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ABSTRACT

Planning-based reinforcement learning in real-world control faces two coupled ob-
stacles: planning at primitive time scales explodes both context length and branch-
ing factor, and the underlying dynamics are often only partially observable. We in-
troduce the In-Context Latent Temporal Abstraction Planner (I-TAP), which unifies
in-context adaptation and online planning in a learned latent temporal-abstraction
space. From offline trajectories, I-TAP learns an observation-conditioned residual-
quantization VAE (RQ-VAE) that discretizes observation–macro-action sequences
into a coarse-to-fine stack of residual tokens, together with a residual-quantized
temporal Transformer that autoregressively predicts these tokens from recent ob-
servation and macro-action histories. This sequence model serves jointly as a
context-conditioned prior over abstract actions and a latent-space dynamics model.
At inference, I-TAP plans with Monte Carlo Tree Search directly in token space,
leveraging short histories to implicitly infer latent factors without any test time
fine-tuning. Across deterministic and stochastic MuJoCo locomotion and high-
dimensional Adroit manipulation, including partially observable variants, I-TAP
consistently matches or outperforms strong model-free and model-based baselines,
demonstrating effective in-context planning under stochastic dynamics and partial
observability.

1 INTRODUCTION

Since the introduction of Transformers (Vaswani et al., 2017), their versatility in handling diverse
tasks has been widely recognized across domains (Brown et al., 2020; Bubeck et al., 2023). Recently,
their sequence generation capability has been leveraged in planning-based reinforcement learning
(RL), and subsequent work extends it to high-dimensional continuous control by learning temporal
abstractions (e.g., options (Sutton et al., 1999), macro-actions (Mcgovern & Sutton, 1998)) and
planning over high-level decisions (Jiang et al., 2023; Luo et al., 2025). However, these approaches
often struggle when environments are partially observable and governed by latent, slowly varying
parameters (e.g., wind disturbances for unmanned aerial vehicles or payload shifts for manipulators)
that vary across scenarios.

In parallel, training Transformers on collected experience with sequence objectives (Chen et al., 2021)
has enabled in-context adaptation, allowing models to adapt or self-improve at inference time without
gradient updates (Brown et al., 2020; Furuta et al., 2022; Liu & Abbeel, 2023; Laskin et al., 2023;
Huang et al., 2024). Yet most in-context RL methods either (i) lack an integrated planner at inference,
thereby inheriting suboptimal behavior from the source algorithms they imitate (Son et al., 2025) and
failing to convert predictions into optimized decisions under uncertainty (Paster et al., 2022) or (ii)
operate at the primitive action level, which potentially scales poorly to high-dimensional continuous
action spaces.

Motivated by these challenges, we introduce an in-context planning framework in learned latent
temporal abstraction space. Our premise is that integrating temporal abstraction with in-context
adaptation for planning-based RL addresses these issues jointly, analogous to how humans leverage
high level concept to plan at multiple temporal scales. Adapting from recent histories and planning
conditioned on them in a latent temporal abstraction space allows an agent to: (i) decouple adaptation
and planning from the native temporal granularity of the Markov decision process (MDP), thereby
shortening required context, easing the learning of a strong sequence model prior, and reducing the
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Figure 1: Overview of I-TAP. Left: A residual-quantized VAE (RQ-VAE) discretizes continuous
state–macro-action trajectories into a coarse-to-fine token stack. Right: Normalized return and
per-decision latency as functions of planning horizon and context size on Stochastic MuJoCo,
highlighting the importance of a properly sized context window for effective in-context planning
under stochasticity and partial observability.

branching factor during planning; (ii) use context to infer global latent parameters that govern the
environment’s dynamics (e.g., unobserved perturbation forces), enabling effective adaptation and
forecasting across scenario shifts; and (iii) employ an online planner such as Monte Carlo Tree Search
(MCTS) for exploration and optimization, providing a mechanism to deviate from suboptimal source
policies and to handle uncertainty.

To this end, we propose In-Context Latent Temporal Abstraction Planner (I-TAP), which learns
an in-context temporal abstraction model from offline data and performs online planning with the
learned models to enable adaptive exploration and control. To extend the scalability and flexibility
of our framework to handle high-dimensional temporal abstraction spaces, as illustrated in Fig. 1,
we use an observation-conditioned residual quantized Variational AutoEncoder (RQ-VAE) (Lee
et al., 2022) and train a residual-quantized temporal transformer (RQ-TT) (Lee et al., 2022) that
autoregressively predicts a coarse-to-fine stack of residual tokens per time step. The RQ-TT thereby
functions both as an in-context action-selection prior and as a dynamics estimator. For planning
efficiency, inspired by Luo et al. (2025), I-TAP precomputes latent representations of plausible future
trajectories conditioned on recent history in the latent space; Monte Carlo Tree Search (MCTS) then
operates over these latent tokens using context-guided priors to balance exploration and exploitation
under uncertainty; finally, we decode the selected latent stack to a primitive action sequence and
execute the first action.

