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Abstract

Retrieval-augmented generation (RAG) im-001
proves Large Language Models (LLMs) by in-002
corporating external information into the re-003
sponse generation process. However, how004
context-faithful LLMs are and what factors005
influence LLMs’ context faithfulness remain006
largely unexplored. In this study, we investi-007
gate the impact of memory strength and evi-008
dence presentation on LLMs’ receptiveness to009
external evidence. We quantify the memory010
strength of LLMs by measuring the divergence011
in LLMs’ responses to different paraphrases of012
the same question, which is not considered by013
previous works. We also generate evidence in014
various styles to examine LLMs’ behavior. Our015
results show that for questions with high mem-016
ory strength, LLMs are more likely to rely on017
internal memory. Furthermore, presenting para-018
phrased evidence significantly increases LLMs’019
receptiveness compared to simple repetition or020
adding details.021

1 Introduction022

Retrieval-Augmented Generation (RAG) (Fan et al.,023

2024; Zhao et al., 2023) has gained increasing pop-024

ularity as it improves the performance of Large025

Language Models (LLMs) by integrating external026

information during the generation process, particu-027

larly when the model’s internal knowledge is insuf-028

ficient or outdated (Bianchini et al., 2024; Procko,029

2024; Siriwardhana et al., 2023; Vakayil et al.,030

2024; Wang et al., 2024; Jeong, 2023). It raises031

the importance of the study of how context-faithful032

LLMs are. In this study, we explore whether LLMs033

are context-faithful when encountering external in-034

formation, particularly when that information con-035

flicts with the LLMs’ internal memory.036

To investigate the issue of context faithfulness,037

there are two main approaches to creating knowl-038

edge conflict contexts. One approach (Longpre039

et al., 2021; Chen et al., 2022) is entity substitution,040

Figure 1: Demonstration of issues in context faithful-
ness testing schema: a) LLMs may fail to comprehend
long contexts, resulting in low receptiveness to the con-
text. b) Evaluating LLMs on the same dataset may be
unfair due to variations in their knowledge.

which replaces the gold entity in context with a sim- 041

ilar one. Another approach (Xie et al., 2024; Jin 042

et al., 2024) involves generating counter-memory 043

evidence with LLMs, and these studies have shown 044

that LLMs are generally receptive to external evi- 045

dence as long as it is coherent. 046

These methods, however, overlook some impor- 047

tant aspects of the task. First, previous work (Long- 048

pre et al., 2021; Xie et al., 2024) provides long 049

contexts to LLMs, which can be challenging for 050

LLMs to understand (Xie et al., 2024). It makes 051

the test difficult to distinguish whether the cause 052

of LLM behavior is due to knowledge conflicts or 053

lacking comprehension ability. For example, in Fig- 054

ure 1 (a), the LLM may overlook both contexts, but 055

the reason why Context 1 is ignored could be a lack 056

of comprehension rather than knowledge conflicts. 057

Second, different LLMs are trained with different 058

data and are likely to obtain different knowledge. 059

Thus, testing LLMs on the same dataset may be 060

unfair. The test may favor LLMs with less knowl- 061

edge. As shown in Figure 1 (b), LLMs with strong 062

memory are less likely to be correct. 063

To address these issues, we introduce a method 064
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to quantify the memory strength of LLMs and gen-065

