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Abstract

Large Language Models (LLMs) are often001
quantized to lower precision to reduce the002
memory cost and latency in inference. How-003
ever, quantization often degrades model per-004
formance, thus fine-tuning is required for var-005
ious down-stream tasks. Traditional fine-006
tuning methods such as stochastic gradient007
descent and Adam optimization require back-008
propagation, which are error-prone in the low-009
precision settings. To overcome these limita-010
tions, we propose the Quantized Zeroth-Order011
(QuZO) framework, specifically designed for012
fine-tuning LLMs through low-precision (e.g.,013
4- or 8-bit) forward passes. Our method avoids014
the low-precision straight-through estimator,015
which requires backward computation, and in-016
stead utilizes optimized stochastic rounding017
to mitigate increased bias. QuZO simplifies018
the training process, while achieving results019
comparable to first-order methods in FP8 and020
superior accuracy in INT8 and INT4 train-021
ing. Experiments demonstrate that QuZO022
achieves competitive performance on classifi-023
cation, multi-choice, and generation tasks un-024
der low-bit training, including zero-shot rea-025
soning tasks. Notably, QuZO incurs minimal026
overhead and reduces memory consumption027
by 2.94×–5.47× compared to quantized first-028
order methods during LLaMA-7B fine-tuning.029

1 Introduction030

Large Language Models (LLMs) have achieved031

state-of-the-art performance in natural language032

processing, impacting various science and engi-033

neering fields. However, deploying and fine-tuning034

LLMs consumes significant hardware resources035

because of their huge model size. To address036

this issue, extensive research has focused on LLM037

quantization (Brown et al., 2020a; Yuan et al.,038

2024). Notable approaches include post-training039

quantization (Yao et al., 2022; Wu et al., 2023),040

quantization-aware training (Bhalgat et al., 2020;041

Liu et al., 2023c; Nagel et al., 2021), and fully quan- 042

tized training (Choukroun et al., 2019; Xi et al., 043

2023; Markidis et al., 2018). Post-training quantiza- 044

tion can effectively reduce the latency and memory 045

costs of inference, but often leads to a significant 046

accuracy drop in low-precision formats, although 047

various techniques (Shao et al., 2023; Xiao et al., 048

2023; Lin et al., 2023; Liu et al., 2023c) can par- 049

tially mitigate this issue. Quantization-aware train- 050

ing (Liu et al., 2023a) offers better accuracy, but 051

is more expensive due to the use of high-precision 052

computational graphs. Truly quantized training 053

methods employ low-precision gradients, activa- 054

tion, and weights to reduce hardware costs (Wang 055

et al., 2018b; Banner et al., 2018; Micikevicius 056

et al., 2017). However, implementing truly quan- 057

tized training requires advanced hardware and soft- 058

ware support for both forward and backpropaga- 059

tion (BP). Meanwhile, the straight-through estima- 060

tor (Yin et al., 2019), which is commonly used 061

for quantized gradient estimations, often causes 062

unstable and inaccurate results in low-bit training. 063

In practice, LLM users may afford only a low- 064

cost LLM inference engine (e.g., an edge FPGA 065

or embedded system) with limited precision (e.g., 066

INT8 or INT4). This paper asks the following 067

question: Can we leverage inference-only quan- 068

tized hardware to fine-tune low-bit LLMs while 069

achieving good performance? This seems chal- 070

lenging because (1) inference-only hardware lacks 071

sufficient memory bandwidth and storage to retain 072

intermediate activations required for backpropaga- 073

tion, and (2) the Straight-Through Estimator (STE) 074

introduces increasing gradient approximation er- 075

rors in lower-bit formats (Malinovskii et al., 2024). 076

The recent MeZO (Malladi et al., 2024) enables 077

memory-efficient zeroth-order (ZO) fine-tuning for 078

LLMs, but suffers from an avoidable performance 079

drop compared to first-order (FO) methods due to 080

the bias and variance of ZO gradient estimation. In 081

this paper, we show that a quantized zeroth-order 082
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Figure 1: The proposed QuZO provides higher fine-
tuning accuracy than first-order (FO) methods in ultra-
low precision on the RoBERTa-Large model.

optimizer (QuZO) can achieve better accuracy than083

its first-order counterparts in a low-precision set-084

ting. Fig. 1 shows that both the QuZO and FO meth-085

ods experience accuracy drops as the quantization086

precision decreases, which is expected. However,087

QuZO consistently outperforms FO methods when088

the quantization precision is INT8 or below. Un-089

like traditional FO quantized training that depends090

on the STE (Yin et al., 2019)-based BP method, our091

QuZO optimizer is more resistant to quantization092

error. Our contributions are summarized below.093

• We identify the challenge of naive quantized ZO094

training, and propose a stochastic quantized per-095

turbation method with theoretical soundness to096

reduce bias in quantized ZO gradient estimation.097

• We introduce the implementation of QuZO as a098

plugin that integrates seamlessly with a quantized099

LLM inference engine, enabling accurate fine-100

tuning of low-bit LMs without backpropagation.101

• We provide detailed numerical analysis about102

the proposed gradient estimator and the QuZO103

training framework. We show the benefit of our104

quantized ZO gradient estimator and the better105

training behavior of QuZO in low-bit LLM fine-106

tuning (especially INT4-format trainig).107

• We apply QuZO to fine-tune 4/8-bit LLMs us-108

ing both full-model fine-tuning and Low-Rank109

Adaptation (LoRA). QuZO achieves much better110

accuracy than quantized first-order training while111

reducing the memory cost by 1.4×−2.94×.112

2 Related Work113

Zeroth-order method. Zeroth-order (ZO) opti-114

mization methods estimate gradients using only115

forward passes, thereby avoiding the need for back-116

propagation and significantly reducing memory117

consumption compared to first-order (FO) meth-118

ods. MeZO (Malladi et al., 2024) employs a119

memory-efficient ZO stochastic gradient descent120

(ZO-SGD) algorithm to fine-tune large language 121

models (LLMs), leveraging parameter-efficient tun- 122

ing methods such as LoRA (Yang et al., 2024b; 123

Liu et al., 2022). However, MeZO does not con- 124

sider low-bit model training or quantized pertur- 125

bations, where naïve quantization often results in 126

significant performance degradation. This limits 127

its applicability in resource-constrained hardware 128

scenarios that require both training and inference 129

under low-precision constraints. Other ZO meth- 130

ods include ZO-SGD (Ghadimi and Lan, 2013) and 131

ZO-Sign-SGD (Liu et al., 2018) using sign-based 132

gradient estimation, the ZO-Adam (Chen et al., 133

2019) optimizer exploiting momentum informa- 134

tion, and parameter-efficient methods like AdaZeta 135

(Yang et al., 2024a). FP16 ZO training (Zhang 136

et al., 2024) performs well but still faces memory 137

bottlenecks. Recent ZO quantization introduces 138

fixed-point 16-bit but fails at 8-bit (Feng et al., 139

2024). However, we overcome the challenges of 140

lower-precision quantization and enable accurate 141

fine-tuning of LLMs below 8-bit quantization. 142

Quantization of LLMs. Various quantiza- 143

tion methods have been developed to reduce 144

the memory and computing cost of LLMs. 145

LLM.int8() (Dettmers et al., 2022) reduces 146

the precision of model weights while keeping 147

outliers in FP16. SmoothQuant (Xiao et al., 148

2023) introduces a fine-grained quantization 149

method that supports INT8 operations exclusively. 150

QLLM (Liu et al., 2023a) addresses the outlier 151

problem via employing an adaptive channel 152

reassembly technique. LLM-QAT (Liu et al., 153

2023c) employs Quantization-Aware Training 154

(QAT) with a data-free strategy to achieve 4-bit 155

quantization. Furthermore, the QuIP (Chee et al., 156

2023) and QLoRA (Dettmers et al., 2024) methods 157

leverage a Hadamard Transform and a novel NF4 158

datatype, respectively, to accelerate training while 159

preserving performance. While prior quantized 160

training methods rely on backpropagation for 161

gradient updates, our QuZO method eliminates 162

the STE-based backpropagation and uses low-bit 163

inference for truly quantized fine-tuning. 164

3 The QuZO Fine-Tuning Method 165

We start with a high-level introduction to our QuZO 166

framework. Given a quantized LLM inference 167

model, QuZO uses a low-bit ZO optimizer to 168

update quantized model parameters directly dur- 169

ing training. We assume that the forward pass 170
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Figure 2: Computational graphs for quantized first-order (FO) and zeroth-order (ZO) training.

