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ABSTRACT

Training neural networks with auxiliary tasks is a common practice for improving
the performance on a main task of interest. Two main challenges arise in this
multi-task learning setting: (i) designing useful auxiliary tasks; and (ii) combining
auxiliary tasks into a single coherent loss. Here, we propose a novel framework,
AuxiLearn, that targets both challenges based on implicit differentiation. First,
when useful auxiliaries are known, we propose learning a network that combines
all losses into a single coherent objective function. This network can learn non-
linear interactions between tasks. Second, when no useful auxiliary task is known,
we describe how to learn a network that generates a meaningful, novel auxiliary
task. We evaluate AuxiLearn in a series of tasks and domains, including image
segmentation and learning with attributes in the low data regime, and find that it
consistently outperforms competing methods.

1 INTRODUCTION

The performance of deep neural networks can significantly improve by training the main task of
interest with additional auxiliary tasks (Goyal et al., 2019; Jaderberg et al., 2016; Mirowski, 2019).
For example, learning to segment an image into objects can be more accurate when the model is
simultaneously trained to predict other properties of the image like pixel depth or 3D structure
(Standley et al., 2019). In the low data regime, models trained with the main task only are prone
to overfit and generalize poorly to unseen data (Vinyals et al., 2016). In this case, the benefits of
learning with multiple tasks are amplified (Zhang and Yang, 2017). Training with auxiliary tasks
adds an inductive bias that pushes learned models to capture meaningful representations and avoid
overfitting to spurious correlations.

In some domains, it may be easy to design beneficial auxiliary tasks and collect supervised data.
For example, numerous tasks were proposed for self-supervised learning in image classification,
including masking (Doersch et al., 2015), rotation (Gidaris et al., 2018) and patch shuffling (Doersch
and Zisserman, 2017; Noroozi and Favaro, 2016). In these cases, it is not clear what would be the best
way to combine all auxiliary tasks into a single loss (Doersch and Zisserman, 2017). The common
practice is to compute a weighted combination of pretext losses by tuning the weights of individual
losses using hyperparameter grid search. This approach, however, limits the potential of learning with
auxiliary tasks because the run time of grid search grows exponentially with the number of tasks.

In other domains, obtaining good auxiliaries in the first place may be challenging or may require
expert knowledge. For example, for point cloud classification, few self-supervised tasks have been
proposed; however, their benefits so far are limited (Achituve et al., 2020; Hassani and Haley, 2019;
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Sauder and Sievers, 2019; Tang et al., 2020). For these cases, it would be beneficial to automate the
process of generating auxiliary tasks without domain expertise.

Our work takes a step forward in automating the use and design of auxiliary learning tasks. We
name our approach AuxiLearn. AuxiLearn leverages recent progress made in implicit differentiation
for optimizing hyperparameters (Liao et al., 2018; Lorraine et al., 2020). We demonstrate the
effectiveness of AuxiLearn in two types of problems. First, in combining auxiliaries, for cases
where auxiliary tasks are predefined. We describe how to train a deep neural network (NN) on top
of auxiliary losses and combine them non-linearly into a unified loss. For instance, we combine
per-pixel losses in image segmentation tasks using a convolutional NN (CNN). Second, designing
auxiliaries, for cases where predefined auxiliary tasks are not available. We present an approach for
learning such auxiliary tasks without domain knowledge and from input data alone. This is achieved
by training an auxiliary network to generate auxiliary labels while training another, primary network
to learn both the original task and the auxiliary task. One important distinction from previous works,
such as (Kendall et al., 2018; Liu et al., 2019a), is that we do not optimize the auxiliary parameters
using the training loss but rather on a separate (small) auxiliary set, allocated from the training data.
This is a key difference since the goal of auxiliary learning is to improve generalization rather than
help optimization on the training data.

To validate our proposed solution, we extensively evaluate AuxiLearn in several tasks in the low-data
regime. In this regime, the models suffer from severe overfitting and auxiliary learning can provide the
largest benefits. Our results demonstrate that using AuxiLearn leads to improved loss functions and
auxiliary tasks, in terms of the performance of the resulting model on the main task. We complement
our experimental section with two interesting theoretical insights regarding our model. The first
shows that a relatively simple auxiliary hypothesis class may overfit. The second aims to understand
which auxiliaries benefit the main task.

To summarize, we propose a novel general approach for learning with auxiliaries using implicit
differentiation. We make the following novel contributions: (a) We describe a unified approach for
combining multiple loss terms and for learning novel auxiliary tasks from the data alone; (b) We
provide a theoretical observation on the capacity of auxiliary learning; (c) We show that the key
quantity for determining beneficial auxiliaries is the Newton update; (d) We provide new results on a
variety of auxiliary learning tasks with a focus on the low data regime. We conclude that implicit
differentiation can play a significant role in automating the design of auxiliary learning setups.

2 RELATED WORK

Learning with multiple tasks. Multitask Learning (MTL) aims at simultaneously solving mul-
tiple learning problems while sharing information across tasks. In some cases, MTL benefits the
optimization process and improves task-specific generalization performance compared to single-task
learning (Standley et al., 2019). In contrast to MTL, auxiliary learning aims at solving a single, main
task, and the purpose of all other tasks is to facilitate the learning of the primary task. At test time,
only the main task is considered. This approach has been successfully applied in multiple domains,
including computer vision (Zhang et al., 2014), natural language processing (Fan et al., 2017; Trinh
et al., 2018), and reinforcement learning (Jaderberg et al., 2016; Lin et al., 2019).

Dynamic task weighting. When learning a set of tasks, the task-specific losses are combined into
an overall loss. The way individual losses are combined is crucial because MTL-based models are
sensitive to the relative weightings of the tasks (Kendall et al., 2018). A common approach for
combining task losses is in a linear fashion. When the number of tasks is small, task weights are
commonly tuned with a simple grid search. However, this approach does not extend to a large number
of tasks, or a more complex weighting scheme. Several recent studies proposed scaling task weights
using gradient magnitude (Chen et al., 2018), task uncertainty (Kendall et al., 2018), or the rate of
loss change (Liu et al., 2019b). Sener and Koltun (2018) proposed casting the multitask learning
problem as a multi-objective optimization. These methods assume that all tasks are equally important,
and are less suited for auxiliary learning. Du et al. (2018) and Lin et al. (2019) proposed to weight
auxiliary losses using gradient similarity. However, these methods do not scale well with the number
of auxiliaries and do not take into account interactions between auxiliaries. In contrast, we propose to
learn from data how to combine auxiliaries, possibly in a non-linear manner.
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(a) Combining losses (b) Learning a new auxiliary task

Figure 1: The AuxiLearn framework. (a) Learning to combine losses into a single coherent loss term. Here,
the auxiliary network operates over a vector of losses. (b) Generating a novel auxiliary task. Here the auxiliary
network operates over the input space. In both cases, g(· ;φ) is optimized using IFT based on LA.

Devising auxiliaries. Designing an auxiliary task for a given main task is challenging because it
may require domain expertise and additional labeling effort. For self-supervised learning (SSL),
many approaches have been proposed (see Jing and Tian (2020) for a recent survey), but the joint
representation learned through SSL may suffer from negative transfer and hurt the main task (Standley
et al., 2019). Liu et al. (2019a) proposed learning a helpful auxiliary in a meta-learning fashion,
removing the need for handcrafted auxiliaries. However, their system is optimized for the training
data, which may lead to degenerate auxiliaries. To address this issue, an entropy term is introduced to
force the auxiliary network to spread the probability mass across classes.