erate short evidence in various styles to examine066

LLMs’ behavior. Inspired by Zhao et al. (2024),067

we assess memory strength by measuring the diver-068

gence in LLMs’ responses to different paraphrases069

of the same question. Intuitively, an LLM demon-070

strates high memory strength when it consistently071

provides the same answer across all paraphrased072

versions of a question. For evidence styles, we073

classify them into direct and indirect forms: direct074

evidence provides a straightforward answer to the075

question, while indirect evidence incorporates addi-076

tional details to support the answer. Through these077

methods, we analyze the relationship between con-078

text faithfulness and LLM memory strength, and079

we explore the impact of different evidence styles080

on context faithfulness. Our conclusions are as081

follows:082

• The receptiveness of LLMs to external ev-083

idence is strongly correlated with memory084

strength to the question. We observed this085

relationship both across different datasets and086

different LLMs. Contrary to the findings of087

(Xie et al., 2024; Jin et al., 2024) that LLMs088

are highly receptive (less than 5%) to external089

evidence when it is coherent, we find that the090

probability of the model relying on its internal091

memory is non-negligible for questions that092

the LLMs have a strong memory. For example,093

GPT-4, which has strong memory on the NQ094

dataset, answers almost 50% of the questions095

with internal memory. We also demonstrate096

an urgent need for memory strength-aware097

evaluation metrics.098

• The style of the evidence plays an important099

role in LLM’s receptiveness to external infor-100

mation. Our research demonstrates that pre-101

senting the LLM with multiple paraphrases102

of the same evidence substantially increases103

its receptiveness. This approach outperforms104

simple repetition of the evidence and is more105

effective than adding additional details to the106

evidence. These findings provide valuable in-107

sights to the research of RAG.108

2 Related Work109

2.1 Context Faithfulness of LLM110

To update static factual knowledge (Lazaridou et al.,111

2021; Karpukhin et al., 2020; Kasai et al., 2023)112

in LLMs, the retrieval-based method has been in- 113

troduced to involve external information to LLMs 114

(Lazaridou et al., 2022; Izacard et al., 2024; Khat- 115

tab et al., 2022; Santhanam et al., 2022; Gao and 116

Callan, 2022). However, these methods can intro- 117

duce knowledge conflicts between the introduced 118

external information (context) and pre-existing in- 119

ternal memories from LLMs. LLMs often rely 120

on their internal memories, and overlook the con- 121

textual evidence (Longpre et al., 2021). To make 122

LLMs more faithful to context, recent studies (Nee- 123

man et al., 2023; Li et al., 2023) fine-tune LLMs on 124

counterfactual contexts, where the original facts are 125

replaced with counterfactual ones. Another work 126

(Zhou et al., 2023) proposes a novel approach us- 127

ing prompting to improve context faithfulness in 128

LLMs without additional fine-tuning. 129

A related area of research focuses on predic- 130

tion with abstention. Neeman et al. (2023); Zhou 131

et al. (2024) introduces answerability augmenta- 132

tion, where LLMs are trained to respond with 133

"Unanswerable" when presented with irrelevant 134

or randomly generated contexts. This ensures that 135

the models do not make incorrect predictions with- 136

out reliable evidence. Further studies (Wang et al., 137

2023, 2022) develop confidence calibration tech- 138

niques to improve context faithfulness by encour- 139

aging LLMs to avoid overly confident predictions 140

in ambiguous or uncertain situations. 141

In our work, we investigate the context faithful- 142

ness of LLMs when faced with conflicting knowl- 143

edge. We define a model as context-faithful if it 144

demonstrates high receptiveness to new facts and 145

evidence with strong conflicting memories. This 146

capability is essential to ensure the reliability of 147

LLMs in the RAG system. 148

2.2 Construction of Knowledge Conflicts 149

In controlled experiments, knowledge conflicts are 150

typically simulated by constructing counterfactual 151

memories based on a model’s internal memory. Var- 152

ious heuristic approaches have been proposed for 153

this purpose, such as negation injection (Kassner 154

et al., 2021; Petroni et al., 2020; Pan et al., 2021) 155

and entity substitution (Longpre et al., 2021; Chen 156

et al., 2022; Si et al., 2023; Zhou et al., 2023). 157

Negation injection alters facts by introducing nega- 158

tions and entity substitution replaces mentions or 159

entities in the evidence with alternatives to generate 160

counter-fact evidence. However, these techniques 161

are constrained to word-level edits, which can lead 162

to low coherence across the constructed evidence. 163
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To address this limitation, recent studies (Xie et al.,164

2024; Jin et al., 2024) have explored generating165

evidence using LLMs, producing more coherent166

and consistent counterfactual content. We adopt167

this approach in generating our dataset, ensuring168

the generated evidence maintains a higher level of169

coherence.170

3 Methodology171

3.1 Problem Definition172

Following prior work (Longpre et al., 2021; Chen173

et al., 2022; Xie et al., 2024), we adopt question174

answering (QA) task as the testbed for knowledge175

conflict experiments. For a given question Q, if the176

answer generated by the LLM relies solely on its177

internal parameters, it is referred to as the memory178

answer (MA). If an evidence passage E is provided179

with question Q, then ideally, LLM should generate180

an answer based on E, even if E conflicts with181

memory answers. We call the answers that conflict182

with MA as counter memory answer (CMA).183

3.2 Datasets184

We use two datasets for our experiments: the long-185

tail, entity-based QA dataset popQA, and the popu-186

lar, human-written question dataset Natural Ques-187

tions (NQ). Specifically:188

• popQA (Mallen et al., 2023) is an entity-189

centric question-answering dataset compris-190

ing 14,000 questions. The dataset is derived191

from knowledge triples in Wikidata, where192

questions are generated using question tem-193

plates specific to different relationship types.194

popQA aims to capture a realistic, long-tail195

distribution of entity popularity, making it196

a valuable resource for studying the perfor-197

mance of lesser-known entities. Xie et al.198

(2024) use popQA to test the receptiveness of199

LLMs by eliciting high-quality internal mem-200

ory from LLMs and constructing the corre-201

sponding counter-memory. We reuse MA and202

CMA generated by Xie et al. (2024) for our203

experiments.204

• Natural Questions (Kwiatkowski et al., 2019)205

is widely used in open-domain QA research.206

It consists of manually crafted questions based207

on selected paragraphs from Wikipedia, and208

the subjects in questions of the NQ dataset are209

generally more popular and commonly known.210

Longpre et al. (2021) provide a test set that is211

used to test the context faithfulness of LLMs 212

by substituting entity of the NQ dataset. The 213

entity substitute involves five categories: per- 214

son (PER), date (DAT), numeric (NUM), orga- 215

nization (ORG), and location (LOC). The test 216

set contains 4,685 samples, including 1,667 217

unique questions. 218

3.3 Memory Strength 219

Inspired by Zhao et al. (2024), we use the consis- 220

tency of answers to different paraphrases of the 221

same question Q to measure the LLM’s memory 222

strength SQ for the knowledge KQ associated with 223

the question. This method is motivated by the intu- 224

ition that if an LLM does not have a strong memory 225

of a question, it will often give different answers 226

when asked with paraphrased questions that are 227

semantically equivalent, as shown in Table 6 in 228

Appendix. In contrast, it can produce consistent 229

answers if the LLM has a strong memory of a ques- 230

tion. The process involves two key steps: First, sev- 231

eral paraphrased versions of the original question 232

are generated with ChatGPT1, and the answers to 233

those paraphrased questions are clustered (Section 234

3.3.1). Then, memory strength SQ is calculated 235

using answer consistency (Section 3.3.2). 236

3.3.1 Question Paraphrases and Answer 237

Clustering 238

The prompt used for paraphrasing the question is 239

provided in Tabel 9 (index 1) in the Appendix. 240

For each question Q, we generate n paraphrases 241

{P1, · · · , Pn}Q. For the NQ dataset, we para- 242

phrase the question in each data sample directly. 243

For the popQA dataset, we paraphrase the question 244

template for each relation type since all questions 245

of the same relation type share the same question 246

template. To ensure the paraphrased questions are 247

proper to use, we check if two paraphrased ques- 248

tions are semantically equivalent with an LLM2. 249

The prompt for this semantic equivalence detection 250

is provided in Table 9 (index 2). For any para- 251

phrase that is deemed not equivalent, we ask the 252

LLM to re-generate it until a satisfactory version is 253

produced. 254

Next, LLMs answer the paraphrased questions 255

{P1, · · · , Pn}Q in a closed-book setting. We de- 256

note the answers as {A1, · · · , An}Q. The answers 257

are grouped into several clusters based on their 258

1https://platform.openai.com/docs/models/gpt-3-5-turbo,
the specific version is 0125.

2https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
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Figure 2: Framework for Evaluating LLMs’ Context Faithfulness. In Step 1, we calculate the memory strength of a
question using the consistency of answers to different paraphrases of the same question. In Step 2, we generate MA
(memory answer) under the closed-book setting and CMA (counter memory answer) by modifying answer entity in
MA while keeping the other information . In Step 3, we generate supporting evidence for the CMA in various styles.
In Step 4 (not shown), we test the LLM’s response by presenting the questions with the evidence. All experiments
are implemented under the zero-shot setting to avoid the bias introduced by demonstrations.