Our experiments reveal strong adaptability and performance of I-TAP. We train a single model on
datasets collected under behavior policies of varying quality and across multiple hidden-parameter
settings, and evaluate it in environments ranging from deterministic to highly stochastic. The same I-
TAP model either outperforms or matches existing offline RL methods (Kumar et al., 2020; Kostrikov
et al., 2022; Chen et al., 2021; Jiang et al., 2023; Rigter et al., 2023; Luo et al., 2025), demonstrating
in-context adaptation, robust handling of environmental uncertainty, and the ability to deviate from
suboptimal actions. We further show I-TAP’s scalability to high-dimensional continuous action
spaces in both fully and partially observed settings. Overall, across all tested conditions, I-TAP
consistently adapts under partial observability and changing dynamics, scales to high-dimensional
continuous control, and achieves planning efficiency through latent temporal abstraction.
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2 BACKGROUND

HiP-POMDP with Macro-Actions We consider the learning problem within the context of a
Hidden-Parameter Partially Observable Markov Decision Process (HiP-POMDP) (Shaj et al., 2022;
Doshi-Velez & Konidaris, 2016; Killian et al., 2017) represented by the tuple (S,O,A,W, P,R),
where S ⊆ Rn is the latent (unobserved) state space, O ⊆ Rd is the observation space, A ⊆ Rℓ

is the primitive-action space, and W is the space of hidden parameters. Each episode is associated
with a latent task parameter w ∈ W , which remains fixed throughout an episode but varies between
episodes, influencing the dynamics globally. Our setting is closely related to the canonical HiP-MDPs,
with the distinction that the state is partially observable to the agent.

The state transitions depend explicitly on the hidden parameter w as follows: st+1 ∼ P
(
st+1 |

st, at, w
)
, where st, st+1 ∈ S denote the latent state. At each step t the agent observes ot ∈ O,

chooses a primitive action at ∈ A, and receives a reward rt = R(st, at) together with the next
observation ot+1.

To manage complexity in continuous spaces and long-horizon planning, inspired by Luo et al. (2025),
we introduce a finite set of macro-actions M = {m = ⟨at, . . . , at+L−1⟩ | ai ∈ A} with fixed
duration L. Executing a macro-action m from latent state st, conditioned on hidden parameter w,
induces an L-step transition distribution P̃

(
st+L | st,m,w

)
= P

(
st+L | st, at, . . . , at+L−1, w

)
,

and an expected cumulative discounted reward r̃(st,m,w) = Est+1:t+L∼P

[∑L−1
i=0 γi R(st+i, at+i)

]
.

We define macro-policies as a mapping from the agent’s finite interaction history to the set of macro-
actions. Let G(L) ⊆ R denote the range of L-step discounted returns and define the augmented
observation space Ō := O × G(L). At macro boundaries tb = (b− 1)L+ 1, we form the augmented
observation ōtb :=

(
otb , G

(L)
tb−1

)
with the convention G

(L)
t0 = 0. Accordingly, we set H =

⋃
t≥0 (Ō×

A)t × Ō, and let ht ∈ H denote the history available at step t. The agent’s decision-making is
guided by a policy π : H → ∆(M). The objective is to find the optimal macro-policy π∗, such that
π∗ = argmaxπ Ew∼p(w), π

[∑∞
b=0 γ

bL r̃(sbL,mb, w)
]
.

Trajectory Representation Consider an episode with T = NL primitive steps, partitioned into N
macro-steps of fixed length L; let tb = (b−1)L+1 denote the start of macro-step b. The return-to-go
from time t is Gt =

∑T
i=t γ

i−tri, and the L-step discounted return is G(L)
t =

∑L−1
j=0 γ jrt+j . We

write the macro-level trajectory as τ = ((Gtb , G
(L)
tb

, otb , mtb))
N
b=1, where otb is the observation

at tb and mtb is the macro-action executed for L primitive steps. This representation preserves the
original dynamics while exposing temporally extended actions, forming the foundation for our offline
reinforcement learning approach.

3 METHOD

In this section, we provide an in-depth explanation of each component of I-TAP: the discretization of
state-macro-actions sequences, modeling the in-context prior and transition distribution over latent
codes, and the planning process with MCTS. In general, I-TAP is a generative model for trajectories
conditioned on both current observation and recent historical context, allowing for efficient in-context
planning and decision-making.

3.1 IN-CONTEXT RESIDUAL DISCRETIZATION OF STATE MACRO ACTION SEQUENCES

In-context RL approaches tend to replicate the suboptimal behaviors of the source algorithm (Son
et al., 2025), necessitating the integration of a planning mechanism to deviate from suboptimal
decisions. Meanwhile, a discrete action space simplifies the representation of action distributions
and facilitates the use of advanced planning algorithms (Silver et al., 2018). To leverage these
advantages, prior work has proposed state-conditioned Vector Quantized Variational Autoencoders
(VQ-VAE) (Jiang et al., 2023) to discretize the state-action spaces and make latent action space
compact. However, applying vector quantization directly to these feature vectors can lead to low
reconstruction accuracy if their dimensionality is very high (Jiang et al., 2024). Given these insights
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Figure 2: An overview of our RQ-VAE model that discretizes state-macro action sequences and
temporal prior for I-TAP

and challenges, we use an observation-conditioned RQ-VAE to learn a discrete observation-macro
action space to improve scalability.

Tokens and masking. At macro index b, a token is xtb =
(
Gtb , G

(L)
tb

, otb , mtb

)
. For a training

chunk (xtb−c
, . . . , xtb , xtb+1

) with context length c. Inspired by Luo et al. (2025), the encoder masks
the return-to-go Gt at every position and includes the L-step return G

(L)
t at all positions except the

last two tokens (xtb , xtb+1
), where the G(L) is masked. Such strategy provides a stable short-horizon

signal throughout history while preventing reliance on these explicit returns due to their susceptibility
to luck-induced variability in a stochastic environment (Paster et al., 2022).