xl = F(xl−1, w̄l) computes the output of the l-171

th layer using the quantized weight matrix w̄l and172

the previous-layer feature xl−1, as shown in Fig. 2173

(b). With just a few forward passes, our QuZO174

framework uses quantized RGE (see Section 3.2)175

to estimate ZO gradients, eliminating the need for176

BP in model updates. This approach fundamen-177

tally differs from existing quantized training meth-178

ods shown in FigFig. 2 (a), which uses STE in179

the BP to approximate quantized gradient ∂L(w̄)
∂w̄l

.180

Our method avoids the straight-through estimator181

(STE) (Yin et al., 2019) used in truly quantized182

FO training, enabling high-accuracy training on a183

low-precision hardware platform.184

In the following, we first show the challenges of185

ZO-SGD in the quantized setting, and then propose186

a solution to address this fundamental challenge.187

3.1 Challenges of Quantized ZO Training188

Standard ZO-SGD uses a randomized gradi-189

ent estimator (RGE) (Nesterov and Spokoiny,190

2017; Ghadimi and Lan, 2013) to approximate191

a full-precision gradient. Specifically, given full-192

precision model parameters w ∈ Rd, a loss func-193

tion L(w,B) and a minibatch of dataset B, RGE194

computes the gradient as:195

∇L̂(w) =
n∑

i=1

LB(w + ϵui)− LB(w − ϵui)

2nϵ
ui196

≈ 1

n

n∑
i=1

uiu
T
i ∇LB(w), (1)197

where ϵ is a scaling factor, {ui}ni=1 are i.i.d.198

samples drawn from certain distributions with a199

unit variance (e.g., a standard Gaussian distribu-200

tion). While ∇L̂(w) differs from the true gradient201

∇LB(w), its expectation serves as a good gradient202

estimator because203

E
[
∇L̂(w)

]
≈ 1

n

n∑
i=1

E
(
uiu

T
i

)
∇LB(w)204

= ∇LB(w). (2)205

This statistical property ensures the asymptotical 206

convergence of ZO-SGD. Assuming the quantized 207

model parameters w̄ are available and only low- 208

precision hardware is used for inference, the full- 209

precision random perturbation ui cannot be directly 210

applied to w̄ due to hardware limitations. To ad- 211

dress this, ui is replaced with its quantized counter- 212

part ûi = Q(ui), leading to a low-precision RGE: 213

∇L̂(w̄) =
n∑

i=1

LB (w̄ + ϵûi)− LB (w̄ − ϵûi)

2nϵ
ûi 214

≈ 1

n

n∑
i=1

ûiû
T
i ∇LB(w̄). (3) 215

Taking the exception values on both sides, we have 216

E
[
∇L̂(w̄)

]
≈ 1

n

n∑
i=1

E
(
ûiû

T
i

)
∇LB(w̄) 217

̸= ∇LB(w̄) (4) 218

Since the quantized perturbation ûi = Q(ui) no 219

longer maintains a unit variance, the above naive 220

quantized RGE introduces bias during fine-tuning 221

and may lead to divergence in training. 222

3.2 Proposed Quantized RGE 223

We propose a new quantized RGE scheme to ad- 224

dress the challenge in the previous subsection. 225

Stochastic Quantization of ui. We first define a 226

quantization operation of Q(ui) based on stochas- 227

tic rounding (Connolly et al., 2021): 228

Q(ui) = clamp
(
SQ,Lmin, Lmax

)
+ z0, 229

SQ =
(
⌊suui⌋+ Ber(suui − ⌊suui⌋) (5) 230

The stochastic quantization formula Q(ui) con- 231

verts the perturbation ui into a low-bit representa- 232

tion by scaling it with a factor su as suui, perform- 233

ing a downward rounding operation ⌊suui⌋, and 234

applying stochastic up-rounding using a Bernoulli 235

random variable Ber(suui − ⌊suui⌋). The result- 236

ing quantized value is clamped to the representable 237
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range [Lmin, Lmax] and shifted by the zero point z0.238

This stochastic rounding ensures that239

EQ [Q(ui)] = E [ui] . (6)240

We can produce two different quantization re-241

sults by using two random seeds in the stochastic242

rounding full-precision ui:243

ui,1 = Q1(ui) = Q(ui) with random seed i1;244

ui,2 = Q2(ui) = Q(ui) with random seed i2;245

ui,1 ̸= ui,2. (7)246

The above stochastic quantizations ensure that (1)247

the expectation of the quantized perturbations ui,1248

and ui,2 equals the original perturbation ui, (2)249

ui, 1 and ui,2 are conditionally independent to each250

other. As a result, we have251

EQ1(ui,1) = EQ2(ui,2) = ui,252

EQ1,Q2(ui,1u
T
i,2) = EQ1(ui,1)EQ2(u

T
i,2) = uiu

T
i .253

Our Quantized RGE. With the two condition-254

ally independent quantized vectors ui,1 and ui,2255

defined in Eq. (7), we propose the following quan-256

tized RGE:257

∇L̂(w̄) =
n∑

i=1

LB(w̄+ϵui,1)−LB(w̄−ϵui,1)
2nϵ ui,2 (8)258

As ϵ→ 0, the RGE result is259

∇L̂(w̄) ≈ 1

n

n∑
i=1

ui,1u
T
i,2∇LB(w̄). (9)260

The estimation results depend on three random vec-261

tors and functions: ui, Q1 and Q2. Taking expecta-262

tion values on both sides of Eq. (9), we have263

E
[
∇L̂(w̄)

]
≈ 1

n

n∑
i=1

Eui,Q1,Q2

[
ui,1u

T
i,2

]
∇LB(w̄)264

=
1

n

n∑
i=1

Eui

[
EQ1,Q2

[
ui,1u

T
i,2

]]
∇LB(w̄)265

=
1

n

n∑
i=1

E
(
uiu

T
i

)
∇LB(w̄)266

= ∇LB(w̄). (10)267

The expectation value of our quantized RGE re-268

mains a reliable estimator of the true gradient,269

which is similar to the full-precision RGE. This270

indicates that our proposed RGE will ensure asymp-271

totical convergence as in a full-precision ZO272

method. This theoretical property ensures excellent273

training performance even in low-precision settings274

(e.g. INT8 and INT4).275

3.3 Implementation of QuZO 276

Now we present the details of the implementation 277

of the QuZO framework. 278

Quantized Model Updates. Recall that in full- 279

precision ZO-SGD, the gradient is computed in (1), 280

and the model parameters are updated as 281

wt+1 = wt − ηt · ∇L̂(wt) (11) 282

where wt represents the model parameters at itera- 283

tion t, ηt is the learning rate and ∇L̂(wt) denotes 284

the estimated gradient of the loss function. Since 285

wt ≈ sww̄t, and sw is a scaling factor used in 286

the quantization w̄t = Q (wt/sw), with Q[·] repre- 287

senting the stochastic quantization applied to the 288

parameters. This approximation suggests: 289

wt+1 ≈ sw

[
w̄t − ηt · ∇L̂(w̄t)

]
(12) 290

To achieve a truly quantized training process suit- 291

able for low-precision hardware, the model param- 292

eters are updated as: 293

w̄t+1 = w̄t −Q
[
ηt · ∇L̂(w̄t)

]
. (13) 294

To refine the update process, multiple steps can be 295

used. For each query i, we compute 296

µi =
LB(w̄ + ϵui,1)− LB(w̄ − ϵui,1)

2ϵ
. (14) 297

Then the quantized model W̄ is updated as 298

w̄t+1 = w̄t −
n∑

i=1

Q
(ηtµi

n
ui,2

)
. (15) 299

Here ui,2 is a second quantized version of ui as 300

explained in Eq. (7). Stochastic rounding Q[·] en- 301

sures that no additional bias will be introduced 302

when we update the LLM parameters directly at 303

low precision. 304

Algorithm Flow. The pseudo codes of QuZO 305

are summarized in Algorithm 1. For each query 306

i, two forward passes are performed to determine 307

the sensitivity (µi) of the loss function with respect 308

to a quantized perturbation direction ui,1 (lines 309

5-11). The resulting low-precision gradient asso- 310

ciated with each inquiry is obtained by quantiz- 311

ing a scaled version of ui,2, where the sensitivity 312

(µi), the learning rate ηt, and the sample size n are 313

taken into account. This low-precision ZO gradient 314

allows us to directly update the quantized LLM 315

model parameters with low-precision hardware. 316
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Algorithm 1 QuZO: Quantized Zeroth-Order Training