consistency. The clustering is done by checking an-259

swers incrementally. If an answer matches any an-260

swer within an existing cluster, this answer is added261

to this cluster; if not, a new cluster is created with262

this answer. We use an LLM2 to determine whether263

two answers are consistent. The prompt used for264

this answer inconsistency detection is shown in Ta-265

ble 9 (index 3). We denote the clusters for question266

Q as {c1, · · · , cm}Q.267

3.3.2 Calculating Memory Strength268

Once answer clusters {c1, · · · , cm}Q are identified,269

memory strength S(Q) can be obtained by calcu-270

lating the negative entropy of cluster distribution.271

The formula is272

S(Q) =
m∑
i=1

N(ci)

n
log

N(ci)

n
, (1)273

where N(ci) is the number of answers in the cluster274

ci, and n is the number of paraphrases for question275

Q. The memory strength score is a non-positive276

value. A larger score indicates a stronger mem-277

ory (0 is the maximum value of memory strength278

score). In the experiments, we set n = 7 for all the279

questions in the NQ and popQA datasets. Memory280

strength reflects how well the LLM remembers the281

required knowledge: the weaker the memory, the282

more random and inconsistent the answers are.283

3.4 MA, CMA, and Evidence Generation284

3.4.1 MA and CMA Generation285

For the popQA dataset, both MA and CMA are ob-286

tained following the method described in Xie et al.287

(2024). For the MA of the NQ dataset, we also use288

a closed-book approach, similar to Xie et al. (2024). 289

While, the process of generating CMA differs from 290

the process of generating CMA in Xie et al. (2024). 291

Unlike the popQA dataset, the NQ dataset does not 292

provide relation types for the questions or offer sets 293

of subject and object entities for substitution. To 294

address this issue, we propose an approach using an 295

LLM to substitute entities in MA to generate CMA. 296

First, we identify which “wh-” question type3 the 297

question belongs to using string matching. Then, 298

based on the question type, we determine the type 299

of entity to be replaced in the MA. Finally, we use 300

an LLM to make the substitution. For example, in 301

Figure 2, the question “how many episodes...” is of 302

the type “how_many”, so the entity to be replaced 303

in the MA “there are 23 episodes...” should be a 304

NUMBER. We let ChatGPT perform the substitu- 305

tion with an alternative entity. The prompt used is 306

shown in Table 9 (index 5). We have the detailed 307

description for generating CMA in Appendix A.1. 308

CMA filter. As noted in Section 3.3, LLMs can 309

produce multiple MAs for the same question. To 310

ensure the CMA conflicts with MAs, we require 311

that the CMA is different from any of the answers 312

{A1, · · · , An} generated in Section 3.3.1, so the 313

alternative entity should not appear in MAs. For 314

the popQA dataset, the alternative entity is known. 315

For the NQ dataset, we first identify the alternative 316

entity in the CMA by comparing the MA and CMA, 317

and then check if this entity appears in any of the 318

MAs {A1, · · · , An}. We filter out data samples 319

whose CMA does not conflict with MAs. 320

3which refers to what, when, where, who, whom, which,
whose, why, and how.

4



3.4.2 Evidence Generation321

In this section, we explain how to generate different322

styles of evidence. We classify evidence into two323

categories: direct evidence and indirect evidence.324

Direct evidence is a semantically equivalent325

statement of the CMA, providing the clearest sup-326

port for the claim made by the CMA. We generate327

the direct evidence by paraphrasing the CMA with328

ChatGPT, following the prompt shown in Table329

9 (index 6). For example, in Figure 2, the CMA330

“there are 15 episodes in Chicago Fire season 4” is331

paraphrased to “season 4 of Chicago Fire consists332

of a total of 15 episodes”. These two statements333

are semantically equivalent.334

To ensure the reliability of the evidence, the ev-335

idence must mutually entail with the CMA. This336

entailment is verified using an NLI model 4. Direct337

evidence is intuitive, simple, and coherent, making338

it the straightforward type of evidence for the LLM339

to process. If the LLM is receptive to external ev-340

idence, it should be able to adopt direct evidence341

easily.342

Indirect evidence differs from direct evidence343

by adding extra details that provide a more thor-344

ough description of the subject related to the CMA.345

This additional information makes the evidence346

more comprehensive and might be more persuasive.347

For example, in Figure 2, the indirect evidence in-348

cludes details not found in the counter answer, such349

as the title of the first episode and its release date,350

along with the fact that there are 15 episodes in351

total. The prompt to generate indirect evidence is352

shown in Table 9 (index 7).353

To ensure the reliability of indirect evidence, the354

indirect evidence should entail the CMA and the355

additional information introduced by the evidence356

should not entail the MA. Otherwise, the indirect357

evidence can support both the MA and CMA. The358

NLI model4 is used to verify that indirect evidence359

entailed with CMA and neutral or contradictory360

with MA.361

For both direct and indirect evidence, if the con-362

tent generated by the LLM does not meet the re-363

quired conditions, we prompt the LLM to regen-364

erate it up to five times. If it still fails after five365

attempts, we exclude that question from the dataset.366

4https://huggingface.co/microsoft/deberta-v2-xxlarge-
mnli

4 Experiments 367

In this study, we aim to investigate two key research 368

questions. 1) Does memory strength have an im- 369

pact on the context faithfulness of LLMs? 2) Does 370

the style of evidence affect the context faithfulness 371

of LLMs? These research questions are explored in 372

Section 4.2 and 4.3, respectively. We also provide 373

additional studies in Appendix B, which includes a 374

study about the impact of option order and a case 375

study. 376

4.1 Experiment Setup 377

LLM Models. Our experiments are conducted 378

using six well-known language models: Chat- 379

GPT (OpenAI, 2023a), GPT-4 (OpenAI, 2023b), 380

LLaMA2-7B, LLaMA2-70B (Touvron et al., 2023), 381

LLaMA3.2-3B (Meta, 2024), and Claude3.5 (An- 382

thropic, 2024). These models represent a diverse 383

range of architectures and capabilities. ChatGPT, 384

GPT-4, and Claude3.5 are cutting-edge models de- 385

veloped by OpenAI and Anthropic. LLaMA2, with 386

its 7 billion and 70 billion parameter variants, is 387

a strong open-source alternative that has demon- 388

strated competitive performance across a wide va- 389

riety of tasks. LLaMA3.2-3B is the newest version 390

of LLaMA. The inclusion of models with varying 391

scales (from 3B to 70B) and training methodolo- 392

gies allows us to explore both closed-source sys- 393

tems (GPT-4, ChatGPT, and Claude3.5) and open- 394

source solutions (LLaMA2-7B, LLaMA-70B and 395

LLaMA3.2-3B). 396

Evaluation Metrics. Following previous work 397

(Longpre et al., 2021; Xie et al., 2024; Chen et al., 398

2022), we transform the short answer QA to a 399

multiple-choice QA format by providing a few op- 400

tions as possible answers5. This limits the answer 401

generation space and makes it easy to evaluate with- 402

out manual checking. Specifically, for each ques- 403

tion from both datasets, LLMs are instructed to 404

select one answer from the MA, CMA, and “Un- 405

certain” (UCT). We report the ratio of MA (Rm), 406

CMA (Rc), and UCT (Ru) as calculated below: 407

Rm =
fm

fm + fc + fu
408

Rc =
fc

fm + fc + fu
409

Ru =
fu

fm + fc + fu
, (2) 410

5Xie et al. (2024) shows that answer consistency between
short answer and multi-choice are 94%, 96% and 92% for
ChatGPT, GPT-4 and LLaMA2-7B, respectively.
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where fm, fc, and fu are the count of questions411

