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Abstract— In this study, we are interested in imbuing robots
with the capability of physically-grounded task planning. Re-
cent advancements have shown that large language models
(LLMs) possess extensive knowledge useful in robotic tasks,
especially in reasoning and planning. However, LLMs are
constrained by their lack of world grounding and dependence
on external affordance models to perceive environmental in-
formation, which cannot jointly reason with LLMs. We argue
that a task planner should be an inherently grounded, unified
multimodal system. To this end, we introduce Robotic Vision-
Language Planning (VILA), a novel approach for long-horizon
robotic planning that leverages vision-language models (VLMs)
to generate a sequence of actionable steps. VILA directly
integrates perceptual data into its reasoning and planning
process, enabling a profound understanding of commonsense
knowledge in the visual world, including spatial layouts and
object attributes. It also supports flexible multimodal goal
specification and naturally incorporates visual feedback. Our
extensive evaluation, conducted in both real-robot and sim-
ulated environments, demonstrates VILA’s superiority over
existing LLM-based planners, highlighting its effectiveness in
a wide array of open-world manipulation tasks. Project page:
robot-vila.github.io

I. INTRODUCTION

Scene-aware task planning is a pivotal facet of human
intelligence [1], [2]. When presented with a simple language
instruction, humans demonstrate a spectrum of complex
behaviors depending on the context. Take the instruction
“get a can of coke,” for example. If a coke can is visible,
a person will immediately pick it up. If not, they will
search locations like the refrigerator or storage cabinets. This
adaptability reflects humans’ deep understanding of the scene
and extensive common sense, enabling them to interpret
instructions contextually. In this paper, we explore how we
can create an embodied agent, such as a robot, that emulates
this human-like adaptability and exhibits long-horizon task
planning in varying scenes.

In recent years, large language models (LLMs) [3]–[6]
have showcased their remarkable capabilities in encoding ex-
tensive semantic knowledge about the world [7]–[9]. This has
sparked a growing interest in leveraging LLMs for generating
step-by-step plans for complex, long-horizon tasks [10]–[12].
However, a critical limitation of LLMs is their lack of world
grounding — they cannot perceive and reason about the
physical state of robots and their environments, including
object shapes, physical properties, and real-world constraints.
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To overcome this challenge, a prevalent approach involves
employing external affordance models [13] to provide real-
world grounding for LLMs [10], [14]. However, these mod-
ules often fail to convey the truly necessary task-dependent
information in complex environments, as they serve as one-
directional channels transmitting perceptual information to
LLMs. In this scenario, the LLM is like a blind person,
while the affordance model serves as a sighted guide. On the
one hand, the blind person relies solely on their imagination
and the guide’s limited narrative to comprehend the world;
on the other hand, the sighted guide may not accurately
comprehend the blind person’s purpose. This combination
often leads to unfeasible or unsafe action plans. For instance,
a robot tasked with taking out a Marvel model from a shelf
(see Figure 1) may overlook obstacles like the coke can,
leading to collisions. Consider another example of preparing
art class, scissors can be perceived as hazardous objects,
or as essential tools for handicrafts. This distinction is
challenging for the vision module due to the lack of specific
task information. These examples highlight the limitations
of LLM-based planners in capturing intricate spatial layouts
and fine-grained object attributes, underscoring the necessity
for active joint reasoning between vision and language.

The recent advancements in vision-language models
(VLMs), exemplified by GPT-4V(ision) [15], [16], have
significantly broadened the horizons of research. VLMs
synergize perception and language processing into a unified
system, enabling direct incorporation of perceptual informa-
tion into the language model’s reasoning [17]–[20]. Building
upon these developments, we introduce Robotic Vision-
Language Planning (VILA) — a simple, effective, and scal-
able method for long-horizon robotic planning. VILA distin-
guishes itself from previous LLM-based planning methods
by eschewing independent affordance models and instead di-
rectly prompting VLMs to generate a sequence of actionable
steps based on visual observations of the environment and
high-level language instructions. VILA exhibits the following
key properties absent in LLM-based planning methods:

• Profound Understanding of Commonsense Knowl-
edge Grounded in the Visual World. VILA excels in
complex tasks that demand an understanding of spatial
layouts or object attributes. This kind of commonsense
knowledge pervades nearly every task of interest in
robotics, but previous LLM-based planners consistently
fall short in this regard.

• Versatile Goal Specifiaction. VILA supports flexible
multimodal goal specification approaches. It is capable
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Fig. 1. Overview of VILA. Given a language instruction and current visual observation, we leverage a VLM to comprehend
the environment scene through chain-of-though reasoning, subsequently generating a step-by-step plan. The first step of this
plan is then executed by a primitive policy. Finally, the step that has been executed is added to the finished plan, enabling
a closed-loop planning method in dynamic environments.

of utilizing not just language instructions but also di-
verse forms of goal images, and even a blend of both
language and images, to define objectives effectively.

• Visual Feedback. VILA effectively utilizes visual feed-
back in an intuitive and natural way, enabling robust
closed-loop planning in dynamic environments.