Implicit differentiation based optimization. Our formulation gives rise to a bi-level optimization
problem. Such problems naturally arise in the context of meta-learning (Finn et al., 2017; Rajeswaran
et al., 2019) and hyperparameter optimization (Bengio, 2000; Foo et al., 2008; Larsen et al., 1996;
Liao et al., 2018; Lorraine et al., 2020; Pedregosa, 2016). The Implicit Function Theorem (IFT) is
often used for computing gradients of the upper-level function, this operation requires calculating a
vector-inverse Hessian product. However, for modern neural networks, it is infeasible to calculate it
explicitly, and an approximation must be devised. Luketina et al. (2016) proposed approximating
the Hessian with the identity matrix, whereas Foo et al. (2008); Pedregosa (2016); Rajeswaran et al.
(2019) used conjugate gradient (CG) to approximate the product. Following Liao et al. (2018);
Lorraine et al. (2020), we use a truncated Neumann series and efficient vector-Jacobian products, as
it was empirically shown to be more stable than CG.

3 OUR METHOD

We now describe the general AuxiLearn framework for learning with auxiliary tasks. For that purpose,
we use two networks, a primary network that is optimized on all tasks and an auxiliary network
that is optimized on the main task only. First, we introduce our notations and formulate the general
objective. Then, we describe two instances of this framework: combining auxiliaries and learning
new auxiliaries. Finally, we present our optimization approach for both instances.

3.1 PROBLEM DEFINITION

Let {(xti,yti)}i be the training set and {(xai ,yai )}i be a distinct independent set which we term
auxiliary set. Let f(· ;W ) denote the primary network, and let g(· ;φ) denote the auxiliary network.
Here, W are the parameters of the model optimized on the training set, and φ are the auxiliary
parameters trained on the auxiliary set. The training loss is defined as:

LT = LT (W,φ) =
∑
i

`main(xti,y
t
i;W ) + h(xti,y

t
i,W ;φ), (1)

where `main denotes the loss of the main task and h is the overall auxiliary loss, controlled by φ. In
Sections 3.2 & 3.3 we will describe two instances of h. We note that h has access to both W and φ.
The loss on the auxiliary set is defined as LA =

∑
i `main(xai ,y

a
i ;W ), since we are interested in the

generalization performance of the main task.
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We wish to find auxiliary parameters (φ) such that the primary parameters (W ), trained with the
combined objective, generalize well. More formally, we seek

φ∗ = arg min
φ
LA(W ∗(φ)), s.t. W ∗(φ) = arg min

W
LT (W,φ). (2)

3.2 LEARNING TO COMBINE AUXILIARY TASKS

Suppose we are given K auxiliary tasks, usually designed using expert domain knowledge. We wish
to learn how to optimally leverage these auxiliaries by learning to combine their corresponding losses.
Let `(x,y;W ) = (`main(x, ymain;W ), `1(x, y1;W ), ..., `K(x, yK ;W )) denote a loss vector. We
wish to learn an auxiliary network g : RK+1 → R over the losses that will be added to `main in order
to output the training loss LT = `main + g(`;φ). Here, h from Eq. (1) is given by h(· ;φ) = g(`;φ).

Typically, g(`;φ) is chosen to be a linear combination of the losses: g(`;φ) =
∑
j φj`j , with positive

weights φj ≥ 0 that are tuned using a grid search. However, this method can only scale to a few
auxiliaries, as the run time of grid search is exponential in the number of tasks. Our method can
handle a large number of auxiliaries and easily extends to a more flexible formulation in which g
parametrized by a deep NN. This general form allows us to capture complex interactions between
tasks, and learn non-linear combinations of losses. See Figure 1a for illustration.

One way to view a non-linear combination of losses is as an adaptive linear weighting, where losses
have a different set of weights for each datum. If the loss at point x is `main(x, ymain) + g(`(x,y)),
then the gradients are∇W `main(x, ymain) +

∑
j
∂g
∂`j
∇W `j(x, yj). This is equivalent to an adaptive

loss where the loss of datum x is `main +
∑
j αj,x`j and, αj,x = ∂g

∂`j
. This observation connects our

approach to other studies that assign adaptive loss weighs (e.g., Du et al. (2018); Liu et al. (2019b)).

Convolutional loss network. In certain problems there exists a spatial relation among losses. For
example, semantic segmentation and depth estimation for images. A common approach is to average
the losses over all locations. In contrast, AuxiLearn can leverage this spatial relation for creating
a loss-image in which each task forms a channel of pixel-losses induced by the task. We then
parametrize g as a CNN that acts on this loss-image. This yields a spatial-aware loss function that
captures interactions between task losses. See an example of a loss image in Figure 3

Monotonicity. It is common to parametrize the function g(`;φ) as a linear combination with non-
negative weights. Under this parameterization, g is a monotonic non-decreasing function of the losses.
A natural question that arises is whether we should generalize this behavior and constrain g(`;φ) to
be non-decreasing w.r.t. the input losses as well? Empirically, we found that training with monotonic
non-decreasing networks tends to be more stable and has a better or equivalent performance. We
impose monotonicity during training with negative weights clipping. See Appendix C.2 for a detailed
discussion and empirical comparison to non-monotonic networks.

3.3 LEARNING NEW AUXILIARY TASKS

The previous subsection focused on situations where auxiliary tasks are given. In many cases,
however, no useful auxiliary tasks are known in advance, and we are only presented with the main
task. We now describe how to use AuxiLearn in such cases. The intuition is simple: We wish to learn
an auxiliary task that pushes the representation of the primary network to generalize better on the
main task, as measured using the auxiliary set. We do so in a student-teacher manner: an auxiliary
“teacher” network produces labels for the primary network (the “student”) which tries to predict these
labels as an auxiliary task. Both networks are trained jointly.

More specifically, for auxiliary classification, we learn a soft labeling function g(x;φ) which produces
pseudo labels yaux for input samples x . These labels are then provided to the main network f(x;W )
for training (see Figure 1b). During training, the primary network f(x;W ) outputs two predictions,
ŷmain for the main task and ŷaux for the auxiliary task. We then compute the full training loss
LT = `main(ŷmain, ymain) + `aux(ŷaux, yaux) to update W . Here, the h component of LT in
Eq. (1) is given by h(· ;φ) = `aux(f(xti;W ), g(xti;φ)). As before, we update φ using the auxiliary
set with the loss LA = `main. Intuitively, the teacher auxiliary network g is rewarded when it
provides labels to the student that help it succeed in the main task, as measured using LA.
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3.4 OPTIMIZING AUXILIARY PARAMETERS

We now return to the bi-level optimization problem in Eq. (2) and present the optimizing method
for φ. Solving Eq. (2) for φ poses a problem due to the indirect dependence of LA on the auxiliary
parameters. To compute the gradients of φ, we need to differentiate through the optimization process
over W , since∇φLA = ∇WLA · ∇φW ∗. As in Liao et al. (2018); Lorraine et al. (2020), we use the
implicit function theorem (IFT) to evaluate∇φW ∗:

∇φW ∗ = − (∇2
WLT )−1︸ ︷︷ ︸
|W |×|W |

· ∇φ∇WLT︸ ︷︷ ︸
|W |×|φ|

. (3)

We can leverage the IFT to approximate the gradients of the auxiliary parameters φ:

∇φLA(W ∗(φ)) = −∇WLA︸ ︷︷ ︸
1×|W |

· (∇2
WLT )−1︸ ︷︷ ︸
|W |×|W |

· ∇φ∇WLT︸ ︷︷ ︸
|W |×|φ|

. (4)

See Appendix A for a detailed derivation. To compute the vector and Hessian inverse product, we use
the algorithm proposed by Lorraine et al. (2020), which uses Neumann approximation and efficient
vector-Jacobian product. We note that accurately computing∇φLA by IFT requires finding a point
such that ∇WLT = 0. In practice, we only approximate W ∗, and simultaneously train both W and
φ by altering between optimizing W on LT , and optimizing φ using LA. We summarize our method
in Alg. 1 and 2. Theoretical considerations regarding our method are given in Appendix D.