Residual Quantized VAE A causal Transformer maps the chunk to per-token features Z =(
ztb−c

, . . . , ztb , ztb+1

)
. We use a single codebook E = {e1, . . . , eK} ⊂ Rd at all residual depths

d = 1, . . . , D as using a shared codebook across depths yields a coarse-to-fine approximation with
effective capacity up to KD without enlarging K (Lee et al., 2022). For each time t,

r
(0)
t := zt, kt,d = arg min

k∈[K]

∥∥r(d−1)
t − ek

∥∥2
2
, r

(d)
t = r

(d−1)
t − ekt,d

,

and we define the depth-d partial sum ẑ
(d)
t :=

∑d
j=1 ekt,j

. Assignments use a straight-through
estimator; the codebook is updated by exponential moving average. Motivated by evidence from
prior work (Jiang et al., 2023; Luo et al., 2023) that conditioning on state enables compact codebooks
without sacrificing granularity. For each token, our decoder conditions on otb and the quantized latent
ẑ
(D)
t via a linear adapter and causal attention, which reconstruct all features for every token in the

chunk leveraging its previous context: (Ĝtb−c
, Ĝ

(L)
tb−c

, ôtb−c
, m̂tb−c

, . . . , Ĝtb+1
, Ĝ

(L)
tb+1

, ôtb+1
, m̂tb+1

).
We optimize a reconstruction loss plus a residual partial-sum commitment:

L =
∑
τ

ατ

∥∥(x̂τ − xτ )
∥∥2
2
+

βps

D

D∑
d=1

∥∥Z − sg
[
Ẑ(d)

] ∥∥2
2
.

Here ατ = αtail for the last two tokens (xtb , xtb+1
) and αctx otherwise; Ẑ(d) is the depth-wise d

partial sum of residual code embeddings; and sg[·] denotes stop-gradient. The depth-wise partial-sum
term stabilizes residual quantization and prevents code hopping across depths, consistent with
residual-quantized VAE (Lee et al., 2022).

3.2 TEMPORAL PRIOR OVER RESIDUAL CODE STACKS

Let kt,1:D denote the depth-1:D codes at macro time t. We learn a depth-aware autoregressive prior
that factorizes across time and within-time depth:

pϕ
(
kt,1:D

∣∣ k<t,1:D, kt,<d, ot
)

=

D∏
d=1

pϕ
(
kt,d

∣∣ k<t,1:D, kt,<d, ot
)
.
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Figure 3: Macro-level MCTS overview. Each iteration uses P-UCT to select a macro-action, expands
several candidates and their predicted outcomes in parallel, then backs up the resulting Q-estimates
through the search tree to steer subsequent exploration.

A spatial trunk (causal over t) embeds each past position by the sum of its depth embeddings∑D
j=1 eku,j

, adds positional and observation embeddings, and produces a context ht. A lightweight
depth head then predicts kt,1, kt,2, . . . , kt,D by conditioning on ht, a depth embedding, and the
partial sum of shallower depths at time t. We then minimize the negative log-likelihood loss:

Lprior = E
[
−
∑
t

D∑
d=1

log pϕ
(
kt,d

∣∣ k<t,1:D, kt,<d, ot
)]
.

The time and depth factorization retains long temporal context while modeling within-position coarse
to fine refinement efficiently.

3.3 IN-CONTEXT PLANNING WITH MONTE CARLO TREE SEARCH

Prior work has leveraged MCTS to mitigate stochasticity arising from the environment in both
online (Antonoglou et al., 2022) and offline RL (Luo et al., 2025). Planning in the real world,
however, poses two additional challenges. First, partial observability induces apparent stochasticity
when the context cannot reliably disambiguate latent states. Second, one needs a mechanism to
balance the inherited bias and exploration at decision time when policies are distilled from suboptimal
behavior.

We therefore adopt MCTS as the online planner in our latent temporal-abstraction space (Fig. 3.3). By
taking expectations over futures under the learned latent dynamics, MCTS decouples action selection
from noisy return estimates, explicitly handles uncertainty induced by partial observability, and
provides a principled way to override suboptimal priors when predicted returns justify it. Furthermore,
our planner couples P-UCT (Silver et al., 2017) with a context-conditioned prior over latent tokens
and searches directly in the latent space, enabling targeted exploration while remaining in-distribution.

Latent Decision Graph. At time t, the agent observes ot and an interaction history in a sliding
window of length L×c. We encode this history into residual-quantized codes to obtain a context
window kt−1:t−c, 1:D. A decision node is s = (ot, kt−1:t−c,1:D), and an action edge a out of s
is a depth D code stack kt,1:D. Executing a produces a distribution over outcome codes kt+1,1:D

via our temporal prior pϕ(kt+1,1:D | kt,1:D, ot, kt−1:t−c,1:D), and each outcome is decoded to a
tail (Ĝt+L, Ĝ

(L)
t+L, ôt+L, m̂t+L), yielding the successor decision node st+L. To mitigate the cost of

iterative model calls with context (a bottleneck when parallelism is underused), motivated by Luo
et al. (2025), we also prebuild a context-conditioned search space of plausible future latent code
stacks, and run MCTS over this precomputed search space. The pseudocode of the process is shown
in the section A.1
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Policy-guided selection From node s, we restrict top-K action candidates to an action set A(s) and
use a behavior-like prior to prioritize searching in-distribution actions without sacrificing exploration.
Let the policy head produce probability logits la, we select a by the AlphaZero-style P-UCT score:

a = argmaxa

[
Q(s, a) +

(
c1 + log

N(s) + c2 + 1

c2

) √
N(s)

1 +N(s, a)︸ ︷︷ ︸
exploration term

(
πT (a | s) = ela/T∑

b∈A(s) e
lb/T

)
︸ ︷︷ ︸

temperature scaled prior

]
,

where N(s) and N(s, a) are visit counts and Q(s, a) is the action value; c1, c2 > 0 are P-UCT
exploration constants. This coupling of a learned prior with P-UCT emphasizes in-distribution
actions (large πT ) without sacrificing exploration via the exploration term, allowing the search to
deviate from the source policy when returns warrant it.

