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ABSTRACT

Many Knowledge Graphs (KGs), despite their size, remain highly incomplete.
This problem has motivated many approaches to complete the KGs by embedding
their constituents in a latent space to find missing links. While these methods per-
form well on the commonly used metrics, they rank the missing links with scores
that are uncalibrated and context-dependent. The fact that the scores are “local”,
in the sense that they relate to a specific context, makes it difficult to determine
the final link truth value and to answer complex queries. Another limitation is that
their learning depends on negative sampling, which is challenging due to the Open
World Assumption (OWA).
To solve these issues, we propose a novel auto-regressive generative model that
learns a joint distribution of the entities and relations of the KG without resort-
ing to negative sampling. This distribution allows us to compute “global” scores
for the missing links which are calibrated and interpretable in different contexts.
Moreover, our method has the advantage that it offers probabilistic semantics for
complex reasoning and knowledge base completion. Finally, our empirical eval-
uation shows that although our method is not suitable for KGs with a regular
topology that can be easily learned by prior local methods, it excels with KGs that
have a more complex structure with many inter-contextual dependencies, achiev-
ing or even surpassing state-of-the-art performance on KB completion and with
consistent scores across the entire KG.

1 INTRODUCTION

Motivation Knowledge Graphs (KGs) are structured representations of knowledge organized as
graphs which model relationships between entities. KGs are highly popular and widely used in
various domains, from search engines and recommendation systems to data integration Hogan et al.
(2021). Currently, KGs are widely studied in academia and extensively utilized in industry, driving
advancements in both research and practical applications Zhang et al. (2023); Wang et al. (2017b).

Problem An important problem that limits the usefulness of KGs in real-world scenarios is that
they remain highly incomplete, i.e., many links (and/or nodes) are missing. An important step
to solve this problem consists of predicting, given a KG as input, which of the unknown links is
likely to be true (Lü & Zhou, 2011). To this end, the mainstream approach consists of learning
latent representations of the KG to rank effectively potential missing links. These methods, known
as Knowledge Graph Embeddings (KGEs) (Wang et al., 2017a), transform the set of entities and
relationships into continuous vector spaces, and then rank the missing links by evaluating their
likelihood with a given scoring function. Conceptually, several prominent KGE approaches can
be seen as binary classifiers since their primary objective is to construct models where each link
corresponds to a distinct Bernoulli random variable (Trouillon et al., 2016; Nickel et al., 2011;
Lacroix et al., 2018; Nguyen et al., 2018; Bordes et al., 2013c). For example, given a KG with a set
of entities E and relations R, a link from a source s ∈ E to destination d ∈ E with a specific relation
type r ∈ R, denoted as ⟨s, r, d⟩, is assigned to the variable Y⟨s,r,d⟩.

A major strength of KGE methods lies in their ability to use the likelihoods calculated by these
models as reliable scoring mechanisms for ranking potential missing links. However, an important
limitation is that they rely on the generation of false links for training the model, which is challeng-
ing to do under the Open World Assumption (OWA). Typically, these models resort to employing
randomly generated links as false evidence, which is a technique known as negative sampling (Bor-
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des et al., 2013b). An additional limitation is that these models lack a consistent global probabilistic
interpretation of the scores (Friedman & den Broeck, 2020; Zhu et al., 2023), hence we say that
their scores have a local interpretation. The fact that scores have only a local interpretation becomes
particularly problematic when, for instance, we need to use the scores to determine the final truth
value of the links by selecting an optimal threshold value or for answering complex queries since
the scores in different domains cannot be compared(Arakelyan et al., 2023).

Both limitations have received considerable attention in the community. Some techniques have
investigated the value of calibrating the scores in a post-processing phase to reduce the differences
between domains Zhu et al. (2023); Arakelyan et al. (2023). Others have proposed to exploit the
inherent structure of certain tensor factorization models (Lacroix et al., 2018; Nickel et al., 2011;
Balažević et al., 2019; Trouillon et al., 2016) to normalize the scoring functions. By normalizing the
scoring function, the edges are no longer modelled with separate binary variables but one random
variable Y (Loconte et al., 2023). In this last case, the idea is to learn a distribution p(Y, S,R,D)
(for modeling the truth value, source, relation type and destination of the link, respectively) and
to consider p(Y = true, S = s,R = r,D = d) as the scoring function for the link ⟨s, r, d⟩.
Note that any joint distribution p(Y,X) can be rewritten into p(Y |X) · p(X). Since the former is
a classification component (p(Y |X)) while the latter is a generative one (p(X)) we refer to such
an approach as an hybrid model Lasserre et al. (2006). While this approach yields global scores
(since we have a single random variable Y ), it still depends on negative sampling for training the
classification component. Hybrid models learn the data distribution to improve the decision making
process, however, learning the distribution of false edges is problematic if we only know which
edges are true.

