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Abstract

Unlearning in large foundation models (e.g., LLMs) is essential for enabling dy-
namic knowledge updates, enforcing data deletion rights, and correcting model
behavior. However, existing unlearning methods often require full-model fine-
tuning or access to the original training data, which limits their scalability and
practicality. In this work, we introduce Recover-to-Forget (R2F), a novel frame-
work for efficient unlearning in LLMs based on reconstructing full-model gradient
directions from low-rank LoRA adapter updates. Rather than performing back-
propagation through the full model, we compute gradients with respect to LORA
parameters using multiple paraphrased prompts and train a gradient decoder to
approximate the corresponding full-model gradients. To ensure applicability to
larger or black-box models, the decoder is trained on a proxy model and transferred
to target models. We provide a theoretical analysis of cross-model generalization
and demonstrate that our method achieves effective unlearning while preserving
general model performance. Experimental results demonstrate that R2F offers a
scalable and lightweight alternative for unlearning in pretrained LLMs without
requiring full retraining or access to internal parameters.

1 Introduction

The widespread deployment of large language
models (LLMs), such as GPT-5.1 Thinking [1]],
Gemini 3.0 Pro [2], and LLaMA 4 [3]], has sig-
nificantly advanced various natural language pro-
cessing tasks. Recently, the trustworthiness of
large language models (LLMs), including issues
such as fairness [4H7]], safety [8], and robust-
ness [9]], has attracted increasing attention [10]].
At the same time, their rapid adoption has am-
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plified concerns around data privacy, particularly
regarding the inadvertent memorization of sen-
sitive or proprietary information [[L1,[12]]. Such
memorization poses risks of data leakage, violat-
ing privacy regulations like GDPR, which explic-
itly advocates for the right to be forgotten [13|.
Consequently, there is an increasing demand for
efficient machine unlearning (MU) techniques
capable of selectively removing specific informa-

Figure 1: Illustration of the LLM unlearning task.
The model initially answers “What is the capital
of France?” with “Paris”. During unlearning, the
target fact (“Capital of France — Paris”) is re-
moved or corrupted. After unlearning, the model
forgets the original answer, responding with in-
correct or irrelevant outputs (e.g., “Rome”) while
preserving unrelated knowledge.

tion from LLMs without incurring the huge costs associated with retraining[/14} (15 |4]. The LLM
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unlearning problem is illustrated in Figure[I] which depicts how a model is required to erase a targeted
piece of knowledge (e.g., “Capital of France — Paris”) while preserving other unrelated, general
knowledge.

Traditional MU methods typically involve complete retraining or extensive fine-tuning of the model,
using negative gradients on data points intended for removal [13} [16]]. While these methods are
theoretically effective, they become impractical due to high computational complexity, especially
as the parameter size of modern LLMs grows exponentially [[17]. For instance, exact retraining
approaches are computationally prohibitive for billion-scale models due to the enormous data storage
and GPU computation required. Recent attempts to mitigate these costs have proposed approximate
unlearning methods, including gradient ascent targeting the influence of particular data points [17],
influence function-based approaches leveraging Fisher information matrices 18} [19], and data subset
partitioning strategies such as SISA (Sharded, Isolated, Sliced, and Aggregated) [14]]. Despite their
improvements, these methods generally depend on full access to the model’s gradient information or
second-order approximations, which remain computationally burdensome and memory-intensive [20]].

Driven by these practical challenges, the core problem becomes more fundamental: I): How can we
effectively reconstruct full-model gradients from minimal parameter updates for efficient unlearning?
In typical MU scenarios, directly computing or storing gradients of an LLM with billions of parameters
is impractical. Therefore, we seek a mechanism to reconstruct approximate gradients from lightweight,
localized model adjustments. II): How can we ensure that reconstructed gradients generalize
effectively from proxy models to the original large-scale LLMs? Gradient approximation often
involves training surrogate or proxy models; however, the transferability of gradient signals across
model architectures or parameterizations remains an open research question [21}22].

To address these key questions, we introduce a novel and efficient MU framework named Recover-to-
Forget (R2F). The central insight of R2F is leveraging Low-Rank Adaptation (LoRA) modules [23]
as a compact representation of gradient updates, dramatically reducing memory and computational
costs. Specifically, we exploit the intrinsic low-rank structure of model parameter updates induced by
targeted inputs, and then reconstruct the full model gradients using a specialized gradient decoder
trained on a smaller-scale proxy model. This decoder maps low-dimensional LoRA representations to
high-dimensional gradient approximations, enabling rapid, memory-efficient parameter adjustments
during unlearning.

The rationale behind our design is twofold: (i) Prior studies have demonstrated that low-rank
representations effectively capture essential model behaviors, ensuring minimal loss of knowledge
while reducing redundancy [24} 25]); (ii) Gradients inherently encode the directional signals required
for effective parameter updates, making them ideal candidates for accurate reconstruction and transfer
across model scales [26} [18] [17]. By combining these insights, our R2F framework efficiently
performs targeted unlearning without requiring costly full-model gradient computations or retraining.
To summarize, our primary contributions include:

* We propose Recover-to-Forget (R2F), a novel unlearning framework for large-scale LLMs that
leverages low-rank adaptations for efficient gradient reconstruction and selective forgetting.

