DISTANCE METRIC

RGSD’s spectral-domain computation outperforms spatial comparisons (RGSD-S) and sliding-
window approaches (RGSD-W), as the Graph Fourier Transform captures global node dependencies
ignored by pairwise distances. The message-passing variant (RGSD-M) underperforms because it
homogenizes graph representations, suppressing high-frequency components crucial for distinguish-
ing distributions. By operating on a fixed spectral basis, RGSD allows direct comparison of intrinsic
structural modes, yielding more robust and discriminative discrepancy measurements.

5.5 HYPERPARAMETER SENSITIVITY ANALYSIS

* The learning rate (n) impacts model convergence. As 1 changes, the imputation errors (MAE and
MSE) first decrease and then increase, showing an optimal value exists. On both MIT-BIH and
PhysioBank datasets, for missing ratios 0.1 and 0.3, an intermediate learning rate (around 0.01)
leads to the lowest errors, balancing convergence speed and stability.

* The batch size (B) affects the optimization scale. For low missing ratios, model performance is
less sensitive to B. With high missing ratios, a moderate batch size (e.g., around 512) tends to
minimize errors on both datasets, as it strikes a good balance between efficient gradient updates
and capturing distributional details for accurate imputation.

6 CONCLUSION

This paper presents RGSImp, a novel distribution alignment framework for graph imputation. The
key contribution is the Relaxed Graph Spectral Discrepancy (RGSD), a tailored discrepancy measure
that effectively captures structural dependencies and inter-node correlations through spectral graph
theory, thereby providing a principled basis for comparing distributions of graph-structured data.
Building on the RGSD, we develop the RGSImp algorithm, which iteratively refines imputations by
minimizing inter-batch discrepancies. Experimental results demonstrate that RGSImp significantly
improves imputation accuracy and enhances performance in downstream tasks, establishing it as a
robust solution for handling missing node features in practical applications.

Limitations and Future Work. A limitation of the current approach lies in its reliance on the
Graph Fourier Transform (GFT), which is predicated on a fixed graph structure and may not adapt
well to highly heterogeneous or dynamic graphs. Future research could investigate adaptive graph
learning techniques or alternative spectral representations to increase flexibility. Furthermore, the
computational complexity associated with spectral decomposition and optimal transport presents
a scalability challenge. Developing scalable approximations for large-scale graphs constitutes an
important direction for future work.
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A APPENDIX

B THE USE OF LLMS.

In the preparation of this manuscript, we employed large language models (LLMs), such as ChatGPT,
to assist with improving the fluency and readability of the text. The models were used exclusively for
language polishing and formatting suggestions; all ideas, analyses, and results presented in this work
are entirely our own.

C THEORETICAL JUSTIFICATION
Theorem C.1 (Metric Properties of RGSD). The Relaxed Graph Spectral Discrepancy (RGSD),
defined as

R(OZ, B) = min <D(G)a 7T> + A(DKL(’/T]-mHa) + DKL(WTlng))a

>0

where D\C) is the pairwise distance matrix computed using PGSD, and a, b are the mass vectors of
« and f3, satisfies the following properties:

1. Non-negativity: R(«, 3) > 0 for any «, f5.
2. Identity of indiscernibles: R(«, 8) = 0 if and only if « = 8 and a = b.
3. Symmetry: R(a, 8) = R(S, ).
4. Triangle inequality: For any o, 3,7,
R(,7) < R(a, B) +R(B,7)-

Hence, RGSD constitutes a valid metric on the space of graph distributions.

Proof. Non-negativity: Follows directly from D@ > 0,7 > 0, and Dkr > 0, so the sum is
non-negative.

Identity of indiscernibles: If « = /3 and a = b, choose m = diag(a), yielding zero cost. Conversely,
if R(«, ) = 0, then all terms must vanish, implying « = 3 and a = b.

Symmetry: Let 7" be the transport plan when swapping « and 3. Then
(D@, 1) = (DT, 7T)
and the KL terms are symmetric under transposition, so R(«, ) = R(f, a).

