
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS LLM4FLOORPLAN: AGENTS CAN
DO WHAT ENGINEERS DO IN CHIP DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Open-source tools have actively propelled advancements in physical electronic
design, yet the deployment still requires substantial expertise. Recent progress in
large language model (LLM)-based agents offer potential for automating physical
design, but challenges remain in imparting domain-specific expertise and extract-
ing case-specific design objectives to meet complex requirements. To address
these issues, we introduce LLM4Floorplan, a multi-agent Floorplanner powered
by LLMs. Unlike flow-level approaches that design workflows for multiple tasks,
LLM4Floorplan is the first task-level agent specifically dedicated to a single phys-
ical design task. Specifically, we propose a simple yet effective search-cluster-
based retriever that extracts the most relevant and diverse solutions from prior
knowledge, drawing on essential domain-specific knowledge to ensure robust de-
sign performance. Building on the retriever, LLM4Floorplan integrates a novel
Dynamic Retrieval-Augmented Thought (DRAT) prompting technique in which
the LLM generation interacts with the retrieval system to precisely capture case-
specific design objectives. With these innovations, LLM4Floorplan simulates the
workflow of human engineers by facilitating task comprehension, model selection,
hyperparameter tuning, code revisions, and performance evaluation. Extensive
evaluations on public circuits with seven different LLM backbones demonstrate
that LLM4Floorplan exhibits strong task comprehension and decision-making ca-
pabilities. Remarkably, for the strict requirement, LLM4Floorplan boosts the suc-
cess rate from 0.250 to 0.875.

1 INTRODUCTION

② Model

Selection

Chip Canvas & Netlist

Requirement
I want to minimize the wirelength

as much as possible. Overlap

should be less than 0.05, but

minimizing wirelength is the

primary objective. Any solutions

that achieve a lower wirelength

with slightly higher overlap (up

to 0.05) are preferable over

solutions with very low overlap

but higher wirelength.

Human

Engineer

① Task

Comprehension
③ Parameter

Tuning

⑤ Performance

Evaluation

④ Code

Revisions

Figure 1: Example of the design workflow
of floorplanning. It currently relies heav-
ily on experienced human engineers for task
comprehension, model selection, hyperpa-
rameter tuning, code revisions, and perfor-
mance evaluation.

Physical design, including floorplanning (Knechtel
et al., 2015; Li et al., 2022), placement (Chiou et al.,
2016; Liao et al., 2023; Cheng et al., 2022), rout-
ing (Liu et al., 2013; Du et al., 2023), etc., in elec-
tronic design automation (EDA) is critical in the de-
sign of very large-scale integration (VLSI) and at-
tracts a lot of effort from classical (Knechtel et al.,
2015; Chiou et al., 2016; Liu et al., 2013) and ma-
chine learning solutions (Li et al., 2022; Liao et al.,
2023; Cheng et al., 2022; Du et al., 2023). However,
it still highly depends on the expertise and consum-
ing time of human engineers to perform a chain of
tasks as shown in Fig. 1, which significantly sacri-
fices the automation and efficiency in the industry.

Recently, with the rapid development of large lan-
guage models (LLMs) (Achiam et al., 2023; Tou-
vron et al., 2023; Anthropic, 2024), especially the
emergence of LLM-powered agent systems in vari-
ous scenarios like video game (Tan et al., 2024), smartphone users (Yang et al., 2023b), software
development (Qian et al., 2024), the potential of EDA agents has garnered significant attention from
both industry and academia (Wang et al., 2024c). However, in contrast to other agent systems,
EDA agents face two critical challenges: 1) imparting sufficient domain-specific expertise to handle

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the intricacies of physical design, and 2) extracting case-specific design objectives to meet diverse
and complex requirements. Domain-specific expertise provides the foundation for understanding
and tackling general EDA challenges (e.g., floorplanning principles), while case-specific objectives
focus on how this knowledge is applied to meet the unique needs of an individual design.

To address these, we target floorplan, a critical stage in physical design, and devise LLM4Floorplan,
a multi-agent floorplanner powered by LLMs, to perform domain- and case-specific guidance, which
designs floorplan layouts that successfully meet diverse requirements.

Specifically, inspired by RAT (Wang et al., 2024d), we develop a retrieval system (retriever) to ex-
tract domain-specific prior knowledge. Unlike RAT, which retrieves information via web searches,
this approach is impractical for EDA design due to the closed-source nature of the community.
To address this, we construct a database that stores historical design experience and apply a sim-
ple search and clustering technique to obtain relevant, diverse instances as domain-specific prior
knowledge. Building on the retriever, we propose a novel Dynamic Retrieval-Augmented Thought
(DRAT) prompting technique, enabling LLMs to interact with the retriever. With this technique,
LLM4Floorplan captures case-specific design objectives, facilitating the design of floorplan layouts
under complex requirements. These innovations allow LLM4Floorplan to reduce the labor-intensive
efforts of human engineers across various design tasks, including task comprehension, model selec-
tion, hyperparameter tuning, code revisions, and performance evaluation.

To assess the efficacy of these techniques, we propose a benchmark comprising six distinct floorplan-
ning requirements. Empirical results on public datasets using seven LLM backbones demonstrate
improved performance and successful design outcomes. Notably, LLM4Floorplan achieves success-
ful designs even under complex and unseen requirements, showcasing its strength in generality and
potential for more personalized design solutions. The highlights of this work are:

1) Pioneering Task-Level Multi-Agent for Physical Design. We introduce LLM4Floorplan, to the
best of our knowledge, the first implementation of a multi-agent system dedicated to a specific phys-
ical design task. It builds on large language models (LLMs) to automate complex design processes,
providing a novel framework for floorplanning and reducing manual effort in design processes.

2) Novel Retrieval System to Integrate Domain-Specific Design Guidance. We introduce a novel
retrieval system featuring a search and clustering module that extracts the most relevant and diverse
instances as domain-specific prior knowledge.

3) DRAT Prompting for Case-Specific Design Guidance. Building on the retrieval system, we
propose a novel DRAT prompting technique, which enables LLM4Floorplan to dynamically inte-
grate the retriever and LLM generation. DRAT enhances the system’s ability to capture case-specific
design objectives, addressing diverse and complex design challenges effectively.

4) Benchmark and Significant Empirical Performance. We validate our approach by introducing
a new benchmark with six distinct design requirements and testing LLM4Floorplan on floorplan-
ning tasks using public circuits from the MCNC and GSRC datasets with seven LLMs. Our results
demonstrate that LLM4Floorplan consistently outperforms existing floorplanning baselines, partic-
ularly in strict design requirements, where the success rate improves from 0.250 to 0.875.

2 RELATED WORK

LLM prompting. Since the emergence of pretrained LLMs as foundation models, prompting engi-
neering has been explored to improve answer quality, serving as an alternative to fine-tuning (Cobbe
et al., 2021). Among various prompting techniques, in-text learning (Dong et al., 2022) enables
LLMs to learn tasks from only a few examples provided as demonstrations. To enhance LLM ca-
pabilities in solving math word problems, Chain-of-Thought (CoT) (Wei et al., 2022) incorporates
intermediate reasoning steps, while Retrieval-Augmented Generation (RAG) (Lewis et al., 2020)
retrieves information from an external knowledge base. Combining the strengths of both CoT and
RAG, Retrieval-Augmented Thoughts (RAT) (Wang et al., 2024d) addresses long-horizon genera-
tion and improves rating scores. However, RAT lacks an external knowledge base when applied
directly as an EDA agent due to the closed-source nature of the EDA community. To overcome this
limitation, we propose a novel dynamic RAT prompting technique, along with a search-clustering-
based retriever, to extract both domain- and case-specific guidance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LLMs as Agents. Employing LLMs as specialized agents (Wang et al., 2024b; Hu et al., 2024) is be-
coming more popular to address entertainments or industrial problems. For example, Cicero (FAIR
et al.,2022), CRADLE (Tan et al., 2024), Park et al. (2023), and Xu et al. (2023) regard LLM as
game characters or players to interact with gaming environments. ToolLLM (Qin et al., 2023), Tool-
former (Schick et al., 2023), GPT4Tools (Yang et al., 2023a), and ToolkenGPT (Hao et al., 2023)
instruct LLMs to use external tools. AppAgent (Yang et al., 2023b) and Mobile-Agent-v2 (Wang
et al., 2024a) use LLM to simulate smartphones users. Additionally, Codex (Chen et al., 2021), App-
World (Trivedi et al., 2024) Chatdev (Qian et al., 2024) use LLMs to develop software. These agents
are generally powered by frequent interactions with environments and abundant datasets, which are
intractable to be applied to EDA scenarios.

LLM for EDA. LLM for EDA (Zhong et al., 2023; Wang et al., 2024c) recently attracts lots of at-
tention. Among these efforts, most of the LLM-based approaches are devised to generate Hardware
Description Language (HDL) code such as Verilog (Blocklove et al., 2023; Liu et al., 2023b; Lu
et al., 2024) or Register Transfer Level (RTL) code (Fu et al., 2023; Wan et al., 2024), which mainly
equip LLMs’ strong language capability. Additionally, ChipGPT (Chang et al., 2023), BetterV (Pei
et al., 2024) and DeLorenzo et al. (2024) are proposed for Verilog design optimization while Analog-
Coder (Lai et al., 2024) uses LLMs to generate codes to design analog circuits. The most related
works to our paper are ChipNeMo (Liu et al., 2023a) and ChatEDA (Wu et al., 2024), which design
agents to interact with EDA tools. However, these agents operate at the flow level, designing high-
level workflows without significantly contributing to the enhancement of specific tasks, whereas
our task-level agent aims to improve a specific task. Our LLM4Floorplan is a task-level agent that
emphasizes floorplanning, which is a prior and critical task in physical design.

3 PRELIMINARIES AND PROBLEM FORMULATION

𝑏4
𝑏1

𝑏7𝑏3

𝑏5𝑏2
𝑏6

𝑊

𝐻

pins

Figure 2: Example of a
floorplanning design.

Floorplan. Floorplanning is a prior stage in physical design and rec-
ognized as an NP-hard Murata et al. (1996) problem, where the fixed-
outline floorplanning formulation is current well-established formula-
tion (Li et al., 2022). Specifically, as is shown in Fig. 2, the lay-
out region is defined as a rectangular area with a given width W and
height H , extending from coordinates (0, 0) in the lower-left corner to
(W,H) in the upper-right corner. Additionally, a netlist (Vb,Vp, E) is
provided, where each element bi ∈ Vb, (i = 0, 1, . . . , nb − 1) repre-
sents a block (rectangle) with fixed width wi and height hi, and area
ai = wi · hi. The center of block bi is positioned at (xbi , ybi). Simi-
larly, each pi ∈ Vp, (i = 0, 1, . . . , np − 1) corresponds to a pin (point)
with fixed coordinates (xpi

, ypi
). Each net ei ∈ E , (i = 0, 1, . . . , ne − 1)

connects a subset of blocks and pins, denoted as ei = {b(ei)1 , b
(ei)
2 , . . . , p

(ei)
1 , p

(ei)
2 , . . . }. For each

net ei, the Half-Perimeter Wire Length (HPWL) is calculated as:
HPWL(ei) = max

b∈ei
(xb)−min

b∈ei
(xb) + max

b∈ei
(yb)−min

b∈ei
(yb). (1)

The objective of the fixed-outline floorplanning problem is to optimize the locations and shapes of all
movable blocks, minimizing total HPWL across all nets while ensuring no overlapping area among
blocks, maintaining suitable aspect ratios, and keeping all blocks within the fixed outline. The
optimization variables Θ = {(wi, hi, xbi , ybi)}

nb−1
i=0 include width, height (wi, hi) and coordinates

(xbi , ybi) for each block bi ∈ Vb. Further details on floorplanning are provided in Appendix B.