Contributions To overcome the limitations stated above, we propose a new generative method
that learns directly the distribution p(S,R,D|Y = 1) or more simply p(S,R,D). We argue that
this method has a benefit over the current ones since it produces global scores without resorting
to negative samplings during learning. To learn the joint distribution, we first decompose it as
p(S,R,D) = p(S)·p(R | S)·p(D | R,S). Then, we employ (deep) AutoRegressive Models Gregor
et al. (2014); Tomczak (2022) to learn the conditional distributions p(R | S) and p(D | R,S), while
for the marginal distribution p(S) we employ different strategies with the source entities in the
training data set to learn a function that resembles the true marginal distribution.

We empirically demonstrate that our method yields significantly more consistent scores across dif-
ferent domains by assigning high probabilities only to links deemed highly likely to be true, as
indicated by their top positions in local rankings. Additionally, our results achieve the best global
performance in terms of Mean Average Precision. We consolidate unseen facts into a single global
ranking and evaluate the truth value of the top-k positions in this ranking. Our method is competi-
tive in link prediction (local rankings) using standard metrics; it reaches state-of-the-art performance
when considering the consistency of the probabilities, making it particularly suitable for more com-
plex processing tasks such as Knowledge Base Completion or Complex Query Answering.

2 PRELIMINARIES

Knowledge Graph Embedding Models A common way to represent information in a KG is
through triples. A triple (s, r, d) consists of a source (subject), relation (predicate) and destina-
tion (object), where the sources and destinations come from the same set of entities, s, d ∈ E and
r ∈ R, the set of all relations. Every edge can be precisely characterized by a triple of the form
(si, ri, di), and a KG is a subset of E ×R× E .

KGE models consist of two components. One component represents entities and relations as contin-
uous vectors (embeddings) in a low-dimensional space. These embeddings are designed to capture
the semantic meanings and structural information of the entities and relations while preserving the
inherent structure of a KG. The second component is a scoring function that assigns a score to the
vector representation of every triple, ϕ(es, rr, ed). That score is usually a real number and repre-
sents the model’s belief in the truthfulness of the triple, typically in contrast to the score of other
triples with the same source and relation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Probabilistic interpretation The embeddings are in a continuous space. However, we can interpret
them as categorical variables because they are direct mappings from the entities and relations.

Let S be a random variable with values in E , R a random variable with values in R, and
D a random variable with values in E . The collection of all triples can be described by the
joint distribution p(S,R,D). According to the general product rule, we can factorize this
distribution, for example, in p(S) · p(R|S) · p(D|R,S) or p(R) · p(D|R) · p(S|R,D), etc.

Deep AutoRegressive Models AutoRegressive models are sequence models that originate from
time-series models Ho & Xie (1998), where observations from previous steps are used to predict
the value at the current time. However, as elaborated in the notes by Grover (2018), they have also
proven useful in modeling joint distributions when the data is not inherently sequential (van den
Oord et al., 2016; Salimans et al., 2017). To do this, the model assumes that the conditional distri-
butions correspond to a specific random variable, for instance, a Bernoulli random variable, which
means that we limit the expressiveness of the conditional distribution. Then, we can approximate the
distribution using parameterized functions e.g., neural networks, to represent the conditionals. To
enforce that assumption, we can use a Softmax for categorical variables or a Sigmoid for Bernoulli
random variables. The benefit of this assumption is that the entire joint distribution does not re-
quire global normalization. By ensuring that each conditional distribution is a valid and restricted
distribution, the global normalization is enforced locally.

Deep AutoRegressive Models for Knowledge Graphs Although a KG only has three variables,
specifying a probability for all possible triples of E × R ×R quickly becomes infeasible, even for
small-size KGs Loconte et al. (2023). Fortunately, the KG data is inherently categorical. Therefore,
the assumption that random variables have to be Bernoulli is not an issue, and an autoregressive
model is well suited to approximate the joint distribution p(S,R,O) in one of the factorized forms.