We conduct a evaluation of VILA across 16 real-world,
everyday manipulation tasks, which involve a diverse range
of open-set instructions and objects. VILA consistently out-
performs LLM-based planners, such as SayCan [10] and
Grounded Decoding [14], by a significant margin. To facili-
tate a more exhaustive comparison, we extend our evaluation
to include 16 simulated tasks based on RAVENS [21],
wherein VILA continues to show marked enhancements. All
these outcomes provide compelling evidence that VILA pos-
sesses the potential to serve as a universal task planning
method for general-purpose robotic systems.

II. METHOD

We first provide the formulation of the planning problem
in Sec. II-A. Subsequently, we present how VILA utilize
vision-language models as robot planners (Sec. II-B). Finally,
we describe unique properties of VILA (Sec. II-C).

A. Problem Statement

Our robotic system takes a visual observation xt of the
environment and a high-level language instruction L (e.g.
“stack these containers of different colors steadily”) that de-
scribes a manipulation task. The language instruction L can
be arbitrarily long-horizon or under-specified (i.e., requires
contextual understanding). The central problem investigated
in this work is to generate a sequence of text actions,
represented as ℓ1, ℓ2, · · · , ℓT . Each text action ℓt is a short-
horizon language instruction (e.g. “pick up blue container”)
that specifies a sub-task/primitive skill πℓt ∈ Π. Note that our
contributions do not focus on the acquisition of these skills

Π; rather, we assume that all the necessary skills are already
available. These skills can take the form of script policies or
may have been acquired through various learning methods,
including reinforcement learning and behavior cloning [22].

B. Vision-Language Models as Robot Planners

To generate feasible plans, high-level robot planning must
be grounded in the physical world. While LLMs possess
a wealth of structured world knowledge, their exclusive
reliance on language input necessitates external compo-
nents, such as affordance models, to complete the grounding
process. However, these external affordance models (e.g.,
value functions of RL policies [10], [23], object detection
models [24], and action detection models [25]) are manu-
ally designed as independent channels, operating separately
from LLMs, rather than being integrated into an end-to-
end system. Moreover, their role is solely transmitting high-
dimensional visual perceptual information to LLMs, lacking
the capability for joint reasoning. This separation of vision
and language modalities results in the vision module’s in-
ability to provide comprehensive, task-relevant visual infor-
mation, thereby hindering the LLM from planning based on
accurate task-related visual insights.

Recent advances in VLMs offer a solution. VLMs demon-
strate unprecedented ability in understanding and reasoning
across both images and language [17]–[20]. Crucially, the
extensive world knowledge encapsulated in VLMs is inher-
ently grounded in the visual data they process. Therefore,
we advocate for directly employing VLMs that synergizes
vision and language capabilities to decompose a high-level
instruction into a sequence of low-level skills.

We refer to our method as Robotic Vision-Language
Planning (VILA). Concretely, given current visual observa-
tion xt of environment and a high-level language goal L,
VILA operates by prompting the VLMs to yield a step-by-
step plan p1:N . We enable closed-loop execution by selecting



the first step as the text action ℓt = p1. Once the text action
ℓt is selected, the corresponding policy πℓt is executed by the
robot and the VLM query is amended to include ℓt and the
process is run again until a termination token (e.g., “done”)
is reached. The entire process is shown in Figure 1.

In our study, we utilizes GPT-4V(ision) [15], [16] as the
VLM. GPT-4V, trained on vast internet-scale data, exhibits
exceptional versatilities and extremely strong generalization
capabilities. These attributes make it particularly adept at
handling open-world scenarios presented in our paper. Fur-
thermore, we find that VILA, powered by GPT-4V, is capa-
ble of solving a variety of challenging planning problems,
even when operating in a zero-shot mode (i.e., without
requiring any in-context examples). This significantly re-
duces the prompt engineering efforts required in previous
approaches [10], [11], [14].

C. Intriguing Properties of VILA

In this section, we delve deeper into VILA, shedding light
on its differentiations from previous planning methods.

Comprehension of Common Sense in the Visual World.
Previous studies primarily focus on leveraging the knowledge
of LLMs for high-level planning [10], [11], often overlooking
the crucial role of vision. Directly integrating images into the
reasoning and planning process, such as in the case of VILA,
allows for a more intuitive understanding of commonsense
knowledge grounded in the physical world. Specifically, this
understanding manifests in two key aspects:

1) Spatial Layout Understanding: Describing complex
geometric configurations, particularly object relationships
and environmental constraints, can be challenging with just
simple language. Consider a situation where the desired
object is inside a container (like a cabinet). In that case, if
an affordance model (like object detector) is utilized, since
the desired object is not visible, the affordance model would
predict a zero probability of successful retrieval. However,
by directly incorporating vision into the reasoning process,
VILA can deduce that the sought object is likely inside the
container. This realization necessitates opening the container
as a preliminary step to accomplish the task.

2) Object Attribute Understanding: An object is defined
by multiple attributes, like shape and material, etc. However,
the expressive capacity of language is limited, making it
a somewhat cumbersome medium for conveying these at-
tributes comprehensively. Furthermore, note that an object’s
attributes is intricately tied to the specific tasks at hand. For
example, scissors might be deemed hazardous for children,
but they become essential tools during a paper-cutting art
class. Therefore, active joint reasoning between image and
language emerges as a crucial necessity when our tasks
demand a thorough understanding of an object’s attributes.