* We develop a lightweight gradient decoder, trained on a proxy model, capable of reconstructing
accurate full-model gradients from compact low-rank parameter representations.

» We provide theoretical analysis and empirical validation of the gradient transferability from proxy
models to large-scale target LLMs, ensuring the broad applicability of our approach.

* We conduct comprehensive empirical evaluations on established benchmark datasets, demonstrating
that R2F achieves superior unlearning efficacy and computational efficiency compared to state-of-
the-art methods.

2 Methodology

We introduce Recover-to-Forget (R2F), a novel framework for efficient unlearning in LLMs. As
illustrated in Figure [2] R2F reconstructs full-model gradients from LoRA-based low-rank updates
using a proxy model and a gradient decoder, enabling targeted forgetting without modifying the
original model weights.
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Figure 2: The Recover-to-Forget (R2F) framework. Given a target knowledge, R2F generates
paraphrased queries, extracts LORA gradients from a frozen LLM, and aggregates them. A Gradient
Decoder reconstructs the full-model gradient, which is used to perform a single-step update to forget
the target knowledge.

2.1 Preliminaries

LLM Training. Consider a large language model parameterized by # € R? that maps inputs € X’
to outputs y € ). Training typically involves optimizing parameters 6 by minimizing a loss function
L(0) defined over a training dataset D:

0" = arg meinE(I,y)ND [;C(J}, Y; 9)] : (D

Low-Rank Adaptation (LoRA). LoRA [23]] introduces parameter-efficient fine-tuning by repre-
senting the updated weight matrix W’ € R?*? as a low-rank perturbation of the original frozen
weight . Instead of learning a full d x d update, LoRA injects trainable low-rank modules into
selected projection layers (e.g., attention or feed-forward), so that task-specific signals are captured
in a compact subspace while the pretrained backbone remains intact. This design reduces the number
of trainable parameters, lowers memory traffic, and makes it easy to share one base model across
many LoRA adapters:

W'=W + AB, 2)
where A € R¥*" B € R"* are low-rank matrices with r < d. During fine-tuning, W is frozen and
only A, B are trained, greatly reducing the number of trainable parameters.

Notation. Given a pretrained large language model (LLM) with parameters * € R, we denote a spe-
cific input-output pair to be unlearned as (Zr, Yiar). The model is trained to minimize a task-specific
loss function L(x, y; 6). During unlearning, our goal is to estimate the gradient Vo L(Zwr, Yiar; 0*)
without backpropagating through the full model.

2.2 Problem Definition: LLM Unlearning

We define LLM unlearning as the process of removing specific knowledge associated with a target
datapoint (or a small target set) (X, Yar) from a pretrained model, without retraining the model from
scratch and without degrading its performance on the remaining data. Intuitively, after unlearning,
the model should no longer produce the original, to-be-forgotten answer for ., while still behaving
similarly to the original model on a retain set (i.e., general or unrelated inputs). Formally, given
pretrained parameters 6*, the objective is to obtain parameters Gygjeamed that forget (Ziyr, yrar) While
preserving overall task accuracy, which can be written as

Buntcarned = 0" — UVQL('IU{T’ Ytar; 9*)7 3)

where 7 is a small step size. This formulation views unlearning as performing a targeted, negative
update on the loss incurred by the to-be-forgotten example. The key difficulty is that, for large LLMs,
computing or applying VL exactly typically requires expensive full-model backpropagation; thus,
practical unlearning methods must accurately approximate this gradient while still enforcing the
preservation constraint on non-target data.



2.3 Recover-to-Forget: Gradient Reconstruction via Low-Rank Recovery

We propose Recover-to-Forget (R2F), a method to efficiently approximate full-model gradients from
low-rank gradients computed via LoRA. Our method involves two core steps: (1) Compute LoRA
gradients using multiple paraphrased inputs, and (2) Train a decoder on a proxy model to reconstruct

the full gradient from these low-rank approximations. The algorithm is in Algorithm|[I]

Step 1: Multi-View LoRA Gradient Computa-
tion. For a target datapoint (&, Yar), We gener-
ate [V paraphrased inputs x;;_; to capture diverse
views of the target knowledge. Unlike single-
view gradients, which may reflect only a narrow
aspect, multi-view gradients offer a more compre-
hensive and robust approximation by aggregating
semantically varied representations [27H29].

For example, if the target knowledge is repre-
sented by the input query “What is the capital of
France?”, paraphrases such as “Paris is the cap-
ital of which country?”, “Name the capital city
of France.”, and “France’s capital city is?” pro-
vide different linguistic contexts, thus ensuring
the gradient captures a broader semantic repre-
sentation.

Mathematically, for each paraphrase x;, we com-
pute the LoRA gradients:

gLo(‘ri) = VA,B»C(xiaytar;e*vAaB)- “)
The aggregated LoRA gradient is obtained by
averaging across multiple views:

Inputs:

* 'What is the capital of France?'
* 'France capital city?'