RAT prompting. Retrieval-Augmented Thought (RAT) (Wang et al., 2024d) is a mitigation of
Chain-of-Thoughts (CoT) (Wei et al., 2022) and Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020). Specifically, given a task prompt P and a powerful LLM fθ with pretrained parameters
θ, CoT generates zero-shot thoughts T = {ti}Ti=1 ∼ fθ(·|P) with T thought steps, based on which
RAT generates the thought steps t̃1:i according to comprehensive conditional distributions:

t̃1:1 = t̃1 ∼ fθ(·|P, t1, r1), t̃1:i ∼ fθ(·|P, t̃1:(i−1), ti, ri) (2 ≤ i ≤ T), (2)

where ri is relevant documents retrieved by the query qi = gϕ(P, t1:i). The query function gϕ with
parameters ϕ is a text encoder or LLM that translates the task prompt P and the thought steps t1:i
into a query qi, allowing the retrieval system to deal with it. With the thought steps and retireval
system, RAT significantly enhances the reasoning ability of LLMs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Retriever

LLM Generation Dynamic State𝒮: Sample set

ℬ: Circuit set

𝒞: Model set

Parameter Files

Code Files

Database

Other Files

𝑟1: samples

𝑟2: parameter file

analytical_args.py

𝑟3: code file

model_and_loss.py

𝑟4: execute model

Ƹ𝑡1: generate model ℳ𝑗

ANALYTICAL

Ƹ𝑡2: generate parameters ℋ𝑗

{’circuit’: ’n10’,
 ’num blocks’: 10,
 ’num pins’: 69,
 ’num nets’: 118}

Ƹ𝑡3: generate codes

model_and_loss_revised.py

𝒜1 = {ℛ𝑗 , ℬ𝑗}

𝒜2 = {ℛ𝑗 , ℬ𝑗 , 𝒞𝑗}

𝒜3 = {ℛ𝑗 , ℬ𝑗 , 𝒞𝑗,ℋ𝑗}

𝒜4 = {ℛ𝑗 , ℬ𝑗 , 𝒞𝑗,ℋ𝑗 ,ℳ𝑗}

ℳ𝑗: metrics

{’wirelength’: 39357.89,
 ’overlap’: 0.0105,
 ’time’: 25.20}

𝐼𝑗: image

𝒩𝑗: generate comment

T h e f i n a l f l o o r p l a n

successfully aligns with

the requirements outlined

i n t h e d o c u m e n t ,

e m p h a s i z i n g m i n i m a l

wirelength while adhering

to the overlap constraint.

………………

𝒮𝑗: new sample

store

MultiModal

 LLM

ℬ𝑗: new circuit ℛ𝑗: new requirement Input
prompt

𝑟𝑖 → Ƹ𝑡𝑖

𝑟𝑖+1 ← Ƹ𝑡𝑖

Ƹ𝑡𝑖 → 𝒜𝑖+1

𝑟𝑖 ← 𝒜𝑖

𝒫𝑖

LLM

floorplan output

Agent

Figure 3: The pipeline of LLM4Floorplan consists of four main components: data, the retrieval
system, LLM agents, and the dynamic state. Upon receiving input, the agents retrieve necessary
materials from the database, related documents, or by executing the floorplan approach, while main-
taining a dynamic state to track the design schedule. After the design is completed, the comment
agent evaluates the performance and adds a new instance to the database.

4 LLM4FLOORPLAN

Overview. In this section, we propose LLM4Floorplan, a floorplanner powered by LLM, to address
two challenges for EDA agents: 1) impart domain-specific expertise, and 2) extract case-specific
design objectives. Specifically, we respectively introduce an effective retriever in Sec. 4.1 and a
novel prompting technique in Sec. 4.2, and give a specific process of LLM4Floorplan in Sec. 4.3.
We show the pipeline in Fig. 3, where LLM4Floorplan contains four aspects, including datasets,
retrieval system, decisions, and dynamic information state process.

4.1 SEARCH-CLUSTER-BASED RETRIEVER

To address the first challenge, we initially construct a standard database D = (S,B, C) that contains
the set of executed instances S, the set of circuit information B, and the set of model selections C.
Specifically, we design an instance collection system. Each time an experiment is conducted, the
corresponding log is recorded as an instance Sj ∈ S. These records serve as an experience pool,
allowing LLMs for retrieving domain-specific knowledge for improved decision.

The retrievers in RAG (Lewis et al., 2020) and RAT (Wang et al., 2024d) are quite important in the
system. Unlike RAG, which fine-tunes a pretrained retriever and generator, LLM4Floorplan has lim-
ited instances from which to learn parametric knowledge. Therefore, to acquire better knowledge,
we develop a search-cluster-based retriever that selects instances based on relevance and diversity.

Specifically, in the retriever, we employ a text encoder gϕ to obtain the embeddings gϕ(Sj) of
each instance Sj ∈ S and the embedding gϕ(Bj) of its circuit information Bj . Then we utilize
these embeddings to retrieve corresponding instances and circuits, respectively. The retriever is
performed in two steps:

Relevance: We first identify the most relevant circuits based on their circuit information using
K-Nearest Neighbors (KNN) search (Cover & Hart, 1967), a classical search technique. For a task
involving a new circuit Bi, we compute the cosine similarity between gϕ(Bi) and all previously seen
circuits Bj ∈ B, selecting the top-k1 relevant circuits. To better align with real-world scenarios, note
that typically Bi /∈ B.

Diversity: Among the top-k1 relevant circuits, diverse instances, such as excellent, poor, and failed
designs, are all valuable for improving the new design. Excellent instances provide insights for
optimal designs, while poor or failed instances help the model avoid ineffective model choices or
hyperparameters. To capture this diversity, we apply spectral clustering (Ng et al., 2001), a technique

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 LLM4Floorplan System
Input: Database D = (S,B, C), requirement document Rj , current circuit Bj , number of iterations

iters, the number of relevant circuits k1, the number of clusters k2.
Output: Updated instance set S and circuit set B.

1: Initialize information state A1 = {Rj ,Bj};
2: r1 = RetrieveInstances(S,B,Bj , k1, k2); ▷ Retrieve instances based on Sec. 4.1.
3: for j = 1 to iters do
4: t̂1 = Cj ∼ fθ(·|P1, r1,A1); ▷ Generate model.
5: A2 = A1 ∪ {Cj}; ▷ Add the generated model to the state.
6: r2 = RetriveParameters(t̂1); ▷ Retrieve parameter files based on the model.
7: t̂2 = Hj ∼ fθ(·|P1:2, r1:2, t̂1,A2); ▷ Generate hyperparameters.
8: A3 = A2 ∪ {Hj}; ▷ Add hyperparameters to the state.
9: r3 = RetrieveCode(t̂1:2); ▷ Retrieve code based on model and hyperparameters.

10: t̂3 ∼ fθ(·|P1:3, r1:3, t̂1:2,A3); ▷ Generate new code.
11: r4 = (Mj , Ij) = ExecuteModel(t̂1:3); ▷ Execute the model and obtain results.
12: A4 = A3 ∪ {Mj}, Aj ≜ A4; ▷ Add evaluation metrics.
13: N j ∼ hψ(·|PN ,Aj , Ij); ▷ Generate comprehensive comment.
14: Sj ≜ (Aj , Ij ,N j); ▷ Construct new instance.
15: B = B ∪ {Bj}, S = S ∪ {Sj}; ▷ Add new circuit and instance to the sets.
16: Add Sj to r1;
17: end for

well-suited for high-dimensional data, to the embeddings gϕ(Sj) of all instances Sj ∈ S within the
top-k1 relevant circuits, selecting k2 instances that are respectively closest to the k2 clusters.

These two classical techniques are simple, effective, and efficient to retrieve relevant and diverse
instances to enhance the agent decisions.

4.2 DRAT PROMPTING

To address the second challenge, we introduce a Dynamic Retrieval-Augmented Thought (DRAT)
prompting technique, which aims to extract case-specific design objectives. Unlike Eq. 2 in
RAT (Wang et al., 2024d), where the general LLMs cannot directly interact with specific physi-
cal design models and therefore cannot generate the corresponding model outputs, it becomes in-
tractable to generate valid zero-shot thought steps T . Thus, we maintain a dynamic state process
A1:T that is updated synchronously with the thought steps and split the task prompt P into separate
ones P = {Pi}Ti=1 to correspond each thought t̂i to a prompt Pi. Consequently, we revise Eq. 2
from thought revision to a dynamic thought reasoning process:

t̂1 ∼ fθ(·|P1, r1,A1), t̂i ∼ fθ(·|P1:i, t̂1:(i−1), r1:i,Ai) (2 ≤ i ≤ T), (3)

where ri is relevant documents retrieved by the query qi = gϕ(t̂1:(i−1)). The final step AT is equal
to the information set Aj of the j-th instance, which we will detail in Sec. 4.3. This dynamic state
process is mandatory in our scheme as the subsequent decision is dependent of the previous ones.

4.3 LLM4FLOORPLAN SYSTEM

In this section, we present the LLM4Floorplan system, utilizing the search-cluster-based retriever
introduced in Sec. 4.1 and the DRAT prompting described in Sec. 4.2. The corresponding algorithm
is provided in Alg. 1. While this reasoning process is intricate, it fully adheres to Eq. 3 and serves
as a general application that simulates the design workflow of human engineers.

To begin with, we define each instance as Sj = (Aj , Ij ,N j) ∈ S in the database, where Aj =
{Rj ,Bj , Cj ,Hj ,Mj} is an information set includes Sj’s requirement document Rj , basic circuit
information Bj , model choice Cj , hyperparameters Hj , and metrics Mj , while Ij is the result layout
image and N j ∼ hψ(·|PN ,Aj , Ij) with parameters ψ represents the comment that is generated by
multi-modal LLM given Aj and Ij . Then, LLM4Floorplan makes a chain of decisions following
Eq. 3, containing the following components:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Retrival System r1:4: The retrieval output r1 is a set of instances that are retrieved based on the
search-cluster-based retriever in Sec. 4.1. r2 is the parameter files retrieved based on the model
while r3 is the code files retrieved based on the model and parameters. r4 is a tuple of output
including metrics and output image retrieved by executing the selected model with corresponding
parameters and revised code.

Agent Decisions t̂1:3 and N j: Four decisions are generated by LLM agents, including model,
hyperparameter, code, and comment generation, which encompass most design steps in real-world
scenarios. These decisions are highlighted in darkblue in Alg. 1. Note that the first three decisions
leverage the same LLM backbone fθ, as they involve purely textual data (including code), while the
final decision utilizes a multi-modal LLM hψ , as it requires image input.

Dynamic State Process A1:4: The process from A1 to A4 represents the filling of information.
Specifically, at first, A1 only has the requirement document Rj and the circuit information Bj for
the j-th instance. With LLMs generating the model Cj , hyperparameters Hj , and the output metrics
Mj step-by-step, A is finally obtained and is incorporated into the new instance Sj .

Additionally, LLM4Floorplan incorporates iters, the number of iterations that simulates human
engineers to fine-tune the model, hyperparameters, and codes based on the same circuit and require-
ment to obtain a better result. We show the whole decision prompting in Appendix C.1 and the
comment prompting in Appendix C.2.

5 EXPERIMENT

This section outlines the experimental protocols in Sec. 5.1. We compare LLM4Floorplan’s per-
formance on public datasets (Sec. 5.2) and introduce a new benchmark with six distinct design re-
quirements (Sec. 5.3). Further analysis in terms of the effect of code revision, search-cluster-based
retriever, and ablation studies are shown in Sec. 5.4. Experiments are run on a machine with an
AMD EPYC 7402 24-Core Processor, an NVIDIA GeForce RTX 4090, and 512GB RAM, repeated
three times with different seeds, reporting the best result.

5.1 EXPERIMENTAL PROTOCOLS

Datasets. We incorportate two public datasets, GSRC1 and MCNC2, which are widely-used in
floorplan. GSRC contains six circuits with number of blocks ranging from 10 to 300 while MCNC
contains two circuits named ami33 and ami49. A brief summary of these circuits is shown in Ap-
pendix D.1. Note that the scale of the largest circuit n300 in MCNC is significantly larger than the
ones of most industrial circuits, as stated in (Mallappa et al., 2024).