Algorithm 1: AuxiLearn
Initialize auxiliary parameters φ and weights W ;

while not converged do
for k = 1, ..., N do
LT = `main(x, y;W ) + h(x, y,W ;φ)
W ←W − α∇WLT

∣∣
φ,W

end
φ← φ − Hypergradient(LA,LT , φ,W )

end
return W

Algorithm 2: Hypergradient
Input: training loss LT , auxiliary loss LA, a

fixed point (φ′,W ∗), number of
iterations J , learning rate α

v = p = ∇WLA|(φ′,W∗)
for j = 1, ..., J do

v −= αv · ∇W∇WLT
p += v

end
return −p∇φ∇WLT |(φ′,W∗)

4 ANALYSIS

4.1 COMPLEXITY OF AUXILIARY HYPOTHESIS SPACE

In our learning setup, an additional auxiliary set is used for tuning a large set of auxiliary parameters.
A natural question arises: could the auxiliary parameters overfit this auxiliary set? and what is
the complexity of the auxiliary hypothesis space Hφ? Analyzing the complexity of this space is
difficult because it is coupled with the hypothesis space HW of the main model. One can think of
this hypothesis space as a subset of the original model hypothesis spaceHφ = {hW : ∃φ s.t. W =
arg minW LT (W,φ)} ⊂ HW . Due to the coupling with HW the behavior can be unintuitive. We
show that even simple auxiliaries can have infinite VC dimensions.

Example: Consider the following 1D hypothesis space for binary classification HW =
{dcos(Wx)e,W ∈ R}, which has infinite VC-dimension. Let the main loss be the zero-one loss and
the auxiliary loss be h(φ,W ) = (φ−W )2, namely, an L2 regularization with a learned center. Since
the model hypothesis spaceHW has an infinite VC-dimension, there exist training and auxiliary sets
of any size that are shattered byHW . Therefore, for any labeling of the auxiliary and training sets,
we can let φ = φ̂, the parameter that perfectly classifies both sets. We then have that φ̂ is the optimum
of the training with this auxiliary loss and we get thatHφ also has an infinite VC-dimension.

This important example shows that even seemingly simple-looking auxiliary losses can overfit due to
the interaction with the model hypothesis space. Thus, it motivates our use of a separate auxiliary set.

4.2 ANALYZING AN AUXILIARY TASK EFFECT

When designing or learning auxiliary tasks, one important question is, what makes an auxiliary task
useful? Consider the following loss with a single auxiliary task LT (W,φ) =

∑
i `main(xti,y

t
i,W ) +
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φ · `aux(xti,y
t
i,W ). Here h = φ · `aux. Assume φ = 0 so we optimize W only on the standard main

task loss. We can now check if dLA

dφ |φ=0 > 0, namely would it help to add this auxiliary task?

Proposition 1. Let LT (W,φ) =
∑
i `main(xti,y

t
i,W ) + φ · `aux(xti,y

t
i,W ). Suppose that φ = 0

and that the main task was trained until convergence. We have

dLA(W ∗(φ))

dφ

∣∣∣
φ=0

= −〈∇WLTA,∇2
WL−1T ∇WLT 〉, (5)

i.e. the gradient with respect to the auxiliary weight is the inner product between the Newton methods
update and the gradient of the loss on the auxiliary set.

Proof. In the general case, the following holds dLA

dφ = −∇WLA(∇2
WLT )−1∇φ∇WLT . For a linear

combination, we have∇φ∇WLT =
∑
i∇W `aux(xti,y

t
i). Since W is optimized till convergence of

the main task we obtain∇φ∇WLT = ∇WLT .

This simple result shows that the key quantity to observe is the Newton update, rather than the
gradient which is often used (Lin et al., 2019; Du et al., 2018). Intuitively, the Newton update is the
important quantity because if ∆φ is small then we are almost at the optimum. Then, due to quadratic
convergence, a single Newton step is sufficient for approximately converging to the new optimum.

5 EXPERIMENTS

We evaluate the AuxiLearn framework in a series of tasks of two types: combining given auxiliary
tasks into a unified loss (Sections 5.1 - 5.3), and generating a new auxiliary task (Section 5.4). Further
experiments and analysis of both modules are given in Appendix C. Throughout all experiments, we
use an extra data split for the auxiliary set. Hence, we use four data sets: training set, validation set,
test set, and auxiliary set. The samples for the auxiliary set are pre-allocated from the training set.
For a fair comparison, these samples are used as part of the training set by all competing methods.
Effectively, this means we have a slightly smaller training set for optimizing the parameters W of the
primary network. In all experiments, we report the mean performance (e.g., accuracy) along with
the Standard Error of the Mean (SEM). Full implementation details of all experiments are given in
Appendix B. Our code is available at https://github.com/AvivNavon/AuxiLearn.

Model variants. For learning to combine losses, we evaluated the following variants of auxiliary
networks: (1) Linear: A convex linear combination between the loss terms; (2) Linear neural
network (Deep linear): A deep fully-connected NN with linear activations; (3) Nonlinear: A
standard feed-forward NN over the loss terms. For Section 5.3 only (4) ConvNet: A CNN over the
loss-images. The expressive power of the deep linear network is equivalent to that of a 1-layer linear
network; However, from an optimization perspective, it was shown that the over-parameterization
introduced by the network’s depth could stabilize and accelerate convergence (Arora et al., 2018;
Saxe et al., 2014). All variants are constrained to represent only monotone non-decreasing functions.

5.1 AN ILLUSTRATIVE EXAMPLE

(a) main task (b) t = 0 (c) t = T

Figure 2: Loss landscape generated by the auxiliary network.
Darker is higher. See text for details.

We first present an illustrative exam-
ple of how AuxiLearn changes the
loss landscape and helps generaliza-
tion in the presence of label noise and
harmful tasks. Consider a regression
problem with ymain = w?Tx + ε0
and two auxiliary tasks. The first aux-
iliary is helpful, y1 = w?Tx + ε1,
whereas the second auxiliary is harm-
ful y2 = w̃Tx + ε2, w̃ 6= w?. We let
ε0 ∼ N (0, σ2

main) and ε1, ε2 ∼ N (0, σ2
aux), with σ2

main > σ2
aux. We optimize a linear model with

weights w ∈ R2 that are shared across tasks, i.e., no task-specific parameters. We set w? = (1, 1)T

and w̃ = (2,−4)T . We train an auxiliary network to output linear task weights and observe the
changes to the loss landscape in Figure 2. The left plot shows the loss landscape for the main task,

6

https://github.com/AvivNavon/AuxiLearn


Published as a conference paper at ICLR 2021

(a) image (b) GT labels (c) aux. loss (d) main loss (e) pix. weight

Figure 3: Loss images on test examples from NYUv2: (a) original image; (b) semantic segmentation ground
truth; (c) auxiliaries loss; (d) segmentation (main task) loss; (e) adaptive pixel-wise weight

∑
j ∂LT /∂`j .

with a training set optimal solution wtrain. Note that wtrain 6= w∗ due to the noise in the training
data. The loss landscape of the weighted train loss at the beginning (t = 0) and the end (t = T ) of
training is shown in the middle and right plots, respectively. Note how AuxiLearn learns to ignore the
harmful auxiliary and use the helpful one to find a better solution by changing the loss landscape. In
Appendix C.3 we show that the auxiliary task weight is inversely proportional to the label noise.

