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Abstract
Neural circuits produce signals that are complex
and nonlinear. To facilitate the understanding
of neural dynamics, a popular approach is to fit
state space models (SSM) to the data and analyze
the dynamics of the low-dimensional latent vari-
ables. Despite the power of SSM to explain the
dynamics of neural circuits, these models have
been shown to merely capture statistical associ-
ations in the data and cannot be causally inter-
preted. Therefore, an important research problem
is to build models that can predict neural dynam-
ics under causal manipulations. Here, we propose
interventional state-space models (iSSM), a class
of causal models that can predict neural responses
to novel perturbations. We draw on recent ad-
vances in causal dynamical systems and present
theoretical results for the identifiability of iSSM.
In simulations of the motor cortex, we show that
iSSM can recover the true latents and the underly-
ing dynamics. In addition, we illustrate two appli-
cations of iSSM in biological datasets. First, we
applied iSSM to a dataset of calcium recordings
from ALM neurons in mice during photostimula-
tion. Second, we applied iSSM to a dataset of elec-
trophysiological recordings from macaque dlPFC
during micro-stimulation. In both cases, we show
that iSSM outperforms SSM and results in identifi-
able parameters. The code is available at https:
//github.com/amin-nejat/issm.

1. Introduction
Understanding neural data requires identifying the dynam-
ics that underlie it. The principled way to achieve this is
through causal perturbations. When a perturbation is deliv-
ered, the activity of perturbed neurons is dissociated from
their upstream neurons, facilitating inspection of the circuit
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dynamics when certain edges are functionally removed from
the circuit. This powerful strategy enables testing sophisti-
cated neural hypotheses. For example, O’Shea et al. (2022)
used perturbations to understand whether dynamics in the
motor cortex are path-following (driven by an upstream
brain region), low-dimensional, or high-dimensional. An-
other example by Feulner et al. (2022) uses a similar strategy
to investigate whether feedback drives plasticity for rapid
learning in the motor cortex. Another study by Sanzeni et al.
(2023) uses optogenetic perturbations to uncover the degree
of coupling in the visual cortex of mice and monkeys. They
demonstrate through modeling that under strong network
coupling, perturbations lead to a reshuffling of responses
within the circuit.

The main insight of these works is that in the absence of
perturbations (i.e. observational regime), neural dynam-
ics are confined to low-dimensional spaces, and models
that are built upon observational data are not able to cap-
ture neural dynamics outside of the low-dimensional space.
However, during perturbations (i.e. interventional regime),
the neural state is driven outside of the task space, providing
more information about dynamics in the global neural state
space (Jazayeri & Afraz, 2017). This insight allows us to
build sophisticated hypotheses that can only be tested using
perturbations (Fig. 1). Interventional studies are critical for
determining the causal contribution of neural dynamics to
behavior and perception. For example, a study by Shahbazi
et al. (2022) used targeted electrical stimulation to manipu-
late a monkey’s perception.

Furthermore, many of the popular models used in neuro-
science suffer from identifiability issues (Maheswaranathan
et al., 2019). In one line of work, researchers have developed
similarity metrics that are agnostic to non-identifiability
transformations (see Sucholutsky et al. (2023) for a review).
However, in many cases, the model parameters or latent
variables are biologically meaningful, and recovering them
is desired. Therefore, the need for developing identifiable
models for neuroscience data analysis is an overarching goal.
For example, Zhou & Wei (2020) used an identifiable VAE
as opposed to a vanilla VAE and inferred latent variables
that encode the geometry of the task in an unsupervised
manner.
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Figure 1. Overview. (A) Schematic of neural recordings in observational (top) and interventional (bottom) regimes. (B) Neural dynamics
in the state space. The observational data (top) is confined to a low-dimensional task space, whereas the interventional data (bottom)
explores the state space, enabling the testing of causal neural hypotheses. (C) Graphical model of SSM (top) compared with iSSM
(bottom).

2. Related Work
State space models To understand neural circuits, a popu-
lar strategy is to build low-dimensional state space models
(SSM). Driven by the neural manifold hypothesis, we often
assume that neural data lies on a low-dimensional mani-
fold. The challenge then becomes discovering the latent
manifold and characterizing how the dynamics evolve in the
low-dimensional space. Subsequently, a suite of SSMs has
been developed covering a wide range of assumptions and
applications. A typical SSM follows a dynamic model and
an emission model described by the following equations:

xt+1 = gθ(xt) + ϵt, yt = fθ(xt) + δt, (1)
ϵt ∼ p(ϵt), δt ∼ p(δt). (2)

With this general formulation, models depart based on
the specification of gθ, fθ, p(ϵt), p(δt). Linear dynami-
cal systems (LDS) assume that both gθ, fθ are linear and
p(ϵt), p(δt) are multivariate normal distributions. A sep-
arate line of work assumes that g is switching linear and
develops algorithms that jointly infer switching times as
well as latent states (Petreska et al., 2011; Linderman et al.,
2017; Fox et al., 2008). These models have been successful,
in particular when there are abrupt changes in the dynamics.

Although SSMs have been primarily used for fitting obser-
vational data, there have been a few attempts to apply them
to interventional data as well. However, responses to per-
turbations are often modeled as additive, which makes the
SSM models non-causal. We will elaborate on this further
in section 3.1.

Model identification in static data The emerging field
of causal representation learning provides statistical treat-
ments for recovering the true parameters of statistical mod-
els (Schölkopf et al., 2021). Most of the developments
correspond to static models and can be broadly catego-
rized into identification using observational or interven-
tional data. (1) Observational: While early theoretical
guarantees have been limited to linear mixing and asym-
metric noise (Comon, 1994), these results have been ex-
tended to nonlinear mixing (Locatello et al., 2019; Xi &
Bloem-Reddy, 2023), and nonlinear mixing with observa-
tion noise (e.g., VAEs) (Khemakhem et al., 2020a), and
multi-environment data (Lachapelle et al., 2023). (2) Inter-
ventional: With access to interventional data, identifiability
results can be extended to broader classes of models. Lippe
et al. (2022) shows that with sparse interventions, we can
recover latents up to permutation, scaling, and offset. Ahuja
et al. (2023) utilize independent support properties (Wang &
Jordan, 2021) and provide identifiability guarantees. These
results have been further extended to nonparametric latents
with linear and nonlinear mixing functions (von Kügelgen
et al., 2023; Buchholz et al., 2023; Varici et al., 2023).