Triangle inequality: Let 7 and 757 be the optimal RGSD transport plans between (v, 3) and
(B,7), respectively. Define a composite plan 77 = 7% . diag(b~!) - 77 (elementwise scaling to
ensure marginal consistency). Then

R(a,7) < (D, 77) + A(Die (7" 1|a) + Dier(7°7) 1) )
< (D7) + (DY, 7%7) + A(Di(r*1la) + Dict (77 1]16) + Drer (7)) + Dict.(x7) 1) )

= R(e, f) + R(B,7),

where c is the mass vector of . The first inequality uses optimality of R(«, "), and the second
follows from the triangle inequality of the underlying cost D(%) and convexity of KL divergence.
This constructs a valid upper bound, proving the triangle inequality.

Combining all properties, RGSD defines a proper metric on graph distributions. O

Here we provide the proof of Theorem 4.4 regarding the robustness of RGSD to noisy graphs.
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Proof. Let 7* be the optimal transport plan for the clean batch «, i.e.,

T = arg 175121101 <D(G)7 7r> + A(DKL(WlmHCL) + DKL(TK’Tlng)>.

Step 1: Construct feasible plan. For the noisy batch &, consider the feasible transport plan
T=(1=Qr" +((0.®b),

where all noisy mass ( is uniformly transported to the reference batch 3. This is feasible because the
marginals remain non-negative and sum to at most the total mass.

Step 2: Linear cost contribution. By linearity of the inner product,

(DO, 7) = (1= D7) + (DD (2,8), ) = (1 = D@, 7%) + (d(2).
Step 3: KL contribution. Since 7; = 71,, and 75 = 711, by convexity of KL divergence and
non-negativity of the penalty terms, the KL contributions of the noisy mass are upper bounded by A¢.

Step 4: Combine terms. Using the feasible plan 7 to upper bound the optimal RGSW, we have

This completes the proof. O

Theorem C.2 (RGSD Generalization Bound). Let D be a distribution over graphs and (3 a reference
batch. Suppose we sample n independent graphs o = {1, ...,a,} ~ D", and assume that the
pairwise spectral distance is L-Lipschitz and bounded by C, i.e.,

D@ (s, ) =Dl Yoo < L, DD (s, )]0 < C

Let R* («, B) denote the empirical RGSD (Definition Theorem 4.3) and R(D, ) = Eqopn R (o, B)
its expectation. Then, for any § € (0,1), with probability at least 1 — § over the sampling of «,
log(2/9)

RMe, B) = R(D,B)| < L —

Proof.: The RGSD R «, 8) depends on ary,...,a, through a sum of terms (D(%), 7) +
ADic (1) + Dice (" 15).

Step 1: Bounded differences. Changing one sample «; to o changes R by at most L /m due to

the L-Lipschitz property of the spectral distance and linearity of (D(%), 7). The KL terms do not
increase the difference as A is fixed and convex.

Step 2: Apply McDiarmid’s inequality. By the bounded differences property, for any € > 0:

P [|7%A( B) — ERa, B)| > }<2e ( 2¢ ) 2e ( 2”62)
r a,f) — a, el L2exp| — =7 ) =2exp | — .
2z (L/n)? L?

Step 3: Solve for e. Setting the right-hand side equal to § gives

. Jos2/8)

2n
Step 4: Conclusion. Thus, with probability at least 1 — §:
. log(2/0
R, 8) - R(D,B)| < 1y L)
n

This completes the proof. O

D ADDITIONAL EXPERIMENTS RESULTS
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Table 5: Imputation performance (MSE and MAE) across 6 datasets at a 10% missing rate.