with MA, CMA, and UCT answers, respectively.412

4.2 Role of Memory Strength413

4.2.1 Correlation between Context414

Faithfulness and Memory Strength415

To demonstrate the relationship between context416

faithfulness and memory strength, we categorize417

the questions in each dataset into four groups ac-418

cording to the memory strength of each LLM. The419

four groups are low, mid-low, mid-high, and high,420

corresponding to the memory strength intervals [-2,421

-1], (-1, -0.5], (-0.5, -0.25] and [-0.25, 0], respec-422

tively. We use the direct evidence in this experi-423

ment. The results are shown in Figure 36. Figure424

3 (a)(b) shows the ratios of questions with MA,425

CMA, and UCT answers for the NQ and popQA426

datasets, respectively. Note that different LLMs427

may have different memory strengths to the same428

question. Therefore, both the specific questions429

and the count of questions in the same group can430

vary across different LLMs. To illustrate this, we431

present the count of questions in each group (low,432

mid-low, mid-high, and high) in Figure 3 (c)(d)433

for popQA and NQ datasets, respectively. We can434

draw the following conclusions.435

There is a clear positive correlation between436

memory strength and MA ratio for individual437

LLMs. From Figure 3 (a)(b), it is obvious that for438

all tested LLMs, the ratio of MA (red) increases439

when memory strength increases, while the ratio of440

CMA (blue) decreases. This trend is also consistent441

across both datasets. It is more obvious for GPT442

models. Among the tested LLMs, Claude3.5 tends443

to choose UCT options more often, especially on444

questions with high memory strength.445

Memory Strength Increases with Model Scale.446

We can observe from Figure 3 (c)(d) that larger447

LLMs, such as GPT-4, have more data samples in448

the high memory strength group (hi), while smaller449

LLMs, such as LLaMA3.2-3B, have more sam-450

ples in the low memory strength group (lo). This451

aligns with the common intuition that larger LLMs,452

with more parameters, have more knowledge than453

smaller LLMs. Further evidence and discussion454

can be found in the Appendix B.1.455

4.2.2 LLMs Performance Analysis456

In the aforementioned conclusion, different LLMs457

have different knowledge. Thus, testing LLMs’458

6We put results for other evidence styles in Appendix,
Figures 8, 9, and 10. The conclusion is consistent.

context faithfulness on the same dataset may be 459

unfair. To illustrate this, we compute the aver- 460

age memory strength of LLMs on PopQA and NQ 461

datasets, respectively, along with their MA and 462

UCT ratios. The results are presented in Figure 4. 463

We can draw the following conclusions. 464

First, for different LLMs, a lower average mem- 465

ory strength does not necessarily imply better con- 466

text faithfulness. For example, Claude 3.5 has 467

a high average memory strength, implying that 468

Claude 3.5 is a knowledgeable LLM, but it has 469

a low MA ratio (Rm) and a high UCT ratio (Ru). 470

This indicates that Claude 3.5 tends to refuse to 471

answer when facing knowledge conflicts. In con- 472

trast, LLaMA3.2-3B, despite having much less 473

knowledge (low average memory strength), has 474

the second-highest MA ratio (Rm). This means 475

that LLaMA3.2-3B relies heavily on limited inter- 476

nal knowledge when facing knowledge conflicts, 477

implying that it is not context-faithful. 478

Second, newer versions of GPT and LLaMA 479

models appear to overlook context faithfulness 480

issues during the training process. GPT-4, with 481

slightly more knowledge than Chatgpt, shows a sig- 482

nificantly higher MA ratio (Rm), and LLaMA3.2- 483

3B, with the least knowledge, shows a higher MA 484

ratio (Rm) than the two LLaMA2 models. 485

Finally, a new context faithfulness evaluation 486

metric is needed. This metric should consider both 487

the different answers’ ratios and memory strength 488

when LLMs encounter knowledge conflicts. Sim- 489

ply using the MA ratio (which is used widely to 490

measure context faithfulness currently) to evaluate 491

context faithfulness across different LLMs may not 492

be fair and sufficient. 493

4.3 Role of Evidence Style 494

Evidence Styles. We formulate four types of evi- 495

dence styles: 1) Direct Evidence. This is the most 496

straightforward form of evidence and serves as our 497

baseline. To assess the impact of evidence length, 498

we also create versions where the direct evidence 499

is repeated twice and three times for comparison. 500

2) Direct Evidence Combined with Paraphrases of 501

CMA. To examine the effect of evidence phrasing 502

and expression, we combine the direct evidence 503

with one paraphrase of the CMA to form a two- 504

sentence evidence and with two paraphrases to 505

form a three-sentence evidence. 3) Indirect Evi- 506

dence. We generate indirect evidence consisting of 507
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Figure 3: Relationship between Memory Strength and Different Answers’ Ratios across popQA and NQ Datasets
(with Direct Evidence). The figure presents the ratio and count of MA, CMA, and UCT across four memory strength
groups: low(lo), mid-low(ml), mid-high(mh), and high(hi). The results show a clear positive correlation between
memory strength and MA ratio(Rm).

Figure 4: MA Ratio (Rm) and UCT Ratio (Ru) VS Memory Strength across PopQA and NQ Datasets. The figure
presents the relationship between average memory strength and the MA ratio as well as the UCT ratio for all six
LLMs. It shows that lower average memory strength does not always mean better context faithfulness for different
LLMs and newer versions of GPT and LLaMA models seem to ignore context faithfulness issues.

two sentences and three sentences, respectively7. 4)508

Direct Evidence Combined with Indirect Evidence.509

We combine the direct evidence with the first sen-510

tence of the two-sentence indirect evidence to form511

a two-sentence evidence and with both sentences512

to form a three-sentence evidence.513

Table 1 presents the final number of instances514

used for evaluation. We observe a slight difference515

in the quantities of questions with direct and indi-516

rect evidence since it is easier for ChatGPT to gen-517

erate direct evidence that meets our requirements.518

The specific number of instances at each step in519

evidence generation is detailed in Table 7 in the520

Appendix. Due to the quantity difference between521

direct evidence and indirect evidence, we divide522

the styles of evidence into two groups: Group 1523

includes Direct Evidence and Direct + Paraphrase524

evidence. Group 2 includes Indirect Evidence and525

Direct + Indirect evidence. Each group has differ-526

7We regulate the length of the generated evidence to con-
trol the influence of evidence length. The prompts used are
detailed in Table 9 (index 7) in Appendix.