Model identification in dynamic data More recently, the-
oretical results on statistical model identification have been
extended to Markov models and switching linear dynamical
systems (Balsells-Rodas et al., 2023). These results provide
the identification of the model parameters up to a class of
nuisance transformations (e.g., affine). Most relevant to our
work are Yao et al. (2022; 2021). The main shortcoming
of these works is that they do not incorporate noise in the
observation space, which is crucial for modeling biological
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datasets. Previous work can be broadly categorized into
two groups. Some studies consider the transient interven-
tional effects, while others investigate the persistent effects
in the stationary regime (Schölkopf & von Kügelgen, 2022;
Malinsky & Spirtes, 2018; Besserve & Schölkopf, 2022;
Benkő et al., 2018; Malinsky & Spirtes, 2018; Peters et al.,
2022). Hansen & Sokol (2014) uses differential equations
as structural equations in dynamical systems. Ahuja et al.
(2021) considers (deterministic) linear dynamics (referred
to as mechanism) and nonlinear emissions (referred to as
rendering) and proves that the latent space of such a model
is identifiable from observational data up to mechanism in-
variances. Lippe et al. (2023) show that for linear dynamics,
if we have access to binary interventional data, then the la-
tents are identifiable up to permutation. Yao et al. (2022);
Song et al. (2024b) focus on the identification of latent non-
stationary dynamics using observational data. Hyvarinen &
Morioka (2016; 2017); Hyvarinen et al. (2019); Hälvä et al.
(2021) focus on extending nonlinear ICA and its identifia-
bility results to temporal settings. They impose constraints
on the mixing function and the latent dynamics to achieve
identification using only observational data.

In addition to the statistical literature on model identifica-
tion, recent work in dynamical systems theory has utilized
the Koopman theory to find conditions, such as sampling
frequency, for the exact identification of the continuous-time
dynamical systems from sampled data (Zeng et al., 2022).

3. Methods
Here, we develop a new class of latent variable models that
aim to capture neural dynamics in both observational and
interventional regimes. We base our model on the frame-
work of Causal Inference (CI) (Pearl et al., 2016). Instead
of directly modeling the joint distribution of the data, CI
uses structural equations to describe the generative process
of the data. In this framework, interventions are modeled
as changing the structural equations. Equivalently, when an
intervention is performed on a node, it is disconnected from
all its parents in the generative model, and its distribution is
set to a new distribution. A major benefit of modeling the
interventions in this way is that having access to interven-
tional data allows us to identify the model parameters, as
we will see in section 3.3.

Although our framework is general and can be applied to
various types of SSMs, in this paper, we focus on adding in-
terventional components to the SSMs with linear dynamics
and nonlinear observations. These models are natural ex-
tensions of linear models with a higher capacity to express
complex datasets (Gao et al., 2016). It has been argued
theoretically that linear dynamics in a latent space with
sufficiently large dimension, followed by a nonlinear emis-
sion, is powerful to model any dynamical system (Koopman,

1931). Therefore, the model we consider here theoretically
has the capacity to fit complex datasets.

3.1. Interventional State Space Models

Notation Consider an experiment with N recorded neu-
rons over T time steps repeated for K trials. We denote
neural responses at time t by yt, where yt is an N -vector
that concatenates the spike counts or calcium activities of
all neurons. We assume the existence of a time-dependent
latent variable xt ∈ RD where D is the dimension of the
latent space. We present the interventional model and elabo-
rate on its differences from the observational model.

The first modeling assumption that distinguishes iSSM from
SSM is that we assume perturbing neurons affect the latent
dynamics directly, which will consequently affect neural
responses in the next time point according to the emissions
model. The second, more critical assumption is that when-
ever a latent node is perturbed, its activity is dissociated
from all its upstream nodes. This assumption is easy to
incorporate in a linear model, which is achieved by ignoring
the columns in the dynamics matrix corresponding to the
perturbed node. Denoting the interventional input to indi-
vidual channels at time t by ut ∈ RM , we model x,y,u
as:

xt+1 = 1{But = 0} ⊗Axt +But + ϵt, (3)
yt ∼ P (yt|fθ(xt)). (4)

where ϵt ∼ N (0,Q) and ⊗ denotes element-wise mul-
tiplication. A ∈ RD×D captures latent dynamics, while
B ∈ RD×M captures the effect of neural perturbations on
latent dynamics. We place a centered Laplace prior on B
with the scale parameter s to encourage its sparsity, which is
critical for the identifiability of the results as we discuss in
section 3.3. Q ∈ RD×D is the covariance of ϵt and fθ is a
generic nonlinear function mapping latents to observations.
If the intervention ut is zero, the model follows observa-
tional dynamics, but in the presence of an intervention, the
model decouples the intervened node from its parents. We
term this model interventional SSM or iSSM. In section 3.3
we theoretically characterize the conditions under which
iSSM is identifiable.

Justification of intervening on latents: Many causal exper-
iments in neuroscience (both optical and electrophysiologi-
cal) still do not perform interventions at the single-neuron
level. In some cases, the light-gated proteins (e.g., Chan-
nelrhodopsin) are expressed in all the neurons of a certain
subtype, and broad-field illumination is used to activate the
population of neurons of that subtype. In other experiments,
light-gated proteins are expressed in a sparse subset of neu-
rons, and two-photon lasers are used to activate only those
neurons. In these cases, due to the spillover effect of lasers,
it is nearly impossible to activate individual neurons with
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enough spatial precision. Similarly, for electrophysiological
techniques such as micro-stimulation, each electrode targets
several neurons located in its vicinity as opposed to a single
neuron. While iSSM allows for performing interventions on
individual neurons by setting B to the identity matrix (see
Supp. Fig. 6 for an example of this), it is still useful to think
of latents as providing a natural grouping of the neurons
into behaviorally relevant subsets. We demonstrate this in
our results in section 4.

3.2. Inference

Since our model involves a nonlinear emission as well as a
non-conjugate noise model, we resort to variational infer-
ence techniques. Our goal is to infer the posterior distribu-
tion pΘ(x1:T |y1:T ,u1:T ) while optimizing the parameters
Θ. We follow the methodology of reparameterization and
amortized inference, but adapt some parts to our specific
interventional scheme. For a review of variational methods
for state space models see Archer et al. (2015). Denoting the
approximate posterior distribution by qΦ(x1:T ), the ELBO
loss function is presented below:

L(Φ,Θ) = Eη∼N (0,I)

[
log pΘ(y1:T ,u1:T ,x1:T )

− log qΦ(x1:T |y1:T ,u1:T )

]
where x is reparameterized as x(η) = µΦ + σΦη. The
functions µ,σ are typically parameterized by neural net-
works (called the recognition network) with an architecture
that matches the dataset domain. Here, we choose an LSTM
for the recognition network.

Another important addition that makes the inference in our
model possible is to apply the interventional structure di-
rectly to the approximate posterior during training. To do
this, we replace µt with 1{But = 0} ⊗ µt + But dur-
ing each iteration of optimization. This ensures that the
interventional data indeed manipulates the causal graph con-
sistently in the approximate posterior. We refer the reader
to the supplementary C.1 for more details on inference.