Require: LLM model parameters w ∈ Rd, learning rate ηt, T is the step, perturbation scaling factor ϵ and dataset B.
1: Initial Pre-trained Model to Quantized Model or directly load a quantized model.
2: w̄ = Q(w) � Optionally, quantize the model if starting with a full-precision model
3: for t in T do
4: for i in n do
5: ui,1 ← Q1(ui),ui ∼ N (0, Id) � Quantize the perturbation ui with a random seed i1
6: ui,2 ← Q2(ui) � Quantize the perturbation ui with a random seed i2
7: w̄t ← w̄t + ϵ · ui,1 � Low-bit stochastic perturbation updates w̄t using positive scaling
8: Li

1 ← F(w̄t,B) � First zeroth-order forward pass
9: w̄t ← w̄t − 2ϵ · ui,1 � Low-bit stochastic perturbation updates w̄t using negative scaling

10: Li
2 ← F(w̄t,B) � Second zeroth-order forward pass

11: µi ← (Li
1 − Li

2)/(2ϵ) � Sensitivity w.r.t. the quantized perturbation
12: w̄t ← w̄t + ϵ · ui,1 � Recover w̄t to its original state
13: w̄t+1 ← w̄t −Q( ηtµi

n
ui,2) � Quantized LLM model update

14: end for
15: end for
16: return w̄ � Return a quantized model

QuZO for LoRA. We can extend the QuZO317

framework by incorporating low-rank adaptation318

to allow low-precision parameter-efficient fine-319

tuning. Our approach uses the model quantization320

strategies of QLoRA (Dettmers et al., 2024) and321

LLM.int8() (Dettmers et al., 2022) without modi-322

fying the quantized model. QuZO significantly re-323

duces memory overhead by eliminating the storage324

of FO optimizer states and updating only the low-325

rank trainable matrices A ∈ Rd×r and B ∈ Rr×d326

using forward passes. In QuZO fine-tuning, the327

model parameters are quantized and frozen at low328

precision (e.g. 4 or 8 bits), and we update solely329

on the low-rank matrices A and B. The trainable330

low-rank matrices are quantized (denoted as Q[A]331

and Q[B]) in order to match the precision of the332

LLM . By doing so QuZO training can significantly333

further reduce the memory cost compared to tradi-334

tional LoRA for 4/8-bit LLM fine-tuning.335

3.4 QuZO Analysis336

In this subsection, we analyze the quality of gradi-337

ent estimation in QuZO and its impact to training.338

QuZO Gradient Quality. We use a simple339

encoder-block transformer to analyze the asymp-340

totic behavior of two quantized ZO gradient esti-341

mators. Q-RGE1 refers to the quantized estimate342

in Eq. (3), and Q-RGE2 denotes our proposed es-343

timation in Eq. (8). Although we need only a few344

inquiries to compute actual ZO gradients, the sta-345

tistical behavior of a gradient (rather than the value346

of the individual gradient) decides the training per-347

formance. To verify statistical asymptotic behavior,348

we set n = 1000 to perform a Monte Carlo com-349

putation to get empirical mean values of Q-RGE1350

and Q-RGE2, and then compare them with a full-351
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Figure 3: (a) Errors of quantized gradient estimation Q-
RGE1 in Eq. (3) and our proposed Q-RGE2 in Eq. (8).
(b) Training loss of low-precision ZO optimizer with
these two quantized gradient estimators, respectively.

precision ZO gradient via the ℓ2 error. As shown 352

in Fig. 3 (a), the expected values of both quantized 353

estimators have larger errors as the precision re- 354

duces from INT8 to INT3. However, our method 355

(Q-RGE2) is much more resilient to quantization er- 356

rors and has a more accurate expected value, since 357

our quantized ZO gradient estimator can avoid the 358

additional bias caused by quantization. 359

Training Behavior. Figure 3 (b) further shows 360

the training behavior of quantized ZO optimiza- 361

tion using these two gradient estimators when fine- 362

tuning the OPT-1.3B model. Experiments are per- 363

formed on the DROP dataset under 8-bit and 4- 364

bit settings. We observe that our QuZO with Q- 365

RGE2 shows slightly better convergence compared 366

to quantized training using Q-RGE1 in the 8-bit 367

setting. In 4-bit training, our method demonstrates 368

a stable and significantly better training behavior: 369

it achieves a loss similar to 8-bit training, while 370

INT 4 Q-RGE1 causes convergence failures. The 371

above analysis clearly demonstrates the better nu- 372

merical performance of our QuZO in low-bit LLM 373

fine-tuning. 374
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Figure 4: Experimental findings on RoBERTa-large (350M parameters) with prompts reveal that QuZO, leveraging
full-parameter tuning, starts to surpass FO and LLM-QAT as precision reduces to INT8 or below.

Table 1: Results of low-bit LLM LoRA Fine-Tuning with quantized gradient updates.

Model Methods Gradient MultiRC ReCoRD SQuAD DROP

8bit LLaMa3-8B
FO INT8 51.20 83.80 76.40 58.40

MeZO FP32 60.60 83.50 65.64 31.20
QuZO INT8 61.20 83.60 83.60 52.29

8bit Mistral-7B
FO INT8 82.60 80.10 84.03 44.52

MeZO FP32 81.70 78.60 63.41 26.19
QuZO INT8 85.50 79.00 87.08 49.69

4bit LLaMa3-8B
FO INT4 41.50 83.50 77.00 25.48

MeZO FP32 61.60 83.30 64.72 30.87
QuZO INT4 64.70 83.70 80.76 44.15

4bit Mistral-7B
FO INT4 49.80 78.80 80.12 31.05

MeZO FP32 48.80 74.50 56.97 23.92
QuZO INT4 50.00 82.60 84.27 45.13

4 Experiments375

In this section, we evaluate the proposed QuZO376

method on several language models (LMs) with377

4-8 bit precision. QuZO demonstrates performance378

comparable to or better than standard first-order379

(FO) truly quantized training across various model380

sizes and tasks, with significantly lower memory381

usage. We also explore fine-tuning quantized mod-382

els by combining QLoRA (Dettmers et al., 2024)383

with QuZO. For hardware costs, QuZO employs384

a forward-only framework with hardware require-385

ments similar to post-training quantization. In Sec-386

tion 4.3, we compare the memory consumption387

between truly quantized FO training and QuZO.388

Furthermore, we employ both medium-size models389

(e.g. RoBERTa-Large (Liu et al., 2019)) and large390

decoder-based LMs, including OPT 1.3B (Zhang391

et al., 2022a) and LLaMa-2 7B (Touvron et al.,392

2023) LLaMa-3 8B and Mistral-v0.3-7B (Chaplot,393

2023) in few-shot settings. Specifically, we evalu-394

ated PIQA (Bisk et al., 2020), ARC (Clark et al.,395

2018), HellaSwag (HS) (Zellers et al., 2019), and396

WinoGrande (WG) (Sakaguchi et al., 2021) with397

lm eval framework. All experiments were carried398

out on NVIDIA A100-40GB GPUs. The details of399

the experimental setup are in Appendix A.400

4.1 Low-Bit LLM Fine-Tuning 401

Parameter-efficient fine-tuning methods like 402

QLoRA (Dettmers et al., 2024) reduce memory 403

usage with 4-bit precision compared to standard 404

training but still rely on AdamW (Loshchilov, 405

2017), which requires backpropagation. QuZO 406

improves inference efficiency and memory savings, 407

achieving a 5.47× reduction in maximum memory 408

cost compared to QLoRA in fine-tuning the 4-bit 409

OPT-1.3B model (details in Appendix C). 410

Our QuZO framework applies the LoRA (rank 411

set as 8), allowing fine-tuning with far fewer train- 412

able parameters than full-model tuning, signifi- 413

cantly reducing memory consumption, and accel- 414

erating convergence. Table 1 highlights the per- 415

formance of QuZO with low-bit perturbation and 416

gradient configurations for different tasks and mod- 417

els. For the LLaMa3-8B model, QuZO utilizes 418

INT8 RGE gradients with INT4 perturbations. De- 419

spite the introduction of low-bit gradients, QuZO 420

achieves competitive or superior performance com- 421

pared to full-precision MeZO with LoRA in most 422

tasks and demonstrates strong robustness in 4-bit 423

fine-tuning, while truly quantized FO shows poor 424

accuracy in 4-bit training. For the Mistral-7B-v0.3 425

model, QuZO delivers the best performance on 426

3 out of 4 tasks, improving over FO by 3.05 on 427
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Table 2: Zero-shot accuracy (%) on five commonsense reasoning tasks. Note : WaAb quantization, which refer to
a-bit weight quantization and b-bit activation quantization.