5.2 FINE-GRAINED CLASSIFICATION WITH MANY AUXILIARY TASKS

In fine-grained visual classification tasks, annotators should have domain expertise, making data
labeling challenging and potentially expensive (e.g., in the medical domain). In some cases, however,
non-experts can annotate visual attributes that are informative about the main task. As an example,
consider the case of recognizing bird species, which would require an ornithologist, yet a layman can
describe the head color or bill shape of a bird. These features naturally form auxiliary tasks, which
can be leveraged for training jointly with the main task of bird classification.

Table 1: Test classification accuracy on CUB 200-2011 dataset,
averaged over three runs (± SEM).

5-shot 10-shot

Top 1 Top 3 Top 1 Top 3

STL 35.50± 0.7 54.79± 0.7 54.79± 0.3 74.00± 0.1
Equal 41.47± 0.4 62.62± 0.4 55.36± 0.3 75.51± 0.4
Uncertainty 35.22± 0.3 54.99± 0.7 53.75± 0.6 73.25± 0.3
DWA 41.82± 0.1 62.91± 0.4 54.90± 0.3 75.74± 0.3
GradNorm 41.49± 0.4 63.12± 0.4 55.23± 0.1 75.62± 0.3
GCS 42.57± 0.7 62.60± 0.1 55.65± 0.2 75.71± 0.1

AuxiLearn
Linear 41.71± 0.4 63.73± 0.6 54.77± 0.2 75.51± 0.7
Deep Linear 45.84± 0.3 66.21± 0.5 57.08± 0.2 75.3± 0.6
Nonlinear 47.07± 0.1 68.25± 0.3 59.04± 0.2 78.08± 0.2

We evaluate AuxiLearn in this setup of fine-
grained classification using the Caltech-
UCSD Birds 200-2011 dataset (CUB)
(Wah et al., 2011). CUB contains 200
bird species in 11,788 images, each asso-
ciated with a set of 312 binary visual at-
tributes, which we use as auxiliaries. Since
we are interested in setups where optimiz-
ing the main task alone does not general-
ize well, we demonstrate our method in a
semi-supervised setting: we assume that
auxiliary labels are available for all images
but only K labels per class are available
for the main task (noted as K-shot).

We compare AuxiLearn with the following MTL and auxiliary learning baselines: (1) Single-task
learning (STL): Training only on the main task. (2) Equal: Standard multitask learning with equal
weights for all auxiliary tasks. (3) GradNorm (Chen et al., 2018): An MTL method that scales losses
based on gradient magnitude. (4) Uncertainty (Kendall et al., 2018): An MTL approach that uses
task uncertainty to adjust task weights. (5) Gradient Cosine Similarity (GCS) (Du et al., 2018):
An auxiliary-learning approach that uses gradient similarity between the main and auxiliary tasks.
(6) Dynamic weight averaging (DWA) (Liu et al., 2019b): An MTL approach that sets task weights
based on the rate of loss change over time. The primary network in all experiments is ResNet-18 (He
et al., 2016) pre-trained on ImageNet. We use a 5-layer fully connected NN for the auxiliary network.
Sensitivity analysis of the network size and auxiliary set size is presented in Appendix C.4.
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Table 1 shows the test set classification accuracy. Most methods significantly improve over the STL
baseline, highlighting the benefits of using additional (weak) labels. Our Nonlinear and Deep linear
auxiliary network variants outperform all previous approaches by a large margin. As expected, a
non-linear auxiliary network is better than its linear counterparts. This suggests that there are some
non-linear interactions between the loss terms that the non-linear network is able to capture. Also,
notice the effect of using deep-linear compared to a (shallow) linear model. This result indicates that
at least part of the improvement achieved by our method is attributed to the over-parameterization of
the auxiliary network. In the Appendix we further analyze properties of auxiliary networks. Appendix
C.5 visualizes the full optimization path of a linear auxiliary network over a polynomial kernel on the
losses, and Appendix C.6 shows that the last state of the auxiliary network is not informative enough.

5.3 PIXEL-WISE LOSSES

Table 2: Test results for semantic segmentation on
NYUv2, averaged over four runs (± SEM).

mIoU Pixel acc.

STL 18.90± 0.21 54.74± 0.94
Equal 19.20± 0.19 55.37± 1.00
Uncertainty 19.34± 0.18 55.70± 0.79
DWA 19.38± 0.14 55.37± 0.35
GradNorm 19.52± 0.21 56.70± 0.33
MGDA 19.53± 0.35 56.28± 0.46
GCS 19.94± 0.13 56.58± 0.81

AuxiLearn (ours)
Linear 20.04± 0.38 56.80± 0.14
Deep Linear 19.94± 0.12 56.45± 0.79
Nonlinear 20.09± 0.34 56.80± 0.53
ConvNet 20.54± 0.30 56.69± 0.44

We consider the indoor-scene segmentation task from
Couprie et al. (2013), that uses the NYUv2 dataset
(Silberman et al., 2012). We consider the 13-class se-
mantic segmentation as the main task, with depth and
surface-normal prediction (Eigen and Fergus, 2015)
as auxiliaries. We use SegNet (Badrinarayanan et al.,
2017) based model for the primary network, and a
4-layer CNN for the auxiliary network.

Since losses in this task are given per-pixel, we can
apply the ConvNet variant of the auxiliary network
to the loss image. Namely, each task forms a channel
with the per-pixel losses as values. Table 2 reports
the mean Intersection over Union (mIoU) and pixel
accuracy for the main segmentation task. Here, we
also compare with MGDA (Sener and Koltun, 2018) which had extremely long training time in CUB
experiments due to the large number of auxiliary tasks, and therefore was not evaluated in Section 5.2.
All weighting methods achieve a performance gain over the STL model. The ConvNet variant of
AuxiLearn outperforms all competitors in terms of test mIoU.

Figure 3 shows examples of the loss-images for the auxiliary (c) and main (d) tasks, together with
the pixel-wise weights (e). First, note how the loss-images resemble the actual input images. This
suggests that a spatial relationship can be leveraged using a CNN auxiliary network. Second, pixel
weights are a non-trivial combination of the main and auxiliary task losses. In the top (bottom) row,
the plant (couch) has a low segmentation loss and intermediate auxiliary loss. As a result, a higher
weight is allocated to these pixels which increases the error signal.

5.4 LEARNING AUXILIARY LABELS

Table 3: Learning auxiliary task. Test accuracy averaged over three runs (±SEM) without pre-training.

CIFAR10 (5%) CIFAR100 (5%) SVHN (5%) CUB (30-shot) Pet (30-shot) Cars (30-shot)

STL 50.8± 0.8 19.8± 0.7 72.9± 0.3 37.2± 0.8 26.1± 0.5 59.2± 0.4
MAXL-F 56.1± 0.1 20.4± 0.6 75.4± 0.3 39.6± 1.3 26.2± 0.3 59.6± 1.1
MAXL 58.2± 0.3 21.0± 0.4 75.5± 0.4 40.7± 0.6 26.3± 0.6 60.4± 0.8

AuxiLearn 60.7± 1.3 21.5± 0.3 76.4± 0.2 44.5± 0.3 37.0± 0.6 64.4± 0.3

In many cases, designing helpful auxiliaries is challenging. We now evaluate AuxiLearn in learning
multi-class classification auxiliary tasks. We use three multi-class classification datasets: CIFAR10,
CIFAR100 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and three fine-grained classification
datasets: CUB-200-2011, Oxford-IIIT Pet (Parkhi et al., 2012), and Cars (Krause et al., 2013). Pet
contains 7349 images of 37 species of dogs and cats, and Cars contains 16,185 images of 196 cars.