ent Direct Evidence results serving as baselines. 527

Table 2 shows the results of different evidence 528

styles. We can make the following observations 529

and conclusions. 530

In Group 2, the MA Ratio (Rm) of direct ev- 531

idence is slightly lower than that in Group 1. 532

During the evidence generation, there are some 533

questions for which ChatGPT can provide direct 534

evidence but cannot produce indirect evidence. Re- 535

moving these questions leads to a decrease in Rm 536

of direct evidence with one sentence, which im- 537

plies that LLMs have a relatively high Rm for the 538

removed questions. But in general, the Rm of di- 539

rect evidence with one sentence in Group 1 is close 540

to that in Group 2, so the results of Group 1 and 541

Group 2 are still comparable. 542

Simple repetition of direct evidence is not al- 543

ways effective. Comparing direct evidence with 544

one to three sentences, we observe similar Rm and 545

Rc for LLaMA2-7B, LLaMA2-70B, and ChatGPT. 546

For LLaMA3.2-3B, GPT-4, and Claude3.5, Rm 547

of direct evidence with two and three sentences 548
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popQA NQ
LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5 LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5

# of Q (Initial) 1000 1000 1000 1000 1000 1000 1667 1667 1667 1667 1667 1667
# of Q with direct evidence 918 922 938 933 933 931 1042 1009 1002 1079 1171 1173
# of Q with indirect evidence 901 895 917 911 918 913 976 972 941 1025 1108 1059

Table 1: Number of final examples for each LLM. The difference between LLMs is due to their different outputs
going through the framework.

Dataset Evidence Style S #
LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5

Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru

Group 1: Q with direct evidence

popQA

Direct Evidence
1 0.44 99.56 0.0 1.08 98.7 0.22 7.69 85.15 7.16 3.32 94.75 1.93 13.29 84.57 2.14 0.65 83.31 16.04
2 0.44 99.56 0.0 0.98 98.81 0.22 2.67 95.83 1.5 2.79 96.03 1.18 4.39 93.46 2.14 0.32 94.08 5.6
3 0.65 99.35 0.0 1.08 98.7 0.22 2.56 94.98 2.46 3.0 95.5 1.5 2.57 95.28 2.14 0.21 94.73 5.06

Direct+Paraphrase
2 0.22 99.78 0.0 1.19 98.7 0.11 3.1 95.62 1.28 2.36 97.0 0.64 3.0 95.71 1.29 0.21 95.69 4.09
3 0.11 99.89 0.0 0.43 99.35 0.22 1.07 97.86 1.07 1.39 98.28 0.32 1.29 98.5 0.21 0.11 98.06 1.83

Group 2: Q with indirect evidence
Direct Evidence 1 0.44 99.56 0.0 0.45 99.33 0.22 7.31 85.61 7.09 3.07 95.28 1.65 12.53 85.29 2.18 0.66 83.9 15.44

Indirect Evidence
2 0.0 100.0 0.0 0.11 99.89 0.0 4.36 89.64 6.0 3.18 96.38 0.44 13.51 85.73 0.76 0.88 82.37 16.76
3 0.0 100.0 0.0 0.0 100.0 0.0 3.27 92.58 4.14 1.76 97.91 0.33 9.26 90.2 0.55 0.88 87.95 11.17

Direct+Indirect
2 0.22 99.78 0.0 0.11 99.78 0.11 3.71 93.24 3.05 1.87 97.26 0.88 7.95 91.18 0.87 0.88 93.43 5.7
3 0.11 99.89 0.0 0.11 99.78 0.11 1.42 98.15 0.44 1.43 98.13 0.44 5.12 94.77 0.11 0.88 96.28 2.85

Group 1: Q with direct evidence

NQ

Direct Evidence
1 7.2 92.8 0.0 3.07 96.93 0.0 26.41 59.88 13.71 19.46 75.16 5.38 50.04 47.99 1.96 1.96 56.4 41.64
2 5.47 94.53 0.0 3.07 96.93 0.0 16.93 75.2 7.86 19.09 76.83 4.08 20.24 77.54 2.22 0.77 83.7 15.53
3 6.81 93.19 0.0 2.68 97.22 0.1 11.79 76.11 12.1 22.06 72.75 5.19 17.34 80.87 1.79 0.26 88.22 11.52

Direct+Paraphrase
2 4.13 95.87 0.0 1.49 98.41 0.1 13.21 79.33 7.46 15.29 81.28 3.43 18.96 79.67 1.37 0.34 88.65 11.01
3 3.26 96.74 0.0 1.19 98.61 0.2 9.38 83.27 7.36 9.55 86.75 3.71 11.27 87.28 1.45 0.26 93.09 6.65

Group 2: Q with indirect evidence
Direct Evidence 1 5.53 94.47 0.0 2.67 97.32 0.0 23.19 63.73 13.08 18.73 75.71 5.56 48.83 49.19 1.99 1.77 59.44 38.79

Indirect Evidence
2 3.28 95.29 1.43 1.65 98.25 0.1 13.32 77.77 8.92 13.66 84.1 2.24 44.59 53.7 1.71 1.98 67.88 30.14
3 4.82 94.06 1.13 1.85 97.84 0.31 11.53 80.86 7.61 13.27 84.19 2.54 39.89 58.57 1.53 3.65 71.32 25.03

Direct+Indirect
2 5.33 94.67 0.0 1.34 98.25 0.41 9.75 82.28 7.97 12.68 84.78 2.54 32.4 66.06 1.53 1.36 80.92 17.73
3 4.41 95.59 0.0 1.44 98.56 0.0 8.32 85.49 6.18 9.46 88.1 2.44 28.7 69.67 1.62 1.77 83.94 14.29

Table 2: Results of LLM Receptiveness to Different Evidence Styles Across NQ and popQA Datasets. The table
presents the MA ratio (Rm), CMA ratio (Rc), and uncertain answer ratio (Ru) for various evidence styles across six
models. All the ratios are in %. The best results are highlighted in bold, and the second-best results are underlined.