Model Quantization Method PIQA ARC-e ARC-c HS WG Avg.

LLaMA-3 8B

FP16 Baseline 79.05 80.10 50.40 60.20 72.80 68.6

W8A8 SmoothQuant 79.50 79.70 49.00 60.00 73.20 68.30
W4A16 RTN 76.6 70.10 45.00 56.80 71.00 63.90
W4A16 AWQ 79.10 79.70 49.30 59.10 74.00 68.20
W4A16 QuIP 78.20 78.20 47.40 58.60 73.20 67.10
W4A8 QServe 79.21 79.20 49.61 59.31 73.02 68.07
W8A8 QuZO 78.74 80.03 50.06 59.34 74.03 68.43

W4A16 QuZO 79.86 79.13 49.59 59.13 74.26 68.39

Table 3: QuZO demonstrates superior performance in full-parameter fine-tuning of LLaMa-2 7B.

LLaMa-2 7B Model Classification Multiple-Choise Generation
Data Precision Method RTE WSC MultiRC COPA ReCoRD SQuAD DROP

FP FO 63.73 63.46 65.10 86.00 81.00 90.71 51.38
W16A32 MeZO 54.60 58.80 62.60 82.70 70.80 72.50 46.80

FP FO 63.90 49.00 58.00 79.00 72.50 72.68 23.46
W8A8 QuZO 55.59 65.38 57.10 80.00 76.80 76.38 30.17

FO 52.34 61.53 50.60 62.00 74.83 70.13 20.06
INT SmoothQuant 66.78 59.51 61.50 72.02 79.10 73.07 29.94

W8A8 LLM.int8() 62.56 57.75 55.61 80.02 80.61 76.34 20.15
QuZO 61.01 63.46 60.00 81.00 79.00 77.71 30.11

FO 47.29 60.57 51.90 62.04 73.21 30.01 10.06
INT/FP MinMax 59.91 41.28 53.21 82.51 80.97 50.07 24.71
W4A8 LLM-FP4 66.82 61.38 58.81 82.90 81.25 51.07 24.99

QuZO 64.57 62.28 60.60 80.01 78.20 68.12 25.10

SQuAD and 2.9 on MultiRC. In the more challeng-428

ing 4-bit setting, QuZO demonstrates notable ro-429

bustness, with all perturbation precisions matching430

the gradient precision as shown in the Table 1. On431

Mistral-7B, QuZO again consistently outperforms432

both FO and MeZO, especially on SQuAD and433

DROP. This result shows that the low-bit stochas-434

tic perturbation of QuZO maintains comparable435

inference cost while mitigating quantization errors.436

LLM Zero-Shot Reasoning. We evaluate QuZO437

on five widely-used commonsense reasoning438

benchmarks under the zero-shot setting using the439

LLaMA-3 8B model fine-tuned with our method.440

To ensure a fair comparison with recent quan-441

tization works (e.g., QServe (Lin et al., 2024),442

AWQ (Lin et al., 2023)) in Table 2, we adopt 4-443

bit and 8-bit precision. QuZO consistently outper-444

forms other methods, achieving up to a 4.49% gain445

in average accuracy. Compared to the FP16 base-446

line, QuZO incurs only a marginal drop of 0.17%447

(W8A8) and 0.21% (W4A16), demonstrating its448

effectiveness under low-bit quantization settings.449

4.2 Full-Parameter Quantized Fine Tuning450

We summarize our experiments on full-parameter451

fine-tuning for medium- and large-scale models.452

These results demonstrate that QuZO provides 453

a practical approach for accurate fine-tuning of 454

quantized LLMs directly on low-precision hard- 455

ware, maintaining. For medium-scale models like 456

RoBERTa-Large, QuZO surpasses truly quantized 457

FO fine-tuning in most tasks in the 4-bit precision. 458

For large-scale models such as LLaMA-2, QuZO 459

achieves performance comparable to or better than 460

truly quantized FO fine-tuning, particularly under 461

ultra-low bit configurations. These findings high- 462

light the ability of QuZO to enable low-cost hard- 463

ware training without compromising performance. 464

Performance on the RoBERTa-Large model. 465

We evaluate the performance of various methods in 466

the SST-2, SNLI, SST-5, RTE, and MNLI datasets 467

and on the RoBERTa-Large model. The results in 468

Fig. 4 leads to the following observations: 469

• As expected, all training methods experience 470

accuracy decline as quantization precision de- 471

creases. This occurs because the model expres- 472

sive power declines and the optimization be- 473

comes more challenging in lower precision. 474

• The performance of fully quantized FO fine- 475

tuning drops most significantly due to the increas- 476

ing errors in the straight-through estimators as 477

precision decreases. 478
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• QAT partially mitigates the accuracy drop of479

fully quantized FO training but still relies on480

backpropagation and full-precision updates, mak-481

ing it memory-intensive and less suited for low-482

precision hardware.483

• In contrast, the performance of QuZO is most re-484

silient to the decreased precision, and it works485

the best in a very low-precision (e.g., INT4).486

This is because (1) QuZO can bypass the error-487

prone straight-through estimator that is used in488

fully quantized FO training, and (2) the quantized489

RGE in Eqn.(8) can eliminate the bias caused by490

quantized perturbations.491

Performance of QuZO on LLaMA Models. We492

further apply QuZO to fine-tune the LLaMa-2493

model, evaluating it on SuperGLUE (Wang et al.,494

2019) and generation tasks. Table 3 shows that495

QuZO outperforms its truly quantized FO coun-496

terparts on all multichoice and generation tasks497

under FP W8A8 quantization (i.e. FP8 for both498

weights and activations). Under the INT W8A8499

quantization, QuZO outperforms SmoothQuant,500

LLM.int8(), and truly quantized FO methods in501

4 out of 7 tasks. For 4-bit quantized FO train-502

ing, uniform quantization yields the worst accu-503

racy, but advanced methods such as LLM-FP4 im-504

prove performance. LLM-FP4 (Liu et al., 2023b)505

and its baseline MinMax use FP W4A8 quantiza-506

tion and achieve a slight improvement in accuracy,507

particularly for multichoice tasks. QuZO demon-508

strates strong performance under W4A8 quantiza-509

tion, achieving the best results in 4 out of 7 tasks. In510

contrast, SmoothQuant, LLM.int8() and LLM-FP4511

improve accuracy through efficient quantization512

but remain memory-intensive due to their reliance513

on first-order optimizers for fine-tuning.514

4.3 Memory Efficiency515

We further compare the empirical memory costs516

of full fine-tuning the LLaMA-2 7B model in Ta-517

ble 4. Specifically, in the MultiRC task, QuZO518

(8-bit) reduces memory usage by 1.43×compared519

to their truly quantized FO counterparts. Simi-520

larly, in the SQuAD task, QuZO (4-bit) achieves a521

2.89× reduction relative to FO-SGD at the same522

precision. We follow Table 13 (see Appendix C)523

from (Zhang et al., 2024) to provide a theoreti-524

cal analysis of different optimizers. Furthermore,525

QuZO reduces 2 − 5.47× memory consumption526
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Figure 5: Peak memory usage of FP16 and INT8 train-
ing on the OPT 1.3B/2.7B model with sequence lengths
of 512 (left) and 1024 (right).

Table 4: Total memory consumption (GB) for different
optimizers on LLaMa-2 7B.