Following Liu et al. (2019a), we learn a different auxiliary task for each class of the main task. In
all experiments and all learned tasks, we set the number of classes to 5 . To examine the effect of
the learned auxiliary losses in the low-data regime, we evaluate the performance while training with
only 5% of the training set in CIFAR10, CIFAR100, and SVHN datasets, and ∼ 30 samples per
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Figure 4: t-SNE applied to auxiliary labels learned for Frog and Deer classes, in CIFAR10. Best viewed in color.

class in CUB, Oxford-IIIT Pet, and Cars. We use VGG-16 (Simonyan and Zisserman, 2014) as the
backbone for both CIFAR datasets, a 4-layers ConvNet for the SVHN experiment, and ResNet18 for
the fine-grained datasets. In all experiments, the architectures of the auxiliary and primary networks
were set the same and were trained from scratch without pre-training.

We compared our approach with the following baselines: (1) Single-task learning (STL): Training
the main task only. (2) MAXL: Meta AuXiliary Learning (MAXL) proposed by Liu et al. (2019a)
for learning auxiliary tasks. MAXL optimizes the label generator in a meta-learning fashion. (3)
MAXL-F: A frozen MAXL label generator, that is initialized randomly. It decouples the effect of
having a teacher network from the additional effect brought by the training process.

Table 3 shows that AuxiLearn outperforms all baselines in all setups, even-though it sacrifices some
of the training set for the auxiliary set. It is also worth noting that our optimization approach is
significantly faster than MAXL, yielding ×3 improvement in run-time. In Appendix C.9 and C.10
we show additional experiments for this setup, including an extension of the method to point-cloud
part segmentation and experiments with varying training data sizes.

Figure 4 presents a 2D t-SNE projection of the 5D vector of auxiliary (soft) labels that are learned
using AuxiLearn. We use samples of the main classes Frog (left) and Deer (right) from the CIFAR10
dataset. t-SNE was applied to each auxiliary task separately. When considering how images are
projected to this space of auxiliary soft labels, several structures emerge. The auxiliary network learns
a fine partition of the Frog class that separates real images from illustrations. More interesting, the
soft labels learned for the class Deer have a middle region that only contains deers with antlers (in
various poses and varying backgrounds). By capturing this semantic feature in the learned auxiliary
labels, the auxiliary task can help the primary network to discriminate between main task classes.

6 DISCUSSION

In this paper, we presented a novel and unified approach for two tasks: combining predefined auxiliary
tasks, and learning auxiliary tasks that are useful for the primary task. We theoretically showed which
auxiliaries can be beneficial and the importance of using a separate auxiliary set. We empirically
demonstrated that our method achieves significant improvement over existing methods on various
datasets and tasks. This work opens interesting directions for future research. First, when training
deep linear auxiliary networks, we observed similar learning dynamics to those of non-linear models.
As a result, they generated better performance compared to their linear counterparts. This effect was
observed in standard training setup, but the optimization path in auxiliary networks is very different.
Second, we find that reallocating labeled data from the training set to an auxiliary set is consistently
helpful. A broader question remains what is the most efficient allocation.
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Appendix: Auxiliary Learning by Implicit Differentiation

A GRADIENT DERIVATION

We provide here the derivation of Eq. (4) in Section 3. One can look at the function ∇WLT (W,φ)

around a certain local-minima point (Ŵ , φ̂) and assume the Hessian ∇2
WLT (Ŵ , φ̂) is positive-

definite. At that point, we have ∇WLT (Ŵ , φ̂) = 0. From the IFT, we have that locally around
(Ŵ , φ̂), there exists a smooth function W ∗(φ) such that ∇WLT (W,φ) = 0 if W = W ∗(φ). Since
the function ∇WLT (W ∗(φ), φ) is constant and equal to zero, we have that its derivative w.r.t. φ is
also zero. Taking the total derivative we obtain

0 = ∇2
WLT (W,φ)∇φW ∗(φ) +∇φ∇WLT (W,φ) . (6)

Multiplying by∇2
WLT (W,φ)−1 and reordering we obtain

∇φW ∗(φ) = −∇2
WLT (W,φ)−1∇φ∇WLT (W,φ) . (7)

We can use this result to compute the gradients of the auxiliary set loss w.r.t φ
∇φLA(W ∗(φ)) = ∇WLA · ∇φW ∗(φ) = −∇WLA · (∇2

WLT )−1 · ∇φ∇WLT . (8)

As discussed in the main text, fully optimizing W to convergence is too computationally expensive.
Instead, we update φ once for every several update steps for W , as seen in Alg. 1. To compute the
vector inverse-Hessian product, we use Alg. 2 that was proposed in (Lorraine et al., 2020).

B EXPERIMENTAL DETAILS

B.1 CUB 200-2011

Data. To examine the effect of varying training set sizes we use all 5994 predefined images for
training according to the official split and, we split the predefined test set to 2897 samples for
validation and 2897 for testing. All images were resized to 256 × 256 and Z-score normalized.
During training, images were randomly cropped to 224 and flipped horizontally. Test images were
centered cropped to 224. The same processing was applied in all fine-grain experiments.

Training details for baselines. We fine-tuned a ResNet-18 (He et al., 2016) pre-trained on ImageNet
(Deng et al., 2009) with a classification layer on top for all tasks. Because the scale of auxiliary losses
differed from that of the main task, we multiplied each auxiliary loss, on all compared method, by the
scaling factor τ = 0.1. It was chosen based on a grid search over {0.1, 0.3, 0.6, 1.0} using the Equal
baseline. We applied grid search over the learning rates in {1e− 3, 1e− 4, 1e− 5} and the weight
decay in {5e− 3, 5e− 4, 5e− 5}. For DWA (Liu et al., 2019b), we searched over the temperature
in {0.5, 2, 5} and for GradNorm (Chen et al., 2018), over α in {0.3, 0.8, 1.5}. The computational
complexity of GSC (Du et al., 2018) grows with the number of tasks. As a result, we were able to run
this baseline only in a setup where there are two loss terms: the main and the sum of all auxiliary tasks.
We ran each configuration with 3 different seeds for 100 epochs with ADAM optimizer (Kingma and
Ba, 2014) and used early stopping based on the validation set.

The auxiliary set and auxiliary network. In our experiments, we found that allocating as little as
20 samples from the training set for the auxiliary set and using a NN with 5 layers and 10 units in
each layer yielded good performance for both deep linear and non-linear models. We found that our
method was not sensitive to these design choices. We use skip connection between the main loss
`main and the overall loss term and Softplus activation.

Optimization of the auxiliary network. In all variants of our method, the auxiliary network was
optimized using SGD with 0.9 momentum. We applied grid search over the auxiliary network learning
rate in {1e− 2, 1e− 3} and weight decay in {1e− 5, 5e− 5}. The total training time of all methods
was 3 hours on a 16GB Nvidia V100 GPU.

B.2 NYUV2

The data consists of 1449 RGB-D images, split into 795 train images and 654 test images. We
further split the train set to allocate 79 images, 10% of training examples, to construct a validation
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set. Following (Liu et al., 2019b), we resize images to 288× 384 pixels for training and evaluation
and use SegNet (Badrinarayanan et al., 2017) based architecture as the backbone.