Versatile Goal Specification. In many complex, long-term
tasks, using a goal image to represent the desired outcome
is often more effective than relying solely on verbal in-
structions. For example, to direct a robot to tidy a desk,
providing a photo of the desk arranged as desired can

be more efficient. Such tasks, previously unattainable with
LLM-based planning methods, are now remarkably straight-
forward with VILA. Specifically, VILA can not only accepts
current observation xn and instructions L as inputs but also
incorporates a goal image xg . This feature sets it apart from
many existing goal-conditioned RL/IL algorithms [26]–[28],
as it does not require the goal and visual observation images
to originate from the same domain. The goal image merely
needs to convey the essential elements of the task, offering
flexibility in its form – it could range from an internet
photo to a child’s drawing, or even an image showing a
target location indicated by a pointing finger. This versatility
greatly enhances the system’s practicality.

Visual Feedback. The environments are inherently dynamic,
making closed-loop feedback essential for robots. In an effort
to incorporate environment feedback into planning methods
that rely solely on LLMs, Huang et al. [12] investigate
converting all feedback to language. However, this approach
proves to be cumbersome and ineffective because most of
the feedback is initially observed visually. We believe that
providing visual feedback directly is a more intuitive and
natural approach, as demonstrated in VILA. Within VILA,
the VLM serves both as a scene descriptor to recognize
object states and as a success detector. By reasoning over
visual feedback, VILA enables robots to make corrections
or replan in response to changes in the environment or when
a skill fails.

III. EXPERIMENTS AND ANALYSIS

In this section, we first carry out extensive experiments in
a real-world system to evaluate VILA’s capability (Sec. III-
A). Subsequently, we conduct a comparison of VILA against
baseline methods within a simulated tabletop environment
(Sec. III-B). The videos of experiment rollouts can be found
on the project website: robot-vila.github.io.

A. Real-World Manipulation Tasks

Experimental Setup.
1) Hardware: We use a Franka Emika Panda robot and a

parallel jaw gripper. For perception, we use a Logitech color
camera mounted on a tripod, at an angle, pointing towards
the tabletop.

2) Tasks and Evaluation: We design 16 long-horizon
manipulation tasks to assess VILA’s performance in three
domains: comprehension of commonsense knowledge in the
visual world (8 tasks), flexibility in goal specification (4
tasks), and utilization of visual feedback (4 tasks). For
comprehensive details of each task, please see Appendix A.2.

3) VLM and Prompting: We use GPT-4V from OpenAI
API as our VLM. Unlike previous approaches [10], [14], we
do not include any in-context examples in the prompt, but
only use high-level language instructions and some simple
constraints that the robot needs to meet (i.e., strict zero-shot).
The full prompt is shown in Appendix A.3.

https://robot-vila.github.io/
https://openai.com/api/
https://openai.com/api/


TABLE I. Quantitative evaluation results in tasks requir-
ing rich commonsense knowledge.

Task SayCan GD VILA

Pour Chips 20% 40% 80%
Bring Pepsi Can 40% 30% 90%
Bring Empty Plate 0% 0% 100%
Take Out Marvel Model 0% 10% 70%

Righteous Characters 0% 10% 80%
Pick Fresh Fruits 20% 30% 80%
Stack Plates Steadily 20% 10% 70%
Prepare Art Class 0% 30% 70%

Total 13% 20% 80%

TABLE II. Quantitative evaluation results of VILA in tasks
featuring multimodal goals.

Task Goal Type Succ. %

Arrange Sushi Real Image 80%
Arrange Gigsaw Pieces Drawing 100%
Pick Vegetables Pointing Finger 100%
Tidy Up Study Desk Image + Language 60%

4) Primitive Skills: We use five categories of primitive
skills that lend themselves to complex behaviors through
composition and planning. These include “pick up object”,
“place object in/on object”, “open object”, “close
object”, and “pour object into/onto object”. We
concentrate on high-level planning rather than acquiring low-
level primitive skills, which is orthogonal to our study.
Therefore, we employ script policies as the primitive skills.
Additional details of primitive skills are in Appendix A.4.
VILA can understand commonsense knowledge in the
visual world. In Table I, we compare the planning success
rates on tasks that require understanding of spatial layouts
and object attributes. VILA stands out with an average
success rate of 80% across 8 tasks, significantly surpassing
the performances of SayCan [10] and Grounded Decod-
ing (GD) [14], which achieve success rates of only 13%
and 20%, respectively. Particularly in intricate and chal-
lenging tasks such as Take Out Marvel Model (it’s
crucial to avoid the cup and coke can) and Righteous
Characters, SayCan and GD’s success rates are close to
zero. These tasks all necessitate the integration of images
into the reasoning and planning processes and a deep un-
derstanding of commonsense knowledge in the visual world.
We present a failure breakdown analysis in Appendix A.6.
VILA supports flexible multimodal goal specification.
We introduce a suite of 4 tasks, each with distinct goal
types. The quantitative results are shown in Table II, where
VILA demonstrates strong capabilities across all tasks.
Utilizing the internet-scale knowledge imbued in GPT-4V,
VILA exhibits the remarkable ability to understand a variety
of goal images. This includes interpreting vibrant children’s
drawings for puzzle completion, preparing a sushi platter by
referencing a photograph of the dish, and even accurately
identifying the intended arrangement of vegetables as indi-
cated by a human finger.