Method MultiRC (GB) SQuAD (GB)
FO-SGD (8-bit) 11.66 21.29
FO-SGD (4-bit) 6.28 10.73
QuZO (8-bit) 8.15 7.24
QuZO (4-bit) 4.52 3.71

compared to fully quantized FO methods in Ta- 527

ble 14. A detailed memory efficiency analysis is 528

included in Appendix C, where our QuZO demon- 529

strates significant memory savings compared to 530

truly quantized FO fine-tuning at the low precision. 531

To verify hardware efficiency, we profile the 532

memory usage of our QuZO method with INT8 533

CUDA kernels, comparing it to the peak mem- 534

ory consumption of INT8 and FP16 tensor-core 535

GEMM implementations in full parameter tuning. 536

In practice, QuZO achieves up to a 7.8× memory 537

reduction with an INT8 model compared to the 538

first-order FP16 trainning, as shown in Fig 5. 539

5 Conclusion 540

This work has proposed a Quantized Zeroth-Order 541

(QuZO) method for truly qantized training of 542

LLMs without using back propagation. We have 543

identified the challenge of quantized ZO training, 544

and proposed a new quantized ZO gradient to mit- 545

igate the bias in low-precision settings. QuZO 546

eliminates the need for first-order optimizers such 547

as Adam or SGD, as it relies on gradient-free up- 548

dates derived from forward passes. The superior 549

performance of QuZO in low-bit (e.g., INT8 and 550

INT4) training has been shown by a variety of fine- 551

tuning experiments on the LLaMA2/3 and Mistral- 552

7B models. Our QuZO method is intrinsically 553

hardware efficient for fine-tuning LLMs on low- 554

bit resource-constrained hardware. 555
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Limitations556

The presented QuZO method can significantly im-557

pact practical LLM deployment. We have not yet558

implemented the real quantized training framework559

using low-precision kernels during training, as this560

requires much engineering effort. For instance,561

adding a minimal hardware block to an LLM in-562

ference accelerator can enable resource-efficient563

fine-tuning, making on-device learning of LLMs564

accessible and affordable for many downstream565

users. Additionally, QuZO can greatly reduce the566

latency and energy cost of fine-tuning due to its ca-567

pability to directly use an ultra low-bit LLM infer-568

ence accelerator. This will enable the deployment569

of LLMs in many resource-constrained scenarios,570

such as autonomous systems and robots.571
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Appendix904

A Experiments Setup905

We first conduct experiments with RoBERTa-large906

on sentiment classification and natural language907

classification tasks. We follow prior works (Mal-908

ladi et al., 2024) in low data resource settings which909

can be sampling k examples per class for k = 16910

or 512. QuZO is running for 100k steps and the911

first order fine-tuning for 5 epochs. We also con-912

ducted experiments on a smaller set of tasks (Wang913

et al., 2018a) that includes entailment, span sen-914

timent analysis, and topic classification. These915

tasks include perceptual analysis (SST-2 and SST-916

5 (Socher et al., 2013)), Question Classification917

(TREC (Hovy et al., 2001)), and natural language918

reasoning (MNLI, SNLI, and RTE (Bowman et al.,919

2015; Williams et al., 2017; Rajpurkar et al., 2018)).920

The metrics we used for the GLUE benchmark are921

summarized in Table 5.

Table 5: Metrics that we use to evaluate GLUE Bench-
mark for BERT-based Model.

Task Name Metric

SST-2 Accuracy
SST-5 Accuracy
MNLI Matched Acc.
SNLI Accuracy
TREC Accuracy
RTE Accuracy

922

Subsequently, we selected several SuperGLUE923

tasks (Wang et al., 2019), encompassing classi-924

fication (CB, BoolQ, WSC) and multiple-choice925

(COPA and ReCoRD), alongside two additional926

question-answering tasks (SQuAD (Rajpurkar927

et al., 2016) and DROP (Dua et al., 2019)). To928

intensify the challenge, we operated under the few-929

shot setting, randomly sampling 1,000 examples930

for training, 500 for validation, and 1,000 for test-931

ing. We followed the prompt settings outlined in932

Appendix D of the MeZO (Malladi et al., 2024) to933

adapt classification tasks into language model tasks.934

The evaluation metrics used are summarized in Ta-935

ble 6. All experiments were conducted using the936

AdamW optimizer (Loshchilov and Hutter, 2018).937

A.1 Hyperparameters938

As observed in some LLM fine-tuning literature,939

zeroth-order (ZO) optimization typically shows940

consistent performance improvement with training941

Table 6: Metrics that we use to evaluate SuperGLUE
and generations tasks.

Task Name Metric

CB F1
BoolQ Accuracy
WSC F1
COPA Accuracy

ReCoRD F1
SQuAD F1
DROP F1

Table 7: The hyperparameter grids used for RoBERTa-
Large experiments.

Experiment Hyperparameters Values

FO Batch size [8, 16]
Learning rate 1e− 5, 1e− 6

LLM-QAT Batch size [8, 16]
Learning rate 5e− 6

QuZO Batch size [16, 64]
Learning rate 1e− 6, 1e− 7

ϵ 1e− 5
Weight Decay 0, 0.1

steps. However, the number of forward passes 942

significantly affects computational costs. To 943

optimize resource usage, we limit the training 944

steps to 10k for the RoBERTa-Large model on the 945

SST-2, SST-5, TREC, MNLI, and SNLI datasets. 946

In Table 7, our method primarily use a batch size 947

of 64 and experiment with different learning rates 948

for RoBERTa-Large fine-tuning (Fig. 4). Since 949

first-order (FO)-based methods use the Adam 950

optimizer, both FO and LLM-QAT (Liu et al., 951

2023c) experiments utilize smaller batch sizes 952

and larger learning rates compared to ZO tuning. 953

We use the hyperparameters in Table 7 for the 954

RoBERTa-Large model. Note that even though we 955

run all experiments for 5 epochs, further learning 956

steps may help to improve the performance of our 957

proposed methods further. 958

959

Regarding the LLaMa-2 7B model, we use 960

the hyperparameters in Table 8. We evaluate 961

the model for around 10-12k training steps and 962

directly use the last checkpoint for evaluation. All 963

first-order (FO) quantization training experiments 964

train for 5 epochs and all QuZO experiments use 965

12K steps. 966
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Table 8: The hyperparameter grids used for LLaMA-2
experiments.