3.3. Theoretical results: On the identifiability of iSSM

We provide sufficient conditions for the identifiability
of iSSMs. We show that, given a sufficient set of do-
interventions, one can identify both the latent dynamics
matrix A and the mixing function fθ(·) of the iSSM. This
identifiability of the latent dynamics enables us to extrapo-
late to novel, unseen interventions.

To identify the latent dynamics of iSSM, we proceed in
three steps: (1) identify P ({fθ(xt)}t∈T ) from the ob-
served data distribution P ({yt}t∈T ); (2) identify fθ and
P ({xt}t∈T ) from P ({fθ(xt)}t∈T ) up to affine transforma-

tions; (3) further identify fθ and P ({xt}t∈T ) up to permu-
tation, coordinate-wise shifting and scaling.

Begin with the first step of identifying P ({fθ(xt)}t∈T )
from P ({yt}t∈T ). We make the following assumptions on
the observation model.

Assumption 3.1 (Bounded completeness of P (yt|zt)). The
function P (yt|zt)—where zt = fθ(xt)—is bounded com-
plete in yt. Specifically, a function f(X,Y ) is bounded
complete in Y if

∫
g(X)f(X,Y )dX = 0 implies g(X) =

0 almost surely for any measurable function g(X) bounded
in L1-metric (Yang et al., 2017).

When the observational model satisfies the bounded com-
pleteness assumption, we can identify P ({fθ(xt)}t∈T )
from P ({yt}t∈T ). (We detail the proof in Appendix C.)
Many common functions P (yt|zt) satisfy the bounded com-
pleteness condition, including exponential families (Newey
& Powell, 2003), location-scale families (Hu & Shiu, 2018),
and nonparametric regression models (Darolles et al., 2011).
It is a common assumption to guarantee the existence and
the uniqueness of solutions to integral equations, most com-
monly used in nonparametric causal identification in proxy
variables and instrumental variables (Miao et al., 2018; Yang
et al., 2017; D’Haultfoeuille, 2011). We refer the readers to
Chen et al. (2014) for a detailed discussion of completeness.

We next proceed to identifying fθ and P ({xt}t∈T ) up to
affine transformations. We require the following assumption
on the mixing function fθ.

Assumption 3.2 (Mixing function). The mixing function
fθ(·) is piecewise linear, continuous, and injective.

While the piecewise linear assumption may appear restric-
tive, we note that it entails flexible choices of fθ(·), in-
cluding (deep) ReLU networks that can approximate com-
plicated functions. We finally leverage the interventional
data to achieve coordinate-wise identification of fθ and
P ({xt}t∈T ). We make the following assumptions on the
latent dynamics.

Assumption 3.3 (Faithfulness). There does not exist a non-
zero vector V such that Cov(V ⊤xt+1, V

⊤xt) = 0 ∀ t.

Loosely, this assumption guarantees that no latent dimen-
sion in xt is an orphan node, namely a node that is never
affected by itself nor by other nodes. In other words, each
latent has at least one (non-trivial) causal parent from the
previous timestep. We further describe the requirements
of the interventions that need to be performed for identi-
fying iSSM. Under these assumptions, we can achieve the
identification of iSSM as follows.

Theorem 3.4 (Block identifiability of iSSM and generaliza-
tion to unseen interventions). Under Assumptions 3.1 to 3.3,
the latent dynamics A and the mixing function of fθ(·) can
be block identified up to permutation, and coordinate-wise
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Figure 2. Models of Motor Dynamics. (A1,A2) Flow field underlying dynamic attractor (A1) and rotational dynamics (A2) models of the
motor cortex and sampled interventional trajectories. Blue dots represent stimulation times. (B1,B2) Reconstruction of the data using
iSSM. (C1,C2) True (black) and inferred (red) linear latent flow fields. The true fields are generated from the evolution of xt in equations
5 and 6. The inferred flow fields are generated according to the fitted latent linear dynamics A. (D1,D2) True (black) and inferred
(red) dynamics of the latents xt (top panels) and observations yt (bottom panels) using iSSM. Blue shades in each plot correspond
to stimulation times. (E1,E2) Comparison between SSM (observational model) and iSSM (ours). Reconstruction correlation between
true and inferred latents (top panels) and observations (bottom panels) with an increasing number of interventions is shown. With more
interventions, iSSM can better identify the latents.

shifting and scaling; the block corresponds to a separa-
tion between intervened and unintervened latents. That
is, Â = AΛΠ + c, where Λ is an invertible block diago-
nal matrix (with two blocks of size 1⊤1{But = 0} and
1⊤1{But ̸= 0}), Π is a permutation matrix, and c is a
constant vector. The observations’ distribution P ({yt}t∈T )
under a novel unseen unew

t intervention is also identifiable
when the intervention only acts on latents in separate blocks,
i.e. {ΛΠ}ij = 0 for any i, j ∈ {k:{Bunew

t }k ̸= 0}.

The proof of Theorem 3.4 is in Appendix C. This result
establishes the block identifiability of iSSM and its predic-
tive power for unseen interventions. It says, given a single
intervention trial, one can separate out the intervened la-
tents from the un-intervened ones through iSSM. It will also
enable us to extrapolate to novel, unseen interventions as
long as the novel interventions only touch upon latents that
are already separated. The key idea of the proof relies on
independence testing among the latents, built on the obser-
vation that intervention would make the intervened latent
independent of the values of all other latents in previous
time steps. This result illustrates how interventions can help
identify latent variables by inducing statistical independence
among the latents, revealing latent dynamics in non-linear
state-space models.

Below we extend Theorem 3.4 to multiple interventions, for
which we can achieve full identifiability if the interventions
are sufficiently diverse.

Assumption 3.5 (Unordered pairs condition (Hyttinen et al.,
2013)). A set of interventions satisfies the unordered pair
condition on the latents, if for any unordered pair xt,i,xt,j ,
there exists an intervention such that xt,i is intervened on
but xt,j is not, or xt,j is intervened on but xt,i.

Corollary 3.6 (Identifiability of iSSM under sufficiently
diverse interventions). If the interventions satisfy Assump-
tion 3.5, then the iSSM is identifiable up to permutation,
along with coordinate-wise scaling and shifting, Â =
AΛ∗Π+ c for some diagonal Λ∗. The observations’ distri-
bution under any novel interventions is also identifiable.

Corollary 3.6 crucially relies on Assumption 3.5 to achieve
separation among all pairs of latents, thanks to Theorem 3.4,
hence achieving full identifiability and extrapolation to all
unseen interventions.