Metrics. Following previous floorplan methods (Li et al., 2022), we utilize the total HPWL, as
defined in Eq. 1, calculated across all nets. To evaluate the agents’ comprehension of design re-
quirements, we introduce the Success Rate (SR), which quantifies the proportion of cases that meet
the Overlapping Ratio (OR) criteria. For a comprehensive performance assessment, we propose the
Rank metric, primarily based on SR. A higher SR guarantees a better Rank, and when SR values are
identical, a lower HPWL results in an improved Rank. Further details on the total HPWL and OR
calculations are provided in Appendix D.2.

Floorplan Backbones. We leverage two typical types of floorplan approaches: 1) PeF (Li et al.,
2022), which is a representative analytical approach and is also the current state-of-the-art; 2)
ECS (Chiou et al., 2016), which is a simulated annealing (SA)-based approach using the corner
sequence representation. Compared to analytical approaches, ECS is capable of eliminating the
overlap area without a second stage named legalization (Moffitt et al., 2006; Lin et al., 2016; Kai
et al., 2023). Legalization permits the floorplan not necessarily non-overlapping but the overlap ra-
tio cannot be too large. In our experiments, we regard the non-overlap as an advantage of ECS and
retain the disadvantage of overlap area for PeF to evaluate the capability of LLMs to choose models
under different requirements.

LLM Backbones. We employ multiple LLMs as agent backbones to implement fθ introduced
in Sec. 4.2, including GPT-3.5-turbo (Brown, 2020), GPT-4-turbo (Achiam et al., 2023), GPT-4o-

1http://vlsicad.eecs.umich.edu/BK/GSRCbench/
2http://vlsicad.eecs.umich.edu/BK/MCNCbench/

6

http://vlsicad.eecs.umich.edu/BK/GSRCbench/
http://vlsicad.eecs.umich.edu/BK/MCNCbench/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Main floorplan results on eight circuits with various LLM backbones using DRAT prompt-
ing and the full LLM4Floorplan. Results that do not meet the OR ≤ 5% criterion are in gray, and
failed results are marked as ‘N/A’. The best results for each approach are highlighted in cyan.

Analytical Approach

Method LLM Backbones Total HPWL of Circuits Overall Metrics
n10 n30 n50 n100 n200 n300 ami33 ami49 SR*↑ WLR*↓ Rank*↓

PeF (Li et al., 2022) 37,097 104,488 130,589 198,685 361,313 480,571 59,061 725,235 1.000 1.000 6

DRAT

DeepSeek-Chat 35,797 102,152 126,336 195,268 354,605 473,402 61,981 745,263 1.000 0.992 5
DeepSeek-Coder 39,201 102,650 133,187 195,713 379,148 481,584 61,120 737,008 1.000 1.018 8

GPT-3.5 38,464 106,658 126,670 194,066 369,972 494,165 58,192 733,926 1.000 1.007 7
GPT-4 34,967 99,652 124,546 189,354 346,186 456,867 60,194 708,398 0.625 0.956 10

GPT-4o-mini 35,896 99,730 126,379 194,375 367,964 474,257 57,673 710,099 1.000 0.979 3
GPT-4o 34,937 99,620 123,792 193,461 340,055 458,696 56,521 674,498 0.500 0.949 11

Claude-3.5 35,479 99,777 125,941 190,482 348,836 464,595 56,330 669,894 0.750 0.956 9

LLM4Floorplan
GPT-4o-mini 35,589 102,444 127,492 193,986 353,332 478,474 63,378 700,512 1.000 0.988 4

GPT-4o 34,907 99,704 124,116 196,169 353,526 469,933 58,663 700,512 1.000 0.969 2
Claude-3.5 34,966 100,071 124,701 190,605 357,754 469,875 55,795 675,684 1.000 0.957 1

Simulated Annealing (SA)-based Approach
ECS (Chiou et al., 2016) 40,082 123,022 168,848 295,387 561,956 848,366 82,454 1,445,688 1.000 1.000 4

DRAT

DeepSeek-Chat N/A N/A N/A N/A N/A N/A N/A N/A 0.000 N/A N/A
DeepSeek-Coder N/A N/A N/A N/A N/A N/A N/A N/A 0.000 N/A N/A

GPT-3.5 N/A 123,102 172,105 N/A N/A N/A N/A N/A 0.250 1.010 5
GPT-4 N/A N/A N/A N/A N/A N/A N/A N/A 0.000 N/A N/A

GPT-4o-mini N/A N/A N/A N/A N/A N/A 76,104 N/A 0.125 0.982 6
GPT-4o N/A N/A N/A N/A N/A 839,226 N/A N/A 0.125 0.989 7

Claude-3.5 N/A N/A N/A N/A N/A N/A N/A N/A 0.000 N/A N/A

LLM4Floorplan
GPT-4o-mini 39,130 126,168 168,198 283,538 568,540 863,628 70,769 1,442,816 1.000 0.981 3

GPT-4o 35,660 120,142 164,987 280,063 553,580 829,065 79,417 1,462,553 1.000 0.966 1
Claude-3.5 37,086 118,800 166,750 284,426 551,714 832,472 83,730 1,400,434 1.000 0.974 2

* SR: Success rate; WLR: Average wirelength ratio compared to baselines (PeF Li et al. (2022) & ECS (Chiou et al., 2016)); Rank: Rank is determined
primarily by SR, with a larger SR ensuring a better Rank. Within the same SR, a smaller WLR leads to a better Rank.

Rand(n) represents selecting n random instances in Sec. 4.1;

mini (OpenAI, 2024b), GPT-4o (OpenAI, 2024a), Claude-3.5-Sonnet (Anthropic, 2024), DeepSeek-
Chat & DeepSeek-Coder (Liu et al., 2024). We also exploit the same backbone for comment agent
hψ; however, when it is not multi-modal LLM, e.g., GPT-3.5-turbo, we use the GPT-4o-mini instead
regarding its high cost-effectiveness.

Other settings. For the text encoder gϕ introduced in Sec. 4.2, we simply use bge-small-en-
v1.5 (Xiao et al., 2023), which is proved to be effective and efficient in text encoding with more
reasonable similarity distribution. Additionally, we set k1 = 3, k2 = 10, and iters = 3, which are
introduced in Sec. 4.1 and Sec. 4.3. Corresponding ablation studies can be referred to in Sec. 5.4.
The construction of the database introduced in Sec. 4.1 is shown in Appendix D.4. The default pa-
rameters of baselines PeF (Li et al., 2022) and ECS (Chiou et al., 2016) are shown in Appendix D.5.

5.2 MAIN RESULTS

We present the comparisons of total HPWL for each circuit, as well as the success rate (SR), av-
erage wirelength ratio (WLR) relative to the baselines, and Rank in Table 1, using two floorplan
backbones, PeF (Li et al., 2022) and ECS (Chiou et al., 2016), along with several LLM backbones.
Results with an overlapping ratio exceeding 5%, a simple criterion, are considered unsatisfactory,
which are marked in gray in Table 1. Failed results are indicated as ‘N/A’ 3. Note that we were un-
able to obtain reasonable results using merely CoT (Wei et al., 2022) or RAT (Wang et al., 2024d).
Furthermore, applying other agent-based baselines, such as flow-level agents (Liu et al., 2023a; Wu
et al., 2024), is infeasible, as we are the first to introduce a task-level agent in physical design. How-
ever, even without the retriever introduced in Sec. 4.1, our method, LLM4Floorplan (w/o retriever),
i.e., pure DRAT prompting, can still produce workable results, making it a strong baseline. Addi-
tionally, we use GPT-4o-mini, GPT-4o, and Claude-3.5, which are empirically more aggressive in
achieving better HPWL, as backbones for the full version of LLM4Floorplan. Note that we do not
employ GPT-4, as it is very similar to GPT-4o in practice but significantly more resource-consuming.

From an overall perspective in Table 1, for the analytical approach, DRAT with DeepSeek-Chat,
DeepSeek-Coder, and GPT-3.5 backbones achieve all successful results but the WLR is almost the
same as that of PeF (Li et al., 2022), which potentially indicates that they highly follow the origi-

3This usually occurs when the floorplan region is too small, preventing the simulated annealing (SA)-based
approach from finding a solution that places all modules without overlap.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Illustration of six distinct requirements with different optimization objectives, model pools
for selection, and the need for code revisions.

Index Type Objective Model Selection Code Revision

Req. 1 Simple minΘ
∑

ei∈E HPWL(ei), s.t. OR ≤ 0.05 {Analytical} %

Req. 2 Simple minΘ
∑

ei∈E HPWL(ei), s.t. OR ≤ 0.05 {SA} %

Req. 3 Moderate minΘ
∑

ei∈E HPWL(ei), s.t. OR ≤ 0.025 {Analytical, SA} %

Req. 4 Strict minΘ
∑

ei∈E HPWL(ei), s.t. OR ≤ 0.01 {Analytical, SA} %

Req. 5 Specialized minΘ
∑

ei∈E HPWL(ei)× (1 + 10× OR) {Analytical, SA} %

Req. 6 Specialized
minΘ

∑
ei∈E HPWL(ei), s.t. 1) OR ≤ 0.075

2) blocks b1 and b2 are adjancent. {Analytical, SA} !

nal PeF. On the contrary, DRAT with GPT-4, GPT-4o, and Claude-3.5 backbones are aggressive to
achieve better WLR but bring about the sacrifice of SR. An exception is DRAT with GPT-4o-mini,
which effectively balance the SR and WLR. This phenomenon implies that DRAT with power-
ful LLMs, e.g., GPT-4, GPT-4o, and Claude-3.5, might be even worse than other moderate LLMs
as these powerful LLMs integrate too much case-specific guidance but ignore the domain-specific
expertise. However, equipped with DRAT and retriever, LLM4Floorplan (full version) with GPT-
4o-mini, GPT-4o, and Claude-3.5 backbones maintain the 100% SR while keeping low WLR.

The advantage of LLM4Floorplan becomes even more pronounced compared to the SA-based ap-
proach, where DRAT with all backbones fails in almost all circuits. This is mainly due to the fact
that the floorplan region is too small, preventing the approach from finding a suitable solution that
accommodates all modules without overlap. However, with the retriever, LLM4Floorplan using the
GPT-4o-mini, GPT-4o, and Claude-3.5-Sonnet backbones achieves a 100% SR while maintaining a
lower WLR than ECS (Chiou et al., 2016).

An interesting question arises: Can LLM4Floorplan maintain its superiority when faced with stricter
OR criteria or even other types of requirements? To address this, we propose a benchmark in Sec. 5.3
with six distinct floorplan requirements and evaluate the performance of LLM4Floorplan.

5.3 BENCHMARK AND MEETING DIVERSE REQUIREMENTS

We evaluate LLM4Floorplan against diverse requirements by introducing a novel benchmark com-
prising six distinct criteria. These criteria span empirically simple, moderate, strict, and specialized
requirements, as summarized in Table 2, with varying objectives, model pools for selection, and the
need for code revisions. Further details of the requirements are provided in Appendix D.3. Note
that the capabilities of hyperparameter tuning and performance evaluation are incorporated for all
requirements. The first two requirements correspond to the results in the main results in Table 1.

As shown in Table 3, LLM4Floorplan achieves the highest rank in the first five requirements. No-
tably, for the strict OR criteria (Req. 4), LLM4Floorplan with GPT-4o-mini, GPT-4o, and Claude-3.5
backbones significantly improves the SR from an average of 0.250 to 0.875, compared to DRAT. An
interesting observation is that DRAT with the GPT-3.5 backbone, which is generally considered
less powerful, achieves an SR of 1.000 in Req. 4. This is primarily because it tends to choose SA
approach to avoid overlapping areas under strict OR criteria; however, this comes at a substantial
cost to WLR and remains inferior to LLM4Floorplan with the Claude-3.5 backbone. The only fail-
ure of LLM4Floorplan occurs in Req. 6, where there is no notable improvement in SR. This is
latently due to the absence of relevant instances in the database for the retriever to locate, preventing
LLM4Floorplan from learning any useful guidance. Nonetheless, with a powerful LLM backbone
(e.g., Claude-3.5), our pure DRAT is still capable of handling difficult and unforeseen design re-
quirements. Further details of Table 3 are provided in Appendix E.3.