* 'Paris is the capital of?'

Input: 'What is the
capital of France?'

LoRA Gradient
(from single input)

LoRA Gradients
(from multiple views)

Gradient Aggregation

Gradient Decoder

Full Gradient Estimate

Gradient Decoder
Full Gradient Estimate

Multi-View
Figure 3: Comparison of single-view vs. multi-
view gradient reconstruction in Recover-to-Forget.
Single-view uses one input for LoRA gradient
estimation, while multi-view aggregates gradients
from paraphrased inputs, enabling more robust
full-gradient recovery.
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Step 2: Gradient Decoder via Proxy Model. To reconstruct the corresponding full-model gradient
from the LoRA gradients, we introduce a gradient decoder network fy parameterized by ¢, trained
on a smaller proxy model. Specifically, the decoder learns the mapping:

Grun = f$(Gro)s

where qull c R4 approximates the true full-model gradient Vo £(Zr, Ytar; 0*)-

Q)

During training, the decoder minimizes the mean squared error (MSE) between reconstructed and
true full gradients collected from the proxy model:

¢ = arg minEqp,, [1£6(GLo(2)) = Gran(z)|?] - 7

Proposition 1 (Cross-Model Gradient Transfer). Given proxy model gradient distribution Dy,
and target model gradient distribution Dy, the gradient reconstruction error satisfies the following
transfer bound :

Ex ~ Duar [| f6(Gro(@)) — Githi ()]
< Eonn,, [|£6(G1o(2)) — Gii(2)]
+ diS(Dproa Dtar)
+Eznp,, [|G50(x) — Gin()|] -

We now prove a theoretical transfer bound for the gradient reconstruction from a proxy model to a
target model.

®)

Proof: By triangle inequality, for any & ~ Dy,

|fo(Gro(x)) — Gio ()] 9)
< | fo(Gro(x)) — G ()] (10)
+ |G () — G ()] (11)



Algorithm 1: Recover-to-Forget

Require: Pretrained LLM parameters *, proxy model dataset Do, target input (Zwr, Yiar), LORA
rank r, paraphrase number NV, learning rate 7.
Ensure: Unlearned model parameters Oypieamed
1: Initialize LoRA parameters (A, B).
Generate paraphrased inputs {z; }7¥_, for target (Zer, Yar)-
for each paraphrased input z; do
Compute LoRA gradient Gy ,(z;) using Eq. ().
end for -
Compute averaged LoRA gradient: G, = & Zf\il Gro(x;)
Train gradient decoder f, on proxy dataset Dy, as in Eq. (7).
Reconstruct full gradient qull = fo+ (GLO)

Update parameters to unlearn target knowledge: Oupieamed = 0% — néfull
return Oyniearned (Eq. @)

Y X AN ERN

—

Taking expectation over Dy, yields:

Eonpy [|£(GLo(2)) — Grin ()]
< Eonp,, [ £6(GLo(7)) — GRin(@)]] (12)
+Eonn, (|G (%) — Gin ()]

Applying domain adaptation theory [30], we relate the first term to training error on Dy, plus a
distribution discrepancy term between Dy, and Dy

Esnp,, [|f$(Gro(2)) — Gi ()]
< Eznpye | f6(Gro(@)) — G (2)]] (13)
+ di5(Dpros Dhar)-

By integrating Recover-to-Forget, we achieve accurate and scalable unlearning without accessing
full-model gradients or performing expensive backpropagation through large LLM:s.

2.4 Multi-View Input Generation

To improve gradient reconstruction in the R2F framework, we adopt a multi-view strategy by gener-
ating diverse paraphrases of the target input. This enhances semantic coverage and leads to more
robust gradient approximations.

Paraphrase Generation. We use neural paraphrasing models such as T5 and BART, trained on
large-scale datasets like ParaNMT-50M [31]], to produce semantically consistent variants of the target
prompt.

Filtering and Effectiveness. We apply semantic similarity filtering (e.g., cosine similarity in embed-
ding space) to ensure paraphrases remain faithful to the original input. These diverse views enable
the gradient decoder to better reconstruct full-model gradients, boosting unlearning performance.

3 Experiment

In this section, we evaluate the proposed R2F on four LLM unlearning benchmarks, compare it
with representative baselines, and analyze the effect of LoRA rank, multi-view inputs, and gradient
reconstruction.