Optimization Generative models optimize the distance between the data and the model distribution.
By assuming that points in the dataset are sampled i.i.d. from the true data distribution, we obtain
an unbiased Monte Carlo Maximum Likelihood Objective.

The goal of MLE objective is to find the parameters, θ, that maximize the log-probability of the
observed data points. Generative models are designed to generate new data points from the learned
distribution. Generating new data points in AutoRegressive models is an iterative and, thus, slow
process. Besides that we use an AutoRegressive model to learn only two variables i.e., two iterations,
we do not require generating new triples. We are only interested in evaluating the likelihood of a
triple, which can be done in parallel.

3 RELATED WORK

One of the motivations for implementing an AutoRegressive model using Convolutions, as discussed
in Section 4, is to highlight its similarity to ConvE (Dettmers et al., 2018). Both approaches utilize
Convolutions on embedding vectors. ConvE estimates the distribution p(Ysr|S,R), treating each
edge as a Bernoulli random variable (Loconte et al., 2023). Our model replaces the Sigmoid func-
tion with a Softmax function to learn p(D|S,R). Additionally, we introduce a conditional distribu-
tion p(R|S) and incorporate an exogenous prior p(S). Furthermore, we do not rely on generating
artificial negative triples, our approach focuses on modeling the distribution of the triples directly,
moving away from classification.

Other methods have applied AutoRegressive models to assign a likelihood to triples (Chen et al.,
2021; Yao et al., 2019; Tresp et al., 2021; You et al., 2018). Those methods either use Large Lan-
guage Models, model local subgraphs, or do not interpret the data describing a KG as a collection of
three categorical variables. In this study, we focus explicitly on methods that learn a joint distribu-
tion of three categorical random variables and are trained using MLE. To the best of our knowledge,
this has only been accomplished by Loconte et al. (2023).

They use a different class of generative models to model the data distribution: Energy-Based Mod-
els (EBMs). Contrary to AutoRegressive models, there is no restriction on the expressiveness of the
function representing the distribution. Naturally, the function must still be a valid probability distri-
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bution where the total outcome equals one and all probabilities are larger or equal to zero. EBMs,
thus, are more expressive but require global normalization. Calculating the normalization constant
for KGs, i.e. evaluating all possible triples, requires the summation of E × R × E triples at every
training step and is infeasible even for small KGs. Exploiting the inherent structure of certain KGE
models, namely viewing them as parameterized structured computational graphs circuits, they are
able to calculate the normalization constant in O((|E|+|R|)·cost(ϕ)) time. With this normalization,
they converted the binary classification models p(Y |X) into generative models p(Y,X).

The tensor factorization methods that they convert typically have simple scoring functions, e.g, the
scoring function of Complex (Trouillon et al., 2016) is simply the (complex) dot product of the
embedding vectors. This can be considered a feature when the goal is to learn a relatively simple
ranking function. When learning a more intricate function, such as a joint distribution, this can
become a limitation; by using neural networks to model the joint distribution, we can have more
parameters in the scoring function to potentially better capture this function.

TractOR (Friedman & den Broeck, 2020) decomposes the binary classification models by assuming
conditional independence, such that p(Ysro = 1|S,R,D) = p(Es = 1|S) · p(Tr = 1|R) · p(Eo =
1|D). Although conditional independence is a strong assumption and TractOR is not a probabilistic
model but a decomposition, they do meet the assumption of Probabilistic Databases that require
every triple to be an independent Bernoulli random variable. Also, the decomposition into unary
statements ensures fast computation of the probability of a complex query in Probabilistic Databases.

4 AUTOREGRESSIVE KNOWLEDGE GRAPH EMBEDDING MODELS

In this section, we describe the challenges of designing an AutoRegressive KGE model called ART
and motivate our design decisions.