Parallel expansion and backpropagation. At each decision node st we expand the top-K candi-
dates in parallel, sample D outcome codes at the chance node, and decode them to obtain a successor
st+L=(ôt+L, k

′
t:t−c+1, 1:D) and its leaf value. We then back up Q(s, a) along the visited path using

incremental averages and update visit counts.

4 EXPERIMENTS

We evaluate I-TAP through comprehensive empirical studies using tasks from the D4RL bench-
mark (Fu et al., 2020), focusing on standard Gym locomotion tasks and complex high-dimensional
Adroit robotic manipulation. Our experiments assess both performance and adaptability of I-TAP
across varying degrees of environmental stochasticity and partial observability. We additionally
conduct ablation studies to examine how macro-action length, context length, planning horizon, and
residual depth affect performance. We further analyze the relationship between decision latency and
context length in Appendix A.2.

Baselines. We compare I-TAP to strong offline RL baselines: model-free actor–critic methods
Conservative Q-Learning (CQL; Kumar et al. (2020)) and Implicit Q-Learning (IQL; Kostrikov et al.
(2022)); context-conditioned policy methods such as Decision Transformer (DT; Chen et al. (2021));
and model-based planners that operate over learned temporal abstractions, including Trajectory
Autoencoding Planner (TAP; Jiang et al. (2023)), Latent Macro-Action Planner (L-MAP; Luo et al.
(2025)), where TAP is largely insensitive to raw action dimensionality and shows strong performance
on high-dimensional Adroit manipulation, and L-MAP likewise scales well to high-dimensional
control while remaining robust under stochastic dynamics. Finally, a risk-sensitive, model-based
specialist for stochastic domains (1R2R; Rigter et al. (2023)).

Experimental Setup. To assess I-TAP’s adaptation capabilities across varying latent task parameters
and associated dynamics, we conduct comprehensive experiments using the Stochastic MuJoCo
tasks introduced by Rigter et al. (2023). Each environment defines a global latent task parameter
controlling perturbation levels (Deterministic, Moderate-Noise, High-Noise), which in turn specify
the distribution of instantaneous hidden forces at each step. We train a single model per method
(I-TAP, DT, L-MAP) on the union of datasets stratified by behavior-policy quality, and dataset-
specific models for the remaining baselines. To test scalability to high-dimensional control and partial
observability, we evaluate on Adroit (Rajeswaran et al., 2018) in (i) the original fully observable
setting and (ii) a partially observable variant where we mask a subset of target-position coordinates.
Unless otherwise noted, we set the latent context size to C = 6 tokens; with macro length L = 3,
this window summarizes 18 past primitive transitions. Further domain and hyperparameter details
appear in Appendix A.3.

4.1 MAIN RESULTS

Mujoco We use MuJoCo tasks to evaluate I-TAP’s in-context adaptation and its robustness to
uncertainty under partial observability. Table 1 reports normalized scores across noise regimes and
dataset qualities. I-TAP attains the highest mean in every dataset type and demonstrates strong
adaptability across varying environment dynamics without gradient update. These gains reflect
I-TAP’s ability to (i) leverage history for in-context adaptation and (ii) plan online to optimize
decisions rather than simply imitating the dataset policy. When compared to L-MAP, I-TAP’s better
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Table 1: Normalised results for high-noise (High), moderate-noise (Mod), deterministic (−) environ-
ments. Bold numbers indicate the best scores in each row.

Model-Based Model-Free
Dataset Type Env (Noise) I-TAP L-MAP TAP 1R2R DT CQL IQL
Medium-Expert Hopper (High) 82.87 ± 3.55 71.49 ± 3.46 37.31 ± 3.66 37.99 ± 2.71 61.87 ± 2.56 68.03 ± 3.94 44.83 ± 2.58

Hopper (Mod) 104.45 ± 2.66 93.40 ± 3.65 40.86 ± 5.42 52.19 ± 8.37 73.86 ± 2.68 106.17 ± 2.16 60.61 ± 3.46
Hopper (−) 111.71 ± 0.08 106.74 ± 2.24 85.55 ± 3.83 57.40 ± 6.06 101.6 ± 1.85 105.4 91.5
Walker2D (High) 93.50 ± 3.15 92.75 ± 1.34 91.09 ± 2.78 32.38 ± 4.55 52.42 ± 1.27 83.18 ± 3.70 68.61 ± 3.33
Walker2D (Mod) 97.29 ± 1.68 93.48 ± 1.20 91.40 ± 1.42 56.48 ± 7.51 64.67 ± 1.00 91.44 ± 1.44 86.66 ± 1.84
Walker2D (−) 101.20 ± 1.91 100.38 ± 0.72 105.32 ± 2.03 73.18 ± 6.29 64.65 ± 0.79 108.8 109.6