4. Results
4.1. Identifying motor cortical dynamics in simulations

To illustrate how iSSM leads to identification, we take in-
spiration from models of the motor cortex. A key obser-
vation in the motor cortex is the presence of rotational tra-
jectories (Churchland et al., 2012). From a computational
perspective, it has been argued that rotational trajectories
provide a basis for motor neuron activations and muscle
movements. It has also been argued that the rotational ba-
sis provides robustness to noise and interventions (Logiaco
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et al., 2021). Inspired by these results, multiple dynamical
models have been proposed for rotational activities in the
motor cortex (Laje & Buonomano, 2013; Sussillo et al.,
2015). The first model, called Rotational Dynamics (RD)
proposes that the motor cortex has underlying rotational dy-
namics. As a result, in this model, the rotational dynamics
are generated within the motor cortex independent of input
or feedback activity (Fig. 2I; Sussillo et al. (2015)). Eq. 5
describes the dynamics and emissions of RD.

Rotational Dynamics (RD):

dx

dt
=

[
0

ax1

]
+ ϵt, yt =

[
x1 cos(x2)
x2 sin(x2)

]
+ δt (5)

where as before x,y denote the true latents and observations,
and ϵ, δ represent true latent noise and observation noise.
We set the generative noise values to zero in all experiments.

The second model, called Dynamic Attractor (DA), as-
sumes that the underlying dynamics of the motor cortex
is a rounded attractor. In this model, the rotational dynamics
in motor neurons are generated by some upstream region
moving the state along the attractor (Laje & Buonomano,
2013). Eq. 6 describes the dynamics and emissions of DA.

Dynamic Attractor (DA):

dx

dt
=

[
a1x1

a2(1− x2)

]
+ ϵt, yt =

[
(1− x1) cos(x2)
(1− x2) sin(x2)

]
+ δt

(6)

While these models have distinct characteristics and pro-
pose different underlying circuit mechanisms, Galgali et al.
(2023) show that the trial averages of these models can be
precisely the same, limiting our ability to identify the true
dynamics of the motor cortex solely from observational
data.

O’Shea et al. (2022) refer to these models as low-
dimensional vs. path-following dynamical systems and
use an interventional strategy to discover whether the dy-
namics in the motor cortex follow either of these regimes.
Similarly, here we ask if interventional data can distinguish
between these models. We generate data from RD and DA
to address this. The latent states x(t) in both models follow
linear dynamics, while the observation model in both cases
is highly nonlinear. Therefore, recovering the true latents is
not a trivial task. During data generation, we apply repeated
interventions interleaved by resting periods for the network
to return to its stationary state. The dynamics of latents
and observations are shown in Fig. 2A,D. Although in the
absence of interventions both models produce the same tra-
jectories, one can observe that the interventional trajectories
exhibit distinct characteristics (Fig. 2A).

Consistent with O’Shea et al. (2022), our results suggest that
in the presence of interventional data using the iSSM model,
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Figure 3. High-dimensional Models of Motor Dynamics. To mimic
high-dimensional neural responses and low-dimensional latent
dynamics, we generated latents from equations 5, 6, and noisy
observations from equation 7. (A1,A2) Latents (xt) and observa-
tions (yt) for an example trial in 5 dimensions for the DA model.
(B1,B2) Same as panel A for the RD model. (C1) Reconstruction
accuracy of the latents (top) and observations (bottom) for the RD
model using SSM and iSSM models as a function of observation
dimension. Results suggest that iSSM not only reconstructs the
observations but also recovers the true latents. (C2) Same as C1
for the DA model.

one can identify the underlying dynamics and emissions
(Fig. 2B,C) and recover the true latent variables (Fig. 2D).
This recovery continues to improve as we collect more inter-
ventional data, emphasizing the importance of perturbation
experiments in causal hypothesis testing (Fig. 2E). The re-
producibility details are included in the supplementary B.

4.2. Simulations of high-dimensional motor activity

To mimic high-dimensional neural responses in the motor
cortex, we projected data from the DA and RD models to
higher dimensions. For each run, we generated a random
orthogonal matrix C ∈ RD×N and used it in the generation
of yt in the following way:

High-dimensional Simulations:

yt = C
[
x1 cos(x2)
x2 sin(x2)

]
+ δt, yt = C

[
(1 − x1) cos(x2)
(1 − x2) sin(x2)

]
+ δt

(7)

for RD and DA respectively. In this case, δt ∈ RN is a
high-dimensional noise added to the responses. We set the
standard deviation of noise to 0.1 for all high-dimensional
experiments.

An example of the latents xt and 5-dimensional responses
yt is shown in Fig. 3A,B. We generated data for a varying

6



Identifying Neural Dynamics Using Interventional State Space Models

N
eu

ro
ns

Time (s) Time (s) Time (s)

La
te

nt
 In

de
x

Train Rec. Acc.

Test Rec. Acc.

Train Rec. Acc.

Test Rec. Acc.

C
on

si
st

en
cy

 S
co

re

Consistency of B

Observations Smoothed

Calcium
Activity

Latent Activities

Stim Stim

A1 A2 B C1

C2

D1

D2

E
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by iSSM for correct (green) vs. incorrect (red) trials. The dynamics of the latents distinguish between correct and incorrect trials without
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Comparison between SSM (blue) and iSSM (red) for the optimal selection of the hyperparameters for training (D1) and test (D2) data. (E)
Consistency score of matrix B across random initializations of the model parameters for SSM and iSSM, showing that iSSM leads to
better identifiability (see section 4.5).

number of observation dimensions and applied SSM and
iSSM models (Fig. 3C). While both SSM and iSSM achieve
high reconstruction accuracy, only iSSM is able to identify
the true latents (Fig. 3C1,C2). The error bars represent the
standard deviation of the reconstruction accuracy across 3
seeds of 20 randomly generated trials for each observation
dimension. Other generative and inference parameters are
the same as the previous section (see supplementary B for
details).

4.3. Identifying dynamics underlying short-term
memory in mice

Persistent activity is a hallmark of short-term memory across
species (Romo et al., 1999; Fuster & Alexander, 1971). How
can a network of neurons produce activities in response to
an input stimulus that is maintained after the stimulus is re-
moved? Multiple network mechanisms are proposed to un-
derlie persistent activity. Among those, one popular model
is known as Functionally Feedforward (FF) model (Gold-
man, 2009). FF assumes that the network consists of a few
smaller subnetworks that are connected in a feedforward
manner. Since these subnetworks do not necessarily need
to form a spatial cluster in the brain, experimentally find-
ing footprints of this type of connectivity is not feasible.
However, the theoretical properties of the model have been

well-studied. For example, it is commonly argued that FF
results in robustness to structural noise (Qian et al., 2024).
An alternative model for the persistent activity is known as
Line Attractor (LA) model (Seung, 1996). Under LA cir-
cuit model, the activity of an upstream region pushes the
state of the circuit along the line attractor, and the dynamics
preserve the state until a new input has arrived (see supple-
mentary A.1 for results on models of working memory).