5.4 FUTHER ANALYSIS

Code Revision. One promising finding is that LLM4Floorplan can comprehend unseen require-
ments (e.g., Req. 6 in Table 2) and generate revised code to achieve the corresponding objectives.
This capability is not only attributed to its understanding of requirement documents but also to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Code Revision
Original Code
def forward(self, density_weight):

...

loss = self.ana_loss(density_coef)
return loss

def ana_loss(self, density_coef):
loss = self.hpwl + self.energy * density_coef
return loss

.
Revisions Made by the LLM:
1) LLM adds calc overlap penalty
function to address the first constraint, ensur-
ing that overlap ratio (OR) remains below 5%.
2) LLM adds calc adjacency penalty
function satisfy the second constraint, which
requires that the first two blocks be adjacent.

Revised Code
def forward(self, density_weight):

...

loss = self.ana_loss(density_coef)
return loss

def ana_loss(self, density_coef):
adjacency_penalty = self.calc_adjacency_penalty()
overlap_penalty = self.calc_overlap_penalty()
loss = self.hpwl + self.energy * density_coef +

adjacency_penalty + overlap_penalty
return loss

def calc_adjacency_penalty(self):
first_block = self.block_positions[0]
second_block = self.block_positions[1]
distance = torch.norm(first_block - second_block)
return 1000 * distance # Adjust the weight as needed

def calc_overlap_penalty(self):
overlap_threshold = 0.075
penalty = torch.relu(self.overlap - overlap_threshold)
return 10000 * penalty # Adjust the weight as needed

Figure 4: Example of code revision by LLMs. The original code is shown on the left, while the
revised version, highlighted in teal, is on the right. Incorporated with DRAT, LLM4Floorplan is
able to understand the requirements and automatically add two corresponding loss functions.

Table 3: Floorplanning results for six distinct requirements. The backbones and circuits are the same
as those in Table 1. Failed results are marked as ‘N/A’. The top-ranked result for each requirement
is highlighted in cyan.

Method LLM Backbones Req. 1 Req. 2 Req. 3 Req. 4 Req. 5 Req. 6
SR*↑ WLR*↓ SR*↑ WLR*↓ SR*↑ WLR*↓ SR*↑ WLR*↓ Obj. VR#↓ SR*↑ WLR*↓

PeF (Li et al., 2022) 1.000 1.000 / / 0.750 1.000 0.000 1.000 1.000 0.000 1.000
ECS (Chiou et al., 2016) / / 1.000 1.000 1.000 1.463 1.000 1.462 1.190 0.000 1.469

DRAT

DeepSeek-Chat 1.000 0.992 0.000 N/A 0.625 0.996 0.625 1.044 0.993 0.000 0.999
DeepSeek-Coder 1.000 1.018 0.000 N/A 0.875 0.988 0.625 1.044 0.963 0.000 0.973

GPT-3.5 1.000 1.007 0.250 1.010 0.750 1.006 1.000 1.281 1.130 0.000 1.014
GPT-4 0.625 0.956 0.000 N/A 0.125 0.985 0.250 1.025 0.923 0.125 0.952

GPT-4o-mini 1.000 0.979 0.125 0.982 0.875 0.991 0.250 1.020 0.933 0.250 0.989
GPT-4o 0.500 0.949 0.125 0.989 0.375 0.970 0.000 1.031 0.984 0.125 0.969

Claude-3.5 0.750 0.956 0.000 N/A 1.000 1.023 0.500 1.039 0.942 1.000 1.053

LLM4Floorplan
GPT-4o-mini 1.000 0.988 1.000 0.981 0.750 1.016 1.000 1.058 0.926 0.125 1.161

GPT-4o 1.000 0.969 1.000 0.966 0.875 1.009 0.750 1.098 0.952 0.375 0.976
Claude-3.5 1.000 0.957 1.000 0.974 1.000 0.999 0.875 1.055 0.905 0.875 0.984

* SR: Success rate; WLR: Average wirelength ratio compared to PeF Li et al. (2022) (Req. 1, Req. 3-6) and ECS (Chiou et al., 2016) (Req. 2); Rank:
Rank is determined primarily by SR, with a larger SR ensuring a better Rank. Within the same SR, a smaller WLR leads to a better Rank.

Objective value ratio is compared with PeF Li et al. (2022). The objective value is defined as
∑

ei∈E HPWL(ei)× (1+10×OR), as described in Table 2.

our abstraction of the model’s code. Specifically, as LLMs can experience reduced effectiveness
when processing long contexts (Zhang et al., 2024), we isolate the core components of the floor-
planning model, focusing on the main model function and loss functions. This design empiri-
cally reduces the complexity of the code, making it easier to understand. During interactions with
these simplified code structures, LLMs are able to devise novel loss functions tailored to the given
requirements. A successful example of code revision is shown in Fig. 4, where two functions,
calc overlap penalty and calc adjacency penalty, are added to the original code to
meet the specialized requirement. We present four cases in Fig. 5. The left two images correspond
to the results of circuit n10, while the right two images show the results of circuit n100. In each pair,
the left image illustrates the desirable outcome where the first two blocks in the block list (b0 and
b1) are adjacent, whereas the right image displays the blocks as separate.

Selected instances in Retriever. We explore the effectiveness of the retriever introduced in Sec. 4.1.
As illustrated in Fig. 6, Principal Component Analysis (PCA) (Abdi & Williams, 2010) is applied
to reduce the dimensionality of the text file embeddings for all instances to 2-D, allowing us to
visualize them in the reduced space. From a broader perspective, the instances are divided into
three main types: those obtained by the analytical approach and the successful/failed cases from the
simulated annealing (SA) approach. In Fig. 6(a), the 10 randomly selected instances fail to cover the
type associated with the SA approach, providing no guidance for LLMs regarding SA. In contrast,
Fig. 6(b) shows that, even with only 5 instances, all three types are represented. Furthermore,
Fig. 6(c) shows that, as the number of selected instances increases according to the clusters, more

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

sb0

sb1sb2
sb3

sb4

sb5
sb6

sb7

sb8

sb9

(a) n10, adjacent.

sb0

sb1

sb2

sb3

sb4

sb5

sb6

sb7

sb8

sb9

(b) n10, separate.

sb0

sb1

sb2

sb3

sb4

sb5

sb6

sb7

sb8

sb9

sb10

sb11

sb12

sb13

sb14

sb15

sb16

sb17

sb18

sb19

sb20sb21

sb22

sb23sb24

sb25

sb26

sb27

sb28

sb29

sb30sb31

sb32

sb33

sb34

sb35

sb36

sb37

sb38

sb39

sb40

sb41

sb42

sb43

sb44

sb45

sb46

sb47
sb48

sb49

sb50

sb51

sb52

sb53

sb54

sb55sb56

sb57

sb58

sb59
sb60

sb61

sb62

sb63

sb64

sb65

sb66

sb67

sb68

sb69

sb70
sb71

sb72

sb73

sb74

sb75

sb76

sb77

sb78

sb79

sb80
sb81

sb82

sb83

sb84

sb85

sb86

sb87

sb88

sb89

sb90

sb91

sb92

sb93

sb94

sb95

sb96

sb97

sb98

sb99

(c) n100, adjacent.

sb0

sb1

sb2

sb3

sb4

sb5

sb6
sb7

sb8 sb9

sb10

sb11

sb12

sb13

sb14

sb15

sb16

sb17

sb18

sb19

sb20

sb21

sb22

sb23

sb24

sb25

sb26

sb27

sb28

sb29

sb30

sb31

sb32

sb33

sb34

sb35

sb36

sb37

sb38

sb39

sb40

sb41

sb42

sb43

sb44

sb45

sb46

sb47

sb48

sb49

sb50

sb51

sb52

sb53

sb54

sb55

sb56

sb57

sb58 sb59
sb60

sb61

sb62

sb63sb64

sb65

sb66

sb67

sb68

sb69

sb70

sb71

sb72

sb73

sb74

sb75

sb76

sb77

sb78

sb79

sb80

sb81

sb82

sb83

sb84

sb85

sb86

sb87

sb88
sb89

sb90

sb91

sb92

sb93

sb94

sb95

sb96

sb97

sb98

sb99

(d) n100, separate.

Figure 5: Demonstration of floorplanning for Req. 6 in Table 2. The left pair shows results for the
n10 circuit, and the right pair for the n100 circuit. In each pair, the left image meets the requirement
that the first two blocks (outlined in red) are adjacent, while the right does not.

3 2 1 0 1
Principal Component 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

P
rin

ci
pa

l C
om

po
ne

nt
 2

SA (Failed cases)
SA
Analytical
Selected Samples

(a) 10 random instances.

3 2 1 0 1
Principal Component 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

P
rin

ci
pa

l C
om

po
ne

nt
 2

SA (Failed cases)
SA
Analytical
Selected Samples

(b) k1 = 1, k2 = 5.

3 2 1 0 1
Principal Component 1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

P
rin

ci
pa

l C
om

po
ne

nt
 2

SA (Failed cases)
SA
Analytical
Selected Samples

(c) k1 = 3, k2 = 10.

Figure 6: Scatters of the embeddings of the instances. a) Retrieve 10 instances randomly; b)
Retrieve 5 instances corresponding to k1 = 1, k2 = 5 in the search-cluster-based retriever; c)
Retrieve 10 instances according to k1 = 3, k2 = 10 in the search-cluster-based retriever.

representative instances are retrieved, enhancing the agent’s comprehension. To illustrate in detail,
we conduct the following ablation studies.

Ablation Studies. We evaluate the hyperparameters k1 ∈ {1, 3}, k2 ∈ {5, 10} in Sec. 4.1, and
iters ∈ {0, 3} in Sec. 4.3. It is also crucial to evaluate the impact of integrating the model evaluation
agent hϕ. The best configuration is achieved with hyperparameters k1 = 3, k2 = 10, iters = 3,
and with the inclusion of hϕ. Detailed empirical results are presented in Appendix E.1.

6 CONCLUSION AND OUTLOOK

In this paper, we presented LLM4Floorplan, the first task-level multi-agent system for physical de-
sign, particularly targeting the floorplanning stage in EDA. By introducing a search-cluster-based re-
triever and the Dynamic Retrieval-Augmented Thought (DRAT) prompting technique, we addressed
the challenges of domain-specific expertise integration and case-specific design guidance. Through
extensive experiments on public datasets, we demonstrated the efficacy of LLM4Floorplan across
diverse and complex requirements. The system achieved significant improvements in task compre-
hension, model selection, hyperparameter tuning, and performance evaluation. Our findings indicate
that LLM4Floorplan successfully simulates the workflow of human engineers and provides strong
generalization capabilities, paving the way for further research in applying LLM-powered agents to
other stages of physical design.

This paper also has some limitations that suggest avenues for future work: 1) LLM4Floorplan faces
challenges in handling highly novel designs due to its reliance on a predefined design database. 2)
The system has yet to be evaluated on expanded benchmarks or integrated into other physical design
stages, such as placement and routing.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Claude 3.5 sonnet news, 2024. URL https://www.anthropic.com/news/
claude-3-5-sonnet. Accessed: 2024-06-27.

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and
opportunities in conversational hardware design. In 2023 ACM/IEEE 5th Workshop on Machine
Learning for CAD (MLCAD), pp. 1–6. IEEE, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei Li,
and Xiaowei Li. Chipgpt: How far are we from natural language hardware design. arXiv preprint
arXiv:2305.14019, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-gradient
placement and generative routing neural networks for chip design. Advances in Neural Informa-
tion Processing Systems, 35:26350–26362, 2022.

Chien-Hsiung Chiou, Chin-Hao Chang, Szu-To Chen, and Yao-Wen Chang. Circular-contour-based
obstacle-aware macro placement. In 2016 21st Asia and South Pacific Design Automation Con-
ference (ASP-DAC), pp. 172–177. IEEE, 2016.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on infor-
mation theory, 13(1):21–27, 1967.