Mean (Medium-Expert) 98.50 93.04 75.26 51.60 69.85 93.84 76.97

Medium Hopper (High) 67.80 ± 2.60 59.05 ± 2.93 43.93 ± 2.66 33.99 ± 0.92 55.91 ± 2.02 45.21 ± 2.97 49.69 ± 2.47
Hopper (Mod) 72.47 ± 2.71 63.21 ± 3.10 43.64 ± 2.25 65.24 ± 3.31 60.97 ± 0.82 49.92 ± 3.00 56.00 ± 3.60
Hopper (−) 81.94 ± 2.14 61.65 ± 2.81 69.14 ± 2.33 55.49 ± 3.99 58.14 ± 0.24 58.0 66.3
Walker2D (High) 60.35 ± 2.73 59.05 ± 2.30 52.20 ± 2.76 32.13 ± 4.51 32.20 ± 0.83 61.49 ± 3.24 47.53 ± 3.05
Walker2D (Mod) 65.85 ± 2.44 62.23 ± 1.84 44.46 ± 1.82 65.16 ± 2.84 43.77 ± 0.95 49.38 ± 2.02 48.82 ± 2.31
Walker2D (−) 79.57 ± 1.22 75.54 ± 1.59 51.75 ± 3.30 55.69 ± 4.97 55.36 ± 0.61 72.5 78.3

Mean (Medium) 71.33 63.46 50.85 51.28 51.06 56.08 57.77

Medium-Replay Hopper (High) 70.67 ± 2.59 60.76 ± 2.79 48.69 ± 2.97 68.25 ± 3.78 35.17 ± 0.96 51.70 ± 3.09 43.27 ± 2.78
Hopper (Mod) 81.33 ± 2.19 73.81 ± 2.67 38.10 ± 3.22 22.82 ± 2.08 35.76 ± 1.01 40.53 ± 1.52 49.12 ± 3.38
Hopper (−) 86.57 ± 2.03 90.8 ± 0.63 80.92 ± 3.79 89.67 ± 1.92 43.01 ± 1.36 95.0 94.7
Walker2D (High) 70.60 ± 3.07 59.16 ± 2.92 55.15 ± 3.29 65.63 ± 3.41 37.22 ± 0.78 50.33 ± 3.88 45.13 ± 2.38
Walker2D (Mod) 74.04 ± 1.94 69.20 ± 2.55 43.49 ± 2.27 52.23 ± 2.22 49.51 ± 0.81 40.24 ± 1.67 40.77 ± 2.72
Walker2D (−) 75.49 ± 2.52 70.66 ± 1.78 72.32 ± 3.26 90.67 ± 1.98 48.44 ± 0.76 77.2 77.2

Mean (Medium-Replay) 76.45 70.73 56.45 64.88 41.52 59.17 58.37

performance indicates the value of context-guided action selection during search, which balances
exploration with a sequence-modeling prior rather than relying solely on MCTS for improving
robustness of decisions. In contrast, DT degrades under stochastic dynamics and with lower-quality
behavior data, which is consistent with its lack of an integrated planner and its reliance on return
conditioning, which is susceptible to luck-induced variability (Paster et al., 2022). By conditioning
only on recent rewards and using a downstream planner, I-TAP avoids inheriting suboptimal behavior
from the behavior policy and can deviate when the planner finds more promising actions.

Table 2: Adroit robotic hand control results.

Dataset Type Env I-TAP L-MAP TAP
Cloned Pen 85.44 ± 8.19 60.68 ± 7.88 46.44 ± 7.54
Cloned Hammer 4.38 ± 1.28 2.43 ± 0.29 1.32 ± 0.12
Cloned Door 14.17 ± 1.34 13.22 ± 1.34 13.45 ± 1.43
Cloned Relocate 0.08 ± 0.02 0.15 ± 0.13 -0.23 ± 0.01

Expert Pen 133.81 ± 5.23 126.60 ± 5.60 127.40 ± 7.70
Expert Hammer 128.37 ± 0.21 127.16 ± 0.29 127.60 ± 1.70
Expert Door 105.98 ± 0.08 105.24 ± 0.10 104.80 ± 0.80
Expert Relocate 109.85 ± 0.88 107.57 ± 0.76 106.21 ± 1.61

Expert (POMDP) Pen 81.68 ± 9.83 69.84 ± 9.81 60.87 ± 9.55
Expert (POMDP) Hammer 72.36 ± 8.48 59.21 ± 6.52 42.22 ± 12.92
Expert (POMDP) Door 95.05 ± 3.12 89.35 ± 3.41 83.71 ± 4.22
Expert (POMDP) Relocate 52.16 ± 4.46 37.36 ± 3.84 33.94 ± 3.50

Mean (Expert) 119.50 116.64 116.50
Mean (Expert POMDP) 75.31 63.94 55.19

Adroit Control Adroit poses high-dimensional state–action spaces and fine-grained control demands.
Table 2 shows that I-TAP achieves the best performance in both fully observable and partially
observable setting. On cloned datasets, I-TAP outperforms both L-MAP and TAP in three of four
tasks, indicating that planning with context-guided prior in the latent abstraction space enables the
agent to do more targeted exploration with promising returns while remaining in distribution. On
expert datasets, I-TAP matches or exceeds baselines, and under partial observability (POMDP) it
maintains the top scores across all four tasks, highlighting the benefit of context-conditioned planning
when state aliasing induces apparent stochasticity and its ability to leverage feedback from the
environment to provide more targeted exploration to improve decisions. We use residual depth D=2
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Figure 4: Ablation results across Adroit (expert) and MuJoCo Hopper. We plot ∆ scores relative to
I-TAP on Hopper medium–expert, which serves as the baseline (zero line).

for cloned and D=3 for expert datasets; the stronger expert results are consistent with the intuition
that coarse-to-fine residual quantization helps retain the granularity needed for high-dimensional
continuous control.

4.2 ABLATION STUDY

We present analyses and ablations of macro action length, context length, planning horizon, and
residual depth. Figure 4 summarizes the results from ablation studies conducted across deterministic,
moderate-noise, and high-noise Mujoco Hopper control tasks and Adroit (expert) tasks.