We applied iSSM to a public dataset of targeted photostim-
ulation in the anterior lateral motor cortex (ALM) of mice
during a short-term memory task (Daie et al., 2021). The
task included a sample epoch where an auditory cue guided
the mice for a left vs. right cue to get a water reward. The
sample epoch was followed by a delay epoch of 3 seconds,
where the mice needed to engage working memory to keep
track of the guided cue. Finally, during the response period,
the mice received the reward if the lick direction was correct.
The photostimulation was delivered during the delay period
for a short amount of time, started simultaneously with the
delay period, or after 1 or 2 seconds.

Calcium recordings were done in 179 identified neurons for
77 repeated trials (Fig. 4A). There were 8 photostimulation
channels targeted to stimulate neurons according to their
response selectivity.
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Figure 5. Results on Primate Dataset. (A1) Unit firing rates for a training interventional session (stimulation times are shown by the blue
band and white arrow). (A2) Sample responses for the same trial inferred by iSSM. (B) iSSM’s latent dynamics show differential responses
during stimulation vs. resting periods. (C) The distribution of training and test reconstruction accuracy across trials. (D1,D2) Training
(D1) and test (D2) mean reconstruction accuracy is shown with varying hyperparameters (number of latents and sparsity parameter of B).
(E1,E2) Comparison between SSM (blue) and iSSM (red) for an increasing number of latents. Reconstruction accuracies are shown for
training (E1) and test (E2) trials. Both SSM and iSSM benefit from a larger number of latents, with iSSM consistently outperforming
SSM. (F) Consistency of the inferred B across random initializations showing better identifiability for iSSM (see section 4.5).

We set the dimension of interventional inputs ut to the
number of photostimulation channels and fitted the stim-
ulation matrix B with a sparsity penalty. The smoothed
and denoised neural activities are shown in Fig. 4A2. The
reconstruction accuracy of the data for both training and
testing trials for iSSM was larger than the baseline SSM
model across a range of latent dimensions (Fig. 4D). Further-
more, the latents learned by the model show distinct mean
trajectories for correct vs. incorrect trials, suggesting that
they capture behaviorally meaningful dynamics (Fig. 4B).
The optimal latent dimension and sparsity penalty for this
dataset were found based on cross-validation (Fig. 4C).

4.4. Generalizing to test interventions in primates

Understanding network dynamics to control behavior has
been a longstanding challenge in neuroscience. The over-
arching goal is to deliver targeted stimulation to a network
of neurons to steer the dynamics or the behavior towards
a pre-determined outcome (Haimerl et al., 2023; Jou et al.,
2023). A first step towards understanding the circuit effects
or behavioral influences of network manipulations is to
build models that can predict the response to interventions.
The space of possible interventions is combinatorial and
intractable to cover. Therefore, an alternative approach is to
build models that can generalize to unseen interventions.

We showed theoretically in section 3.3 that iSSM has this

property. Concretely, if we fit the iSSM model to inter-
ventional data, where the dataset consists of a small set
of canonical interventions, the model can generalize to un-
observed interventions. To validate this empirically, we
showed results on a synthetic dataset (Fig. 2). Here we want
to test whether these results hold in a real biological dataset.

The dataset consisted of electrophysiological recordings us-
ing electrode arrays implanted on the prefrontal cortex of
macaque monkeys during quiet wakefulness (resting) while
the animals were sitting awake in the dark. The electrode
array included 96 electrodes that were also used for de-
livering micro-circuit electrical stimulations (Nejatbakhsh
et al., 2023). We analyzed 6 datasets, 3 with only observa-
tional data and 3 with a combination of observational and
interventional data.

In Fig. 5A, we show firing rates recorded from each of the
96 electrodes for an interventional session. In each interven-
tional session, two electrodes were repeatedly stimulated
while recordings were performed from all other electrodes.
We apply iSSM to this dataset and infer the latents and pa-
rameters. Fig. 5A2 shows a sample from the inferred model
closely matching the data. The reconstruction accuracy on
the training and testing sessions is larger for iSSM com-
pared to baseline SSM across a range of latent dimensions
(Fig. 5E), suggesting that the model can better generalize
to test trials. To find the optimal hyperparameters, we per-
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formed cross-validation. The results are shown in Fig. 5D.

4.5. Performance Metrics

Here, we briefly describe the metrics used throughout the
experiments in the paper.

Reconstruction accuracy: The reconstruction accuracy
is defined as the correlation coefficient between the true and
reconstructed signals (latents or observations). For latents,
it can only be computed for synthetic experiments where
ground truth exists. This metric is commonly used in the
causal representation learning literature for assessing the
identifiability of the latents (Khemakhem et al., 2020a;b;
Song et al., 2024a).

Consistency score: A hallmark of identification is robust-
ness to initialization. To test whether the iSSM results in
identifiability, we ran the model several times with different
random initializations. We compute the consistency score
across random initialization by first aligning the columns
of B across runs to account for permutation invariance of
the latents, followed by computing the Euclidean distance
between aligned matrices. The aligned distances are con-
siderably smaller for iSSM compared to SSM, providing
evidence for the identifiability (e.g., Fig. 4E).

5. Discussion
Summary Here we proposed iSSM, a framework for joint
modeling of observational and interventional data. We pro-
vided theoretical results showing that the iSSM model, when
fitted on interventional data, leads to the identifiability of
latents as well as dynamics and emissions. To illustrate
iSSM’s applicability, we showed results on 3 different ex-
amples covering a range of assumptions. The first example
was a synthetic dataset with linear dynamics and nonlinear
emissions. The second example was calcium recordings
from the mouse ALM region with targeted photostimulation
delivered by channels that targeted groups of neurons. The
third example was electrophysiological recordings from the
macaque monkey’s prefrontal cortex with micro-stimulation
delivered by the same recording electrodes. In all cases,
our results show impressive generalization capabilities and
parameter recovery, confirming our theoretical results.

Limitations We identify several limitations of our work.
First, in this work, we focused on a generative model that has
linear dynamics. While the inference model can still capture
nonlinearities through its recognition network, explicitly
modeling nonlinearities and providing theoretical results is
an important limitation of this work.

Second, as depicted in Fig. 1, we think of interventions as
forcing the neural state out of its low-dimensional mani-

fold. Given this, it is a valid question of how we are still
assuming the low dimensionality of dynamics. Our argu-
ment is the following: (1) While the observational data is
low-dimensional, we think that interventional data is higher-
dimensional but still lives in a much lower dimension than
the number of neurons. This is simply because certain con-
figurations of neural states are not biologically possible. (2)
The optimal latent dimension for our experiments depends
on the sparsity of the B matrix as well as the amount of data
that we have. With larger datasets and more interventions,
we conjecture that increasing the number of latents always
provides better test accuracy.