3.1 Benchmarks and Metrics

We consider four public and diverse unlearning datasets that cover factual removal, safety/memoriza-
tion, and privacy-sensitive scenarios: RWKU [32], WMDP, MUSE, and WaterDrum. These datasets
collectively test whether a method can remove a farget piece of knowledge while keeping the model
usable on general prompts; detailed dataset descriptions are deferred to Section



RWKU WMDP MUSE WaterDrum
USR 1 GUR 1 USR 1 GUR 1 USR 1 GUR 1 USR 1 GUR 1

FullGrad | 84.7+£0.5 91.1+£04(823+06 90.4+0.579.6+0.7 89.5£0.4]83.1£0.5 91.0£04
LoRA sin || 68.2£0.6 95.3+£0.3(65.7+0.7 94.7+0462.0£0.5 93.1£0.3]66.5£0.6 94.0£0.3
LoRA mul|| 74.9£0.5 948+04(71.5+06 9424+0469.2+0.6 928+0.4]|73.8£0.5 93.7£0.3
SCRUB 81.3+04 88.6+05[77.1£05 8724+04(75.9+£0.6 86.8+0.4|78.0£0.5 87.9+0.3

Method

ECO 69.5+0.6 93.9+03[648+£0.7 9414+04(61.5£05 91.3+0.3[652+£0.6 92.24+0.3
SKU 76.2+0.5 92.0+04[73.3+£06 91.54+04(70.0£0.6 90.1+0.4|745+£0.5 90.4+0.4
DeepCUT || 80.1 £0.4 89.4+£0.5(76.6+0.5 88.3+0.5|742+0.6 87.9£0.5]|76.3+£0.4 88.6+£04
R2F 89.3+0.3 95.7+0.2(86.5+0.4 95.0+0.3(84.1+04 946 +0.3|87.4+0.3 95.3+0.2

Table 1: Evaluation of unlearning methods on four datasets. USR (1): unlearning success; GUR
(1): general utility retention. Results are mean + std over 3 runs. Bold indicates the best score.
FullGrad denotes Naive Full Gradient; LoRA_sin/LoRA_mul denote single-/multi-view LoRA.

To measure both forgetting and utility, we follow standard practice and report four metrics: (i) USR
(Unlearning Success Rate) to quantify how often the target answer is no longer produced; (ii) GUR
(General Utility Retention) to check that performance on non-target data is preserved; (iii) RAP
(Relearning Attack Precision), which re-fine-tunes the unlearned model on a small paraphrased target
set and tests whether the removed fact is easily recovered; and (iv) MIA (Model Identity Alignment),
which compares the outputs of the original and unlearned models on generic prompts to ensure
behavior is not overly distorted. Full metric definitions and protocol details, including the exact RAP
and MIA procedures, are provided in Section E}

3.2 Baselines

We compare R2F with both full-gradient and parameter-efficient unlearning approaches. The baselines
include (1) a naive full-gradient method that backpropagates through the whole LLM on the target
example, (2) single-view LoRA unlearning that applies LoRA-based updates on one target prompt,
and (3) multi-view LoRA unlearning that aggregates LoRA gradients over several paraphrased variants
to improve robustness. We also include recent inference-time or localized unlearning methods when
applicable. This set covers the trade-off between accuracy of forgetting and computational cost; the
complete baseline list and hyperparameters are summarized in Section [B}

3.3 Experimental Setup

For fair comparison, all methods are run on the same 7B-scale LLM and trained under a unified
protocol. Unless otherwise stated, we use LoRA with rank » = 8 and apply 5 paraphrased views per
target sample to reduce sensitivity to wording. Our gradient decoder is trained using a lightweight
proxy model (e.g., Mistral-3B) that shares the architecture with the target model but is fully accessible:
we collect both LoRA gradients and full gradients on this proxy model over a held-out set of 1k
examples and use them as supervision to learn the mapping from low-rank to full-model gradients.
This allows R2F to avoid repeated full-model backpropagation on the large target LLM while still
producing high-quality reconstructed gradients. All experiments are repeated three times with
different seeds, and we report the mean and standard deviation. Training is conducted on NVIDIA
RTX A4000 GPUs (16GB). Additional implementation details, dataset-specific batch sizes, and
ablation settings are deferred to Section D]

3.4 Unlearning and Utility Effectiveness

We analyze the performance of R2F in comparison with baseline methods across four datasets:
RWKU, WMDP, MUSE, and WaterDrum, using three USR and GUR. R2F outperforms all baselines
in unlearning success while maintaining high utility and scalability. While full-gradient methods
are effective but costly, and single-view LoRA lacks gradient completeness, R2F bridges the gap by
reconstructing full gradients from efficient low-rank updates.

R2F achieves the highest USR across all datasets, e.g., 86.5% on WMDP vs. 82.3% (Naive Full
Gradient) and 71.5% (Multi-View LoRA), demonstrating its ability to capture more complete target
knowledge through multi-view gradient aggregation. Despite strong unlearning, R2F maintains



GUR between 94.6% and 95.7%, matching or exceeding LoRA-based methods and outperforming
full-gradient baselines like SCRUB and DeepCUT, which suffer greater utility drops.

3.5 Relearning Attack Precision (RAP)

Table [2] shows that Recover-to-Forget (R2F) ieiod  TRWKU WMDP MUSE WaterDrom

achieves the lowest RAP scores across all

d e e . . FullGrad 21.4 23.6 25.1 22.9
atasets, indicating the strongest resistance LoRA sin 38.9 41.9 43.0 39.5
to relearning attacks. For example, on the | oA " mulll 303 337 35.9 31.0
MUSE dataset, R2F obtains a RAP of 225%, SCRU_B 26.5 28.1 31.6 27.9
significantly outperforming Multi-View LoORA  ECO 36.4 40.2 41.5 38.1
(35.2%) and SCRUB (31.6%). This suggests that SKU 28.0 30.5 33.0 30.0
R2F performs a deeper, more irreversible form  DeepCUT || 24.9 26.8 29.2 25.7
of knowledge removal. In contrast, lightweight R2F (OQurs)|| 18.3  20.1  22.5 19.4

baselines such as ECO and Single-View LoRA
are more prone to re-injection of forgotten
knowledge, as their parameter updates are lim-
ited to narrow low-rank subspaces and are easier
to reverse through prompting or adversarial attacks.