Macro Action Length. We vary the macro length L and compare L=1 versus L=6. Increasing to
L=6 does not noticeably degrade performance, whereas decreasing to L=1 causes a substantial drop.
Two factors explain this: (i) with fixed C, the effective history observed by the planner scales as C×L
steps, so L=1 shortens the usable history and weakens in-context adaptation; and (ii) shorter macros
increase the branching factor during search and make the RQ-VAE more prone to overfitting, which
requires careful hyperparameter control.

Context Size. We ablate context size C ∈ {1, 3, 12} (in latent tokens). The datasets are produced
under distinct latent dynamics; thus, context is useful for inferring the active mode and for feeding
back recent rewards to steer exploration. Increasing context from C=1 (approximately 3 past
transitions when L=3) to C=12 (approximately 36 transitions) yields consistent gains. Takeaway:
short, latent contexts already help (few tokens cover many steps), and performance improves as C
grows because the model better disambiguates latent parameters and aggregates noisy feedback.

Planning Horizon. We vary the MCTS look-ahead depth H (in latent tokens). With macro length
L=3, a depth H corresponds to H×L planning horizon in the raw action space. Removing planning
(H=0) harms performance for all C; the drop is smaller on deterministic tasks where the in-context
prior is already strong, but it remains insufficient under stochasticity. Increasing to H=1 yields
consistent gains across settings; at H=2, we observe a pronounced jump, a shorter-context model
(C=6) matches a longer-context baseline (C=12). This supports our hypothesis that MCTS could
mitigates uncertainty due to partial observability and stochastic dynamics by taking expectations over
futures: deeper look-ahead can substitute for additional context up to a point before compute and
diminishing returns dominate.
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(a) Hammer (b) Door (c) Pen (d) Relocate

Figure 5: Test reconstruction losses across residual levels.

Residual Depth We vary the residual quantization depth D for RQ-VAE. Reconstruction error
decreases monotonically with D (Fig. 4.2), with diminishing returns: the largest drop is from D=1 to
D=3. Control performance mirrors this: the task-averaged score rises from 113.40 at D=1 to 119.50
at D=3, and then plateaus (119.37 at D=5). This shows that D=3 preserves action granularity for
high-DoF control without incurring the compute/optimization overhead of very deep stacks.

5 RELATED WORKS

Reinforcement Learning as Sequence Modeling. Recent advances have reframed reinforcement
learning (RL) as a sequence modeling problem, initiated by Decision Transformer (DT), which
formulates RL as supervised learning conditioned on desired returns (Chen et al., 2021). Building on
these ideas, Algorithm Distillation (Laskin et al., 2023) and Decision-Pretrained Transformer (Lee
et al., 2023) leverage Transformers to distill optimal behaviors from historical trajectories, enabling
rapid in-context adaptation. More recently, hierarchical variants like In-context Decision Transformer
(IDT; Huang et al. (2024)) extend this paradigm by modeling high-level decisions, alleviating
computational bottlenecks associated with long context windows. However, as noted by Son et al.
(2025), these methods may replicate suboptimal behaviors due to the absence of explicit planning
mechanisms, a limitation potentially addressed by model-based planning. Moreover, supervised
RL methods typically assume deterministic or near-deterministic datasets, inherently limiting their
effectiveness in stochastic environments, where conditioning solely on outcomes can lead to incorrect
decisions (Paster et al., 2022). Unlike prior works relying on large contexts in near-deterministic
settings, our approach explicitly targets efficient adaptation in dynamic, stochastic environments
using a limited context window.

Model-Based Reinforcement Learning. From a model-based perspective (Antonoglou et al.,
2022; Schrittwieser et al., 2020), Janner et al. (2021) introduced beam search over a Transformer
dynamics model for planning, inspiring subsequent methods that plan in learned latent spaces. In
particular, TAP (Jiang et al., 2023) and L-MAP (Luo et al., 2025) employ temporal abstraction
by encoding multi-step action segments into discrete codes via state-conditioned VQ-VAEs, then
planning over these compact tokens. While beam search with a learned model is effective in largely
deterministic settings, L-MAP further adopts MCTS to handle stochastic dynamics and improve
robustness. Nevertheless, both methods assume full observability, which can limit performance under
state aliasing. Our proposed I-TAP bridges this gap by conditioning planning on recent histories to
mitigate partial observability and use MCTS to take expectations over possible futures and deviate
from suboptimal priors.

6 CONCLUSION

In this work, we introduced the In-Context Latent Temporal Abstraction Planner (I-TAP), a novel
offline reinforcement learning approach for planning in partially observable continuous control tasks
characterized by latent parameters and stochasticity arising from unobserved hidden variables. I-TAP
integrates temporal abstraction into in-context planning to reduce planning complexity and adapt
dynamically to variations across different scenarios, and employs MCTS to explicitly handle uncer-
tainty. Extensive evaluations demonstrate that I-TAP consistently achieves superior or competitive
performance relative to state-of-the-art baselines.
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Reproducibility statement. We ensure reproducibility by providing our code in the supplementary
material. We will publicly release the code upon the acceptance of this work.
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A APPENDIX

A.1 LATENT DECISION GRAPH CONSTRUCTION

Algorithm 1 SAMPLESTACK(pϕ, C, D, τ ,ρ)

1: ℓ1 ← logits from pϕ(k1 | C)
2: k1 ∼ TOPKTEMPCAT

(
ℓ1, τ1, ρ1

)
3: K ← (k1)
4: for d = 2 to D do
5: ℓd ← logits from pϕ(kd | K1:d−1, C)
6: kd ∼ TOPKTEMPCAT