Matthew DeLorenzo, Animesh Basak Chowdhury, Vasudev Gohil, Shailja Thakur, Ramesh Karri,
Siddharth Garg, and Jeyavijayan Rajendran. Make every move count: Llm-based high-quality rtl
code generation using mcts. arXiv preprint arXiv:2402.03289, 2024.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

Xingbo Du, Chonghua Wang, Ruizhe Zhong, and Junchi Yan. Hubrouter: Learning global routing
via hub generation and pin-hub connection. Advances in Neural Information Processing Systems,
36, 2023.

Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and
Yingyan Celine Lin. Gpt4aigchip: Towards next-generation ai accelerator design automation
via large language models. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–9. IEEE, 2023.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. Toolkengpt: Augmenting frozen language
models with massive tools via tool embeddings. Advances in neural information processing sys-
tems, 36, 2023.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shixiong Kai, Chak-Wa Pui, Fangzhou Wang, Shougao Jiang, Bin Wang, Yu Huang, and Jianye
Hao. Tofu: A two-step floorplan refinement framework for whitespace reduction. In 2023 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 1–5, Antwerp, Belgium, 2023.
IEEE.

Johann Knechtel, Evangeline FY Young, and Jens Lienig. Planning massive interconnects in 3-d
chips. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 34(11):
1808–1821, 2015.

Tetsushi Koide, Shin’ichi Wakabayashi, and Noriyoshi Yoshida. Pin assignment with global routing
for vlsi building block layout. IEEE transactions on computer-aided design of integrated circuits
and systems, 15(12):1575–1583, 1996.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping
Luo. Analogcoder: Analog circuit design via training-free code generation. arXiv preprint
arXiv:2405.14918, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Ximeng Li, Keyu Peng, Fuxing Huang, and Wenxing Zhu. Pef: Poisson’s equation-based large-scale
fixed-outline floorplanning. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 42(6):2002–2015, 2022.

Peiyu Liao, Dawei Guo, Zizheng Guo, Siting Liu, Yibo Lin, and Bei Yu. Dreamplace 4.0: Timing-
driven placement with momentum-based net weighting and lagrangian-based refinement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 42(10):3374–3387,
2023.

Jai-Ming Lin, Po-Yang Chiu, and Yen-Fu Chang. Saint: Handling module folding and alignment in
fixed-outline floorplans for 3d ics. In 2016 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 1–7, Austin, TX, USA, 2016. IEEE.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. Chipnemo:
Domain-adapted llms for chip design. arXiv preprint arXiv:2311.00176, 2023a.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023b.

Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. Nctu-gr 2.0: Multithreaded
collision-aware global routing with bounded-length maze routing. IEEE Transactions on
computer-aided design of integrated circuits and systems, 32(5):709–722, 2013.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 722–727. IEEE, 2024.

Uday Mallappa, Hesham Mostafa, Mikhail Galkin, Mariano Phielipp, and Somdeb Majumdar.
Floorset-a vlsi floorplanning dataset with design constraints of real-world socs. arXiv preprint
arXiv:2405.05480, 2024.

Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily
Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan
Hu, et al. Human-level play in the game of diplomacy by combining language models with
strategic reasoning. Science, 378(6624):1067–1074, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Michael D Moffitt, Aaron N Ng, Igor L Markov, and Martha E Pollack. Constraint-driven floorplan
repair. In Proceedings of the 43rd annual Design Automation Conference, pp. 1103–1108, 2006.

Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. Vlsi module placement
based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 15(12):1518–1524, 1996.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in neural information processing systems, 14, 2001.

OpenAI. Hello gpt-4o, 2024a. URL https://openai.com/index/hello-gpt-4o/. Ac-
cessed: 2024-05-13.

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence, 2024b. URL https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/. Ac-
cessed: 2024-07-18.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1–22, 2023.

Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog
generation with discriminative guidance. arXiv preprint arXiv:2402.03375, 2024.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15174–15186, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2023.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia,
Jiechuan Jiang, Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A mul-
timodal agent for red dead redemption ii as a case study. arXiv preprint arXiv:2403.03186, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents. arXiv preprint arXiv:2407.18901,
2024.

Lily Jiaxin Wan, Yingbing Huang, Yuhong Li, Hanchen Ye, Jinghua Wang, Xiaofan Zhang, and
Deming Chen. Software/hardware co-design for llm and its application for design verification.
In 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 435–441.
IEEE, 2024.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective navigation via
multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024b.

13

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zeng Wang, Lilas Alrahis, Likhitha Mankali, Johann Knechtel, and Ozgur Sinanoglu. Llms
and the future of chip design: Unveiling security risks and building trust. arXiv preprint
arXiv:2405.07061, 2024c.

Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian Ma, and Yitao Liang. Rat: Retrieval
augmented thoughts elicit context-aware reasoning in long-horizon generation. arXiv preprint
arXiv:2403.05313, 2024d.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu.
Chateda: A large language model powered autonomous agent for eda. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2024.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf.
arXiv preprint arXiv:2309.04658, 2023.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, Xiu Li, and Ying Shan. Gpt4tools: Teaching
large language model to use tools via self-instruction. Advances in Neural Information Processing
Systems, 36, 2023a.

Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent:
Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023b.

Yusen Zhang, Ruoxi Sun, Yanfei Chen, Tomas Pfister, Rui Zhang, and Sercan Ö Arik. Chain
of agents: Large language models collaborating on long-context tasks. arXiv preprint
arXiv:2406.02818, 2024.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. Llm4eda: Emerging progress in large language
models for electronic design automation. arXiv preprint arXiv:2401.12224, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A NOTATION

Floorplan

W Width of the chip layout region.

H Height of the chip layout region.

Vb Set of blocks.

Vp Set of pins.

E Set of nets.

bi The i-th block in Vb.

pi The i-th pin in Vp.

ei The i-th net in E .

nb Number of blocks.

np Number of pins.

ne Number of nets.

xbi , ybi Center coordinates of block bi along the x- and y-axes.

xpi , ypi Coordinates of pin pi along the x- and y-axes.

RAT

D Standard database.

S Set of running instances.

B Set of basic circuit information.

C Set of models.

Sj The j-th instance in the set S.

Bj Basic circuit information corresponding to the j-th in-
stance.

Cj Model corresponding to the j-th instance.

P Set of prompt steps.

Pi The i-th prompt step.

Ai The i-th state step.

t̂i The i-th generated thought step.

T Number of thought steps.

fθ Pretrained LLM with parameters θ.

gϕ Text encoder or LLM with pretrained parameters ϕ.

qi Query generated by t̂1:(i−1).

ri Relevant documents retrieved by query qi.

k1 Number of relevant circuits in the retriever.

k2 Number of clusters in the retriever.

Aj Information set corresponding to the j-th instance.

Ij Output image corresponding to the j-th instance.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

N j Comment corresponding to the j-th instance.

Rj Requirement document corresponding to the j-th instance.

Hj Hyperparameters corresponding to the j-th instance.

Mj Metrics corresponding to the j-th instance.

hψ Multi-modal LLM with parameters ψ, used to generate
comments.

B DETAILS OF FLOORPLANNING PROBLEM

The vanilla fixed-outline floorplanning problem, described in Sec. 3, can be formulated as

min
Θ

∑
ei∈E

HPWL(ei), (4a)

s.t. no overlapping area among blocks, (4b)
suitable aspect ratio, (4c)
blocks are within the fixed outline. (4d)

Although the optimization variables Θ include the width wi, height hi, and coordinates (xi, yi) of
each block bi ∈ Vb, it is important to note that some parameters are fixed depending on the type of
block:

• For soft blocks, width wi, height hi, and coordinates (xi, yi) are all learnable.

• For hard blocks, width wi and height hi are fixed while coordinates (xi, yi) are learnable.

• For pre-placed blocks, width wi, height hi, and coordinates (xi, yi) are all fixed.

The first constraint in Eq. 4b ensures that there is no overlapping area among the blocks. The second
constraint in Eq. 4c ensures that each block maintains an appropriate aspect ratio that satisfies the
given criterion. For example, it may require the aspect ratio to lie between 1/3 and 3, meaning the
width-to-height ratio must be within the range [1/3, 3]. The third constraint in Eq. 4d ensures that
all blocks remain within the fixed outline.

For simulated annealing approaches, these constraints are easily maintained, though finding the
optimal total HPWL can be challenging. For analytical approaches, the second and third constraints
can be met by clipping the learned parameters. However, optimizing the first constraint to eliminate
overlapping areas is more difficult. Therefore, in this paper, we examine the model’s performance
under varying overlapping ratio criteria.

C DOMAIN-SPECIFIC PROMPTS

C.1 DECISION PROMPT

SYSTEM

You are an AI designer integrated with Electronic Design Automation (EDA) floorplanning.
Your task is to decide the best approach, determine its parameters, and revise the key codes based
on the requirement document, circuit information, previous results, parameter descriptions, and key
codes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

USER

Requirement Document:
I want to minimize the wirelength as much as possible. Overlap should be less than 0.05, but minimiz-
ing wirelength is the primary objective. Any solutions that achieve a lower wirelength with slightly
higher overlap (up to 0.05) are preferable over solutions with very low overlap but higher wirelength.
Brief Circuit Information:
{

’circuit’: ’n10’,
’num blocks’: 10,
’num pins’: 69,
’num nets’: 118

}
Previous Results:
{

’exp0’: {’model’: ANALYTICAL, ’parameters’: [parameter H0],
’metrics’: [metric M0], ’comment’: [comment N 0]},

’exp1’: {’model’: SA, ’parameters’: [parameter H1],
’metrics’: [metric M1], ’comment’: [comment N 1]},

...
}
Instructions:
IMPORTANT:
The previous results for the algorithm are described using the following format:
{

’exp0’: {’model’: name, ’parameters’: {’parameter1’: value, ...}, ’metrics’: {’metric1’: value,
...}, ’comment’: content},

’exp1’: {’model’: name, ’parameters’: {’parameter1’: value, ...}, ’metrics’: {’metric1’: value,
...}, ’comment’: content},

...
}
Each entry represents an experiment with its model, parameters, corresponding metrics, and com-
ments. Please choose the most suitable model for the given circuit and requirements.

Note: The chosen model must be either the analytical model or the simulated annealing model. You
must reply with ANALYTICAL or SA.
Respond directly to the instruction. DO NOT include additional explanations or introductions unless
specifically asked to do so.

ASSISTANT

ANALYTICAL

USER

Parameter Descriptions:
import argparse

def get_analytical_args(parser):
parser.add_argument(’grid_size’, type=int, default=128, help=’

Control the granularity of floorplan region segmentation. A
larger grid_size tends to reduce overlap but will take

more time.’)
parser.add_argument(’amplify_ratio’, type=float, default=1.15,

help=’amplify_ratio must not be less than 1. It controls
the area of the floorplan region. A larger amplify_ratio
tends to reduce overlap but will increase wirelength.’)

parser.add_argument(’init_lr’, type=float, default=0.1, help=’
The initial learning rate. A too small init_lr will lead to
underfitting, but a too large init_lr will also lead to

nonconvergence.’)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

parser.add_argument(’density_weight’, type=float, default
=100000.0, help=’The coefficient of density. A larger
density weight tends to reduce overlap but will increase
wirelength.’)

return parser

Instructions:
IMPORTANT:
Based on your experience and the provided parameter descriptions, choose suitable values for each
parameter.
The parameters and metrics for the algorithm are described in the following format:
{

’parameter1’: value1,
’parameter2’: value2,
...

}

Note: The refined parameters do not have to be within the previous results.
Respond directly to the instruction. DO NOT include additional explanations or introductions unless
specifically asked to do so.