decreases significantly. The results imply that the549

newer LLMs are receptive to evidence repeated550

multiple times.551

Paraphrasing direct evidence is highly effec-552

tive across all models and datasets. Comparing553

Direct Evidence with two and three sentences and554

Direct + Paraphrase with two and three sentences,555

respectively, we observe Rm of the latter signif-556

icantly decreases. For example, Rm is reduced557

by more than half, comparing Direct + Paraphrase558

with three sentences with Direct Evidence with559

three sentences on the popQA dataset for all tested560

LLMs. The result implies that paraphrasing is an561

effective method to enhance the receptiveness of562

LLMs to external evidence.563

Indirect Evidence improves LLMs’ receptive-564

ness to CMAs, but less effectively than para-565

phrasing. Comparing Indirect Evidence with two566

and three sentences with Direct Evidence with one567

sentence, Rm decreases for almost all LLMs, but568

the reduction is not significant compared to the569

Direct + Paraphrase evidence with two or three sen-570

tences. It implies that adding detailed information571

is less effective than paraphrasing direct evidence.572

Combining Direct evidence with Indirect evi-573

dence generally enhances persuasiveness. Com-574

paring Direct + Indirect evidence with Indirect Evi- 575

dence, Rm decreases except for LLaMA2-7B. For 576

example, comparing Direct + Indirect with three 577

sentences and Indirect Evidence with three sen- 578

tences, Rm has an obvious decrease. The result 579

implies that adding direct evidence to indirect ev- 580

idence is effective in improving LLMs’ receptive- 581

ness to CMAs. 582

5 Conclusion 583

We investigate how context-faithful LLMs are to 584

external evidence across two datasets, PopQA and 585

NQ datasets, using LLaMA2-7B, LLaMA2-70B, 586

ChatGPT, GPT-4, LLaMA3.2-3B and Claude3.5. 587

Our findings highlight the critical role of memory 588

strength in shaping LLM behavior. There is a clear 589

positive correlation between memory strength and 590

memory answer ratio. Furthermore, we demon- 591

strate that paraphrasing significantly enhances the 592

context faithfulness of LLMs across various models 593

and datasets. These findings offer valuable insights 594

for advancing research in retrieval-augmented gen- 595

eration and context-based LLM applications. 596
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Limitations597

Our framework does not process all types of ques-598

tions in the NQ dataset. Although it effectively han-599

dles the majority of NQ questions, it currently lacks600

the capability to address "what," "how," and "why"601

question types. The omission of these questions602

may introduce some bias into our results. Simi-603

lar to previous studies, our study also focuses on604

knowledge conflict for extractive QA tasks, where605

the answer must appear in the evidence. Our con-606

clusion may not be extendable to other types of QA607

tasks, such as abstractive QA and generative QA.608

We employed a Natural Language Inference609

(NLI) model to detect and filter the generated data.610

Although the NLI model demonstrates high accu-611

racy and the quality of generated data is high, it still612

cannot guarantee complete correctness. Further,613

since the NLI model is also trained using language614

models, which may be biased with parametric mem-615

ory, it may introduce biases facing knowledge con-616

flicts.617
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Appendix853

Within this supplementary material, we elaborate854

on the following aspects:855

• A Methodology Details856

• B Additional Studies857

• C Prompts858

A Methodology and Experiment Details859

A.1 CMA Generation for NQ dataset860

We generate CMA from MA with three steps:861

1)identity question type, 2) determine entity type in862

MA to change, and 3) generate CMA with LLMs.863

Identity Question Type: We first build a typ-864

ing tree using rules to categorize questions. Figure865

5 illustrates the typing tree, which consists of a866

two-layer structure. In the typing process, we first867

determine if a question begins with one of the fol-868

lowing words: “what”, “when”, “where”, “which”,869

“who”, “why”, or “how”. However, this approach870

can still group different types of questions together.871

To address this, we use a second layer to refine872

the typing by analyzing two specific words in the873

question. For example, the question shown in Fig-874

ure 2 falls into the “how_many” category. Table875

3 shows the statistics of question types of the NQ876

dataset. Note that, we find 127 samples that are not877

questions in the process, so we list them as “other”.878

Determine Entity Type in MA to Change: Af-879

ter categorizing the questions, we determine the880

entity type in MA needs to be replaced. To achieve881

this, we give each type of question an entity type,882

and many questions can share the same entity type.883

For example, both “when” and “what year” ask for884

a time. So a time entity in MA should be substi-885

tuted. The final set of entity types is summarized886

in Table 4. We do not process questions starting887

with “what”, “which” or “how” due to the lack of888

a unified entity type for these questions. Table 5889

shows the statistics of the unprocessed questions.890

Generate CMA with LLMs: Instead of manu-891

ally editing the MA, we leverage the LLMs’ ability892

to generate CMA by providing it with a carefully893

designed prompt, which is shown in Table 9 (index894

5). This prompt instructs the LLM to replace the895

entity with a certain type in the MA (from Step 2)896

with an alternative, ensuring the generated CMA897

differs from the MA.898

The generated CMA must meet two key criteria:899

1) The CMA must directly contradict the MA. To900

Figure 5: Two-layer Question Typing Tree

Question Type Count
how_many 97
how_much 1
how_long 3
how_old 3
how 2
who_sings 100
who_plays 179
who_writes 65
who_wins 55
who 479
where 138
when 276
what_year 7
what_name 4
what 98
which_country 6
which_city 2
which_state 2
which_year 1
which 22
why 0
other 127
total 1667

Table 3: Distribution of Question Types and their Counts

ensure this, we employ a Natural Language Infer- 901

ence (NLI) model8 to verify the contradiction be- 902

tween the two answers. 2) The alternative entity in 903

CMA must not appear in the question. We achieve 904

this check by string matching. If the CMA fails to 905

meet either of these criteria, we prompt the LLM 906

to regenerate the CMA up to 5 times. If no proper 907

CMA is generated, we filter out this question. 908

A.2 Dataset Details 909

For the popQA dataset, we use the dataset from Xie 910

et al. (2024) by randomly selecting 1,000 questions 911

from the data intersection of the conflicts generated 912

by LLaMA2-7B, LLaMA2-70B, LLaMA3.2-3B, 913

ChatGPT, GPT-4 and Claude3.5. We use the MA 914

8https://huggingface.co/microsoft/deberta-v2-xxlarge-
mnli
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Question Type Key Term
when, what_year, which_year, how_long time
where, which_city, which_state, which_country location
who, what_name name of person
how_many, how_much number
who_sings singer’s name
who_plays player’s name
who_writes writer’s name
who_wins winner’s name
how_far distance
how_old age

Table 4: Question Types and Their Corresponding Key
Terms

Type Count Question Examples
how 2 how are leaders of the two parties in congress chosen
what 98 what is the setting of the story sorry wrong number
which 22 which domain of life are humans members of
why 0 -
other 127 latest season on keeping up with the kardashians
total 1667 -

Table 5: Summary of Excluded Question Types in Mem-
ory Answer and Counter Answer Generation. The table
lists question types that were excluded from process-
ing due to either the difficulty in identifying a unified
entity type (“how”, “what”, “which”) or not question
(“other”).