Table 2: Relearning Attack Precision (RAP) (]),
lower is better.

3.6 Model Identity Alignment (MIA)

As shown in Table 3] R2F achieves moderate Method RWKU WMDP MUSE WaterDrum

lg/IIA values across all datasets, indicating a FulGrad 0.09._ 0085 0098 5089
alanced update that removes targeted knowl- LoRA sin || 0.031 0029 0034 0.030
edge without disrupting unrelated behavior. | ora "mulll 0045 0042 0.048 0.043
While Single-View LoRA and ECO obtain the gcRUB 0.063 0.061 0.067 0.060
lowest MIA scores, their corresponding low  ECO 0.036 0.034 0.037 0.033
USR and high RAP suggest they do not ad- SKU 0.051 0.047 0.054 0.048
equately forget the targeted information. On  DeepCUT || 0.072 0.068 0.076 0.069
the other hand, methods like DeepCUT and ~ R2F (Ours) || 0.053  0.049  0.057 0.051

Naive Full Gradient induce larger shifts, pos-
ave i radiclt aeuee atger SIS, POS Table 3: Model Identity Alignment (MIA) (}),

sibly degrading performance on other tasks. S -
ROF achieves a desirable trade-off: it alters loWer indicates more change from the original model.

the model just enough to forget the necessary
knowledge while keeping its general behavior intact.

3.7 Ablation Study

To understand which design choices matter most in R2F, we run ablations on (i) the LoRA rank r,
(ii) the number of paraphrased views used to estimate the unlearning direction, and (iii) the effect of
proxy—target alignment on gradient reconstruction (see Section[E). Below, we focus on the first two,
since they directly control capacity and semantic coverage.

3.7.1 Effect of LORA Rank

We vary the LoRA rank from 2 to 16 and re-run R2F on all four datasets (RWKU, WMDP, MUSE,
WaterDrum); Figure ] reports USR and GUR. Increasing the rank enlarges the adaptation subspace,
so the update can more closely match the full-model unlearning direction.

Overall, the figure shows that LoRA rank mainly controls the forgetting—utility tradeoff. (i) More
capacity = stronger forgetting: USR increases on every dataset when r grows, with especially
steep gains on MUSE and WaterDrum, meaning higher-rank adapters better capture the target-specific
gradient. (ii) The utility cost is dataset-dependent: GUR stays almost flat on large/redundant
datasets (MUSE, WaterDrum), but drops a little on smaller RWKU/WMDP, indicating that rich
datasets can absorb stronger updates without hurting general behavior. (iii) There is a practical
sweet spot: ranks around r» = 8-12 already deliver most of the USR gain while keeping GUR within
about 1-1.5 points of the base model, so we adopt » = 8 as the default in the main experiments.



Effect of LORA Rank on Performance across Metrics (Dataset-Dependent Trends)

RWKU WMDP MUSE WaterDrum
95 95 95 951
290 890 290 2901
< 85 < < 85 < 851
=2 =n =70 =70 —
65 65
5 10 15 5 10 15 5 10 15 5 10 15
LoRA Rank (r) LoRA Rank (r) LoRA Rank (r) LoRA Rank (r)

Figure 4: Effect of LoRA rank on R2F. Each subfigure shows the trends of four evaluation metrics:
Unlearning Success Rate (USR), General Utility Retention (GUR), Relearning Attack Precision
(RAP), and Model Identity Alignment (MIA), as LoRA rank increases from 2 to 16. Larger datasets
(e.g., MUSE and WaterDrum) demonstrate steeper gains in USR with minimal degradation in GUR,
indicating more effective and stable unlearning. Smaller datasets (e.g., RWKU) reveal a sharper
trade-off between forgetting and utility retention.

Effect of Number of Views on R2F Performance Across Metrics

RWKU WMDP MUSE WaterDrum
95 95 95 95
E 90 i:’ 90 i:’ 90 i:’ 90
> g5 = 85 = 85 = 85 //
-2 -2 280 =
£ 80 g 80 5 s g —+— USR
p= 25 = 75 = o =75 / GUR
70 70
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of Views Number of Views Number of Views Number of Views

Figure 5: Effect of paraphrased view count on R2F. Each subfigure shows USR, GUR, RAP, and
MIA as the number of views increases from 1 to 8. More views consistently improve USR and help
preserve GUR. Larger datasets (e.g., MUSE, WaterDrum) show greater stability, while smaller ones
(e.g., RWKU) see larger relative gains.