Third, a critical modeling assumption that we made is that
interventions directly affect the latents. Furthermore, our
theoretical results require performing interventions on in-
dividual latents through neurons that are causally linked to
them. Further experimental validation is required to test
whether this assumption is valid in neural data.

Fourth, our inference algorithm relies on variational infer-
ence (VI). While VI is commonly used in state space mod-
eling, it is an approximate method. Furthermore, the choice
of the recognition network (in our case, LSTMs) can am-
plify the approximation gap. Better inference algorithms
and more powerful architectures can further improve the
identifiability results.

Finally, this work establishes a framework for modeling
neural data under interventions and is intended to motivate
future investigations into its limitations and potential exten-
sions.
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A. Experimental Results
A.1. Models of Working Memory

Various sources of non-identifiability can make it challenging to recover the true latents and dynamics in neural data. We
elaborate on two of these sources here. First, neural recordings are undersampled, meaning that from a large pool of neurons
involved in the computation only a small fraction are recorded. Undersampling or partial observation is indeed a significant
origin of non-identifiability as discussed in the literature (Beiran & Litwin-Kumar, 2024). Second, non-identifiability can be
caused by the mixing of input-driven and recurrent activity in the network (Galgali et al., 2023). Lipshutz et al. show that
noise correlations can be used to disentangle input-driven and recurrent activity. Here, we take a complementary approach
and investigate whether interventions can help improve identifiability. A recent theoretical study investigates the effect of
partial observations in the context of persistent activity (Qian et al., 2024). Qian et al. (2024) presented two alternative
models of working memory, functionally feedforward (FF) and low-rank connectivity (LR). FF is characterized by the
existence of sub-circuits in the network that sequentially process their inputs and pass the outputs to the next sub-circuits in
a feedforward manner. On the other hand, LR models perform their computations recurrently by utilizing line-attractor type
dynamics. Importantly, this study shows that when the system is partially observed, observational models (e.g. SSM) cannot
distinguish between the two models. Specifically, they show that linear dynamical system (LDS) models have a built-in bias
for characterizing the dynamics as FF, regardless of the underlying dynamics (Qian et al., 2024).

Here we ask whether interventional models (e.g. iSSM) can help identify the dynamics. To address this, we generated
interventional data from FF and LR models with 5 neurons (shown in Fig. 6A,B). The interventions are performed on
individual neurons interleaved by a resting duration (blue shades in Fig. 6A). We then used iSSM with N = D = 5 and set
B to identify to check if we can recover the underlying dynamics. Setting the matrix B to identity amounts to assigning one
latent per neuron, an important variation of iSSM that enables modeling interventions on individual neurons. In Fig. 6C-E
we show that while both SSM and iSSM successfully reconstruct the observational data (Fig. 6C), only iSSM is able to
identify the dynamics matrices (Fig. 6D,E). These results suggest that the ability to perform interventions on individual
neurons accompanied by models that leverage the interventional data enable uncovering more details of the causal flow of
information in a circuit of neurons.
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Figure 6. Models of Working Memory. Following (Qian et al., 2024) here we generate data from feedforward (FF) and low-rank (LR)
models of working memory to test whether iSSM can recover the true underlying flow field parameterized by matrix A. (A1,A2) True
(black) and inferred (red) interventional signals generated from FF (A1) and LR (A2) in 5 dimensions. The inference is done using iSSM
with linear dynamics and linear observations. Blue shades represent interventions. (B1,B2) Same data shown in the top 2 PC space with
blue dots representing interventions. (C1,C2) Comparison of observational reconstruction accuracy using SSM vs. iSSM. While both
SSM and iSSM achieve a high accuracy for both FF and LR systems, iSSM estimator has lower variance and is more accurate on average.
(D1,D2,E1,E2) Scatter plot of the true values of Aij (x-axis) vs. their inferred values (y-axis) for FF (D1,E1) and LR (D2,E2) models
using SSM (D1,D2) and iSSM (E1,E2) across 3 runs. This result suggests that iSSM is able to leverage interventional data to identify the
matrix A.
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B. Reproducibility Details
B.1. Generative Parameters for Synthetic Experiments

In table B.1 we include the parameters used for generating synthetic datasets for Fig. 2. The stimulation signals ut are
parameterized by the following parameters: Stim Amp the overall amplitude of the interventional inputs; Stim Noise: the
standard deviation of the zero-mean gaussian noise added to the interventional inputs to satisfy the assumption3.1; Stim
to Rest Ratio the ratio of the amount ot time spend on delivering stimulation signals vs. resting; Stim Rep: the number of
stimulation repetitions.

We generate data for a duration of T seconds, for K trials, using the time increment dt. The number of observation
dimensions and latent dimensions are denoted by N , D respectively. The equations governing the generative process of the
data given the interventional inputs ut are included in Eq. 3 with parameters a for the Rotational Dynamics and a1, a2 for
the Dynamic Attractor.

Table 1. Generative parameters for synthetic experiments.

T K N D dt Params Model
Noise Initialization Stim

Amp
Stim
Noise

Stim to
Rest Ratio

Stim
Rep

Rotational
Dynamics 20 10 2 2 0.05 a = 1.2 0 N (0, 1) 1 0.5 1 10

Dynamic
Attractor 20 10 2 2 0.05 a1 = −20

a2 = 1.2
0 N (0, 1) 1 0.5 1 10

B.2. Initialization and Inference Parameters

Table B.2 contains the parameters for initializing our generative process as well as inference and optimization parameters.
The Emission model is a fully connected (FC) neural network with H = 100 hidden units. For Poisson observation model,
we include an additional softplus transformation to map the emission outputs to positive values. The Obs. column in the
table determines what observation noise model was used in each experiment. For the synthetic experiments, we set the B
matrix to identity without fitting it, therefore we did not use any Sparsity regularization. For real data experiments we used
cross-validation to find the optimal value. For the primate dataset, the training data is the first half of each session and the
test data is the second half. For the mice dataset the training data is the lick right trials while the test data is lick left trials.
The optimization parameters include the learning rate denoted by Optim LR, number of iterations denoted by Optim (Iter),
and the number of hidden units for the LSTM that parameterizes the mean and variance of the variational posterior denoted
by LSTM (H). Furthermore, we include the initialization values in table B.2. The initialization parameters include the noise
covarinace of the dynamics’ initial step denoted by Init (x0 noise); the covariance of the LDS denoted by Init (LDS σ); the
matrices A,B; and the covariance scaling of the likelihood model referred to as Init (LL σ).

Table 2. Initialization and inference parameters for synthetic and real data experiments.