Experiment Hyperparameters Values

QLoRA Batch size [2, 4, 8, 16]
Learning rate 1e− 5, 5e− 6, 5e− 7

LLM.int8() Batch size [2, 4, 8, 16]
Learning rate 1e− 5, 5e− 6, 5e− 7

MeZO Batch size [8, 16]
Learning rate 1e− 4, 5e− 5, 5e− 6

QuZO Batch size [4, 8, 16]
Learning rate 1e− 4, 5e− 5, 5e− 6

Modeling and implementation The model and967

prompt-tuning process follows a structured ap-968

proach tailored for RoBERTa-large, OPT, and969

LLaMa-2 models across various tasks. For970

RoBERTa, a masked language model (MLM) fine-971

tuning paradigm is used, where prompts incor-972

porate [MASK] tokens that the model learns to973

predict, with specific label word mappings defin-974

ing classification outputs. Tasks such as sen-975

timent classification (SST-2, SST-5), topic clas-976

sification (TREC), and natural language infer-977

ence (MNLI, SNLI, RTE) utilize template-based978

prompts adapted from prior works (Gao et al.,979

2021).980

For OPT and LLaMa-2, the tuning process fol-981

lows GPT-3-style prompting (Brown et al., 2020b)982

and encompasses three task categories: classifi-983

cation, multiple-choice, and question answering984

(QA). Classification tasks rely on cross entropy985

loss for label prediction, while multiple-choice and986

QA tasks utilize teacher forcing to train on cor-987

rect outputs. During inference, classification and988

multiple-choice predictions are determined using989

the average log-likelihood per token, whereas QA990

responses are generated through greedy decoding.991

Additionally, in-context learning with 32-shot ex-992

amples is employed to maintain stable results.993

For classification tasks, RoBERTa uses linear prob-994

ing, while OPT and LLaMa employ LM head tun-995

ing to refine task-specific representations. This996

fine-tuning framework ensures consistent evalua-997

tion across datasets and models, leveraging struc-998

tured prompts to enhance adaptability in both low-999

data and fully supervised settings.1000

Full Parameter Tuning Performance of QuZO1001

on OPT Models We further evaluate our method1002

on the OPT-1.3B model using quantization-aware1003

training. The activation functions of OPT models1004

are generally more sensitive to quantization errors1005

compared to the LLaMA model, posing some chal- 1006

lenges for LLM quantization. In Table 9, our QuZO 1007

method outperforms quantization methods such as 1008

QLLM and SmoothQuant in 8 out of 11 tasks under 1009

the INT W8A8 quantization. 1010

B Quantization Methods 1011

In this section, we present our weight-activation 1012

quantization method. Since per-channel activa- 1013

tion quantization is incompatible with efficient 1014

GEMM kernels, we employ per-tensor static acti- 1015

vation quantization as our coarsest-grained quanti- 1016

zation method and per-channel weight quantization 1017

as our finer-grained quantization scheme. For post- 1018

training quantization (PTQ) methods, we adopt 1019

the quantization configuration from SmoothQuant 1020

and evaluate their W8A8 quantization under our 1021

low data resource setting. Additionally, we re- 1022

produce LLM-FP4 (Liu et al., 2023b) using their 1023

open-source codebases and evaluate the same tasks 1024

within their frameworks, noting that it requires sig- 1025

nificant time for datatype searching. To ensure a 1026

fair comparison, we reduce the calibration size to 1027

8. 1028

B.1 Weight-only Quantization 1029

Throughout this work, we focus initially on both 1030

weight and activation quantization. This approach 1031

can introduce significant quantization errors and 1032

lead to accuracy degradation. To address this, we 1033

further evaluate weight-only quantization on sev- 1034

eral tasks, as detailed in Table 10. Our findings 1035

indicate that weight-only quantization yields better 1036

performance compared to combined weight and 1037

activation quantization. There are some related 1038

work that only do weight quantization for LLMs 1039

(i.e GPTQ (Frantar et al., 2022)). But it converts 1040

the quantized weight to FP16 on the fly during 1041

inference and lead to speed up. 1042

B.2 Hybrid Datatype Support 1043

Mixed Datatypes Support. Assigning the same 1044

low-bit datatype to both weights and activations 1045

in QuZO can lead to accuracy degradation due to 1046

the limited precision of 4-bit integers compared 1047

to floating-point formats, with activation functions 1048

being particularly sensitive to quantization errors. 1049

While QLoRA introduced the NF4 datatype to mit- 1050

igate this issue, our QuZO framework takes it a 1051

step further by assessing quantization errors (Jung 1052

et al., 2019) for hybrid formats at the same preci- 1053

sion. This mixed-datatype fine-tuning in quantized 1054
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Table 9: Performance comparisons for weights and activations quantization on the OPT-1.3B model.

OPT-1.3B Model Classification Multiple-Choise Generation

Data Precision Method SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

QLLM 82.45 55.59 66.07 63.00 63.46 52.35 56.81 71.01 59.90 61.49 15.80
INT LLM.int8 53.66 53.79 41.07 46.32 42.31 58.46 45.72 75.00 70.22 67.14 10.33

W8A8 SmoothQuant 75.01 52.34 37.51 48.20 44.23 57.83 53.41 71.03 68.81 69.42 11.22
QuZO(FT) 91.38 55.61 67.85 62.30 63.46 60.03 55.91 74.00 70.81 73.88 21.82

Table 10: Weight-only Quantization experiments conducted on LLaMa-2 7B model.

LLaMa-2 7B Model Classification Multiple-Choise Generation

Data Precision Method SST-2 RTE CB BoolQ MultiRC COPA ReCoRD SQuAD DROP

INT-W4A32 QuZO(FT) 92.43 60.28 60.71 65.50 59.60 83.00 79.00 82.78 37.31
INT-W8A32 QuZO(FT) 92.77 62.81 71.42 64.00 60.70 83.00 81.00 80.93 40.25
FP-W8A32 QuZO(FT) 93.69 61.37 66.07 63.72 60.91 81.01 79.60 80.93 37.86

ZO training effectively preserves performance even1055

under 4-bit quantization. Existing works (Liu et al.,1056

2023c; Zhou et al., 2023) also incorporate this into1057

their quantization strategy but require customized1058

hardware to support the specific datatype. In our1059

quantization algorithm, we use a set of quantization1060

grids b = {b1, b2, . . . , bi} and apply the quantiza-1061

tion operation Qb(w) to map a full-precision scalar1062

w to a quantized value as follows:1063

Qb(w) = bi, i = argmin | w − bi | .1064

This notation indicates the parameter w is quan-1065

tized to the closest quantization grid point bi. We1066

denote the corresponding quantization error as1067

Eb(w) = Qb(w) − w. We use the mean squared1068

error (MSE) as the metric to calculate the quantiza-1069

tion loss:1070

MSE = E[(w −Qb(w))2] (16)1071

where w are the FP32 value, and p(w) stands for1072

the probability density function. The neural net-1073

work weights are a random variable w ∼ pw(w).1074

The quantization range is defined between bmin and1075

bmax. Our framework selects the data type that min-1076

imizes the MSE for each layer and executes the1077

searching algorithm only once before fine-tuning.1078

Based on our data-type search algorithm, we found1079

that INT quantization is more suitable for weight1080

quantization, offering better hardware efficiency.1081

On the other hand, FP quantization is primarily1082

chosen for activation quantization to maintain good1083

accuracy. This quantization selection offers a more1084

accurate QuZO fine-tuning process.1085

Underflow severely impacts low-bit quantization in1086

LLMs (Lee et al., 2023), associated with rounding 1087

zero values that further degrade model performance. 1088

Therefore, we propose a hybrid datatype search in 1089

Section 4.2 during quantized zeroth-order training, 1090

using existing data formats, including integers and 1091

floating-points, which are widely used in hardware 1092

platforms. We evaluate the LLaMA-2 model using 1093

the hybrid datatype detailed in Table 11. Through 1094

coarse layer-wise datatype selection, QuZO can 1095

boost around 1 to 2% average performance across 1096

these 11 tasks in both W4A8 and W8A8 quantiza- 1097

tion. 1098

B.3 Quantized Perturbation 1099

We now explore the ZO gradient quantization, 1100

which can accelerate model training without com- 1101

promising convergence. Using a fully quantized 1102

I-BERT (Kim et al., 2021) as an example, we as- 1103

sign low-bit perturbation to update the INT8 model, 1104

as shown in Table 12. The accuracy drop is less 1105

than 1%, but the memory reduction is around 4- 1106

16× for the random perturbation parameters. In the 1107

RoBERTa-Large model, we found that 2-bit per- 1108

turbation performs better, indicating that quantized 1109

perturbation does not significantly affect training 1110

performance. This is a huge benefit for ZO training 1111

since the perturbations are generated and calculated 1112

four times for one training step. Current works only 1113

focus on sparse parameter perturbations (Liu et al., 1114

2024) for reducing gradient estimation variance in 1115

RGE. It introduces the masks and applies them to 1116

weight perturbations per step. However, we now 1117

consider on hardware-efficient side and use low- 1118

precision weight perturbation to do ZO gradient 1119

estimation in LLM fine-tuning. We further analyze 1120
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Table 11: Compared to pure-INT or FP quantized zero-order training, our hybrid datatype (INT and FP) searching
algorithm boosts accuracy by 1-2% for most tasks on the LLaMa-2 7B model.

LLaMa-2 7B Model Classification Multiple-Choise Generation Avg
Method Datatype Precision SST-2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP Performance

QuZO(Ours) INT W4A8 89.10 54.87 62.50 66.60 64.42 57.99 60.60 83.00 78.20 78.12 31.80 66.10
QuZO(Ours) INT/FP W4A8 90.59 59.92 63.71 68.40 64.50 59.70 59.30 80.00 78.60 79.89 33.55 67.10
QuZO(Ours) INT W8A8 93.00 61.01 64.18 80.00 63.46 52.82 60.01 81.00 79.00 77.71 31.11 67.58
QuZO(Ours) INT/FP W8A8 93.08 65.95 64.28 81.10 64.57 55.17 60.11 83.00 79.60 80.74 36.58 69.47

Table 12: Evaluate the impact of low-bit perturbation on
QuZO training for SST-2 tasks using different models.