TABLE III. Open-loop VILA vs. closed-loop VILA.

Task Open-Loop w/ Feedback

Stack Blocks 20% 90%
Pack Chip Bags 0% 100%
Find Stapler 30% 90%
Human-Robot Interaction 20% 80%

TABLE IV. Average success rate in simulated environment.
See Appendix C.5 for a detailed breakdown.

CLIPort LLM
GD VILA

Tasks Short Long Llama 2 GPT-4

Seen Tasks
Blocks & Bowls 3.3% 68.3% 1.7% 0% 18.3% 78.3%

Letters 0% 40.0% 25.0% 25.0% 51.7% 88.3%

Unseen Tasks
Blocks & Bowls 6.0% 6.0% 20.0% 22.0% 23.0% 81.0%

Letters 1.0% 0% 15.0% 15.0% 42.0% 82.0%

VILA can leverage visual feedback naturally. We design
4 tasks that require real-time visual feedback for successful
execution. In the Stack Blocks task, we inject Gaussian
noise into the joint position controller, which increases
the likelihood of failure in the primitive policy. For the
Pack Chip Bags task, task progress is reverted by an
experimenter who takes out previously packed chip bags
from the box. In the Find Stapler task, the stapler’s
location varies among three potential places: the top drawer,
the bottom drawer, or the cabinet. The Human-Robot
Interaction task requires the robot to pause until a
person retrieves the cola it has picked up. We evaluate
the performance of VILA against an open-loop variant that
formulates a plan based solely on the initial observation.
The quantitative results, presented in Table III, reveal that
the open-loop variant struggles with these dynamic tasks
that demand continuous replanning, while the closed-loop
VILA significantly outperforms it.

B. Simulated Tabletop Rearrangement

The experimental setup is in Appendix C. We present
the results in Table IV, where each method is evaluated
over 20 episodes per task within each category. We observe
that CLIPort-based methods have a limited capacity for
generalizing to novel, unseen tasks. Given that GD requires
access to the output token probabilities of LLMs, we employ
Llama 2 instead of GPT-4 for GD. As depicted in Table IV,
both Llama 2 and GPT-4 exhibit comparable performances
across all tasks, ensuring a fair comparison between GD
and VILA (utilizing GPT-4V). While GD surpasses other
LLM-based planning methods by leveraging an external
affordance model, it significantly lags behind VILA. This
finding further highlights the benefits of synergistic reasoning
between vision and language for high-level robotic planning.
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APPENDIX

A. Real-World Environment

1) Hardware Setup: We use a Franka Emika Panda robot (a 7-DoF arm) and a 1DoF parallel jaw gripper. The robot
is operated using the joint controller from Deoxys [29]. For perception, we use a Logitech Brio color camera mounted on
a tripod, at an angle, pointing towards the tabletop. This camera offers high-resolution images at 1920 × 1080, ensuring
maximum detail retention.

2) Tasks and Evaluation: We design 16 long-horizon tasks, categorized into three domains: (i) understanding commonsense
knowledge in the visual world (8 tasks, detailed in Table A.1); (ii) flexibility in goal specification (4 tasks, detailed in
Table A.2); and (iii) utilization of visual feedback (4 tasks, detailed in Table A.3). Figure A.2 illustrates a selection of
12 tasks, drawn from the first two domains. For each task, we perform 10 evaluations under different variations of the
environment, accounting for changes in scene configuration, lighting conditions, etc.

3) Prompts: We do not include any in-context examples in the prompt, but only use high-level language instructions and
some simple constraints that the robot needs to meet (i.e., strict zero-shot). The full prompt is shown in Figure A.1.

You are highly skilled in robotic task planning, breaking down intricate and long-term tasks into distinct primitive actions.
If the object is in sight, you need to directly manipulate it. If the object is not in sight, you need to use primitive skills to find the object 
first. If the target object is blocked by other objects, you need to remove all the blocking objects before picking up the target object. At 
the same time, you need to ignore distracters that are not related to the task. And remember your last step plan needs to be "done".
Consider the following skills a robotic arm can perform. In the descriptions below, think of [sth] as an object:
1. pick up [sth]
2. place [sth] in/on [sth]
3. pour [sth] into/onto [sth]
4. open [sth]
5. close [sth]
You are only allowed to use the provided skills. It's essential to stick to the format of these basic skills. When creating a plan, replace 
these placeholders with specific items or positions without using square brackets or parentheses. You can first itemize the task-related 
objects to help you plan.

[Initial Environment Image]

[Task Instruction]

[Reply from GPT-4V]

[Environment Image after Executing Some Steps]

This image displays a scenario after you have executed some steps from the plan generated earlier. When interacting with people, 
sometimes the robotic arm needs to wait for the person's action. If you do not find the target object in the current image, you need to 
continue searching elsewhere.

[Reply from GPT-4V]

Fig. A.1. Prompt for real-world environment.