3.7.2 Effect of Number of Views

We study how the number of paraphrased target views affects unlearning by increasing the views
from 1 to 8 and re-running R2F on all four datasets (RWKU, WMDP, MUSE, WaterDrum); results
are shown in Figure[5] Each view is a semantically equivalent reformulation of the same fact, so
more views give the gradient decoder a richer approximation of the target knowledge.

Overall, Figure [5| reveals that adding views makes unlearning both stronger and more stable. (i)
Multi-view consistently helps forgetting: USR rises almost monotonically on all datasets; the gain
is most obvious on RWKU and WMDP, where single-view LoRA is sensitive to phrasing, but 5-8
views let the decoder see the whole semantic neighborhood. (ii) Utility remains high or slightly
improves: GUR lines stay flat (and sometimes improve), indicating that multi-view gradients make
the update more targeted, which forgets the intended fact while touching less unrelated behavior. (iii)
Larger datasets show smaller marginal gains: on MUSE and WaterDrum, the trend is still positive
but smoother, because these datasets already contain diverse contexts, so extra paraphrases provide
refinement rather than rescue.

3.8 Resource-Based Comparison

We also provide a summary of the compute time and memory usage for R2F and all baselines under
the RWKU dataset setting. To ensure a fair comparison, we report the average per-deletion runtime
and memory cost, assuming one deletion request per evaluation. For R2F, the reported runtime
includes the cost of gradient decoding and LoRA update, which are the only per-deletion steps



Method || FullGrad LoRA_sin LoRA_mul SCRUB ECO SKU DeepCUT R2F

Time (s) 5.8 23 2.5 3.2 41 35 3.7 2.9
Memory (MB) 14500 1800 1900 2500 3100 2700 3200 2200

Table 4: Compute time and memory usage on RWKU (per-deletion averages). Our method R2F
includes gradient decoding and LoRA update; decoder training is a one-time cost. Lower is better.

required. The one-time decoder training (based on proxy model gradients) is lightweight and shared
across deletion requests, and thus not included in the per-sample cost.

The Table @] demonstrates that R2F achieves a favorable trade-off: it is significantly more efficient
than full-model retraining methods like FullGrad or DeepCUT, while maintaining higher unlearning
quality than inference-only methods such as SCRUB and ECO.

4 Related Work

We group related efforts into (i) machine unlearning for large language models and (ii) low-rank
adaptation with gradient/parameter reconstruction.

Machine unlearning in LLMs. Early LLM-focused unlearning works formulated forgetting as
pushing the model away from a specific example or fact, typically via gradient ascent or relabeling on
the target instance [[33H35]]. Subsequent papers pointed out that naive ascent can cause over-forgetting
and that evaluation must separately report forgetting and utility [36H38]. A line of methods makes the
forgetting step lighter or more controllable: offset-based unlearning edits the logits around the target
answer [39, 140], while inference-/prompt-time approaches such as ECO-style operations suppress
undesired outputs without touching base weights, at the cost of weaker guarantees [41]. Very recent
work explores parameter-efficient LLM unlearning, i.e., carrying out the forgetting update in a
PEFT/LoRA space so that the base model stays frozen and multiple “forget adapters” can be swapped
in [42] 43]. There is also growing evidence that model editing techniques (e.g., ROME, MEMIT) can
be repurposed to remove facts, but they require extra constraints to avoid over-editing and to preserve
unrelated behavior [44}45]]. Our work follows this LLM-specific line, but targets the case where we
want full-model—quality updates while only observing low-rank / PEFT gradients.

Low-rank adaptation and gradient reconstruction. As LLMs continue to scale, improving their
efficiency—in terms of compute, memory, and serving cost—has become critical for practical
deployment, motivating methods that reduce training and inference overhead without sacrificing
performance [46]. LoRA enables parameter-efficient fine-tuning by injecting low-rank adapters into
attention/MLP projections and training only the small matrices [23]]. Because LoRA lives in a low-
dimensional subspace, several recent papers study how to make low-rank updates more expressive or
more stable (e.g., PiISSA [47] and PEFT variants) and how to use them for unlearning [42, 43]. In
parallel, the gradient-inversion literature has shown that gradients of deep models, including LLMs,
carry enough information to reconstruct inputs [48H50]; this naturally suggests using a smaller, fully
accessible proxy model to learn a mapping from cheap / low-rank gradients to the corresponding
full-model direction. Proxy-based gradient estimation and gradient matching have been explored
earlier in distillation and federated settings, and provide a scalable way to supervise reconstruction
for a large, frozen model. Our approach is closest in spirit to these proxy/PEFT-based unlearning
methods, but we explicitly reconstruct the missing full gradient from LoRA updates so that unlearning
can be done with LLM-level fidelity while avoiding repeated full-model backpropagation.

5 Conclusion

We proposed Recover-to-Forget (R2F), a parameter-efficient unlearning framework that reconstructs
full-model gradients from LoRA updates using a decoder trained on a proxy model. R2F avoids
full-model retraining while enabling effective and scalable unlearning in LLMs. Through extensive
experiments, we show that R2F outperforms full-gradient and lightweight baselines in both removal
effectiveness and utility preservation. While R2F eliminates the need to access or update full model
parameters, its performance relies on the alignment between the proxy and target models.
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paper’s contributions and scope?