Model Model Precision Perturbation
(#bit) Performance

I-BERT INT W8A8 8 92.77
I-BERT INT W8A8 4 92.48
I-BERT INT W8A8 2 91.89

RoBERTa-Large INT W8A8 8 92.48
RoBERTa-Large INT W8A8 4 91.51
RoBERTa-Large INT W8A8 2 93.07

LLaMa-2 7B INT W4A8 8 91.32

the memory costs of the perturbation parameters1121

u ∈ Rd. At each step, QuZO reuses u four times1122

in Algorithm 1. We evaluated the quantized pertur-1123

bation experiments on the RoBERTa-Large model,1124

and it costs around 1.63 GB of memory to store1125

each u during one step. However, quantized per-1126

turbation would only cost 110 to 410 MB if we1127

quantize it to 2-bit or 8-bit, respectively. Since1128

these results are estimated based on the number of1129

perturbations and storage datatype, a real hardware1130

implementation is required to demonstrate the full1131

advantage. We will address this in future work.1132

Handling outliers. The outliers mainly occur in1133

the activations of transformers and can severely1134

degrade quantization performance if not addressed1135

efficiently (Liu et al., 2023c,a; Lin et al., 2023).1136

To simplify the quantization process without intro-1137

ducing overhead, we propose an outlier detector1138

that can distinguish outliers from normal values.1139

Our outlier detector can automatically select the1140

outlier threshold to determine a suitable ratio α1141

(Outliers/All data), which is normally around 1%.1142

We quantize the normal data using a pre-defined1143

quantization datatype and quantize the outlier data1144

using the same precision FP type. As a signed1145

INT8 quantization example, we designate the bi-1146

nary code 100000002 as an outlier label to identify1147

outlier values in the selected tensor array. Conse-1148

quently, the valid data range becomes [−127, 127],1149

and we utilize an 8-bit floating-point scheme with1150

adaptive biased bits to efficiently quantize these1151

outlier values. It enables efficient quantization of1152

LLMs across various hardware platforms such as1153

W32A32 W8A32 W8A8

Figure 6: The loss landscape of the RoBERTa-large
model under different quantization bits. The notations
W and A mean the bits for weights and activation.

CPU and FPGAs using the QuZO method. 1154

Loss Landscape. The effectiveness of ZO fine- 1155

tuning for LLMs arises from starting near the op- 1156

timal loss region. Theoretical analysis in (Malladi 1157

et al., 2024) [Lemma 3] links ZO convergence to 1158

the low effective rank of Hessian matrix. In quan- 1159

tized training, the Lipschitz smoothness constant L 1160

significantly impacts performance (Frumkin et al., 1161

2023). Fig. 6 (See Appendix B) demonstrates the 1162

stability of the smoothness of loss function across 1163

weight and activation quantization levels, under- 1164

scoring the effectiveness in low-bit ZO training. 1165

1166

B.4 ZO Gradient Accumulation 1167

Gradient accumulation is a technique for train- 1168

ing models where data samples are divided into 1169

several batches and calculated sequentially. To 1170

fine-tune large models on a single GPU, especially 1171

for datasets like DROP that require small batch 1172

sizes, we implemented a zeroth-order accumula- 1173

tion method for performing weight updates. Ini- 1174

tially, we calculate the gradient without updating 1175

the network parameters at each step, accumulating 1176

the projected gradient information. After reach- 1177

ing the predefined accumulation steps, the accu- 1178

mulated gradient is used to update the parameters. 1179

We also incorporate prevalent efficiency-enhancing 1180

tricks adopted in current zeroth-order optimizers, 1181

following the first-order approach to implement 1182

our zeroth-order method effectively. This approach 1183

allows efficient fine-tuning of large models on a 1184

single GPU, leveraging the advantages of gradient 1185

accumulation within a QuZO optimization frame- 1186

work. 1187
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Table 13: Comparison of peak memory consumption
during full-model fine-tuning. Note: model storage
(Weight Mem.) and dynamic allocations for gradients
(Dynamic Mem.). |w| and |a| denote memory usage for
model parameters and intermediate parameters, respec-
tively, with l representing a specific layer.

Method Weight Mem. Dynamic Mem
Full Precision Optimizer

FO-SGD |w|
∑

l max {|a|, |w|}
MeZO |w| maxl |w|

Optimizer with Low Precision Model
FO(8-bit) |w|/4

∑
l max { |a|

4 , |w|
4 }

FO(4-bit) |w|/8
∑

l max { |a|
8 , |w|

8 }
QuZO(8-bit) |w|/4 maxl

|w|
4

QuZO(4-bit) |w|/8 maxl
|w|
8

C Hardware Efficiency of QuZO1188

To demonstrate the hardware efficiency of QuZO,1189

we employ the Cutlass INT8 Kernel to showcase1190

memory efficiency. To fine-tune large models effi-1191

ciently with limited GPUs, we assess the first-order1192

(FO) method using Fully Sharded Data Parallelism1193

(FSDP) (Zhao et al., 2023) for distributed training.1194

Besides, We believe it can be further reduced if1195

we fully apply the INT engine in each linear and1196

non-linear layer. This could be our next step in1197

the CUDA optimization. Finally, we provide the1198

memory cost of our QuZO method using INT81199

CUDA kernels and compare it with the peak mem-1200

ory usage of INT8 and FP16 tensor-core GEMM1201

implementations on full parameter tuning. As the1202

batch size increases from 1 to 32, the memory re-1203

duction reaches up to 7.8× when running with an1204

INT8 model compared to FP16 training in Fig. 5.

Table 14: Memory Consumption (GB) Across Mod-
els and Methods for Five Tasks. This table compares
the memory requirements of different methods (e.g.,
LLM.int8, QuZO, and QLoRA) across various tasks
using two models: OPT1.3B and LLaMa-2 7B. The
QuZO method demonstrates significantly lower mem-
ory consumption across all models, while LLM.int8()
encounters Out of Memory (OOM) issues in some cases.

Model Methods SST-2 MultiRC ReCoRD SQuAD DROP

8-bit OPT 1.3B LLM.int8() 9.01 23.97 6.76 22.09 31.29
QuZO 3.43 12.61 4.82 7.50 16.42

4-bit OPT 1.3B QLoRA 4.76 18.15 4.42 20.48 27.23
QuZO 1.72 6.30 2.41 3.74 11.70

8-bit LLaMa-2 7B LLM.int8() 31.47 OOM 19.06 OOM OOM
QuZO 9.94 25.11 13.04 16.69 31.66

1205

Table 15: Runtime comparison (seconds per step) on
OPT-30B model using DROP dataset. QuZO achieves
strong per-step efficiency while operating on a single
GPU.

Model Size FO (FP32) FO (4-bit) MeZO (FP32) QuZO (4-bit)

OPT-30B 45.61s (8 GPUs) ∼22.80s (8 GPUs) 4.267s (2 GPUs) ∼2.84s (1 GPU)

C.1 Memory Efficiency 1206

Table 14 provides a comprehensive comparison of 1207

memory consumption (in GB) across various tasks 1208

when fine-tuning quantized models using QuZO 1209

with LoRA (rank = 8). The methods compared 1210

include QuZO, LLM.int8(), and QLoRA. Notably, 1211

QuZO employs 4-bit perturbations to fine-tune the 1212

models, achieving significant memory savings com- 1213

pared to LLM.int8 and QLoRA. For instance, in 1214

the OPT1.3B-int4 model, QuZO reduces memory 1215

usage by approximately 2.8× on SST-2 (1.72 GB 1216

vs. 4.76 GB in QLoRA) and by 5.47× on SQuAD 1217

(3.74 GB vs. 20.48 GB in QLoRA). Similarly, for 1218

the OPT1.3B-int8 model, QuZO achieves a mem- 1219

ory reduction of 1.4× on MultiRC (12.61 GB vs. 1220

23.97 GB in INT8 FO fine tuning). 1221

In the 8-bit LLaMa-2 7B model, while LLM.int8 1222

encounters Out-of-Memory (OOM) errors on sev- 1223

eral tasks, QuZO successfully completes fine- 1224

tuning with substantial memory efficiency, using 1225

just 9.94 GB on SST-2 compared to 31.47 GB 1226

for LLM.int8—a reduction of 3.2×. These results 1227

highlight the ability of QuZO to fine-tune quantized 1228

models effectively with minimal memory over- 1229

head, leveraging 4-bit perturbations for substantial 1230

efficiency gains while maintaining compatibility 1231

with LoRA architectures. This positions QuZO 1232

as a practical choice for resource-constrained fine- 1233

tuning in large-scale NLP tasks. 1234

C.2 Runtime Comparison on Large-Scale 1235

Models 1236

To clarify the computational advantages of QuZO, 1237

we conducted runtime experiments on the OPT-30 1238

B model using the DROP dataset. All models were 1239

tested on 40GB A100 GPUs. As shown in Table 15, 1240

QuZO achieves a significant speedup over both 1241

first-order (FO) and full-precision MeZO methods. 1242

For example, FO (FP32) requires 45.61 seconds per 1243

training step using 8 GPUs, while MeZO reduces 1244

this to 4.27 seconds on fewer resources. In contrast, 1245

QuZO (4-bit) further improves efficiency, taking 1246

only 2.84 seconds per step. This translates to ap- 1247

proximately 1.5× speedup over MeZO and 16× 1248
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speedup over FO. Although zeroth-order methods1249