4) Primitive Skills: We use five categories of primitive skills that lend themselves to complex behaviors through
composition and planning. These include “pick up object”, “place object in/on object”, “open object”, “close
object”, and “pour object into/onto object”. We concentrate on high-level, temporally extended planning rather than
acquiring low-level primitive skills, which is orthogonal to our study. Therefore, we employ script policies as the primitive
skills. For simple tasks like “pick up object”, we teleoperate the robots by operating a 3D SpaceMouse. For more intricate,
contact-rich tasks such as “open drawer”, kinematic teaching is employed. These skills are tailored to the tasks considered
in our study, developing a generalizable and robust set of primitive skills is an important area for future exploration and
research.

5) Baselines: We compare with SayCan [10] and Grounded Decoding (GD) [14], which both ground LLMs with external
affordance models. Implementing these baselines necessitates accessing output token probabilities from LLMs. However,
since OpenAI API currently does not return these probabilities, we employ the open-source Llama 2 70B [30] as an
alternative. For the affordance models, we utilize the open-vocabulary detector OWL-ViT [24], [31], following Huang et
al [14].

6) Failure Breakdown: In Figure A.3, we present a failure breakdown analysis. “Response structure error” here refers to
errors of LLMs and VLMs in generating plan steps that fall outside our predefined set of primitive skills. In the case of
baselines, “perception error” denotes failures within the open-vocab detector [31]. While VLMs lack a separate perception
module, their output, as observed in the chain-of-thought process [32], occasionally fails to recognize some objects. The
dominant error in baseline models is “understanding error”, which involves errors in understanding the complex spatial

https://openai.com/api/


Pour Chips Instruction: “My child is hungry, please pour him a plate of chips.”
Description: In five of the evaluation episodes, the chips are stored inside a cabinet, requiring the
robot arm to first open the cabinet in order to locate the chips. For the remaining five episodes,
the chips are directly visible, the robot arm should immediately pick up the chip bag.

Bring Pepsi Can Instruction: “I’m very thirsty, can you help me get a can of cola and put it on the table?”
Description: In five of the evaluation episodes, the Pepsi can is placed inside a refrigerator,
requiring the robot arm to first open the refrigerator to locate the Pepsi can. In the other five
episodes, the Pepsi can is directly visible, the robot arm should immediately grasp and pick it up.

Bring Empty Plate Instruction: “Please pass me the blue empty plate.”
Description: In each evaluation episode, one or two objects are placed on a blue plate, surrounded
by several distractor objects on the table. The robot arm is required to first remove the objects on
the plate and then hand the plate to a human, while disregarding the distractor objects.

Take Out Marvel Model Instruction: “My child wants to play with a Marvel model, please take one out for him.”
Description: The Marvel model is placed on the upper shelf, blocked by one or two objects, with
additional distractor objects placed on the lower shelf, on top of the shelf, or around the shelf.
The robot arm is required to first remove the objects blocking the Marvel model, then pick up the
model and place it on the table, while ignoring the distractor objects.

Righteous Characters
Instruction: “I want to pick some righteous character models for my child, but I am not familiar
with these characters. Which color toys should I put in the box?”
Description: There are three Marvel character models: Iron Man (righteous), Captain America
(righteous), and Thanos (unrighteous). Due to the constraints in the instruction stating, “I am not
familiar with these characters” and “which color toys should I ...”, the robot plan must not explicitly
mention the names of the characters (such as Iron Man), but is limited to referencing models by
their color (like red model).

Pick Fresh Fruits
Instruction: “I want to buy some fruits. Help me pick the fresh fruits from this pile of fruits and
put them into the orange box.”
Description: There are some rotten fruits and some incomplete fruits (such as a half-peeled orange).
The robot arm needs to disregard these distracting fruits and accurately select the fresh fruits.

Stack Plates Steadily Instruction: “Steadily stack these containers of different colors.”
Description: There are several containers of varying sizes and colors. The robot arm must
accurately discern the relative sizes of these containers and stack them steadily in order of size.

Prepare Art Class
Instruction: “We are having an art class, please prepare an area for the children. Please put any
inappropriate items on the table into the box.”
Description: Certain objects are unsuitable for an art class setting (such as screwdrivers and
fruit knives), while others (like glue and colored paper) are appropriate. Classifying scissors is
challenging as they can be viewed as either hazardous or a craft tool for cutting paper. In this
specific context, with paper cuttings present, scissors should be retained for this task. This task
requires the task planner to ground objects within the specific scene to determine their attributes.

TABLE A.1. A list of 8 tasks requiring understanding commonsense knowledge in the visual world. The first four tasks
are centered on comprehending spatial layouts, while the subsequent four are dedicated to understanding object attributes.
For every task, we provide the instruction as used in our experiments and a detailed description of the task.

layouts and object attributes in the physical world, such as occlusions and context-specific attributes. VILA significantly
reduces the “understanding error” by seamlessly integrating vision and language reasoning, thereby resulting in the lowest
overall error. Furthermore, we suggest that careful prompt engineering (i.e., providing examples in the prompt) [3], [33]
could steer VLM outputs towards admissible primitive skills, thereby reducing “response structure error”.