ASSISTANT

{
’grid size’: 128,
’amplify ratio’: 1.15,
’init lr’: 0.1,
’density weight’: 100000.0

}

USER

Key Codes:
import numpy as np
import torch
import torch.nn as nn
from torch.nn import Parameter

import hpwl, density, potential
import move
import scheduler

class ANA(nn.Module):
def __init__(self, floorplan, grid_size, white_space, device=

torch.device(’cuda:0’)):
super().__init__()

...

def forward(self, density_weight):

...

loss = self.ana_loss(density_coef)
return loss

def ana_loss(self, density_coef):
loss = self.hpwl + self.energy * density_coef
return loss

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Instructions:
IMPORTANT:
Based on your experience and the provided key codes, you can either keep the current code
or revise it by adding new objective functions to meet the requirement. If you keep the
current code, just output ’KEEP’. Otherwise, please output the whole revised code.
Note: The revised code should be runnable and must contain the original function names.

Respond directly to the instruction.
DO NOT include additional explanations or introductions unless specifically asked to do so.

ASSISTANT

KEEP

C.2 COMMENT PROMPT

SYSTEM

You are an AI designer integrated with Electronic Design Automation (EDA) floorplanning.
Based on the requirement document, brief circuit information, parameters, results (including metrics
and the floorplan image), your task is to provide a specialized comment on them, specifically
emphasizing:

1. How the final result meets the requirements outlined in the requirement document.
2. The impact and suggestion of various parameters on the final result.
3. The description of the layout image (if given).
Note: The answer should be within 300 tokens.

USER

Requirement Document:
I want to minimize the wirelength as much as possible. Overlap should be less than 0.05, but minimiz-
ing wirelength is the primary objective. Any solutions that achieve a lower wirelength with slightly
higher overlap (up to 0.05) are preferable over solutions with very low overlap but higher wirelength.
Brief Circuit Information:
{

’circuit’: ’n10’,
’num blocks’: 10,
’num pins’: 69,
’num nets’: 118

}
Parameter:
{

’grid size’: 128,
’amplify ratio’: 1.15,
’init lr’: 0.1,
’density weight’: 100000.0

}
Metric:
{

’wirelength’: 37127.79,
’overlap’: 0.0136,
’time’: 8.16

}
Image: [image Ij]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

ASSISTANT

The final floorplan successfully aligns with the requirements outlined in the document, emphasizing
minimal wirelength while adhering to the overlap constraint. With a wirelength of 37127.79 and an
overlap of 0.0136, the layout optimally meets the requirement of keeping overlap below the 0.05
threshold. This indicates a strong prioritization of wirelength minimization, demonstrating that small
overlaps can be tolerated if they lead to more compact wiring.

The selected parameters played a critical role in achieving these results. The initial learning
rate (init lr) of 0.1 likely facilitated rapid convergence during the optimization process, while the
amplify ratio of 1.15 helped balance expansion and contraction movements of blocks. The high
density weight effectively guided the layout towards minimizing wirelength by reducing congestion,
greatly impacting the overall efficiency.

The layout image depicted shows the spatial arrangement of various blocks (labeled sb0 to
sb9), indicating a thoughtful placement strategy that balances proximity to reduce wiring needs. The
positioning reflects calculated overlaps, which are strategically limited to meet requirements without
sacrificing the essential goal of minimizing wirelength.

Overall, this floorplan not only meets but prioritizes the defined objectives, demonstrating effective
EDA practices. Further optimization could explore slightly increasing overlap if it significantly
decreases wirelength in future iterations.

D EXPERIMENTAL PROTOCOLS

D.1 DATASET

We show the number of blocks, pins, nets of each circuit in Table 6.

Table 6: Number of blocks, pins, and nets in datasets GSRC and MCNC.

CIRCUIT GSRC MCNC
n10 n30 n50 n100 n200 n300 ami33 ami49

#Blocks 10 30 50 100 200 300 33 49
#Pins 69 212 209 334 564 569 40 22
#Nets 118 349 485 885 1,585 1,893 123 408

D.2 METRICS

Total HPWL. The total HPWL is the simple summation of the HPWL of each net ei ∈ E , which is
calculated as follows ∑

ei∈E

HPWL(ei). (5)

Overlapping Ratio. Overlapping ratio refers to the cumulative area where two or more blocks phys-
ically overlap within the defined floorplan region. To calculate the overlapping ratio, we first define
the boundary box of each block bi ∈ Vb determined by its left, right, bottom, and top boundaries:

xleft
bi = xbi − wi/2, xright

bi
= xbi + wi/2, ybottom

bi = ybi − hi/2, ytop
bi

= ybi + hi/2. (6)

Then, we check the pairwise intersection for each pair of blocks (bi, bj). They overlap if

max(xleft
bi , x

left
bj) < min(xright

bi
, xright

bj
) and max(xbottom

bi , xbottom
bj) < min(xtop

bi
, xtop

bj
). (7)

For each overlapping pair (bi, bj), calculate the area of intersection OverlapArea(bi, bj) as:(
min(xright

bi
, xright

bj
)−max(xleft

bi , x
left
bj)

)
×

(
min(xtop

bi
, xtop

bj
)−max(xbottom

bi , xbottom
bj)

)
. (8)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Finally, the overlapping ratio is computed as

OR =

∑
i<j OverlapArea(bi, bj)

W ·H
. (9)

D.3 INTRODUCTION OF THE BENCHMARK

We devise six distinct requirements on floorplan as follows, which corresponds to the illustration
shown in Table 2 in Sec. 5.3.

• Requirement 1/2. I want to minimize the wirelength as much as possible. Overlap should be
less than 0.05, but minimizing wirelength is the primary objective. Any solutions that achieve a
lower wirelength with slightly higher overlap (up to 0.05) are preferable over solutions with very
low overlap but higher wirelength.

• Requirement 3. I want to minimize the wirelength as much as possible, with the strict constraint
that the overlap must always be less than 0.025. Within this constraint, minimizing wirelength
is the primary objective. Solutions that achieve the lowest wirelength while maintaining overlap
below 0.025 are preferred.

• Requirement 4. I want to minimize the wirelength as much as possible, with the strict constraint
that the overlap must always be less than 0.01. Within this constraint, minimizing wirelength is
the primary objective. Solutions that achieve the lowest wirelength while maintaining overlap
below 0.01 are preferred.

• Requirement 5. I want to minimize the wirelength*(1+overlap*10).
• Requirement 6. Please revise the code to minimize the wirelength as much as possible while

adhering to two strict constraints: 1) the first two blocks in the block list must be adjacent; 2) the
overlap must always be less than 0.075.

In this benchmark, we evaluate the agent’s capability of handling different types of design objectives,
such as meeting different levels of OR requirements (Req. 1 to Req. 4), comprehensive objective
(Req. 5), and personalized objective (Req. 6). Note that these requirements are designed to reflect
diverse real-world scenarios. The OR constraint is introduced to facilitate easier legalization, while
the adjacency constraint is aimed at optimizing feedthrough (Koide et al., 1996). Additionally, we
also evaluate the agent’s capability of model selection and code revision.

D.4 CONSTRUCT THE DATABASE.

In Sec. 4.1, we have introduced a standard database to store instances for the retriever to extract
relevant and diverse instances that are useful for the given new case. In this section, we provide
details in terms of how to construct such database.

We employ two floorplanning baselines, PeF (Li et al., 2022) and ECS (Chiou et al., 2016), on eight
circuits and run multiple cases with varying hyperparameters:

For PeF (Li et al., 2022), we choose the following hyperparameters:

• grid_size ∈ {64, 128, 256}, which control the granularity of floorplan region segmentation.
A larger grid_size tends to reduce overlap but will take more time.

• amplify_ratio ∈ {1.05, 1.1, 1.15, 1.2}, which controls the area of the floorplan region. A
larger amplify_ratio tends to reduce overlap but will increase wirelength.

• init_lr ∈ {0.01, 0.1, 1.0}, which means the initial learning rate. A too small init_lr will
lead to underfitting, but a too large init_lr will also lead to non-convergence.

• density_weight ∈ {10000, 100000}, which means the coefficient of density. A larger den-
sity weight tends to reduce overlap but will increase wirelength.

For ECS (Chiou et al., 2016), we choose the following hyperparameters:

• amplifyRatio ∈ {1.05, 1.1, 1.15, 1.2}, which controls the area of the floorplan region. A
smaller amplifyRatio tends to reduce wirelength but might fail to find a solution and output
’Fail’. amplifyRatio must be larger than 1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 7: Ablation study under the 4th requirement in Sec. 5.3 on the GSRC and MCNC bench-
marks, using the GPT-4o-mini and PeF (Li et al., 2022) backbones. Results that do not satisfy the
overlapping constraint are highlighted in gray, while the best result is indicated in cyan.

Hyperparameter Total HPWL of Circuits Metric
hψ k1 k2 iters n10 n30 n50 n100 n200 n300 ami33 ami49 SR*↑ WLR*↓ Rank*↓

PeF (Li et al., 2022) 37,128 104,564 130,944 198,685 361,313 481,350 59,061 740,577 0.000 1.000 15

% % % 0 38,593 105,016 134,501 199,757 370,255 495,216 602,23 750,794 0.250 1.020 12
% / Rand(5)# 0 35,915 102,152 128,529 199,757 353,213 476,975 60,702 742,671 0.000 0.991 14
% / Rand(10)# 0 35,831 103,524 134,391 195,891 355,548 488,113 61,120 754,171 0.000 1.002 16
! / Rand(5)# 0 37,768 111,845 134,501 217,176 371,465 492,884 63,852 774,645 0.500 1.048 9
! / Rand(10)# 0 37,753 106,369 134,587 212,138 369,665 503,191 61,690 732,117 0.375 1.029 11

% 3 5 0 38,079 107,714 133,397 208,439 370,154 479,339 58,972 729,055 0.500 1.016 8
! 3 5 0 39,440 106,695 142,544 227,832 410,955 874,842 59,773 720,401 0.875 1.157 5
! 3 5 3 38,908 106,695 138,237 227,832 410,955 528,701 59,773 720,401 0.875 1.061 4
% 3 10 0 37,730 107,795 134,144 199,757 362,485 491,965 60,702 700,787 0.000 1.010 17
! 3 10 0 37,915 119,500 133,293 204,252 409,757 520,078 60,223 792,246 0.625 1.064 6
! 3 10 3 37,915 110,982 138,298 208,069 385,422 514,722 63,745 787,709 1.000 1.058 1

% 1 5 0 41,466 106,369 133,019 207,522 356,838 502,148 60,702 700,787 0.000 1.025 18
! 1 5 0 37,877 107,347 134,479 208,124 384,202 546,797 61,524 772,775 0.500 1.051 10
! 1 5 3 37,877 112,955 134,479 203,389 369,671 543,799 59,704 772,775 0.875 1.045 2
% 1 10 0 37,745 107,347 132,024 195,772 353,213 474,271 59,865 678,378 0.125 0.991 13
! 1 10 0 38,068 107,347 133,019 207,736 410,955 550,753 66,882 746,211 0.625 1.067 7
! 1 10 3 38,068 108,959 146,486 207,736 405,403 515,975 61,113 746,211 0.875 1.058 3
* SR: Success rate; WLR: Average wirelength ratio compared to PeF Li et al. (2022); Rank: Rank is determined primarily by SR, with a larger SR

ensuring a better Rank. Within the same SR, a smaller WLR leads to a better Rank.
Rand(n) represents selecting n random instances from the retriever introduced in Sec. 4.1;

• initAccpRate ∈ {0.80, 0.85, 0.90}, which means the initial acceptance rate of the simulated
annealing algorithm. High initAccpRate allows broad exploration and helps escape local
optima but slows down convergence.

• annealingRatioDecrease ∈ {0.40, 0.60, 0.80}, which means the temperature decay rate
of the simulated annealing algorithm. High decay rate (slow cooling) enhances thorough explo-
ration and reduces the risk of premature convergence but extends computation time.

Note that there are a total of 8× (3× 4× 3× 2 + 4× 3× 3) = 864 instances in the database.

D.5 PARAMETERS OF BASELINES

For the default settings used in the baseline methods PeF (Li et al., 2022) and ECS (Chiou et al.,
2016), we configure the hyperparameters as follows:

• For PeF (Li et al., 2022), we set grid_size = 128, amplify_ratio = 1.15, init_lr =
0.1, and density_weight = 100000.