and CMA from Xie et al. (2024) and only generate915

direct evidence and indirect evidence using our916

framework. For the NQ dataset, we use the test set917

from Longpre et al. (2021), which consists of 1,667918

unique questions. The MA, CMA, and evidence919

are all generated with our framework. The dataset920

scale at each step is presented in Table 7.921

A.3 Human Evaluation for Model Reliability922

To ensure the reliability of the NLI model, Xie et al.923

(2024) randomly sample 200 generated examples924

and manually annotate whether the generated con-925

tent entails the corresponding claim. The labels926

are supportive (entailment in the NLI task) or not927

supportive (either neutral or contradiction in the928

NLI task). The accuracy is 99%.929

Following this process, we evaluate how reliable930

the generated CMA is. We randomly sample 200931

generated examples in the NQ dataset and manually932

annotate whether the correct entity in MA is found933

and replaced with a same type alternative. The934

accuracy is 98%, which means the generated CMA935

is reliable.936

B Additional Studies 937

B.1 Memory Strength on Different Datasets 938

We illustrate the distributions of memory strength 939

on the popQA and NQ datasets for LLaMA2-7B, 940

LLaMA2-70B, LLaMA3.2-3B, ChatGPT, GPT- 941

4 and Claude3.5, respectively (shown in Figure 942

6). The results show that LLMs demonstrate 943

stronger memory for the NQ dataset than the 944

popQA dataset. For the NQ dataset, most ques- 945

tions fall within the bin of (0.25, 0]. Only a 946

few questions fall within bins of weaker mem- 947

ory strength. In contrast, the popQA dataset has a 948

greater number of questions in bins with weaker 949

memory strength. This phenomenon is consistent 950

across all six evaluated LLMs, indicating that the 951

LLMs have more knowledge of the NQ dataset 952

compared to the PopQA dataset. A possible ex- 953

planation is that the NQ dataset covers more com- 954

monly discussed subjects than those in the PopQA 955

dataset. These subjects may have been encountered 956

more frequently during the training of the LLMs, 957

making it easier for the models to recall the infor- 958

mation and resulting in stronger memory strength. 959

B.2 Order of Options 960

To test the effect of the order of options on Rm, 961

we conduct an experiment with one sentence direct 962

evidence by changing the order of options (MA 963

option and CMA option). We define the scenario 964

where the CMA option is presented first in the 965

prompt as “CMA first”, and the scenario where the 966

MA option is presented first as “MA first”9. Figure 967

7 shows the results. 968

Across all six models (LLaMA2-7B, LLaMA2- 969

70B, LLaMA3.2-3B, ChatGPT, GPT-4 and 970

Claude3.5), we observe a consistent trend: MA 971

ratio (Rm) under “CMA first” is significantly 972

higher than that under “MA first”. Evaluations 973

under “CMA first” demonstrate that LLMs are less 974

context-faithful. 975

To further demonstrate the effect of the order 976

of options on Rm, we compare the performance 977

of experiments with “CMA first” and “MA first” 978

under two evidence styles: Direct Evidence with 979

one sentence and Direct + Paraphrase with three 980

sentences. The results are presented in Table 8. 981

The results show that, for different evidence styles, 982

Rm is higher in the “CMA first” compared to the 983

“MA first”. Comparing the results under the “CMA 984

9All previous evaluations are under “MA first” conditions.
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Origin Question Paraphrased Questions Answers with LLaMA2-7B
Who sings the
Christmas song
“Mary Did You
Know”?

Can you tell me the artist who performs the Christmas
song “Mary Did You Know”?

Of course! The artist who performs the Christmas
song “Mary Did You Know” is Mark Lowry .

Who is the singer behind the Christmas song “Mary
Did You Know”?

The singer behind the Christmas song “Mary Did
You Know” is Mark Lowry .

Which musician sings the Christmas tune “Mary Did
You Know”?

Brandy Clark

Who is the vocalist that sings “Mary Did You Know”
during the holiday season?

The vocalist who sings “Mary Did You Know” during
the holiday season is Mark Lowry .

Table 6: Origin Question, Paraphrased Questions, and Corresponding Answers

popQA NQ
LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5 LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5

Initial (# of Q) 1000 1000 1000 1000 1000 1000 1667 1667 1667 1667 1667 1667
Generate MA 1000 1000 1000 1000 1000 1000 1435 1392 1352 1532 1539 1482
Generate CMA 1000 1000 1000 1000 1000 1000 1152 1101 1140 1189 1252 1232
CMA filter 922 932 942 944 946 934 1060 1027 1123 1110 1188 1228
Direct Evidence 918 922 938 933 933 931 1042 1009 1002 1079 1171 1173
2 sentence indirect evidence 903 910 922 921 923 914 990 985 965 1038 1129 1116
3 sentence indirect evidence 907 897 925 918 924 920 991 982 980 1041 1125 1122
intersection of 2&3 sentence evidence 901 895 917 911 918 913 976 972 941 1025 1108 1059

Table 7: The dataset scale at each step across popQA and NQ dataset. “intersection of 2&3 sentence evidence” is
the count for indirect evidence.

first”, the Rm of Direct + Paraphrase with three985

sentences is significantly lower than that of Direct986

Evidence with one sentence. This demonstrates987

that paraphrasing direct evidence is an effective988

method for decreasing Rm. Our conclusion re-989

mains unchanged.990

B.3 Case Study991

Poor reasoning ability may be one of the reasons992

that LLMs provide MA. In our case study, we993

prompt LLMs to provide a rationale alongside the994

answer. We discover that some LLMs seem to ex-995

hibit reasoning errors. Below is an example that996

shows this phenomenon.997

Information: Michigan State University998
holds the record for the highest number999
of Big Ten football championships, with1000
a total of 36 titles.1001
Question: who has the most big ten1002
championships in football1003
Options:1004
A: Ohio State University has the most1005
Big Ten championships in football with1006
36 titles.1007
B: Michigan State University has the1008
most Big Ten championships in football1009
with 36 titles.1010
C: Uncertain.1011

Answer:1012
A: Ohio State University has the most1013
Big Ten championships in football with1014
36 titles.1015
According to the information provided,1016
Michigan State University holds the1017
record for the highest number of Big Ten1018
football championships, with a total of1019
36 titles. Therefore, option A is the1020
correct answer.1021