4.1 A DECOMPOSITION TRADE-OFF

A joint distribution p(S,R,D) can be factorised into multiple equivalent decompositions. Two such
decompositions are p(R) · p(S|R) · p(D|R,S) and p(S) · p(R|S) · p(D|R,S). Although equivalent,
they have different implications for modelling the data that describes a KG. The conditional distri-
butions can be learned with neural networks, while the marginal distribution can not. The marginal
distribution can be modelled with a prior. A KG usually has significantly fewer relations than entities
e.g., WikiData5M (Wang et al., 2021) has 5 Million entities and just 822 relations. Therefore, the
number of facts for every r is, on average, higher than the number of facts for every source. Ideally,
we want to place the prior on r such that the prior distribution reflects the true marginal; this because
there is relatively more information on this variable, resulting in a more informative prior. Unfortu-
nately, this comes at a great cost. Namely, this means that the complexity of modelling the second
conditional distribution increases drastically. Because when modelling the second conditional as
p(S|R), we now have to produce an output for |E| ∗ |E| values instead of the |R| ∗ |E| outputs when
modelling the second conditional as p(R|S). Because typical real-world KGs are large, we put the
prior on s. However, if the graph is small-scale, we advise placing the prior on r for the best results.

4.2 PRIOR SELECTION

Due to the fact that the marginal distribution, p(S), by definition, is not conditioned on another
random variable, this component does not have embeddings as input. This does not preclude ex-
ploring several strategies to find a prior that accurately describes the true marginal distribution. The
prior function can be any function based on background knowledge as long as it is informative of
the true marginal p(S). In this work, we opt for a frequentist approach and use the proportion of
sources (subjects) in the train set as our prior for modelling p(S). When working with infinite data
and assuming that the distribution in the data is similar to that of the train set, this will result in a
prior that resembles the true distribution. However, when we know or observe that the proportion
is not an informative prior, we want to reduce the impact of the prior, p(s), on the overall pre-
diction p(s) · p(r|s) · p(d|r, s). In its extreme, this is a uniform prior; every source is considered
equally likely. A less extreme approach is to smoothen the function with a Softmax; the degree of
smoothness can be controlled via a hyper-parameter T , often referred to as the Temperature (Renze
& Guven, 2024). A more sophisticated approach is to model every entity with a logit (learnable
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Figure 1: The architecture of ARC. The internal parameters used to model p(R|S) are added as
another input channel to p(D|R,S). Because we model the data distribution, p(X), there is only
one correct label for all outputs, unlike binary classification methods, where multiple entities can be
labelled true.

parameter) and apply a Softmax for a valid marginal distribution. Since no embeddings are used in
the input, this will resemble the same frequency distribution introduced above. However, the prior is
now internalized in the loss function and hence, the prior is no longer exogenous, but learned from
data similar to the other two components, which can result in a more coherent joint distribution.

4.3 DIRECTIONALITY AND FAST INFERENCE

By inferring p(s) · p(r|s) · p(d|r, s) ∼ p(S,R,D), our model can assign a probability to any given
triple. However, KGE methods typically require scoring all candidate entities given a specific entity
and relation, as in the cases of head and tail prediction in link prediction tasks.

For tail prediction, our model allows straightforward computation by selecting the relevant variables
and evaluating p(S = s) · p(R = r|S = s) · p(D =?|R = r, S = s). Since the first two components
are constant, and the third component is a Softmax over all entities, we can efficiently compute the
joint probability of all candidates simultaneously.

In contrast, for head prediction rank(d|r, s), the values for all three components differ, requiring
the triples to be collected iteratively. While this approach is feasible and valid, it is computationally
slow. To align with the standard KGE framework, we introduce an inverse triple for every KG,
a common practice introduced in Dettmers et al. (2018). Notably, rank(d|r, s) is equivalent to
rank(s|r−1, d), allowing us to score all candidates simultaneously for head prediction, avoiding the
need for iterative processing. This approach also adds directionality to our model, enabling different
confidence levels for the same triple, which is sometimes useful Trouillon et al. (2016).

4.4 MODELLING THE CONDITIONAL DISTRIBUTIONS WITH NEURAL NETWORKS

The Neural Networks can be of arbitrary choice as long as they have shared parameterization, can
process embeddings and are AutoRegressive. The shared parametrization (see fig. 1) is crucial to
learning one joint distribution instead of two independent distributions. We choose a vanilla encoder-
only Transformer (Vaswani et al., 2017) model, which we call ART, and implement a Convolutional
model, which we call ARC, fullfilling these requirements. Figure 1 illustrates ARC. For the Trans-
former, we use one attention head, do not use positional encoding, and use only a small number of
blocks. For the Convolutional model, we stack two 1D convolutions.