• For ECS (Chiou et al., 2016), we set amplifyRatio = 1.20, initAccpRate = 0.85, and
annealingRatioDecrease = 0.60.

Note that the amplify ratio in ECS is higher than that in PeF to avoid failure in finding non-
overlapping solutions for certain circuits. Further details regarding these hyperparameters can be
found in Appendix D.4.

E OTHER EXPERIMENTAL RESULTS

E.1 DETAILS OF ABLATION STUDIES

We conduct the ablation study under the 4th requirement in Table 2 in Sec. 5.3, as it features a strict
OR criterion, and employ GPT-4o-mini as the LLM backbone due to its lower cost. Additionally,
we select the hyperparameters k1 and k2 from k1 ∈ {1, 3} and k2 ∈ {5, 10} in Sec. 4.1, and iters
from iters ∈ {0, 3} in Sec. 4.3. It is also crucial to evaluate the impact of integrating the model
evaluation agent hϕ. The best configuration is achieved with hyperparameters k1 = 3, k2 = 10,
iters = 3, and with the inclusion of hϕ.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) n10, Analytical. (b) n30, Analytical. (c) n50, Analytical. (d) n100, Analytical.

(e) n200, Analytical. (f) n300, Analytical. (g) ami33, Analytical. (h) ami49, Analytical.

(i) n10, SA. (j) n30, SA. (k) n50, SA. (l) n100, SA.

(m) n200, SA. (n) n300, SA. (o) ami33, SA. (p) ami49, SA.

Figure 7: Visualization of LLM4Floorplan results. The first two rows represent layouts generated
using an analytical floorplanning backbone, which are more compact but include some overlapping
areas. The last two rows show layouts from a simulated annealing (SA)-based floorplanning back-
bone, which are more spaced out and ensure no overlaps.

E.2 VISUALIZATION OF LLM4FLOORPLAN RESULTS

We present the visualization of LLM4Floorplan results in Fig. 7. The first two rows show results
using an analytical floorplanning backbone, while the last two rows display results from a simulated
annealing (SA)-based floorplanning backbone. Overall, the analytical approaches produce more
compact layouts, though they retain some overlapping areas. In contrast, the SA-based approaches
yield looser layouts, ensuring no overlapping areas. All visualizations effectively demonstrate the
excellent performance of LLM4Floorplan.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: Floorplan results for requirement 1. Results unsatisfactory to meet OR ≤ 5% criteria are in
gray. The first rank is shown in cyan.

Method LLM Backbones Metric Circuits Overall Metrics
n10 n30 n50 n100 n200 n300 ami33 ami49 SR*↑ WLR*↓ Rank*↓

PeF (Li et al., 2022) HPWL 37,097 104,488 130,589 198,685 361,313 480,571 59,061 725,235 1.000 1.000 6OR 0.0148 0.0189 0.0207 0.0201 0.0271 0.0372 0.0219 0.0301

DRAT

DeepSeek-Chat HPWL 35,797 102,152 126,336 195,268 354,605 473,402 61,981 745,263 1.000 0.992 5OR 0.0241 0.0231 0.0349 0.0303 0.0466 0.0624 0.0459 0.0334

DeepSeek-Coder HPWL 39,201 102,650 133,187 195,713 379,148 481,584 61,120 737,008 1.000 1.018 8OR 0.0089 0.0237 0.0125 0.0287 0.0169 0.0296 0.0204 0.0107

GPT-3.5 HPWL 38,464 106,658 126,670 194,066 369,972 494,165 58,192 733,926 1.000 1.007 7OR 0.0214 0.0082 0.0466 0.0353 0.0155 0.0259 0.0239 0.0256

GPT-4 HPWL 34,967 99,652 124,546 189,354 346,186 456,867 60,194 708,398 0.625 0.956 10OR 0.0398 0.0459 0.0263 0.0483 0.0545 0.0709 0.0500 0.0529

GPT-4o-mini HPWL 35,896 99,730 126,379 194,375 367,964 474,257 57,673 710,099 1.000 0.979 3OR 0.0215 0.0470 0.0281 0.0335 0.0264 0.0359 0.0288 0.0190

GPT-4o HPWL 34,937 99,620 123,792 193,461 340,055 458,696 56,521 674,498 0.500 0.949 11OR 0.0377 0.0514 0.0404 0.0452 0.0983 0.0903 0.0574 0.0413

Claude-3.5 HPWL 35,479 99,777 125,941 190,482 348,836 464,595 56,330 669,894 0.750 0.956 9OR 0.0307 0.0484 0.0347 0.0495 0.0584 0.0647 0.0476 0.0339

LLM4Floorplan

GPT-4o-mini HPWL 35,589 102,444 127,492 193,986 353,332 478,474 63,378 700,512 1.000 0.988 4OR 0.0230 0.0234 0.0327 0.0291 0.0414 0.0430 0.0163 0.0257

GPT-4o HPWL 34,907 99,704 124,116 196,169 353,526 469,933 58,663 700,512 1.000 0.969 2OR 0.0387 0.0446 0.0397 0.0421 0.0459 0.0438 0.0475 0.0257

HPWL 34,966 100,071 124,701 190,605 357,754 469,875 55,795 675,684Claude-3.5 OR 0.0374 0.0429 0.0304 0.0426 0.0374 0.0462 0.0475 0.0420 1.000 0.957 1

* SR: Success rate; WLR: Average wirelength ratio compared to baseline PeF Li et al. (2022); Rank: Rank is determined primarily by SR, with a larger SR ensuring a
better Rank. Within the same SR, a smaller WLR leads to a better Rank.

E.3 DETAILED RESULTS IN SEC. 5.2 AND SEC. 5.3

We present the detailed results, including the Half-Perimeter Wire Length (HPWL), Overlapping
Ratio (OR), Objective Value (OV), and adjacency metrics, in Table 8 to Table 13, which correspond
to the comprehensive results shown in Table 3. It is important to note that Table 8 and Table 9
specifically align with the results shown in Table 1.

Table 9: Floorplan results for requirement 2. Failed results are displayed as ‘N/A’. The first rank is
shown in cyan.

Method LLM Backbones Metric Circuits Overall Metrics
n10 n30 n50 n100 n200 n300 ami33 ami49 SR*↑ WLR*↓ Rank*↓

ECS (Chiou et al., 2016) HPWL 40,082 123,022 168,848 295,387 561,956 848,366 82,454 1,445,688 1.000 1.000 4OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DRAT

DeepSeek-Chat HPWL N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AOR N/A N/A N/A N/A N/A N/A N/A N/A

DeepSeek-Coder HPWL N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AOR N/A N/A N/A N/A N/A N/A N/A N/A

GPT-3.5 HPWL N/A 123,102 172,105 N/A N/A N/A N/A N/A 0.250 1.010 5OR N/A 0.0000 0.0000 N/A N/A N/A N/A N/A

GPT-4 HPWL N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AOR N/A N/A N/A N/A N/A N/A N/A N/A

GPT-4o-mini HPWL N/A N/A N/A N/A N/A N/A 76,104 N/A 0.125 0.982 6OR N/A N/A N/A N/A N/A N/A 0.0000 N/A

GPT-4o HPWL N/A N/A N/A N/A N/A 839,226 N/A N/A 0.125 0.989 7OR N/A N/A N/A N/A N/A 0.0000 N/A N/A

Claude-3.5 HHPWL N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/AOR N/A N/A N/A N/A N/A N/A N/A N/A

LLM4Floorplan

GPT-4o-mini HPWL 39,130 126,168 168,198 283,538 568,540 863,628 70,769 1,442,816 1.000 0.981 3OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

HPWL 35,660 120,142 164,987 280,063 553,580 829,065 79,417 1,462,553GPT-4o OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.000 0.966 1

HPWL 37,086 118,800 166,750 284,426 551,714 832,472 83,730 1,400,434Claude-3.5 OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.000 0.974 2

* SR: Success rate; WLR: Average wirelength ratio compared to baseline ECS (Chiou et al., 2016); Rank: Rank is determined primarily by SR, with a larger SR ensuring
a better Rank. Within the same SR, a smaller WLR leads to a better Rank.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 10: Floorplan results for requirement 3. Results unsatisfactory to meet OR ≤ 2.5% criteria
are in gray. The first rank is shown in cyan.

Method LLM Backbones Metric Circuits Overall Metrics
n10 n30 n50 n100 n200 n300 ami33 ami49 SR*↑ WLR*↓ Rank*↓

PeF (Li et al., 2022) HPWL 37,097 104,488 130,589 198,685 361,313 481,350 59,061 740,577 0.750 1.000 7OR 0.0148 0.0189 0.0207 0.0201 0.0271 0.0340 0.0219 0.244

ECS (Chiou et al., 2016) HPWL 40,082 123,022 168,848 295,387 561,956 848,366 82,454 1,445,688 1.000 1.463 3OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DRAT

DeepSeek-Chat HPWL 36,021 102,791 130,589 198,207 361,313 479,061 60,468 740,577 0.625 0.996 10OR 0.0231 0.0236 0.0207 0.0213 0.0271 0.0344 0.0372 0.0244

DeepSeek-Coder HPWL 35,957 104,215 128,182 195,891 353,213 479,339 61,120 712,357 0.875 0.988 5OR 0.0237 0.0203 0.0208 0.0216 0.0218 0.0252 0.0164 0.022

GPT-3.5 HPWL 38,464 106,279 133,226 195,363 347,141 479,339 61,495 734,357 0.750 1.006 8OR 0.0214 0.0104 0.021 0.0245 0.0848 0.0252 0.0166 0.0114

GPT-4 HPWL 37,767 102,212 131,390 191,094 346,257 476,975 67,689 724,870 0.125 0.985 12OR 0.0518 0.0204 0.0279 0.0359 0.0354 0.0260 0.0347 0.0428

GPT-4o-mini HPWL 36,745 105,207 127,756 195,363 353,213 479,461 61,120 712,357 0.875 0.991 4OR 0.0281 0.0175 0.0163 0.0245 0.0218 0.0229 0.0164 0.022

GPT-4o HPWL 34,969 100,802 129,102 199,875 354,541 469,863 58,403 689,266 0.375 0.970 11OR 0.0374 0.0260 0.0181 0.0098 0.0164 0.0427 0.0519 0.0289

Claude-3.5 HPWL 37,364 107,551 133,050 203,918 371,090 493,201 62,428 736,063 1.000 1.023 2OR 0.0123 0.0059 0.0113 0.0125 0.0126 0.0136 0.0104 0.0104

LLM4Floorplan

GPT-4o-mini HPWL 39,986 104,488 128,327 198,823 355,149 476,975 67,676 699,066 0.750 1.016 9OR 0.0228 0.0189 0.016 0.0202 0.0223 0.0260 0.031 0.0248

GPT-4o HPWL 42,025 102,155 128,327 194,908 355,149 476,975 63,378 706,040 0.875 1.009 6OR 0.0246 0.0216 0.016 0.0228 0.0223 0.0260 0.0163 0.0247

HPWL 39,358 103,640 128,205 196,132 351,782 477,893 61,808 708,719Claude-3.5 OR 0.0105 0.0250 0.0241 0.0215 0.0246 0.0210 0.0196 0.0163 1.000 0.999 1

* SR: Success rate; WLR: Average wirelength ratio compared to baseline PeF Li et al. (2022); Rank: Rank is determined primarily by SR, with a larger SR ensuring a
better Rank. Within the same SR, a smaller WLR leads to a better Rank.

Table 11: Floorplan results for requirement 4. Results unsatisfactory to meet OR ≤ 1.0% criteria
are in gray while the failed results are displayed as ‘N/A’. The first rank is shown in cyan.