Similar to (Liu et al., 2019b), we train the model for 200 epochs using Adam optimizer (Kingma
and Ba, 2014) with learning rate 1e − 4, and halve the learning rate after 100 epochs. We choose
the best model with early stopping on a pre-allocated validation set. For DWA (Liu et al., 2019b)
we set the temperature hyperparameter to 2, as in the NYUv2 experiment in (Liu et al., 2019b). For
GradNorm (Chen et al., 2018) we set α = 1.5. This value for α was used in (Chen et al., 2018) for
the NYUv2 experiments. In all variants of our method, the auxiliary networks are optimized using
SGD with 0.9 momentum. We allocate 2.5% of training examples to form an auxiliary set. We use
grid search to tune the learning rate {1e− 3, 5e− 4, 1e− 4} and weight decay {1e− 5, 1e− 4} of
the auxiliary networks. Here as well, we use skip connection between the main loss `main and the
overall loss term and Softplus activation.

B.3 LEARNING AUXILIARIES

Multi-class classification datasets. On the CIFAR datasets, we train the model for 200 epochs using
SGD with momentum 0.9, weight decay 5e − 4, and initial learning rates 1e − 1 and 1e − 2 for
CIFAR10 and CIFAR100, respectively. For the SVHN experiment, we train for 50 epochs using
SGD with momentum 0.9, weight decay 5e− 4, and initial learning rates 1e− 1. The learning rate
is modified using a cosine annealing scheduler. We use VGG-16 (Simonyan and Zisserman, 2014)
based architecture for the CIFAR experiments, and a 4-layer ConvNet for the SVHN experiment. For
MAXL (Liu et al., 2019a) label generating network, we tune the following hyperparameters: learning
rate {1e− 3, 5e− 4}, weight decay {5e− 4, 1e− 4, 5e− 5}, and entropy term weight {.2, .4, .6}
(see (Liu et al., 2019a) for details). We explore the same learning rate and weight decay for the
auxiliary network in our method, and also tune the number of optimization steps between every
auxiliary parameter update {5, 15, 25}, and the size of the auxiliary set {1.5%, 2.5%} (of training
examples). We choose the best model on the validation set and allow for early stopping.

Fine-grain classification datasets. In CUB experiments we use the same data and splits as described
in Sections 5.2 and B.1. Oxford-IIIT Pet contains 7349 images of 37 species of dogs and cats. We
use the official train-test split. We pre-allocate 30% from the training set to validation. As a results,
the total number of train/validation/test images are 2576/1104/3669 respectively. Cars (Krause et al.,
2013) contains 16, 185 images of 196 car classes. We use the official train-test split and pre-allocate
30% from the training set to validation. As a results, the total number of train/validation/test images
are 5700/2444/8041 respectively. In all experiments we use ResNet-18 as the backbone network
for both the primary and auxiliary networks. Importantly, the networks are not pre-trained. The
task specific (classification) heads in both the primary and auxiliary networks is implemented using
a 2-layer NN with sizes 512 and C. Where C is number of labels (e.g., 200 for CUB and 37 for
Oxford-IIIT Pet). In all experiments we use the same learning rate of 1e− 4 and weight decay of
5e − 3 which were shown to work best, based on a grid search applied on the STL baseline. For
MAXL and AuxiLearn we applied a grid search over the auxiliary network learning rate and weight
decay as described in the Multi-class classification datasets subsection. We tune the number of
optimization steps between every auxiliary parameter update in {30, 60} for Oxford-IIIT Pet and
{40, 80} for CUB and Cars. Also, the auxiliary set size was tuned over {0.084%, 1.68%, 3.33%}
with stratified sampling. For our method, we leverage the module of AuxiLearn for combining
auxiliaries. We use a Nonlinear network with either two or three hidden layers of sizes 10 (which
was selected according to a grid search). The batch size was set to 64 in CUB and Cars experiments
and to 16 in Oxford-IIIT Pet experiments. We ran each configuration with 3 different seeds for 150
epochs with ADAM optimizer and used early stopping based on the validation set.

C ADDITIONAL EXPERIMENTS

C.1 IMPORTANCE OF AUXILIARY SET

In this section we illustrate the importance of the auxiliary set to complement our theoretical
observation in Section 4. We repeat the experiment in Section 5.1, but this time we optimize the
auxiliary parameters φ using the training data. Figure 5 shows how the tasks’ weights change
during training. The optimization procedure is reduced to single-task learning, which badly hurts
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Figure 5: Optimizing task weights on the training set reduce to single-task learning.

generalization (see Figure 2). These results are consistent with (Liu et al., 2019a) that added an
entropy loss term to avoid the diminishing auxiliary task.

C.2 MONOTONOCITY

As discussed in the main text, it is a common practice to combine auxiliary losses as a convex
combination. This is equivalent to parametrize the function g(`;φ) as a linear combination over
losses g(`;φ) =

∑K
j=1 φj`j , with non-negative weights, φj ≥ 0. Under this parameterization, g is a

monotonic non-decreasing function of the losses, since ∂LT /∂`j ≥ 0. The non-decreasing property
means that the overall loss grows (or is left unchanged) with any increase to the auxiliary losses. As a
result, an optimization procedure that operates to minimize the combined loss also operates in the
direction of reducing individual losses (or not changing them).

A natural question that arises is whether the function g should generalize this behavior, and be
constrained to be non-decreasing w.r.t. the losses as well? Non-decreasing networks can "ignore"
an auxiliary task by zeroing its corresponding loss, but cannot reverse the gradient of a task by
negating its weight. While monotonicity is a very natural requirement, in some cases, negative
task weights (i.e., non-monotonicity) seem desirable if one wishes to "delete" input information not
directly related to the task at hand (Alemi et al., 2017; Ganin and Lempitsky, 2015). For example, in
domain adaptation, one might want to remove information that allows a discriminator to recognize
the domain of a given sample (Ganin and Lempitsky, 2015). Empirically, we found that training with
monotonic non-decreasing networks to be more stable and has better or equivalent performance, see
Table 4 for comparison.

Table 4 compares monotonic and non-monotonic auxiliary networks in both the semi-supervised and
the fully-supervised setting. Monotonic networks show a small but consistent improvement over
non-monotonic ones. It is also worth mentioning that the non-monotonic networks were harder to
stabilize.

Table 4: CUB 200-2011: Monotonic vs non-monotonic test classification accuracy (± SEM) over three runs.

Top 1 Top 3

5-shot Non-Monotonic 46.3 ± 0.32 67.46 ± 0.55
Monotonic 47.07 ± 0.10 68.25 ± 0.32

10-shot Non-Monotonic 58.84 ± 0.04 77.67 ± 0.08
Monotonic 59.04 ± 0.22 78.08 ± 0.24

Full Dataset Non-Monotonic 74.74 ± 0.30 88.3 ± 0.23
Monotonic 74.92 ± 0.21 88.55 ± 0.17
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C.3 NOISY AUXILIARIES

We demonstrate the effectiveness of AuxiLearn in identifying helpful auxiliaries and ignoring harmful
ones. Consider a regression problem with main task y = wTx + ε, where ε ∼ N (0, σ2). We learn
this task jointly with K = 100 auxiliaries of the form yj = wTx + |εj |, where εj ∼ N (0, j · σ2

aux)
for j = 1, ..., 100. We use the absolute value on the noise so that noisy estimations are no longer
unbiased, making the noisy labels even less helpful as the noise increases. We use a linear auxiliary
network to weigh the loss terms. Figure 6 shows the learned weight for each task. We can see that the
auxiliary network captures the noise patterns, and assign weights based on the noise level.

Figure 6: Learning with noisy labels: task ID is proportional to the label noise.