We arrive at the following learning objective:

LMLE(θ) = max
θ

1

|G|
∑

(s,r,d)∈G

log pθ0(s) + pθ1(r | s) + pθ2(d | r, s) (1)
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Table 1: Statistics of the standard link prediction benchmarks FB15k-237 (Toutanova & Chen,
2015) and WN18-RR (Dettmers et al., 2018) and OGBLBioKG (Hu et al., 2021)

Dataset Train-KG Valid-KG Test-KG E R
FB15k-237 272,115 17,535 20,466 14,541 237
WN18-RR 86,838 3,034 3,134 40,943 11
OGBLBioKG 4M 163K 163K 93,773 51

5 EMPIRICAL EVALUATION

Our goal is to assess the ability of our method to perform link prediction globally, and not locally
(i.e., query-based) as done for prior methods, since it is precisely the former ability that allows us to
support more effectively complex and inter-contextual query answer and to perform KB completion
across the entire scope of the KB.

5.1 EXPERIMENTAL SETTING

Datasets We consider benchmark datasets that are commonly used in the literature for link pre-
diction, which are FB15K-237 Toutanova & Chen (2015), WN18-RR Dettmers et al. (2018), and
OGBLBioKG Hu et al. (2021). See Table 1 for statistics. We follow the standard train-test split
protocol, in which entities in the test set must appear in the training set, ensuring no new entities
are introduced during evaluation. All metrics are computed under the filtered setting Bordes et al.
(2013a). All experiments are run on a NVIDIA RTX A6000 GPU with 48GB of onboard memory.

Baselines We selected three baselines: NBF (Zhu et al., 2022), ComplEx (Trouillon et al., 2016),
and ComplEx2 (Loconte et al., 2023). NBF is chosen as it has reported the best results for (lo-
cal) query-based link prediction. We include ComplEx, another state-of-the-art-method, due to its
widespread usage in the literature and ComplEx2, which is a variant of CompleEx with a prob-
abilistic interpretation and which employs, like us, the Maximum Likelihood Estimation (MLE) as
training objective. For the results on ARC please refer to Appendix B.

Hyper-parameters We fix the the batch size to 1024 and the rank to 150. We use
AdamW (Loshchilov & Hutter, 2019) as optimizer and initialize the weights by sampling from a
Dirichlet distribution Loconte et al. (2023). We randomly searched for the optimal learning rate and
tried a small selection of model configurations. See Appendix C.1 for more details.

5.2 RESULTS ON GLOBAL LINK PREDICTION

Task definition. Prior art has been mostly evaluated on query-based local link prediction. Essen-
tially, this task consists of ranking all possible completions for a given query and then assess the
position in the ranking of known true triples. While this method is useful to evaluate the predictive
power, it does not evaluate the ability of producing consistent scores across queries, which may be
needed in a downstream task, e.g., for complex query answering or global KB completion.

To fix this problem, we evaluate our method differently. Instead of evaluating using many rankings,
we construct one global ranking of facts by executing all queries from the test set and merging the
obtained scores together. Like in traditional link prediction, we filter out the triples from the train
and validation graph and duplicates (filtered settings). Moreover, we assume that unknown facts are
false, such that we can borrow standard metrics from Information Retrieval to evaluate the ability
of the models to rank the facts globally. This is an assumption adopted in the related literature as
well. We use the mean-average-precision (MAP), and find the optimal threshold for which every
fact is considered true or false. We optimise the precision and recall curve by considering as many
thresholds as there are unique scores. We can then calculate the optimal F1∗ score that balances
precision and recall.

The obtained results for our method and the baselines are shown in Table 2. The three benchmark
are each representative of a case: In the first, best case, our method outperforms the baselines by a
clear margin. In the second case, the performance is slightly superior and/or aligned with the second
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Table 2: Performance on global link prediction (higher is better)

Model FB15k-237 OGBLBioKG WN18-RR
MAP F1* MAP F1* MAP F1*

ART (ours) 0.142 0.270 0.587 0.592 0.230 0.319
Complex2 0.093 0.191 0.523 0.554 0.017 0.075

Complex 0.020 0.049 0.260 0.374 0.383 0.504
NBF 0.106 0.181 0.651 0.613 0.479 0.540

best baseline, while in the third case the non-probabilistic baselines return better scores. We discuss
each case below.