In this case, option A represents MA, and option 1022

B represents CMA. While the model select MA as 1023

the final answer, its rationale indicates that it suc- 1024

cessfully received and processed the information 1025

from CMA. However, for some unknown reason, 1026

it still provides the MA as the final answer. This 1027

reasoning process is highly confusing. We suspect 1028

that the cause of MA can be attributed to LLMs’ 1029

weakness in reasoning ability. This finding raises 1030

an interesting question about the relationship be- 1031

tween reasoning ability and memory strength of 1032

LLMs. We leave this for future work. 1033

B.4 Impact of Memory Strength with 1034

Different Evidence Styles 1035

To demonstrate the relationship between context- 1036

faithfulness and memory strength with other evi- 1037

dence styles, we categorize the questions in each 1038

dataset into four groups according to the memory 1039

strength intervals [-2, -1], (-1, -0.5], (-0.5, -0.25] 1040

and [-0.25, 0], The evidence styles are direct + para- 1041

phrase evidence with two sentences and indirect 1042

evidence with two sentences. Figures 8,9 show the 1043

result. The figures show that there is a clear posi- 1044

tive correlation between memory strength and MA 1045

ratio for both evidence styles, which implies that 1046

this positive correlation between memory strength 1047

and MA ratio is general. 1048

To demonstrate the relationship between context- 1049

faithfulness and memory strength with “CMA first” 1050

scenario, we show MA, CMA, and UCT ratios with 1051

direct evidence with one sentence under “CMA 1052

first” scenario in Figure 10. The positive correla- 1053
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Figure 6: Memory Strength Distribution Across popQA and NQ Datasets. Each dataset is classified into 8 bins. The
x-axis shows the range of memory strength for each bin. The y-axis shows the question count in each bin. The NQ
dataset exhibits higher overall memory strength. Additionally, larger models (e.g., GPT-4) show stronger memory
strength compared to smaller models.

Dataset Evidence Style S #
LLaMA2-7B LLaMA2-70B LLaMA3.2-3B ChatGPT GPT-4 Claude3.5

Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru Rm ↓ Rc ↑ Ru

MA first

popQA

Direct 1 0.44 99.56 0.0 1.08 98.7 0.22 7.69 85.15 7.16 3.32 94.75 1.93 13.29 84.57 2.14 0.65 83.31 16.04
Direct + Paraphrase 3 0.11 99.89 0.0 0.43 99.35 0.22 1.07 97.86 1.07 1.39 98.28 0.32 1.29 98.5 0.21 0.11 98.06 1.83

CMA first
Direct 1 59.37 40.41 0.22 5.75 93.27 0.98 18.8 69.12 12.07 6.22 91.96 1.82 21.44 75.24 3.32 0.43 76.96 22.61
Direct + Paraphrase 3 17.49 82.51 0.0 1.74 98.05 0.22 14.64 79.92 5.45 1.82 97.75 0.43 2.79 96.78 0.43 0.21 96.88 2.91

MA first

NQ

Direct 1 7.2 92.8 0.0 3.07 96.93 0.0 26.41 59.88 13.71 19.46 75.16 5.38 50.04 47.99 1.96 1.96 56.4 41.64
Direct + Paraphrase 3 3.26 96.74 0.0 1.19 98.61 0.2 9.38 83.27 7.36 9.55 86.75 3.71 11.27 87.28 1.45 0.26 93.09 6.65

CMA first
Direct 1 22.26 77.73 0.0 19.13 80.38 0.5 41.33 42.44 16.23 34.48 61.82 3.71 49.19 47.99 2.82 4.78 39.85 55.38
Direct + Parapharse 3 4.8 95.11 0.1 8.72 90.39 0.89 24.19 65.62 10.18 18.63 78.96 2.41 17.76 80.02 2.22 1.28 78.84 19.88

Table 8: Results of LLM Receptiveness to Different Evidence Styles Across popQA and NQ Datasets. The table
presents the MA ratio (Rm), CMA ratio (Rc), and UCT ratio (Ru) for Direct Evidence and Direct + Paraphrase
Evidence with CMA first and MA first scenarios. All the ratios are in %.

tion between memory strength and MA ratio stays1054

unchanged.1055

C Prompts1056

In Table 9, we present a detailed list of all the1057

prompts used throughout this study.1058
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Step index Prompt Name Prompts

Step 1:
Memory
Strength

1
Question
paraphrase
prompt

Generate 7 meaningful paraphrases for the following question: [Question].
Read the question carefully.
Paraphrases:

2
Question
equivalent
check prompt

Determine whether the paraphrased question describes the same thing as the
original question, and give "Contradicted" if they are not the same, otherwise
give "Same" as the result.
Q1: [Paraphrased Q1]
Q2: [Paraphrased Q2]
Keep the answer short and concise.

3
Answer
consistency
check prompt

Determine whether the answer ‘A1’ is ‘Contradicted’ or ‘Same’ with the answer
‘A2’ for the question ‘Q’. You need to check whether the two answers exactly
have the same answer to the question. The answer could be person, name, place,
time, number, genre, occupation, sport, entity, digit, or arithmetical results. If
the two answers are the same, give “Same”, otherwise give “Contradicted” as
the result.
Q: [question]
A1: [LLM answer 1]
A2: [LLM answer 2]
Keep the answer short and concise.

Step 2:
MA and
CMA

4
Close book QA
prompt

Answer the question with one sentence with object and subject only. Give a
statement that is most likely to be true directly.

Question:
[Question]
Answer:

5
Change MA to
CMA prompt

Context:
[CMA]
Change the [entity type] part of the context. When multiple parts need to be
changed, only choose one part to change.
Answer:

Step 3:
Evidence

6
Direct evidence
prompt

Please paraphrase the following sentence by changing the terms, order, and
phrases, but keep the meaning the same.

Sentence: [CMA]

7
Indirect
evidence
prompt

Given a claim, please write a short piece of detailed evidence to support it.
Please ignore the correctness of the claim. You can make up fake content and
supporting evidence but it should be as realistic as possible.
Claim:
[counter memory answer]
Evidence:
Give the answer in [2 or 3] sentences directly.

Step 4:
Evaluation

8
Evaluate with
evidence
prompt

According to the given information, choose the best choice from the following
options.
Information: [evidence]
Question: [question]
Option:
A: [option 1]
B: [option 2]
...
Answer:

Table 9: Prompts for LLMs in this paper. “[PLACEHOLDER]” is the corresponding input.
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Figure 7: Impact of Option orders on Memory and Counter Ratios Across NQ and popQA Datasets. Either the
memory answer ("mem first") or the counter answer ("ctr first") is introduced first to six models.

Figure 8: Relationship between Memory Strength and Different Answers’ Ratios with Direct + Paraphrase Evidence
with Two Sentences.

Figure 9: Relationship between Memory Strength and Different Answers’ Ratios with Indirect Evidence with Two
Sentences.

Figure 10: Relationship between Memory Strength and Different Answers’ Ratios with Direct Evidence. The option
order is Counter First.
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