C.4 CUB SENSITIVITY ANALYSIS

In this section, we provide further analysis for the experiments conducted on the CUB 200-2011
dataset in the 5-shot setup. We examine the sensitivity of a non-linear auxiliary network to the size
of the auxiliary set, and the depth of the auxiliary network. In Figure 7a we test the effect of
allocating (labeled) samples from the training set to the auxiliary set. As seen, allocating between
10 − 50 samples results in similar performance picking at 20. The figure shows that removing
too many samples from the training set can be damaging. Nevertheless, we notice that even when
allocating 200 labeled samples (out of 1000), our nonlinear method is still better than the best
competitor GSC (Du et al., 2018) (which reached an accuracy of 42.57).

Figure 7b shows how accuracy changes with the number of hidden layers. As expected, there is
a positive trend. As we increase the number of layers, the network expressivity increases, and the
performance improves. Clearly, making the auxiliary network too large may cause the network to
overfit the auxiliary set as was shown in Section 4, and empirically in (Lorraine et al., 2020).

C.5 LINEARLY WEIGHTED NON-LINEAR TERMS

To further motivate the use of non-linear interactions between tasks, we train a linear auxiliary
network over a polynomial kernel on the tasks segmentation, depth estimation and normal prediction
from the NYUv2 dataset. Figure 8 shows the learned loss weights. From the figure, we learn that two
of the three largest weights at the end of training belong to non-linear terms, specifically, Seg2 and
Seg ·Depth. Also, we observe a scheduling effect, in which at the start of training, the auxiliary
network focuses on the auxiliary tasks (first ∼ 50 steps), and afterwards it draws most of the attention
of the primary network towards the main task.

C.6 FIXED AUXILIARY

As a result of alternating between optimizing the primary network parameters and the auxiliary
parameters, the weighting of the loss terms are updated during the training process. This means that
the loss landscape is changed during training. This effect is observed in the illustrative examples
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(a) Effect of auxiliary set size (b) Effect of Depth

Figure 7: Mean test accuracy (± SEM) averaged over 3 runs as a function of the number of samples in the
auxiliary set (left) and the number of hidden layers (right). Results are on 5-shot CUB 200-2011 dataset.

Polynomial kernel - linear weights

Figure 8: Learned linear weights for a polynomial kernel on the loss terms of the tasks segmentation, depth
estimation and normal prediction from the NYUv2 dataset.

described in Section 5.1 and Section C.5, where the auxiliary network focuses on different tasks
during different learning stages. Since the optimization is non-convex, the end result may depend not
only on the final parameters but also on the loss landscape during the entire process.

We examined this effect with the following setup on the 5-shot setting on CUB 200-2011 dataset:
we trained a non-linear auxiliary network and saved the best model. Then we retrain with the same
configuration, only this time, the auxiliary network is initialized using the best model, and is kept
fixed. We repeat this using ten different random seeds, affecting the primary network initialization
and data shuffling. As a result, we observed a drop of 6.7% on average in the model performance
with an std of 1.2% (46.7% compared to 40%).

C.7 FULL CUB DATASET

In Section 5.2 we evaluated AuxiLearn and the baseline models performance under a semi-supervised
scenario in which we have 5 or 10 labeled samples per class. For completeness sake, we show in
Table 5 the test accuracy results in the standard fully-supervised scenario. As can be seen, in this
case the STL baseline achieves the highest top-1 test accuracy while our nonlinear method is second
on the top-1 and first on the top-3. Most baselines suffer from severe negative transfer due to the
large number of auxiliary tasks (which are not needed in this case) while our method cause minimal
performance degradation.
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Table 5: CUB 200-2011: Fully supervised test classification accuracy (± SEM) averaged over three runs.

Top 1 Top 3

STL 75.2 ± 0.52 88.4 ± 0.36
Equal 70.16 ± 0.10 86.87 ± 0.22
Uncertainty 74.70 ± 0.56 88.21 ± 0.14
DWA 69.88 ± 0.10 86.62 ± 0.20
GradNorm 70.04 ± 0.21 86.63 ± 0.13
GSC 71.30 ± 0.01 86.91 ± 0.28

AuxiLearn (ours)
Linear 70.97± 0.31 86.92 ± 0.08
Deep Linear 73.6 ± 0.72 88.37 ± 0.21
Nonlinear 74.92 ± 0.21 88.55 ± 0.17

C.8 CITYSCAPES

Cityscapes (Cordts et al., 2016) is a high-quality urban-scene dataset. We use the data provided
in (Liu et al., 2019b) with 2975 training and 500 test images. The data comprises of four learning
tasks: 19-classes, 7-classes and 2-classes semantic segmentation, and depth estimation. We use the
19-classes semantic segmentation as the main task, and all other tasks as auxiliaries. We allocate 10%
of the training data for validation set, to allow for hyperparameter tuning and early stopping. We
further allocate 2.5% of the remaining training examples to construct the auxiliary set. All images
are resized to 128× 256 to speed up computation.

We train a SegNet (Badrinarayanan et al., 2017) based model for 150 epochs using Adam opti-
mizer (Kingma and Ba, 2014) with learning rate 1e− 4, and halve the learning rate after 100 epochs.
We search over weight decay in {1e − 4, 1e − 5}. We compare AuxiLearn to the same baselines
used in Section 5.2 and search over the same hyperparameters as in the NYUv2 experiment. We set
the DWA temperature to 2 similar to (Liu et al., 2019b), and the GradNorm hyperparameter α to
1.5, as used in (Chen et al., 2018) for the NYUv2 experiments. We present the results in Table 6.
The ConvNet variant of the auxiliary network achieves best performance in terms of mIoU and pixel
accuracy.

Table 6: 19-classes semantic segmentation test set results on Cityscapes, averaged over three runs (± SEM).

mIoU Pixel acc.

STL 30.18± 0.04 87.08± 0.18
Equal 30.45± 0.14 87.14± 0.08
Uncertainty 30.49± 0.21 86.89± 0.07
DWA 30.79± 0.32 86.97± 0.26
GradNorm 30.62± 0.03 87.15± 0.04
GCS 30.32± 0.23 87.02± 0.12

AuxiLearn (ours)
Linear 30.63± 0.19 86.88± 0.03
Nonlinear 30.85± 0.19 87.19± 0.20
ConvNet 30.99± 0.05 87.21± 0.11

C.9 LEARNING SEGMENTATION AUXILIARY FOR 3D POINT CLOUDS

Recently, several methods were offered for learning auxiliary tasks in point clouds (Achituve et al.,
2020; Hassani and Haley, 2019; Sauder and Sievers, 2019); however, this domain is still largely
unexplored and it is not yet clear which auxiliary tasks could be beneficial beforehand. Therefore,
it is desirable to automate this process, even at the cost of performance degradation to some extent
compared to human designed methods.

We further evaluate our method in the task of generating helpful auxiliary tasks for 3D point-cloud
data. We propose to extend the use of AuxiLearn for segmentation tasks. In Section 5.4 we trained
an auxiliary network to output soft auxiliary labels for classification task. Here, we use a similar
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Table 7: Learning auxiliary segmentation task. Test mean IOU on ShapeNet part dataset averaged over three
runs (±SEM) - 30 shot

Mean Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motorbike Mug Pistol Rocket Skateboard Table

Num. samples 2874 341 14 11 158 704 14 159 80 286 83 51 38 44 12 31 848

STL 75.6 68.7 82.9 85.2 65.6 82.3 70.2 86.1 75.1 68.4 94.3 55.1 91.0 72.6 60.2 72.3 74.2
DAE 74.0 66.6 77.6 79.1 60.5 81.2 73.8 87.1 77.0 65.4 93.6 51.8 88.4 74.0 55.4 68.4 72.7
DefRec 74.6 68.6 81.2 83.8 63.6 82.1 72.9 86.9 72.7 69.4 93.4 51.8 89.7 72.0 57.2 70.5 71.7
RS 76.5 69.7 79.1 85.9 64.9 83.8 68.4 82.8 79.4 70.7 94.5 58.9 91.8 72.0 53.4 70.3 75.0

AuxiLearn 76.2 68.9 78.3 83.6 64.9 83.4 69.7 87.4 80.7 68.3 94.6 53.2 92.1 73.7 61.6 72.4 74.6

approach, assigning a soft label vector to each point. We then train the primary network on the main
task and the auxiliary task of segmenting each point based on the learned labels.