Answer: [Yes]
Justification: Please see our Abstract section.
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e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the discussion in the “Conclusion” section (see Section[3)).
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13



Justification: Please refer to Section [2.3|for the proofs of all theoretical results.
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All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sections [3.3]and [D]for the experimental setup.
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The data used in this paper are publicly accessible datasets. We will release
the code with the camera-ready version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section [D|for the experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in the Appendix, or as supplemen-
tal material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the mean and standard deviation over 3 independent runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see Sections [3.3]and [Dl for this information.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers, CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics, and our paper conforms to it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see Section 3]
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The assets used in this paper are publicly available.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A Datasets and Unlearning Scenarios

We evaluate R2F on four benchmark LLM unlearning datasets that jointly cover factual removal,
safety-critical memorization, and privacy-/identity-sensitive content.

. RWKU[]_-] [32]) targets the removal of real-world factual associations from LLMs, such as named-
entity attributes or factual triples (e.g., “X was born in Y”). It provides (i) carefully annotated tuples
for deletion and (ii) semantically similar control samples for generalization evaluation.

. WMDPE] [51]] is constructed to test unlearning in safety/memorization settings. It contains highly
memorized sentence pairs from Wikipedia that could pose risks if leaked. The task is to forget the
risky response while retaining general language understanding.

. MUSEE] [52] emphasizes privacy-preserving unlearning by simulating the removal of sensitive
personal information. Prompts may include user identity, contact information, or private activities.
The goal is to erase these pieces of information while preserving normal response behavior.

. WaterDrumE] [S3] is a large-scale synthetic benchmark for fine-grained, fact-level unlearning. It
offers structured Q/A pairs with controlled variations, making it suitable for analyzing the scalability
and stability of unlearning methods under different knowledge densities and task structures.

Collectively, these datasets test whether a method can remove fargeted knowledge while maintaining
model utility across factual, sensitive, and synthetic domains.

B Baselines

To fairly assess R2F, we compare it with representative LLM unlearning methods that span full-
gradient, LoORA-based, and inference-/local-edit families.

Naive Full Gradient (Single-View Backprop). This baseline backpropagates through the entire
pretrained model on a single target instance (i, Yr) and applies the update Oypieamed = 0% —
NV L(Zear, Yrar; 0 ). It captures the exact gradient but requires full-model access, high memory, and
is sensitive to phrasing, so it does not generalize well.

Single-View LoRA Gradient. This method computes the unlearning direction only on LoRA-
injected parameters for one target prompt, keeping 6* frozen. It is parameter-efficient but only
captures a low-rank approximation and may lead to incomplete forgetting when the knowledge is
expressed in multiple linguistic forms.

Multi-View LoRA Gradient. To improve robustness, this baseline averages LoRA gradients over
N paraphrased variants:

_ 1 &
GLo = N;%J%)

It reduces sensitivity to any single wording but still lives in the LoRA subspace and cannot reconstruct
full-model gradients.

SCRUB  [54]. Applies lightweight linear transforms on logits to remove class-specific info without
full retraining; requires access to full logits, which is less convenient at LLM scale.

ECO (Embedding-Corrupted Prompts) [55]. An inference-time approach that perturbs prompt
embeddings to suppress undesired outputs. It is cheap but may fail when the knowledge is deeply
entangled.

SKU (Selective Knowledge Unlearning) [17]. Edits localized internal representations based on
attribution maps to improve precision, but quality depends on attribution.

Unttps://huggingface.co/datasets/jinzhuoran/RWKU
Zhttps://github.com/centerforaisafety/wmdp

3https ://muse-bench.github.io/

4https ://huggingface.co/datasets/Glow-AI/WaterDrum-Ax
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DeepCUT  [56]. A recent contrastive unlearning method that performs full-model updates with
contrastive pairs; effective but computationally heavier.

C Evaluation Metrics and Protocols

This section expands the brief metric description in the main text and specifies the exact protocols we
use.

* Unlearning Success Rate (USR). Percentage of target prompts for which the model no longer
produces the original, to-be-forgotten answer.

* General Utility Retention (GUR). Accuracy/quality on a held-out, non-target task to ensure the
model remains useful.

* Relearning Attack Precision (RAP). We simulate a relearning attack by fine-tuning the unlearned
model on a small paraphrased target set and then querying the original target. A lower RAP means
the forgotten knowledge is harder to reintroduce. We follow the same paraphrasing protocol as in
the main experiments; hyperparameters are listed in Section

* Model Identity Alignment (MIA). We compute cosine similarity (or a distributional distance)
between outputs of 0* and Oyyeamea 0N 500 general-purpose prompts. A higher MIA means the
model behavior stays closer to the original.

* Gradient Ascent Unlearning. For completeness, we also report the classical gradient-ascent-style
forgetting [35]], which directly increases the loss on target data but can hurt GUR; we treat it as a
reference procedure rather than a main baseline.