Arrange Sushi
Instruction: “In the second picture, arrange the sushi on a specific side of the plate similar to the
one in the first picture.”
Goal Type: Real Image
Description: The planner needs to identify the types of sushi and their arrangement in the goal
image, and then, based on the observed image from the experiment, place the sushi onto a specific
location on the sushi plate.

Arrange Jigsaw Pieces
Instruction: “The first picture is my child’s drawing. In the second picture, arrange the jigsaw
pieces on the corners of the whiteboard similar to the landscape image shown in the first picture.”
Goal Type: Drawing
Description: The planner needs to identify the positions of elements in the goal image, and then,
based on the observed image from the experiment, place the jigsaw pieces in a specific corner of
the whiteboard.

Pick Vegetables
Instruction: “I need to put the two vegetables in picture 2 onto the plate pointed by the finger in
picture 1.”
Goal Type: Pointing Finger
Description: In the goal image, there are multiple plates of different colors. The planner is required
to identify the plate being pointed at by a finger, and based on the image observed in the experiment,
place the vegetables from the scene onto the indicated plate.

Tidy Up Study Desk
Instruction: “Study the arrangement in the first picture. Replicate it in the second picture, yet
switching the cup and pen holder’s positions this time.”
Goal Type: Image + Language
Description: The planner must precisely identify the arrangement of objects in the goal image,
while also considering the instruction to switch the positions of the cup and the pen holder.

TABLE A.2. A list of 4 tasks featuring multimodal goals. For every task, we provide the instruction as used in our
experiments, the goal type, and a detailed description of the task.

Stack Blocks Instruction: “Stack all the blocks.”
Description: In this task, we inject noise during the execution of the primitive skill “Place a block
on another block”. In 4 out of 10 evaluation episodes, the primitive skill fails when stacking blocks
for the first time. In another 4 episodes, the failure occurs during the second stacking attempt. For
the remaining 2 episodes, the primitive skill does not fail.

Pack Chip Bags Instruction: “Put the chip bag on the table in the gift box.”
Description: This task involves human intervention, where a person removes the chip bag placed
in the gift box by a robot arm. In five of the evaluation episodes, the chip bag that is placed in the
gift box for the first time is removed and placed on the table by human. In the other five episodes,
the chip bag that is placed in the gift box for the second time is removed and placed on the table.

Find Stapler Instruction: “Put the stapler on the table.”
Description: In this task, the target object (stapler) may be placed in the top drawer, bottom
drawer, or cabinet. The planner is required to locate the target object based on visual feedback.
In three evaluation episodes, the target object is placed in the top drawer; in four episodes, it is
placed in the bottom drawer; and in the remaining three episodes, it is placed inside the cabinet.

Human-Robot Interaction Instruction: “Pass me a can of cola.”
Description: In this task, the robot arm can only execute “Place can of cola in human hand” after
detecting a human hand. Before that, the robot repeatedly waits and checks every five seconds for
the hand’s appearance. In two of the evaluation episodes, the human hand appears directly in the
observation; in the remaining eight episodes, the human hand appears in the observation several
seconds after the robot arm picks up the can of cola.

TABLE A.3. A list of 4 tasks requiring visual feedback. For every task, we provide the instruction as used in our experiments
and a detailed description of the task.



Fig. A.2. VILA can leverage the wealth of commonsense knowledge grounded in the visual world. This results in remarkable
performance in tasks that demand an understanding of spatial layouts (top row), object attributes (middle row), and tasks
with multimodal goals (bottom row).

0.00 25.00 50.00 75.00 100.00

SayCan

GD

ViLa

Response Structure Error Perception Error Understanding Error No Error

Fig. A.3. Error breakdown of VILA and baselines. By leveraging commonsense knowledge grounded in the visual world,
VILA significantly reduces understanding error.



B. Robot Rollouts

Figure B.1 shows two environment rollouts comparing VILA with SayCan. Figure B.2 shows two environment rollouts on
image goal-conditioned tasks. Figure B.3 shows one environment rollout on a task that requires real-time visual feedback.

Please pass me the blue empty plate.

1. Pick up apple
2. Place apple on table

3. Pick up banana
4. Place banana on table

5. Pick up blue plate
6. Place blue plate in human hand

We are having an art class, please prepare an area for the children.

1. Pick up screwdriver
2. Place screwdriver in box

3. Pick up knife 4. Place knife in box

Language
Pick up blue plate

Pick up apple

Pick up vase

1.00

Pick up scissors

0.84

Pick up paper

0.21

Pick up knife

0.02

0.01

Affordance
Combined Score: 1.00

Fig. B.1. Illustration of the execution of VILA (left) and the decision-making process of SayCan (right). In the Bring
Empty Plate task, the robot must first relocate the apple and banana from the blue plate. However, SayCan’s initial step
is to directly pick up the blue plate. In the Prepare Art Class task, while the scissor is supposed to remain on the
table, SayCan erroneously picks up the scissor and places it in a box.



Goal Image Initial Obs. Final Obs.

Arrange the sushi similar to the one in the first picture.

Task Plan

I need to put the two vegetables in picture 2 
onto the plate pointed by the finger in picture 1.