Emission dt Obs. Sparsity
(s)

Optim
(LR)

Optim
(Iter)

LSTM
(H)

Init
(x0 noise)

Init
(LDS σ)

Init
(A, B)

Init
(LL σ)

Rotational
Dynamics FC (H=100) 0.05 Normal N/A 0.01 1000 10 0.05 0.05 N (0, 1)

I
0.05

Dynamic
Attractor FC (H=100) 0.05 Normal N/A 0.01 1000 10 0.05 0.05 N (0, 1)

I
0.05

Mice
Dataset FC (H=100) 0.05 Normal X-Val 0.001 1000 10 0.05 0.05 N (0, 1)

N (0, 1)
0.05

Primate
Dataset

FC (H=100)
softplus

1 Poisson X-Val 0.01 1000 10 0.05 0.05 N (0, 1)
N (0, 1)

N/A
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C. Proof of Theorem 3.4
We consider the interventional state space model (iSSM),

yt ∼ P (yt|fθ(xt)), (8)
xt+1 = 1{But = 0} ⊗Axt +But + ϵt. (9)

Step I: Identifying the distribution of zt ≜ fθ(xt). We begin with identifying the marginal distribution of P (zt) from
P (yt). The core assumption we rely on in this step is bounded completeness, which we define in Assumption 3.1

The bounded completeness of P (yt|zt) implies that P (zt) is identifiable from P (yt). It is because P (zt) must be the
unique solution to the integral equation

∫
P (yt|zt)P (zt)dzt = P (yt). Specifically, if there are two solutions to this

equation P̂1(zt), P̂2(zt), then they must be equal. It is due to the bounded completeness of P (yt|zt): the two solutions
must satisfy intP (yt|zt)[P̂1(zt)− P̂2(zt)]dzt = 0, which implies P̂1(zt) = P̂2(zt).

Step 2: Affine identification of fθ(·) and P ({x̂t}t∈T ). In this step, we establish the affine identification of the mixing
function fθ(·) by invoking Theorem 3.5 of Balsells-Rodas et al. (2023): identifying fθ(·) from P (fθ(xt)) is a special case
of identifying the mixing function in a switching dynamical system.

To enable identification, we require Assumption 3.2. In particular, the mixing function should be a piece-wise linear function.
Lemma C.1 (Theorem 3.5 of Balsells-Rodas et al. (2023)). Under Assumption 3.2, the mixing function fθ(·) and the latent
distribution P ({x̂t}t∈T ) can be identified from P (fθ(xt)) up to affine transformation.

This lemma is an instantiation of Theorem 3.5 in Balsells-Rodas et al. (2023) in the special case of linear transition dynamics.

Step 3: Identification of xt via interventions. The previous step shows that we can identify xt up to affine transformation.
In this step, we show that, if two solutions of xt are affine transformations of each other, they must coincide up to block
affine transformation, if they agree on the interventional distributions, under Assumption 3.3. This argument implies that the
interventional distributions can identify xt (up to block-wise permutation, and shifting and scaling.)

Concretely, consider two sets of latent variables {xt}t∈T and {x̂t}t∈T where they are affine transformations of each other

x̂t = Mxt + c,∀t. (10)

Suppose both sets satisfy Equation (23) across all intervention environments, namely,

xt+1 =1{But = 0} ⊗Axt +But + ϵt, (11)

x̂t+1 =1{B̂ut = 0} ⊗ Âx̂t + B̂ut + ϵ̂t, (12)

where both ϵt, ϵ̂t are i.i.d over time. Then we will prove that M = ΛΠ, where Λ is an invertible block-diagonal matrix (with
a 1⊤1{But = 0}-sized block and a 1⊤1{But ̸= 0}-sized block), and Π is a permutation matrix.

Single intervention case. Below we first consider the simplest case where only one latent variable is intervened, i.e.
1⊤1{But = 0} = 0. We will entend to general interventions later.

We achieve identification using the following observation. Suppose the jth latent xt,j was intervened in an environment,
namely 1{(But)j = 0} = 0. Then we have

xt,j = (But)j + ϵt,j ∀t, (13)

and thus xt+1,j ⊥ xt for all t. The reason is that the intervention set xt+1,j to be (But)j plus a random noise component,
hence independent of all components of xt.

Below we argue that, if we also find a component j′ of x̂t+1 such that x̂t+1,j′ ⊥ x̂t, then Mj′,−j = 0, i.e. x̂t+1,j′ must be
an affine transformation of xt+1,j .

To make this argument, we write

x̂t+1,j′ = M⊤
j′,−jxt+1,−j +Mj′,jxt+1,j + cj′ , (14)

x̂t,j′ = M⊤
j′,−jxt,−j +Mj′,jxt,j + cj′ . (15)
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Then since x̂t+1,j′ ⊥ x̂t, we have that

Cov(x̂t+1,j′ , x̂t) = 0. (16)

This implies

0 =Cov(x̂t+1,j′ , x̂t) (17)

=Cov(M⊤
j′,−jxt+1,−j +Mj′,jxt+1,j ,M

⊤
j′,−jxt,−j +Mj′,jxt,j) (18)

=Cov(M⊤
j′,−jxt+1,−j ,M

⊤
j′,−jxt,−j) + Cov(M⊤

j′,−jxt+1,−j ,Mj′,jxt,j)

+ Cov(Mj′,jxt+1,j ,M
⊤
j′,−jxt,−j) + Cov(Mj′,jxt+1,j ,Mj′,jxt,j) (19)

=Cov(M⊤
j′,−jxt+1,−j ,M

⊤
j′,−jxt,−j) + Cov(M⊤

j′,−jxt+1,−j ,Mj′,jxt,j). (20)

The last equation is due to Equation (13). It implies that Mj′,−j = 0 due to Assumption 3.3. In other words, the j′th
dimension of x̂t that achieves the independence property is mapped to the jth dimension of xt up to scaling and shifting;
one can separate out the intervened latent from the unintervened ones up to permutation, and coordinate-wise shifting and
scaling.

Multiple intervention case. We next extend to the case when multiple latents j ∈ I were intervened, which gives
xt+1,I ⊥ xt in the true latent space.

We find a latent space (i.e. x̂t) for the iSSM model that is compatible with the interventional data while maximizing the
cardinality of I ′ that satisfies a similar independence relationship as the true intervened latents x̂t+1,I′ ⊥ x̂t. In other
words, among all candidate x̂t that can fit the interventional data, we find the one that has the most number of dimensions
independent of x̂t. The faithfulness assumption (Assumption 3.3) implies that one cannot use linear transformations to
induce additional independence relatinoship, hence |I ′| = |I|.