Datasets MEFAR  Mental State MIT-BIH  PhysioBank  PEMSO03 FACED2

Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GCN 0.751 1.002 0.634 0.967 0.498 0.722 0.771 0.988 0.722 0.899 0.796 0.976
GAT 0.752 1.007 0.649 0.976 0.540 0.691 0.721 0.877 0.662 0.773 0.733 0.843
GraphSAGE 0.790 1.110 0.701 1.075 0.699 1.087 0.815 1.085 0.805 1.082 0.834 1.076
PCNet 0.819 1.186 0.746 1.174 0.750 1.179 0.849 1.169 0.846 1.185 0.871 1.172
Sinkhorn 0.749 0.987 0.645 0.989 0.643 0.976 0.753 0.942 0.752 0.958 0.736 0.827
TDM 0.743 0.984 0.646 0.969 0.619 0.946 0.747 0.937 0.744 0.944 0.588 0.600
MissForest  0.724 0.952 0.551 0.766 0.372 0.386 0.619 0.645 0.562 0.578 0.494 0.397
MICE 1.068 1.904 0.603 0.747 0.236 0.133 0.539 0.506 0.428 0.350 0.161 0.059
MagiNet 0.756 1.041 0.573 0.820 0.433 0.577 0.721 0.895 0.662 0.783 0.530 0.474
CGIR 0.877 1.363 0.574 0.838 0.459 0.618 0.683 0.836 0.748 0.962 0.545 0.505
RITR 0.759 1.037 0.642 0.982 0.513 0.792 0.608 0.642 0.711 0.877 0.793 0.965
RGSImp 0.665 0.943 0.451 0.611 0.195 0.357 0.405 0.373 0.369 0.305 0.103 0.200

Table 6: Imputation performance (MSE and MAE) across 6 datasets at a 30% missing rate.

Datasets MEFAR  Mental State  MIT-BIH  PhysioBank =~ PEMSO03 FACED2

Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GCN 0.750 1.011 0.628 0.954 0.488 0.711 0.698 0.840 0.717 0.884 0.794 0.974
GAT 0.751 1.012 0.594 0.892 0.548 0.729 0.698 0.832 0.664 0.776 0.740 0.866
GraphSAGE 0.780 1.092 0.698 1.071 0.699 1.075 0.820 1.103 0.803 1.077 0.836 1.080
PCNet 0.818 1.194 0.750 1.174 0.744 1.161 0.854 1.184 0.845 1.182 0.881 1.195
Sinkhorn 0.749 0.996 0.646 0.989 0.647 0.974 0.762 0.966 0.757 0.967 0.764 0.895
TDM 0.745 0.998 0.644 0.968 0.626 0.948 0.759 0.964 0.750 0.957 0.658 0.724
MissForest  0.734 0.991 0.562 0.815 0.397 0.444 0.647 0.706 0.591 0.638 0.529 0.469
MICE 1.079 1.937 0.671 0.856 0.333 0.248 0.607 0.625 0.496 0.454 0.283 0.161
MagiNet 0.754 1.043 0.584 0.822 0.437 0.573 0.712 0.877 0.664 0.784 0.536 0.485
CGIR 0.857 1.321 0.576 0.838 0.443 0.583 0.805 1.154 0.741 0.941 0.547 0.511
RITR 0.758 1.042 0.639 0.974 0.536 0.819 0.627 0.685 0.717 0.886 0.798 0.981
RGSImp 0.686 0.984 0.463 0.616 0.226 0.389 0.495 0.493 0.406 0.357 0.105 0.137
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Table 7: Imputation performance (MSE and MAE) across 6 datasets at a 50% missing rate.

Datasets MEFAR  Mental State MIT-BIH  PhysioBank  PEMSO03 FACED2

Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GCN 0.749 0.998 0.638 0.977 0.502 0.744 0.740 0.923 0.727 0.907 0.803 0.984
GAT 0.750 1.003 0.596 0.893 0.543 0.728 0.678 0.792 0.662 0.771 0.748 0.869
GraphSAGE 0.795 1.122 0.702 1.082 0.719 1.120 0.809 1.074 0.806 1.085 0.843 1.089
PCNet 0.816 1.182 0.741 1.160 0.744 1.167 0.855 1.187 0.842 1.173 0.863 1.146
Sinkhorn 0.749 0.999 0.648 0.998 0.651 0.993 0.768 0.980 0.763 0.981 0.787 0.945
TDM 0.746 1.002 0.645 0.980 0.634 0.971 0.765 0.977 0.758 0.972 0.706 0.804
MissForest 0.751 1.012 0.579 0.883 0.427 0.528 0.687 0.794 0.617 0.694 0.560 0.526
MICE 1.085 1.957 0.734 0.996 0.433 0.397 0.679 0.766 0.568 0.576 0.457 0.373
MagiNet 0.752 1.035 0.590 0.834 0.433 0.569 0.701 0.847 0.663 0.781 0.537 0.486
CGIR 0.902 1.441 0.574 0.842 0.438 0.575 0.797 1.132 0.744 0.949 0.541 0.499
RITR 0.752 1.015 0.644 0.988 0.557 0.852 0.656 0.742 0.730 0.912 0.801 0.980
RGSImp 0.705 1.011 0.478 0.647 0.275 0.472 0.573 0.611 0.460 0.439 0.126 0.130

Table 8: Imputation performance (MSE and MAE) across 6 datasets at a 70% missing rate.