1. Pick up shrimp sushi
2. Place shrimp sushi on the left side of the plate
3. Pick up salmon sushi
4. Place salmon sushi in the center of the plate
5. Pick up tuna sushi
6. Place tuna sushi on the right side of the plate
7. Done

1. Pick up carrot
2. Place carrot on pink plate
3. Pick up tomato
4. Place tomato on pink plate
5. Done

Task Plan

Goal Image Initial Obs. Final Obs.

Fig. B.2. Illustration of the execution of VILA on image goal-conditioned tasks. In the Arrange Sushi task,
VILA generates a plan to arrange sushi based on a reference image. In the Pick Vegetables task, the scenario involves
a table set with a pink plate, a black sushi plate, a pizza plate, and a green snack plate. Here, VILA deduces from pointing
finger in the goal image that the vegetables should be placed on the pink plate.

Put the stapler on the table.

Initial Obs.

1. Open top drawer 2. Close top drawer
3. Open bottom drawer

4. Pick up stapler
5. Close bottom drawer
6. Place stapler on table

No Stapler Find Stapler

Fig. B.3. Illustration of the execution of VILA on the Find Stapler task. By incorporating visual feedback and
replanning at every step, VILA is able to continue exploring the bottom drawer when it does not find the stapler in the top
drawer, thereby successfully locating the stapler.



C. Simulated Environment

1) Tasks: Drawing inspiration from the Grounded Decoding [14] setting, we develop 16 tasks based on the RAVENS
environment [21] (listed in Table C.1). Each task requires a UR5 robot to rearrange the objects on the table in some
desired configuration, specified by high-level language instructions. A camera is employed to capture a top-down view for
task planning purposes. The tasks are categorized into two categories: (i) Blocks & Bowls (8 tasks), which focus on
rearranging or combining blocks and bowls. (ii) Letters (8 tasks), which involve rearranging alphabetical letters. Upon
each reset, task-relevant objects, along with some distractor objects, are randomly distributed across the workspace. We
employ a binary reward function using ground-truth state of the objects to facilitate automatic evaluations. Additionally, for
certain tasks, the attributes mentioned in the instructions are also randomized, details of which are provided below:

• corner/side: top left corner, top side, top right corner, left side, right side, bottom right corner, bottom side, bottom
left corner

• word: cat, dog, red, blue, pink, gold, yoga, fork, soap, milk, dance, bread, knife, chair, peach, white, brown, plate,
brush, table

2) Prompts: The prompt for Blocks & Bowls is shown in Figure C.1. We incorporate three in-context examples
(seen tasks) into the prompt. This approach addresses the substantial domain gap between simulated images of blocks and
bowls and their real-world counterparts. Due to this gap, GPT-4V is unable to recognize and comprehend these objects in
a zero-shot setting. Conversely, for Letters, we omit in-context examples from the prompt (see Figure C.2), as GPT-4V
demonstrates proficient recognition and understanding of all letters.

3) Primitive Skills: In prior work, such as Grounded Decoding, CLIPort policies are utilized as low-level primitive skills.
However, our findings suggest that this approach does not accurately represent the capabilities of the high-level planner. We
observe that, in many tests, CLIPort policies correctly interact with objects even when the planner generate an incorrect
step. To address this, we shift to employing script policies as our primitive skills. These policies can directly access the
ground-truth states of objects within the simulator, ensuring a noise-free outcome and providing a more accurate measure
of the planner’s success rate.

4) Baselines: Our comparison encompasses three baseline categories: (i) CLIPort [25], a language-conditioned imitation
learning agent that directly take in the high-level language instructions without a planner. We consider two variants: “Short”,
trained on single-step pick-and-place instructions, and “Long”, trained on high-level instructions. During evaluation, both
CLIPort (Short) and CLIPort (Long) receive only the high-level instructions. These baselines aim to evaluate whether
solitary language-conditioned policies can perform well on long-horizon tasks and generalize to new task instructions. Our
implementation adheres closely to the description in the Grounded Decoding paper [14]; for more details, please refer to this
paper. (ii) An LLM-based planner that does not relay on any grounding/affordance model. We evaluate Llama 2 70B and
GPT-4. Our evaluation includes Llama 2 and GPT-4. The inclusion of Llama 2 stems from its use in our reimplementation
of Grounded Decoding. Grounded Decoding requires access to the output token probabilities from LLMs. However, with
the OpenAI API not providing these probabilities, we are constrained to using the open-source Llama 2. (iii) Grounded
Decoding (GD), which integrates an LLM with an affordance model for enhanced planning. Here, Llama 2 is used as the
LLM. For the Blocks & Bowls scenario, affordances are deduced from CLIPort’s predicted logits, as outlined in the
GD paper. For Letters, we resort to ground-truth affordance values from simulation due to the limited generalization
capability of CLIPort’s predicted logits on unseen letters. We employ the beam search variant of GD.

5) Full Results on Simulated Environments: In Table C.1, we show the full list of tasks in simulated environment, alongside
their corresponding experimental results. The tasks are categorized by background color: those with a blue background are
‘seen’ tasks, while those with an orange background are ‘unseen’ tasks. ‘Seen’ tasks are used for training for supervised
baselines (CLIPort), or included in prompts for high-level planners. However, in the case of the VILA’ prompt within the
Letters category, we do not include any ‘seen’ tasks.