We evaluated the above approach in a part-segmentation task using the ShapeNet part dataset (Yi
et al., 2016). This dataset contains 16,881 3D shapes from 16 object categories (including Airplane,
Bag, Lamp), annotated with a total of 50 parts (at most 6 parts per object). The main task is to
predict a part label for each point. We follow the official train/val/test split scheme in (Chang et al.,
2015). We also follow the standard experimental setup in the literature, which assumes known object
category labels during segmentation of a shape (see e.g., (Qi et al., 2017; Wang et al., 2019)). During
training we uniformly sample 1024 points from each shape and we ignore points normal. During
evaluation we use all points of a shape. For all methods (ours and baselines) we used the DGCNN
architecture (Wang et al., 2019) as the backbone feature extractor and for part segmentation. We
evaluated performance using point-Intersection over Union (IoU) following (Qi et al., 2017).

We compared AuxiLearn with the following baselines: (1) Single Task Learning (STL): Training
with the main task only. (2) DefRec: An auxiliary task of reconstructing a shape with a deformed
region (Achituve et al., 2020). (3) Reconstructing Spaces (RS): An auxiliary task of reconstructing
a shape from a shuffled version of it (Sauder and Sievers, 2019). and (4) Denoising Auto-encoder
(DAE): An auxiliary task of reconstructing a point-cloud perturbed with an iid noise fromN (0, 0.01).

We performed hyper-parameter search over the primary network learning rate in {1e− 3, 1e− 4},
weight decay in {5e − 5, 1e − 5} and weight ratio between the main and auxiliary task of {1 :
1, 1 : 0.5, 1 : 0.25}. We trained each method for 150 epochs, used the Adam optimizer with cosine
scheduler. We applied early stopping based on the mean IoU of the validation set. We ran each
configuration with 3 different seeds and report the average mean IOU along with the SEM. We used
the segmentation network proposed in (Wang et al., 2019) with an exception that the network wasn’t
supplied with the object label as input.

For AuxiLearn, we used a smaller version of PointNet (Qi et al., 2017) as the auxiliary network
without input and feature transform layers. We selected PointNet because its model complexity is
light and therefore is a good fit in our case. We learned a different auxiliary task per each object
category (with 6 classes per category) since it showed better results. We performed hyper-parameter
search over the auxiliary network learning rate in {1e− 2, 1e− 3}, weight decay in {5e− 3, 5e− 4}.
Two training samples from each class were allocated for the auxiliary set.

Table 7 shows the mean IOU per category when training with only 30 segmented point-clouds per
object category (total of 480). As can be seen, AuxiLearn performance is close to RS (Sauder and
Sievers, 2019) and improve upon other baselines. This shows that in this case, our method generates
useful auxiliary tasks that has shown similar or better gain than those designed by humans.

C.10 LEARNING AN AUXILIARY CLASSIFIER

In Section 5.4 we show how AuxiLearn learns a novel auxiliary to improve upon baseline methods.
For the fine-grained classification experiments, we use only 30 samples per class. Here we also
compare AuxiLearn with the baseline methods when there are only 15 images per class. Table 8
shows that AuxiLearn is superior to baseline methods in this setup as well, even though it requires to
allocate some samples from the training data to the auxiliary set.

To further examine the effect of learning novel auxiliary task with varying train set size, we provide
here additional experiments on the CIFAR10 dataset. We evaluate the methods with of 10%, 15%
and 100% of training examples. The results are presented in Table 9. As expected, learning with
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Table 8: Learning auxiliary task. Test accuracy
averaged over three runs (±SEM) - 15 shot

CUB Pet

STL 22.6± 0.2 13.6± 0.7
MAXL-F 24.2± 0.7 14.1± 0.1
MAXL 24.2± 0.8 14.2± 0.2

AuxiLearn 26.1± 0.7 18.0± 0.9

Table 9: CIFAR10 test results accuracy averaged over
three runs (±SEM).

CIFAR10

10% 15% 100%

STL 72.63± 2.14 80.30± 0.09 93.36± 0.05
MAXL 75.85± 0.32 81.37± 0.26 93.49± 0.02

AuxiLearn 76.75± 0.08 81.42± 0.30 93.54± 0.05

auxiliaries is mostly helpful in the low data regime. Nonetheless, AuxiLearn improves over single
task learning and MAXL for all training set sizes.

D THEORETICAL CONSIDERATIONS

In this section, we discuss the theoretical limitations of AuxiLearn. First, we discuss the smoothness
of our loss criterion while learning to combine losses using DNNs. Next, we present limitations that
may arise from utilizing the IFT and their resolution. Finally, we discuss the approximations made
for achieving an efficient optimization procedure.

Smoothness of the loss criterion. When learning to combine losses as described in Section 3.2,
one must take into consideration the smoothness of the learn loss criterion as a function of W . This
limits, at least in theory, the design choice of the auxiliary network. In our experiments we use
smooth activation functions, namely Softplus, to ensure the existence of ∂LT /∂W . Nonetheless,
using non-smooth activation (e.g. ReLU) results with a piecewise smooth loss function hence might
work well in practice.

Assumptions for IFT. One assumption for applying the IFT as described in Section 3.4, is that
LT is continuously differentiable w.r.t to the auxiliary and primary parameters. This assump-
tion limits the design choice of both the auxiliary, and the primary networks. For instance,
one must utilize only smooth activation functions. However, many non-smooth components
can be replaced with smooth counterparts. For example, ReLU can be replaced with Softplus,
ReLU(x) = limα→∞ ln (1 + exp(αx))/α, and the beneficial effects of Batch-Normalization can
be captured with Weight-Normalization as argued in (Salimans and Kingma, 2016).

For the setup of learning to combine losses, we use the above substitutes, namely Softplus and Weight
Normalization, however for the learning a novel auxiliary setup, we share architecture between
primary and auxiliary network (e.g. ResNet18). While using non-smooth components may, in theory,
cause issues, we show empirically through extensive experiment that AuxiLean performs well in
practice, and its optimization is stable. Furthermore, we note that while ReLUs are non-smooth, they
are piecewise smooth, hence the set of non-smoothness points is a zero-measure set.

Approximations. Our optimization procedure relies on several approximations to efficiently solve
complex bi-level optimization. This trade-off between computation efficiency and accurate approxi-
mation can be controlled by (i) The number of Neumann series components, and; (ii) The number of
optimization steps between auxiliary parameters update. While we cannot guarantee that the bi-level
optimization process converges, empirically we observe a stable optimization process.

Our work builds on previous studies in the field of hyperparameter optimization (Lorraine et al.,
2020; Pedregosa, 2016). Lorraine et al. (2020) provide an error analysis for both approximations, in a
setup for which the exact Hessian can be evaluated in closed form. We refer the readers to Pedregosa
(2016) for theoretical analysis and results regarding the second approximation (i.e. sub-optimally of
the inner optimization problem in Eq. 2).
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