Datasets MEFAR  Mental State  MIT-BIH  PhysioBank =~ PEMSO03 FACED2

Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
GCN 0.749 1.003 0.639 0.979 0.505 0.754 0.702 0.851 0.735 0.922 0.789 0.960
GAT 0.749 1.004 0.591 0.887 0.507 0.671 0.685 0.811 0.663 0.777 0.750 0.875
GraphSAGE 0.795 1.125 0.696 1.071 0.698 1.080 0.814 1.088 0.815 1.107 0.840 1.093
PCNet 0.818 1.189 0.748 1.172 0.747 1.168 0.854 1.183 0.841 1.171 0.872 1.188
Sinkhorn 0.749 0.998 0.648 0.999 0.655 0.998 0.774 0.995 0.768 0.995 0.798 0.977
TDM 0.748 1.001 0.647 0.990 0.644 0.984 0.772 0.993 0.765 0.988 0.748 0.885
MissForest 0.754 1.011 0.603 0.984 0.464 0.623 0.709 0.844 0.643 0.748 0.621 0.663
MICE 1.092 1.983 0.813 1.214 0.560 0.628 0.775 0.982 0.668 0.770 0.726 0.873
MagiNet 0.759 1.058 0.575 0.823 0.444 0.586 0.700 0.851 0.663 0.784 0.528 0.474
CGIR 0.801 1.171 0.577 0.845 0.452 0.600 0.697 0.892 0.730 0.928 0.552 0.516
RITR 0.750 1.010 0.645 0.992 0.597 0.906 0.696 0.827 0.755 0.966 0.800 0.983
RGSImp 0.720 1.017 0.500 0.700 0.352 0.584 0.661 0.767 0.541 0.570 0.191 0.186
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D.1 OVERALL PERFORMANCE ANALYSIS

We conduct comprehensive evaluations of 12 imputation methods across 6 diverse datasets under four
missing rates. The results reveal consistent patterns and provide valuable insights into the relative
performance of different approaches under varying missing data conditions.

D.1.1 PERFORMANCE AT LOW MISSING RATES (10%)

At the 10% missing rate, which represents a relatively mild missing data scenario, our proposed
RGSImp method demonstrates strong competitive performance. The method achieves superior results
across the majority of datasets, establishing an early lead over competing approaches. Traditional
imputation methods show variable performance at this level, with some exhibiting competence
in specific datasets while struggling in others. Graph-based neural networks begin to show their
potential, though they generally trail behind specialized imputation methods.

D.1.2 PERFORMANCE AT MODERATE MISSING RATES (30%)

As the missing rate increases to 30%, the advantages of RGSImp become more pronounced. The
method maintains robust performance across all datasets, showing only minimal degradation com-
pared to lower missing rates. This robustness stands in contrast to other methods, which begin to
exhibit more noticeable performance drops. The gap between RGSImp and traditional methods
widens at this stage, particularly in datasets with complex temporal dependencies. Neural network
approaches show varying degrees of adaptability, with some maintaining stability while others
experience significant performance deterioration.

D.1.3 PERFORMANCE AT HIGH MISSING RATES (50%)

The 50% missing rate presents a substantially more challenging scenario, and here RGSImp demon-
strates its strongest advantages. The method exhibits exceptional resilience, maintaining high-quality
imputation performance despite the severe data absence. Traditional methods show clear limitations
at this level, with performance degradation becoming substantial across multiple datasets. The relative
ranking of methods begins to shift noticeably, with methods that performed adequately at lower
missing rates struggling to maintain competitiveness. RGSImp’s consistent superiority across diverse
dataset types becomes particularly evident under these challenging conditions.