(
ℓd, τd, ρd

)
7: K ← (K, kd) ▷ append
8: end for
9: return K

Algorithm 2 PRE-CONSTRUCTING THE LATENT SEARCH SPACE (RESIDUAL STACK, MACRO TOKENS)

Require: Current observation otk ; context
(
(G

(L)
t−cL, ot−cL, at−cL), . . . , (G

(L)
t−1, ot−1, at−1)

)
; encoder fenc;

decoder fdec; residual-stack model pϕ; residual depth D; per-depth temperatures τ = (τ1, . . . , τD); per-
depth top truncation ρ = (ρ1, . . . , ρD); # coarse samples M ; # residual completions per coarse sample J ;
# lookahead samples N ; tree depth H; # kept per node κkeep; # proposals per node B

Ensure: Latent search tree T with cached promising residual-stack codes
1: Encode macro-context
2: ktk−1:tk−c, 1:D ← fenc

(
(G

(L)
t−cL, ot−cL, at−cL), . . . , (G

(L)
t−1, ot−1, at−1)

)
3: Initialize tree T with root node stk = (otk , ktk−1:tk−c, 1:D)
4: Ck ← (otk , ktk−1:tk−c, 1:D)
5: Step 1: sample and score initial macro stacks at index k
6: /* M coarse draws for depth 1; for each, J residual completions to depth D */
7: ℓk,1 ← logits from pϕ

(
ktk,1 | Ck

)
8: for i = 1 to M (parallel) do
9: k

(i)
tk,1
∼ TOPKTEMPCAT

(
ℓk,1, τ1, ρ1

)
10: for j = 1 to J (parallel) do
11: K

(i,j)
tk
← (k

(i)
tk,1

)
12: for d = 2 to D do
13: ℓk,d ← logits from pϕ

(
ktk,d | K

(i,j)
tk,1:d−1, Ck

)
14: k

(i,j)
tk,d
∼ TOPKTEMPCAT

(
ℓk,d, τd, ρd

)
15: K

(i,j)
tk
← (K

(i,j)
tk

, k
(i,j)
tk,d

) ▷ append
16: end for
17: z

(i,j)
tk
← Embed

(
K

(i,j)
tk

)
18: Ĝ

(L)
tk

(
K

(i,j)
tk

)
← current-step head from fdec

19: for n = 1 to N (parallel) do
20: C′ ← (otk , K

(i,j)
tk

, ktk−1:tk−c, 1:D)

21: K
(i,j,n)
tk+1

← SampleStack(pϕ, C′, D, τ , ρ)
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22: z
(i,j,n)
tk+1

← Embed
(
K

(i,j,n)
tk+1

)
23: ŷ

(i,j,n)
tk+1

← fdec
(
z
(i,j)
tk

, z
(i,j,n)
tk+1

, otk , ktk−1:tk−c, 1:D

)
24: end for
25: score

(
K

(i,j)
tk

)
← 1

N

∑N
n=1

(
Ĝ

(L)
tk

(
K

(i,j)
tk

)
+

[
ŷ
(i,j,n)
tk+1

]
rtg

)
26: ȳ

(i,j)
tk+1

← 1
N

∑N
n=1 ŷ

(i,j,n)
tk+1

; ô
(i,j)
tk+1

← Obs
(
ȳ
(i,j)
tk+1

)
27: end for
28: end for
29: Select top-κkeep stacks {K(i,j)

tk
} by score; for each, attach child node

(
ô
(i,j)
tk+1

, K
(i,j)
tk

)
under the root in T

30: Step 2: recursive latent-tree expansion over macro indices
31: for h = 2 to H do
32: LetNh−1 be the nodes at depth h− 1 of T
33: for each node (ô, Kc) ∈ Nh−1 (parallel) do
34: C ← (ô, Kc, ktk−1:tk−c, 1:D)
35: for b = 1 to B (parallel) do
36: K

(b)
tk+h−1

← SampleStack(pϕ, C, D, τ , ρ)

37: z
(b)
tk+h−1

← Embed
(
K

(b)
tk+h−1

)
38: Ĝ

(L)
tk+h−1

(
K

(b)
tk+h−1

)
← current-step head from fdec

39: for n = 1 to N (parallel) do
40: C⋆ ← (ô, K

(b)
tk+h−1

, ktk−1:tk−c, 1:D)

41: K
(b,n)
tk+h

← SampleStack(pϕ, C⋆, D, τ , ρ)

42: z
(b,n)
tk+h

← Embed
(
K

(b,n)
tk+h

)
43: ŷ

(b,n)
tk+h

← fdec
(
z
(b)
tk+h−1

, z
(b,n)
tk+h

, ô, ktk−1:tk−c, 1:D

)
44: end for
45: score

(
K

(b)
tk+h−1

)
← 1

N

∑N
n=1

(
Ĝ

(L)
tk+h−1

(
K

(b)
tk+h−1

)
+

[
ŷ
(b,n)
tk+h

]
rtg

)
46: ȳ

(b)
tk+h

← 1
N

∑N
n=1 ŷ

(b,n)
tk+h

; ô
(b)
tk+h

← Obs
(
ȳ
(b)
tk+h

)
47: end for
48: Select top-κkeep from {K(b)

tk+h−1
}Bb=1 by score and attach as children (ô

(b)
tk+h

, K
(b)
tk+h−1

) under
(ô, Kc) in T

49: end for
50: end for
51: return T

A.2 DECISION TIME VS CONTEXT LENGTH

Figure 6: Average Decision Time vs. Context Length for initial number of samples of 16 (left) and
32 (right).