We then leverage the linear identifiability from step 2 that gives

{Π̂x̂t+1}I = MI,−Ix̂t+1,−I +MI,Ixt+1,I + cI . (21)

This step mimics Equation (14) except we use an additional permutation matrix Π̂ to align the I ′ entries in x̂ with the I
entries in x. This alignment is for notational convenience.

Then following the same argument as in Equation (17), Cov({Π̂x̂t+1}I , x̂t) = 0 implies that MI,−I = 0. That is, we can
successfully separate out the intervened latents from the un-intervened latents: the intervened latents I were mapped to I ′

in the estimated latent space up to permutation, and block-wise shifting and scaling.

As a consequence of identifying the parameters of the iSSM up to blockwise affine transformation, we can predict the
observation distributions for novel unseen interventions ut as long as the interventions touch upon only those latent nodes
that are in different blocks; these latents are already separated out: {ΛΠ}ij = 0 for any i, j ∈ {k:{Bunew

t }k ̸= 0}. In other
words, the submatrix restricted to the intervened latents in the new intervention {ΛΠ}Inew×Inew must be diagonal, ensuring
that interventions performed on these latents are properly modeled and predicted.

Sufficiently diverse interventions. We finally extend Theorem 3.4 to a set of sufficiently diverse interventions. The
unordered pairs condition (Assumption 3.5) ensures that Mij = 0 for any pair of i, j latents, following the same argument
as in Equation (17), since we can separate out any pair of latents as long as they are not always either being intervened
at the same time or being un-intervened at the same time. Hence, one can identify the latents up to permutation, and
coordinate-wise shifting and scaling, i.e. Â = AΛ∗Π+ c for some diagonal Λ∗. It further implies that one can identify the
latent dynamics matrix A also up to permutation, and coordinate-wise shifting and scaling. It also enables us to predict for
all unseen interventions given the full identifiability of the dynamics,

yt ∼ P (yt|fθ(xt)), (22)
xt+1 = 1{But = 0} ⊗Axt +But + ϵt. (23)
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C.1. Inference Details

Our statistical model is described by the following probabilistic decomposition.

pΘ(x1:T ,y1:T ,u1:T ) = p(B)pΘ(x0)

T∏
t=1

pΘ(xt+1|xt,ut)pΘ(yt|xt)

where Θ = {A,B,Q,θ,R,µ0,Q0} contains all generative parameters of the model and µ0,Q0 are the mean and
covariance of the initial condition distribution pΘ(x0). We may include an independent Laplace prior over the elements of
B to encourage its sparsity.

Notice that some of these parameters depend on the specific instantiation of the model. For example, for normal observations
R ∈ RN×N is the observation covariance whereas the observation mean is given by the nonlinear transformation fθ(x).
For the model with Poisson observations there are no observational parameters since the rate of the Poisson distribution is
generated by applying a positive transform (e.g. softplus) to the output of the nonlinear transform fθ(x). In addition,
for some instantiations of the model we set B to a predefined matrix and do not optimize it. For example, when we want to
explicitly model the causal interactions between neurons, we set D = N and set B to the identity matrix.

Given a dataset of K trials of length T denoted by
{
y
(k)
1:T ,u

(k)
1:T

}K

k=1
our goal is to approximate the posterior distribution

pΘ(x1:T |y1:T ,u1:T ) while finding the optimal generative parameters that fit the data the best denoted by Θ̂. Since marginal
likelihood optimization and analytical posterior inference in this model is not tractable, we follow variational inference
(VI), where the goal is to find a distribution qΦ(x1:T |y1:T ,u1:T ) that best approximates the posterior distribution while
optimizing the parameters Θ via maximizing the evidence lower bound (ELBO).

L(Φ,Θ) = Eq [log pΘ(x1:T ,y1:T ,u1:T )− log qΦ(x1:T |y1:T ,u1:T )]

Using the reparameterization trick, we achieve an empirical estimate of the gradient of ELBO using samples from an
independent noise distribution.

x
(k)
1:T = hΦ(η;y

(k)
1:T ,u

(k)
1:T ); η

(k)
nt ∼ N (0, 1)

∇Φ,ΘL(Φ,Θ) = Eη [∇Φ,Θ log pΘ(hΦ(η;y1:T ,u1:T ),y1:T ,u1:T )− log qΦ(hΦ(η;y1:T ,u1:T ))]

In practice, we use Monte Carlo estimates of the expectation above by sampling from an independent noise distribution
and evaluating the gradient inside the expectation for those samples. The number of samples used for estimating the
gradient introduces a trade-off between the accuracy of the estimation computation time. We empirically find that a single
sample is often enough to achieve accurate estimates. We choose Adam optimizer to perform our stochastic gradient-based
optimization.

Crucially, the function hΦ which takes in the data at each trial and combines it with independent noise to generate the
latent trajectories is an LSTM. We choose LSTM to match the data domain (i.e. time series) and ensure that the variational
distribution respects the time causality while being expressive enough to fit our datasets. Specifically, we have the following
decomposition of the variational distribution.

qΦ(x1:T ) =

T∏
t=1

N (µΦ(y1:t,u1:t), σΦ(y1:t,u1:t))

hΦ(η;y
(k)
1:T ,u

(k)
1:T ) = µΦ(y

(k)
1:t ,u

(k)
1:t ) + η × σΦ(y

(k)
1:t ,u

(k)
1:t )

where both µΦ, σΦ are LSTM functions and the inference is done in an amortized fashion. An important distinction
in our variational inference scheme is the application of interventional inputs directly in the variational mean µ1:T :=
µΦ(y1:T ,u1:T ). This is achieved via replacing the variational mean at time point t denoted by µt with its interventional
counterpart 1{But = 0} ⊗ µt +But.
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C.2. Computational Complexity

In order to examine the computational complexity of our variational framework, we first expand the gradient calculation.

∇Φ,ΘL(Φ,Θ) = Eη [∇Φ,Θ log pΘ(hΦ(η;y1:T ,u1:T ),y1:T ,u1:T )− log qΦ(hΦ(η;y1:T ,u1:T ))]

≈
∑
k

∇Φ,Θ log pΘ(hΦ(η̃;y
(k)
1:T ,u

(k)
1:T ),y

(k)
1:T ,u

(k)
1:T )−∇Φ,Θ log qΦ(hΦ(η̃;y

(k)
1:T ,u

(k)
1:T ))

where η̃ is a sample from i.i.d gaussian noise. The estimator above involves (1) generating hΦ by running two LSTM
forward calls and running backprop to compute the gradients wrt Φ; (2) passing the generated latent trajectory to the
generative model with linear dynamics and nonlinear emissions and computing gradients of the log probability w.r.t the
parameters Θ. Both of these scale linearly with time T , and quadratically with the latent dimension D and N . In addition,
running backprop on the LSTM functions as well as the emission function depends on the size of the architecture used to
realize those functions.
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