D.1.4 PERFORMANCE AT EXTREME MISSING RATES (70%)

At the extreme 70% missing rate, RGSImp showcases remarkable robustness and effectiveness. The
method continues to deliver reliable imputation results, outperforming all competing approaches by a
significant margin. Most alternative methods experience severe performance degradation, with some
becoming practically unusable under such demanding conditions. This extreme scenario highlights
the critical importance of methodological robustness and demonstrates RGSImp’s unique capability
to handle severe missing data situations that commonly occur in real-world applications.

D.1.5 CROSS-METHOD COMPARATIVE ANALYSIS

Across all missing rate conditions, several consistent patterns emerge. RGSImp maintains stable
performance degradation, showing the smallest performance drop as missing rates increase. This
contrasts sharply with other methods, which exhibit varying degrees of sensitivity to missing data
severity. The method’s superiority becomes increasingly pronounced with higher missing rates,
suggesting that its architectural advantages are particularly valuable in challenging scenarios.

Traditional statistical methods demonstrate competence at lower missing rates but struggle as data
absence becomes more severe. Neural network approaches show mixed results, with some capturing
complex patterns effectively while others overfit or fail to generalize. The consistent outperformance
of RGSImp across all conditions underscores its comprehensive understanding of both temporal
patterns and inter-variable relationships.
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D.1.6 DATASET-GENERALIZATION CAPABILITY

The evaluation across six diverse datasets reveals RGSImp’s strong generalization capabilities. The
method performs consistently well across different data types, temporal characteristics, and missing
patterns. This versatility is particularly valuable for practical applications, where data characteristics
may vary significantly across different domains and use cases. The method’s ability to adapt to diverse
scenarios without requiring extensive parameter tuning or domain-specific adaptations represents a
significant practical advantage.

D.2 KEY INSIGHTS AND IMPLICATIONS

The comprehensive evaluation yields several important insights. First, the increasing performance
advantage of RGSImp with higher missing rates highlights its particular value in real-world scenarios
where missing data is often substantial. Second, the method’s consistent performance across diverse
datasets demonstrates its robustness and general applicability. Third, the progressive performance
divergence between RGSImp and other methods as missing rates increase underscores the importance
of specialized architectural designs for handling missing data.

These findings have significant implications for both research and practice. For researchers, they
highlight the importance of developing methods that can handle severe missing data conditions. For
practitioners, they provide strong evidence for adopting RGSImp in applications where data quality
issues are prevalent. The method’s strong performance across the entire missing rate spectrum makes
it suitable for a wide range of practical scenarios, from mild data quality issues to severe data absence
situations.

D.3 CONCLUSION OF OVERALL PERFORMANCE

In summary, the experimental results demonstrate that RGSImp establishes new state-of-the-art
performance for time series imputation across all missing rate conditions. The method’s superior
performance, combined with its robustness, consistency, and generalization capability, positions it
as a leading solution for missing data imputation in both research and practical applications. The
progressive advantage of RGSImp with increasing missing rates particularly underscores its value in
addressing the challenging data quality issues commonly encountered in real-world scenarios.

18



	Introduction
	RELATED WORK
	Preliminaries
	Problem Formulation
	Graph Fourier Transform
	Optimal Transport

	Method
	Motivation
	Pairwise Graph Spectral Discrepancy
	Flexible Mass Coupling for Robust Graph Alignment
	RGSImp: RGSD for Graph Imputation

	Experiments
	Experiemtal Settings
	Overall performance
	Impact of the Discrepancy Measure
	Impact of the Distance Metric
	Hyperparameter sensitivity analysis

	Conclusion
	Appendix
	The Use of LLMs.
	Theoretical justification
	Additional Experiments Results
	Overall Performance Analysis
	Performance at Low Missing Rates (10%)
	Performance at Moderate Missing Rates (30%)
	Performance at High Missing Rates (50%)
	Performance at Extreme Missing Rates (70%)
	Cross-Method Comparative Analysis
	Dataset-Generalization Capability

	Key Insights and Implications
	Conclusion of overall performance