typically require more steps (e.g., MeZO may need1250

up to 32× more), the per-step efficiency and single-1251

GPU execution result in fewer total GPU-hours. In1252

particular, QuZO reduces GPU-hour consumption1253

by roughly 2× compared to FO (4-bit), and about1254

4× compared to FO (full-precision), demonstrating1255

its scalability and practical utility for large LLM1256

training.1257

D Ablation Study of QuZO1258

These experiments evaluate key components of1259

our method, including the number of perturba-1260

tions (queries) per update and the sparsity of the1261

stochastic perturbation vectors. We then compare1262

the performance of Q-RGE1 and Q-RGE2 when1263

fine-tuning the LLaMA-2 13B model under the1264

same precision settings. Additionally, we compare1265

different backpropagation-free (BP-free) training1266

methods and extend our evaluation to larger-scale1267

models such as LLaMA-2 70B. This provides a1268

comprehensive assessment of various ZO variants.1269

D.1 Effect of Query Number1270

We investigate how the number of perturbation1271

queries influences performance and convergence.1272

Increasing the number of queries per step leads to1273

more accurate gradient estimation, which improves1274

fine-tuning effectiveness. Table 16 shows that in-1275

creasing the number of queries from 1 to 10 results1276

in a 3.6% improvement in DROP accuracy. From1277

our experiments, using a larger number of queries1278

accelerates training convergence but increases the1279

time per step.1280

Table 16: Varying query number on DROP performance.

Model Task Query=1 Query=5 Query=10

LLaMa-13B (8-bit) DROP 37.61 39.77 41.33

Table 17: Perturbation sparsity on downstream task
performance.

Model Sparsity ReCoRD SQuAD DROP

QuZO (8-bit) 0% 82.20 80.29 37.61
QuZO (8-bit) 20% 82.60 80.52 34.65
QuZO (8-bit) 50% 82.50 81.21 40.51
QuZO (8-bit) 80% 83.00 80.10 25.99

D.2 Effect of Perturbation Sparsity 1281

We also analyze the impact of perturbation spar- 1282

sity, defined as the percentage of zero entries in 1283

the stochastic perturbation vector during training. 1284

Higher sparsity reduces the number of trainable 1285

parameters and speeds up training. Table 17 shows 1286

that QuZO maintains strong performance even with 1287

50% sparsity, while higher sparsity (e.g., 80%) 1288

leads to some performance degradation, especially 1289

on the DROP dataset. Notably, increasing sparsity 1290

improves training speed by 1.2× to 2×. These re- 1291

sults confirm that QuZO is robust to both reduced 1292

query counts and perturbation sparsity, offering 1293

practical trade-offs between accuracy and training 1294

efficiency. 1295

D.3 Comparison Between Q-RGE1 and 1296

Q-RGE2 1297

We have explicitly evaluated Q-RGE1 in actual 1298

experiments and clearly demonstrate that our pro- 1299

posed Q-RGE2 (QuZO) significantly outperforms 1300

it in Fig 3. Specifically, we conducted training 1301

comparisons using the LLaMA-13B model on the 1302

ReCoRD, SQuAD, and DROP datasets under both 1303

4-bit and 8-bit quantization settings. 1304

As shown in Table 18, Q-RGE2 consistently yields 1305

substantial accuracy improvements—exceeding 1306

10% in challenging tasks like SQuAD. These re- 1307

sults highlight the performance benefits achieved 1308

by Q-RGE2, further validating its effectiveness and 1309

robustness in low-bit quantized training scenarios. 1310

Table 18: Performance comparison between Q-RGE1
and Q-RGE2 (QuZO) on LLaMA-13B under 4-bit and
8-bit quantization.

Method Model ReCoRD SQuAD DROP

Q-RGE1 LLaMA-13B (8-bit) 81.80 64.23 24.88
Q-RGE2 (Ours) LLaMA-13B (8-bit) 82.20 78.19 37.61
Q-RGE1 LLaMA-13B (4-bit) 81.60 63.02 25.15
Q-RGE2 (Ours) LLaMA-13B (4-bit) 82.10 73.79 27.32

Table 19: Comparison with other gradient-free methods
on 4-bit LLaMA2-7B model.

Method Model (bits) SST-2 SNLI RTE

In-Context Learning LLaMA-7B (4-bit) 85.01 49.65 51.21
One-Point Estimator LLaMA-7B (4-bit) 89.96 53.56 48.24
QuZO (Ours) LLaMA-7B (4-bit) 91.62 64.40 54.87

D.4 Gradient-Free Fine-Tuning Comparision 1311

While few existing approaches have been directly 1312

applied to large-scale language model (LLM) fine- 1313
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Table 20: Performance Comparison of QuZO on the
LLaMa-2 13B Model

Model (#Bit) Methods ReCoRD SQuAD DROP
FO 81.70 63.23 25.90

LLaMa2-13B MeZO 82.10 63.71 25.20
(8-Bit) QuZO 82.20 78.19 37.61

FO 82.00 62.27 25.31
LLaMa2-13B MeZO 82.30 62.62 25.33

(4-Bit) QuZO 82.10 73.79 27.32

Table 21: Results on LLaMA-70B using a single GPU
vs. FO with 4 GPUs.

Method Model Computational Card (GB) SQuAD DROP

FO LLaMA-70B (4-bit) 4x A100 (158GB) 76.78 51.84
QuZO LLaMA-70B (4-bit) 1x A100 (37GB) 81.25 58.11

tuning, we compare QuZO with the One-Point Esti-1314

mator (Zhang et al., 2022b), a relevant zeroth-order1315

method. Although Black-Box Tuning (BBT) (Sun1316

et al., 2022) adopts gradient-free optimization1317

via evolutionary strategies, its scalability to high-1318

dimensional full-model tuning in LLMs remains1319

limited. As shown in Table 19, the One-Point Esti-1320

mator achieves lower computational cost (about 2×1321

faster than QuZO) but suffers significant accuracy1322

drops across all tasks. In contrast, QuZO demon-1323

strates strong stability and superior performance,1324

highlighting its robustness in low-bit, gradient-free1325

fine-tuning scenarios.1326

D.5 Large-size LLMs1327

Table 20 presents the performance comparison1328

of QuZO fine-tuning against other methods with1329

LoRA, including First-Order (FO) and MeZO, on1330

the LLaMa-2 13B model under 8-bit and 4-bit1331

quantization. The evaluation is conducted on three1332

datasets: ReCoRD, SQuAD, and DROP, which as-1333

sess reading comprehension and reasoning ability.1334

The results indicate that QuZO consistently out-1335

performs MeZO and FO, particularly in SQuAD1336

and DROP, demonstrating its ability to better retain1337

performance in a quantized setting. In the 8-bit1338

setting, QuZO achieves a significant improvement.1339

In the 4-bit setting, the trend remains similar, high-1340

lighting the robustness of QuZO in handling more1341

aggressive quantization.1342

Fine-Tuning 70B LMs. Specifically, we fine-1343

tuned the LLaMA-70B (4-bit) model using QuZO1344

and compared them against traditional first-order1345

(FO) methods. Following a similar instruction-style1346

prompting setup as in MeZO, we reformulate ques-1347

tion answering and reasoning benchmarks using1348

fixed task-specific prompts. This design enables 1349

evaluation of QuZO within a practical instruction- 1350

tuning framework, without requiring backpropaga- 1351

tion. The results show consistent improvements 1352

across standard QA datasets such as SQuAD, as 1353

well as reasoning tasks like DROP. 1354
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