Method LLM Backbones Metric Circuits Overall Metrics
n10 n30 n50 n100 n200 n300 ami33 ami49 SR*↑ WLR*↓ Rank*↓

PeF (Li et al., 2022) HPWL 37,128 104,564 130,944 198,685 361,313 481,350 59,061 740,577 0.000 1.000 11OR 0.0136 0.0177 0.0192 0.0201 0.0271 0.0340 0.0219 0.0244

ECS (Chiou et al., 2016) HPWL 40,082 123,022 168,848 295,387 561,956 848,366 82,454 1,445,688 1.000 1.462 3OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

DRAT

DeepSeek-Chat HPWL 40,423 110,524 134,501 204,143 369,036 497,453 63,852 753,063 0.625 1.044 6OR 0.0061 0.0108 0.0094 0.0084 0.0098 0.0101 0.0153 0.0096

DeepSeek-Coder HPWL 40,423 110,524 134,501 204,143 369,036 497,453 63,852 753,063 0.625 1.044 6OR 0.0061 0.0108 0.0094 0.0084 0.0098 0.0101 0.0153 0.0096

GPT-3.5 HPWL 39,920 107,934 145,215 208,439 564,052 841,553 90,602 841,713 1.000 1.281 2OR 0.0000 0.0064 0.0000 0.0087 0.0000 0.0000 0.0000 0.0096

GPT-4 HPWL 40,423 101,096 N/A 195,177 356,504 497,818 58,277 833,810 0.250 1.025 10OR 0.0061 0.0403 N/A 0.0344 0.0259 0.0095 0.0417 0.0169

GPT-4o-mini HPWL 38,593 105,016 134,501 199,757 370,255 495,216 60,223 750,794 0.250 1.020 9OR 0.0156 0.0191 0.0094 0.0215 0.0088 0.0120 0.0151 0.0168

GPT-4o HPWL 44,301 101,508 124,657 199,494 381,495 469,863 63,613 753,595 0.000 1.031 12OR 0.0551 0.0397 0.0217 0.0229 0.0244 0.0427 0.0656 0.0295

Claude-3.5 HPWL 37,741 108,169 133,744 203,918 369,036 497,453 67,386 753,063 0.500 1.039 8OR 0.0119 0.0072 0.0077 0.0125 0.0098 0.0101 0.0185 0.0096

LLM4Floorplan

HPWL 37,915 110,982 138,298 208,069 385,422 514,722 63,745 787,709GPT-4o-mini OR 0.0087 0.0079 0.0055 0.0077 0.0076 0.0076 0.0055 0.0086 1.000 1.058 1

GPT-4o HPWL 37,960 106,801 138,362 211,788 573,158 502,790 58,743 736,979 0.750 1.098 5OR 0.0093 0.0086 0.0058 0.0080 0.0000 0.0100 0.0117 0.0148

HPWL 40,423 111,023 133,776 203,530 368,428 507,746 69,019 738,207Claude-3.5 OR 0.0061 0.0066 0.0096 0.0100 0.0093 0.0059 0.0109 0.0085 0.875 1.055 4

* SR: Success rate; WLR: Average wirelength ratio compared to baseline PeF Li et al. (2022); Rank: Rank is determined primarily by SR, with a larger SR ensuring a
better Rank. Within the same SR, a smaller WLR leads to a better Rank.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 12: Floorplan results for requirement 5, which minimize objective value (OV) = WL×
(1+10×OR). The first rank is shown in cyan.

Method LLM Backbones Metric
Circuits Overall Metrics

n10 n30 n50 n100 n200 n300 ami33 ami49 Obj. VR*↓ Rank↓

PeF (Li et al., 2022)
HPWL 37,128 104,564 130,944 198,685 361,313 481,350 59,061 740,577

1.000 10OR 0.0136 0.0177 0.0192 0.0201 0.0271 0.0340 0.0219 0.0244
OV 42,177 123,072 156,085 238,621 459,229 645,009 71,995 921,278

ECS (Chiou et al., 2016)
HPWL 40,082 123,022 168,848 295,387 561,956 848,366 82,454 1,445,688

1.190 12OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
OV 40,082 123,022 168,848 295,387 561,956 848,366 82,454 1,445,688

DRAT

DeepSeek-Chat
HPWL 39,082 108,292 133,841 203,873 371,209 494,489 59,061 740,577

0.993 9OR 0.0062 0.0097 0.0154 0.0160 0.0218 0.0344 0.0219 0.0244
OV 41,505 118,796 154,453 236,493 452,133 664,593 71,995 921,278

DeepSeek-Coder
HPWL 37,128 104,564 135,186 198,685 361,313 497,453 59,061 774,645

0.963 7OR 0.0136 0.0177 0.0084 0.0201 0.0271 0.0101 0.0219 0.0093
OV 42,177 123,072 146,542 238,621 459,229 547,696 71,995 846,687

GPT-3.5
HPWL 40,052 123,236 145,215 204,143 568,921 841,553 63,852 1,530,540

1.130 11OR 0.0000 0.0000 0.0000 0.0084 0.0000 0.0000 0.0153 0.0000
OV 40,052 123,236 145,215 221,291 568,921 841,553 73,621 1,530,540

GPT-4
HPWL 38,558 106,682 136,276 204,143 370,222 495,926 64,145 739,561

0.923 2OR 0.0093 0.0076 0.0064 0.0084 0.0099 0.0141 0.0097 0.0065
OV 42,144 114,790 144,998 221,291 406,874 565,852 70,367 787,632

GPT-4o-mini
HPWL 37,915 106,369 134,501 204,384 368,428 495,216 60,223 750,794

0.933 4OR 0.0087 0.0109 0.0094 0.0090 0.0093 0.0120 0.0151 0.0168
OV 41,214 117,963 147,144 222,779 402,692 554,642 69,317 876,927

GPT-4o
HPWL 37,071 107,637 129,102 207,370 371,722 477,338 63,512 700,512

0.984 8OR 0.0452 0.0071 0.0181 0.0087 0.0147 0.0212 0.0081 0.0257
OV 53,827 115,279 152,469 225,411 426,365 578,534 68,656 880,544

Claude-3.5
HPWL 37,364 107,551 133,798 204,384 370,255 493,201 67,386 736,063

0.942 5OR 0.0123 0.0059 0.0102 0.0090 0.0088 0.0136 0.0185 0.0104
OV 41,960 113,897 147,445 222,779 402,837 560,276 79,852 812,614

LLM4Floorplan

GPT-4o-mini
HPWL 39,789 110,637 138,726 211,690 412,302 521,808 63,378 735,049

0.926 3OR 0.0010 0.0048 0.0039 0.0066 0.0031 0.0049 0.0163 0.0060
OV 40,187 115,948 144,136 225,662 425,083 547,377 73,709 779,152

GPT-4o
HPWL 38,906 118,714 130,589 203,757 378,257 501,593 59,584 745,384

0.952 6OR 0.0032 0.0000 0.0207 0.0146 0.0104 0.0170 0.0156 0.0157
OV 40,151 118,714 157,621 233,506 417,596 586,864 68,879 862,409

HPWL 37,642 107,491 135,045 206,712 370,255 501,912 58,733 737,309
OR 0.0000 0.0061 0.0113 0.0061 0.0088 0.0088 0.0158 0.0089Claude-3.5
OV 37,642 114,048 150,305 219,321 402,837 546,080 68,013 802,930

0.905 1

* Obj. VR: Objective value ratio is compared with PeF Li et al. (2022). The objective value is defined as
∑

ei∈E HPWL(ei) × (1 + 10 × OR), as described in
Table 2; Rank: A smaller Obj. VR leads to a better Rank.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 13: Floorplan results for requirement 6. An additional constraint is introduced, requiring the
first two blocks to be adjacent. The top-ranked result is highlighted in cyan.

Method LLM Backbones Metric
Circuits Overall Metrics

n10 n30 n50 n100 n200 n300 ami33 ami49 SR*↑ WLR*↓ Rank*↓

PeF (Li et al., 2022)
HPWL 37,097 104,488 130,589 198,685 361,313 480,571 59,061 725,235

0.000 1.000 10OR 0.0245 0.0260 0.0148 0.0203 0.0307 0.0327 0.0220 0.0119
Adj. % % % % % % % %

ECS (Chiou et al., 2016)
HPWL 40,082 123,022 168,848 295,387 561,956 848,366 82,454 1,445,688

0.000 1.469 12OR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Adj. % % % % % % % %

DRAT

DeepSeek-Chat
HPWL 37,755 104,473 128,073 195,713 361,548 479,061 59,821 726,519

0.000 0.999 9OR 0.0118 0.0129 0.0248 0.0287 0.0212 0.0344 0.0300 0.0127
Adj. % % % % % % % %

DeepSeek-Coder
HPWL 35,957 102,601 128,182 191,094 345,515 462,491 58,277 712,357

0.000 0.973 8OR 0.0237 0.0304 0.0208 0.0359 0.0366 0.0398 0.0417 0.0220
Adj. % % % % % % % %

GPT-3.5
HPWL 37,734 106,355 129,011 198,685 362,416 471,728 62,677 757,385

0.000 1.014 11OR 0.0113 0.0230 0.0248 0.0201 0.0320 0.0396 0.0223 0.0146
Adj. % % % % % % % %

GPT-4
HPWL 34,058 102,261 121,931 186,389 353,213 460,442 57,011 684,310

0.125 0.952 5OR 0.0624 0.0565 0.0431 0.0605 0.0218 0.0633 0.0514 0.0453
Adj. % ! % % % % % %

GPT-4o-mini
HPWL 38,387 102,866 127,101 193,870 353,640 468,824 58,798 718,985

0.250 0.989 4OR 0.0164 0.0306 0.0300 0.0324 0.044 0.0506 0.0352 0.0200
Adj. ! % ! % % % % %

GPT-4o
HPWL 35,102 102,246 124,393 190,737 345,286 463,231 58,876 721,716

0.125 0.969 6OR 0.0366 0.0189 0.0341 0.0299 0.0337 0.0480 0.065 0.0641
Adj. % % ! % % % % %

HPWL 39,118 110,139 137,632 205,483 372,387 495,796 67,280 741,721
OR 0.0168 0.0135 0.0154 0.0164 0.0160 0.0128 0.0325 0.0259Claude-3.5
Adj. ! ! ! ! ! ! ! !

1.000 1.053 1

LLM4Floorplan

GPT-4o-mini
HPWL 35,916 102,444 124,678 193,991 348,012 467,345 55,311 1,836,250

0.125 1.161 7OR 0.0214 0.0234 0.0523 0.0450 0.0676 0.064 0.0462 0.0442
Adj. % % % % % % % !

GPT-4o
HPWL 36,542 101,145 127,753 192,034 343,713 459,934 61,111 700,512

0.375 0.976 3OR 0.0032 0.0000 0.0207 0.0146 0.0104 0.0170 0.0156 0.0157
Adj. % % ! % % ! % !

Claude-3.5
HPWL 35,618 101,155 125,924 198,240 348,522 464,918 62,609 714,832

0.875 0.984 2OR 0.0271 0.0360 0.0561 0.0223 0.0317 0.0399 0.0630 0.0473
Adj. % ! ! ! ! ! ! !

* SR: Success Rate. A design simultaneously meet the overlapping requirement and the adjacency requirement is regarded as successful. WLR: Average wirelength ratio
compared to baseline PeF (Li et al., 2022); Rank: Rank is determined primarily by SR, with a larger SR ensuring a better Rank. Within the same SR, a smaller WLR
leads to a better Rank.

27

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	LLM4Floorplan
	Search-Cluster-based Retriever
	DRAT Prompting
	LLM4Floorplan System

	Experiment
	Experimental Protocols
	Main Results
	Benchmark and Meeting Diverse Requirements
	Futher Analysis

	Conclusion and Outlook
	Notation
	Details of Floorplanning Problem
	Domain-Specific Prompts
	Decision Prompt
	Comment Prompt

	Experimental Protocols
	Dataset
	Metrics
	Introduction of the Benchmark
	Construct the Database.
	Parameters of Baselines

	Other Experimental Results
	Details of Ablation Studies
	Visualization of LLM4Floorplan Results
	Detailed Results in Sec. 5.2 and Sec. 5.3