CLIPort LLM
GD VILA

Tasks Short Long Llama 2 GPT-4

Blocks & Bowls
Stack all the blocks 10% 90% 0% 0% 30% 90%

Put all the blocks on the corner/side 0% 65% 0% 0% 10% 90%

Put all the blocks in the bowls with matching colors 0% 50% 5% 0% 15% 55%

Put the blocks in the bowls with mismatched colors 10% 25% 0% 0% 0% 80%

Put all the blocks on different corners 0% 0% 0% 0% 20% 90%

Stack only the blocks of cool colors 5% 0% 0% 20% 5% 60%

Stack only the blocks of warm colors 15% 5% 20% 10% 15% 80%

Stack only the primary color blocks on the left side 0% 0% 80% 80% 75% 95%

Total 5.0% 29.4% 13.1% 13.8% 21.3% 80.0%

Letters
Put the letters on the tables in alphabetical order 0% 30% 0% 0% 25% 95%

Spell as much of word as you can 0% 55% 55% 60% 80% 75%

Sort the vowels from the remaining letters to the bottom side 0% 35% 20% 15% 50% 95%

Put the letters on the tables in reverse alphabetical order 0% 0% 0% 0% 10% 95%

Correctly spell out a sport using the present letters 0% 0% 0% 0% 35% 85%

Sort the geometrically vertically symmetrical letters to the bottom side 0% 0% 0% 0% 55% 40%

Sort the consonants from the remaining letters to the bottom side 0% 0% 0% 0% 10% 90%

Sort the letters less than “D” according to ASCII to the bottom side 5% 0% 75% 75% 100% 100%

Total 0.6% 15.0% 18.8% 18.8% 45.6% 84.4%

TABLE C.1. Full experimental results in simulation on seen tasks and unseen tasks. Each entry represents success rate
averaged across 20 episodes.



You excel at counting and identifying colors and objects in images, as well as strategizing for robotic tabletop rearrangement tasks.
I will provide three examples with corresponding tasks and robot action plans. Please first itemize all objects in each image and then 
detail the plan. Ensure you use the command "pick up the [color] block and place it on the [place]", and you can only pick up one block 
at a time, not multiple stacked blocks. Stick to the color palette: ['blue', 'red', 'green', 'yellow', 'brown', 'cyan', 'orange', 'purple', 'pink', 
'white']. (Please note that your plan can only contain the instructions of each step, can not have any superfluous explanations with 
notes and parentheses)

This is the first example.
Task: Stack all the blocks
Blocks: red block, cyan block, orange block, pink block, brown block
Bowls: cyan bowl, red bowl
START_PLAN 
Step 1: pick up the brown block and place it on the pink block
Step 2: pick up the cyan block and place it on the brown block
Step 3: pick up the orange block and place it on the cyan block
Step 4: pick up the red block and place it on the orange block
Step 5: done
END_PLAN

This is the second example.
Task: Put all the blocks on the bottom left corner
Blocks: blue block, purple block, green block, yellow block, white block
Bowls: yellow bowl, cyan bowl
START_PLAN
Step 1: pick up the white block and place it on the bottom left corner
Step 2: pick up the yellow block and place it on the bottom left corner
Step 3: pick up the green block and place it on the bottom left corner
Step 4: pick up the blue block and place it on the bottom left corner
Step 5: pick up the purple block and place it on the bottom left corner
Step 6: done
END_PLAN

This is the third example.
Task: Put all the blocks on the bowls with matching colors
Blocks: purple block, pink block, brown block, orange block, red block, cyan block, white block
Bowls: purple bowl, brown bowl, pink bowl, cyan bowl
START_PLAN
Step 1: pick up the cyan block and place it on the cyan bowl
Step 2: pick up the purple block and place it on the purple bowl
Step 3: pick up the brown block and place it on the brown bowl
Step 4: pick up the pink block and place it on the pink bowl
Step 5: done
END_PLAN

This is a new task.
[Initial Environment Image]
[Task Instruction]

Fig. C.1. Prompt for Blocks & Bowls in simulated environment.



You excel at counting and identifying letters in images, as well as planning for robotic table tasks by simplifying complex tasks into 
primitive skills.
The primitive skills that robot arm can execute is:
1. pick up the letter [A capital English letter] and place it on the bottom left corner / bottom side
2. pick up the letter [A capital English letter] and place it on the right of [previous letter]

It's esential to stick to the template of primitive skills. Constrains are as follows:
1. For each task, you need to first select a letter and invoke the first skill, where for the sort letters task, the first letter should be placed 
on the bottom side, and for other tasks (e.g. put letters in order or word spelling tasks), the letter should be placed in the bottom left 
corner
2. Each subsequent step in the plan requires selecting other letters and placing them to the right of the previous letters
3. In the plan, there should be no parentheses, square brackets, annotations, or explanations (e.g. skip this step)
4. You need to use the symbols "START PLAN" and "FINISH PLAN" to indicate the beginning and end of your plan
Explaining the relevant concepts in the task instruction may help your planning. Please first itemize all letters in each image and then 
detail the plan With These Letters. Do not include any letters that are not in the image in your plan.

[Initial Environment Image]
[Task Instruction]

Fig. C.2. Prompt for Letters in simulated environment.
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