D Additional Experimental Setup

Model Specification. All experiments use Mistral-7B as the target LLM and a structurally compat-
ible 3B-scale Mistral as the proxy. The proxy is only used to collect pairs of (LoRA gradient, full
gradient) for training the gradient decoder, so it does not participate in inference.

Training Protocol. Unless otherwise noted, we set LoRA rank to r = 8 and apply 5 paraphrased
views per target sample. Every experiment is repeated 3 times with different seeds, and we report the
mean =+ std.

Batch Sizes. Dataset-specific batch sizes for full-model LoRA fine-tuning:

Dataset RWKU WMDP MUSE WaterDrum
Batch Size ]| 8 6 4 8

Table 5: LoRA fine-tuning batch size (target 7B model).
Batch sizes for decoder training on the proxy model:

Dataset RWKU WMDP MUSE WaterDrum
Batch Size H 32 24 16 32

Table 6: Decoder training batch size (proxy 3B model).
We apply gradient accumulation during LoRA training to simulate an effective global batch size of

32 for all baselines. Decoder training uses the 1k held-out set and converges in a few hundred steps
due to the lightweight architecture.

E Additional Experiments

E.1 Transferability of proxy and target models

In our main experiments, R2F adopts Mistral-7B as the target model and Mistral-3B as the proxy
model. To further analyze the impact of proxy-target alignment, we conduct an additional experiment
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Target \ Proxy || LLaMA 3.2 3B Mistral 3B GPT2-Medium

LLaMA 3.1 8B 86.5+0.4 84.9 + 0.6 81.7£ 0.6
Mistral 7B 87.0+ 0.3 89.3 £ 0.3 (R2F) 83.8+0.4
GPT2-XL 82.5+0.4 83.0+ 0.5 85.6 £ 0.4

Table 7: USR (%) on RWKU with different target—proxy combinations.

Target \ Proxy || LLaMA 3.23B Mistral 3B GPT2-Medium
LLaMA 3.1 8B 94.6 + 0.3 93.5+0.4 91.8£0.3
Mistral 7B 949+ 0.3 95.7 £ 0.2 (R2F) 93.1+0.4
GPT2-XL 91.0£0.3 91.7£0.3 93.6 + 0.3

Table 8: GUR (%) on RWKU with different target—proxy combinations.

by varying both the target model (used for unlearning) and the proxy model (used for gradient
decoding). Specifically, we evaluate R2F across three target models: Mistral-7B, GPTZ-XLE], and
LLaMA 3.1 8B El, and pair each with three proxy models of similar architectures but different scales:
Mistral-3B, GPT2-Medium El, and LLaMA 3.2 3B ﬂ, respectively. As shown in the tables below,
R2F achieves the best performance when the proxy and target models are architecturally aligned,
confirming that proxy-target similarity plays a crucial role in gradient recovery effectiveness.

As shown in the following tables, R2F achieves the best performance when the proxy and target
models share the same architecture family (i.e., diagonal entries), indicating that a higher proxy—target
similarity leads to better gradient decoding and unlearning effectiveness. This supports the assumption
that architectural alignment is beneficial, though not strictly necessary, for R2F to perform well.

From the results in Table[7]and Table[8] we observe a consistent pattern across both USR and GUR
metrics: performance is highest when the proxy and target models are architecturally aligned, i.e.,
on the diagonal of the table. For example, the R2F performance on (Mistral-7B, Mistral-3B) yields
the highest USR (89.3) and GUR (95.7), outperforming other mismatched pairs. In contrast, using
a proxy model with a different architecture (e.g., pairing GPT2-Medium with Mistral-7B) leads to
noticeable performance drops in both forgetting and utility retention.

These results empirically support our assumption that proxy-target similarity is critical for effective
gradient reconstruction. While our method can still function with mismatched architectures, the
alignment between proxy and target improves both the quality of gradient approximation and the
overall unlearning effectiveness.

*https://huggingface.co/openai-community/gpt2-x1
https://huggingface.co/meta-1lama/Llama-3.1-8B
7https ://huggingface.co/openai-community/gpt2-medium
8https ://huggingface.co/meta-1lama/Llama-3.2-3B

22


https://huggingface.co/openai-community/gpt2-xl
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/openai-community/gpt2-medium
https://huggingface.co/meta-llama/Llama-3.2-3B

	Introduction
	Methodology
	Preliminaries
	Problem Definition: LLM Unlearning
	Recover-to-Forget: Gradient Reconstruction via Low-Rank Recovery
	Multi-View Input Generation

	Experiment
	Benchmarks and Metrics
	Baselines
	Experimental Setup
	Unlearning and Utility Effectiveness
	Relearning Attack Precision (RAP)
	Model Identity Alignment (MIA)
	Ablation Study
	Effect of LoRA Rank
	Effect of Number of Views

	Resource-Based Comparison

	Related Work
	Conclusion
	Datasets and Unlearning Scenarios
	Baselines
	Evaluation Metrics and Protocols
	Additional Experimental Setup
	Additional Experiments
	Transferability of proxy and target models