The latency results clearly highlight the trade-off between context size, planning depth, and decision-
making efficiency. Our analysis of decision latency versus context length reveals that longer contexts
substantially increase the average decision time, particularly as the planning depth increases. For
instance, at planning horizon 9, decision latency escalates sharply from approximately 0.09 seconds
(context size 1) to 0.35 seconds (context size 12) when the initial number of samples is 32. Similarly,
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at lower planning depths (1 and 2), longer contexts still cause noticeable latency increases, albeit less
dramatically.

Thus, in scenarios characterized by dynamics influenced by unobserved states, our findings underline
the necessity of carefully selecting context lengths. It is crucial to encode historical observations
effectively, extracting the most informative signals without redundant details that contribute minimal
additional predictive power but significantly raise computational latency. In practical applications,
particularly those involving stochasticity and continuous state-action spaces, balancing sufficient
context length to maintain accuracy against the latency imposed by deeper planning becomes a critical
design decision. Efficient decision-making, therefore, relies on identifying a context size that captures
the essential dynamics without incurring unnecessary computational overhead.

A.3 EXPERIMENT DETAILS

A.3.1 IMPLEMENTATION DETAILS

The hyper-parameters setting of I-TAP is presented in Table 3. For baselines, we adopt similar
hyper-parameters settings as suggested by original works, including TAP (Jiang et al., 2023), L-
MAP (Luo et al., 2025), CQL (Kumar et al., 2020), IQL Kostrikov et al. (2022), DT (Chen et al.,
2021), 1R2R (Rigter et al., 2023). Each run of I-TAP takes approximately 6 hours on 1 NVIDIA
RTX5090 GPU and Intel(R) Core(TM) i9-14900KS.

A.3.2 DOMAINS

Stochastic MuJoCo. The Stochastic MuJoCo tasks introduced by Rigter et al. (2023) apply
incremental perturbation forces following a uniform random walk (Popko et al., 2016). At each
timestep, the perturbation force ft is updated as:

ft+1 = ft +∆f, ∆f ∼ Uniform (−0.1 · fMAX, 0.1 · fMAX) , (1)

with the total perturbation clipped to remain within [−fMAX, fMAX]. This model introduces persis-
tent, incremental perturbations, representing a baseline scenario. For both Hopper and Walker2D
environments, the perturbation force ft is applied horizontally along the x-axis to simulate external
disturbances, such as wind gusts. The maximum perturbation magnitude fMAX specifically for the
Hopper moderate perturbation level is 2.5 Newtons, high perturbation level is 5 Newtons, Walker2D
moderate perturbation level is 7 Newtons, high perturbation level is 12 Newtons.

Adroit as a POMDP. Many Adroit manipulation tasks expose privileged channels that directly
encode the goal state and progress (e.g., target poses, object–target deltas, insertion depth). To
evaluate agents under partial observability, we define a POMDP variant that preserves the original
dynamics and reward but ablates these channels at evaluation time. Concretely, let the environment
produce an observation ot ∈ Rd under the standard v1 layout. We introduce a fixed binary mask
m ∈ {0, 1}d (zeros at privileged indices) and set

õt = m⊙ ot, O(õt | st) = δ
(
õt −m⊙ ot

)
,

yielding a POMDP
(
S,A, T , r, γ,Ω, O

)
in which progress toward the goal must be inferred from

history rather than read off directly.

Masking regimes. Indices refer to 0 -based positions in the default v1 observation vector.

• Pen (d=45): I = {36, 37, 39, 40, 42, 43}.

• Relocate (d=39): I = {30, . . . , 38}.

• Door (d=39): I = {27, 28, 32, . . . , 38}.

• Hammer (d=46): I = {43, 44, 45}.

This construction leaves proprioception and contact signals intact while removing privileged goal
vectors and progress proxies, thereby converting the original fully observable tasks into history-
dependent POMDPs that better reflect realistic sensing and require temporal credit assignment and
state estimation.
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Table 3: List of Hyper-parameters

Environment Hyper-parameter Value

All learning rate 1× 10−4

All batch size 512
All dropout probability 0.1
All number of attention heads 4
All macro action length L 3
All embedding size (latent code) 512
All c1 1.25
All c2 19652

MuJoco context length c/training sequence length 6,3
MuJoco discount factor 0.99
MuJoco number of Transformer layers 4
MuJoco feature vector size 512
MuJoco codebook size 512
MuJoco initial number of policy samples M 16
MuJoco number of transition samples N 4
MuJoco number of policy samples B 4
MuJoco number of MCTS iterations 100
Mujoco κkeep 50%
MuJoco temperature 2
MuJoco Residual Depth 1
MuJoco planning horizon 9

Adroit context length c/training sequence length 6/24
Adroit discount factor 0.99
Adroit number Transformer layers 4
Adroit feature vector size 256
Adroit codebook size 512
Adroit initial number of policy samples M 16
Adroit number of transition samples N 4
Adroit number of policy samples B 4
Adroit number of MCTS iterations 100
Adroit Residual Depth 2,3
Adroit κkeep 10%
Adroit J 4
Adroit temperature 1
Adroit planning horizon 3

16
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B STATEMENT ON LLM USAGE

We used a large language model solely for light copy-editing of this manuscript (grammar, phrasing,
and stylistic polishing). The LLM did not contribute to research ideation, problem formulation,
algorithm design, experiments, analysis, or the creation of technical content. All methods, results, and
citations were authored and verified by the authors, and any LLM-suggested wording was reviewed
and edited for accuracy. No references were generated by the LLM. LLMs are not authors.
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