Case 1: ART clearly outperforms the baselines. This occurs with FB15k-237, which can be
arguably considered as the most popular benchmark in the literature. The cost of having a lower
overall ranking score of Complex2 compared to Complex on local rankings, please see Table 5,
pays off when looking at the correctness of the global ranking. We confirm, in a different manner,
that normalizing the scoring function leads to globally more consistent scores Loconte et al. (2023).
However, by not training on artificially created negative samples we can learn a more complex joint
distribution.

Case 2: ART has competitive performance with non-probabilistic methods. We observe this
behaviour with OGBLBioKg where our performance is mostly aligned with NBF. However, if we
look beyond the obtained MAP and F1, which are computed considering true triples in the test
set, and focus on the scores obtained for the unknown triples, then we can make an interesting
consideration that makes our method a potentially preferable choice. In general, KGE models such
as NBF are designed for KB completion, i.e., recover the unknown edges, which can be either true
or false. Consider the extreme case when all unknown edges turn out to be false. We call it the
pessimistic case. The opposite is when all unknown triples are indeed true, the optimistic case.
Neither case is likely to be true. A more realistic scenario is when only a subset is true. To evaluate
what happens in each case, we repeated the evaluation of global link prediction on OGBLBioKG
considering both NBF and ART. In the optimistic (pessimistic) scenario, all unknown facts above the
threshold are assumed to be true (false). In the realistic one, we average the two extreme cases.

The results are presented in Table 3. In the realistic scenario, our method achieves a higher F1 score
(with an equivalent MAP), indicating that it is more effective at ranking previously unknown true
facts in a more plausible context. One may ask why we did not manually verify the truth of the
unknown triples. The challenge lies in the nature of the dataset, which involves biomedical research
data, where determining the truth value of triples is often a subject of ongoing research itself.

Case 3: Local non-generative methods are more suitable. This case can be seen on WN18RR,
where the generative models (ART and Complex2) are clearly outperformed by the discriminative
models (NBF and Complex). There are several reasons for that. Firstly, WN18RR is a small KG. The
train subset only has 80K triples and 11 relations, which is problematic because generative models
need sufficient training data to learn a complex function as the joint distribution while discriminative
models need only to determine a truth value based on the local embeddings. Also, it is known
that WN18RR is a rather regular dataset where there is not much interplay between the entities and
relation types. Consequently, methods that limit to learn local scores become competitive also when
there is one global ranking. Finally, it has been observed in WN18RR that there is a distribution shift
between the train and validations sets Loconte et al. (2023), which means that the prior distribution
may be misleading. Indeed, we observed only a 1% drop in performance when we artificially cancel
out our first two components i.e., p(s) = 1 · p(r|s) = 1 · p(o|r, s).

5.3 ON NEGATIVE SAMPLING

Classifiers are commonly learned using negative artificial examples to discriminate true and false
edges. This is the case of ComplEx and NBF. This can lead to a situation when the scores obtained
for the true and false triples have different distributions, as it is shown in Figure 2(a). While using
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Table 3: ART generalises better to unknown triples than NBF on OGBLBioKG

Model Pessimistic Optimistic Realistic
MAP F1* MAP F1* MAP F1*

ART 0.587 0.859 0.840 0.592 0.723 0.719
NBF 0.651 0.796 0.788 0.613 0.723 0.700

negative (artificially created) negative triples can be beneficial for the predictions, it can also intro-
duce a potentially undesirable bias. A generative model like ComplEx2, as we can see in Figure
2(b) does not lead to such two distinct distributions. However, since it still uses both positive and
negative triples for training and the resulting scores of false triples tend to be close to zero, which
determines the spike up around those values that we see in the figure. Our model does not learn
a distribution of the false edges since this information is not provided to them during training. As
a result, we see in Figure 2(c) that although the scores for the negative edges still receive a low
probability, they are not excessively concentrated around zero as with ComplEx2, which means our
model is more open to the possibility that some of the unknown triples are true.

(a) ComplEx
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Figure 2: Kernel Density Estimation plots of the distributions of true and false triples.

5.4 PRIOR ABLATION STUDY

Table 4 reports the MAP scores that we obtain by changing the implementation of the prior distri-
bution (p(S)). While a frequency-based distribution is a straightforward choice, our results indicate
that it is not always the most effective. Interestingly, the even simpler approach of using a uniform
distribution led to better results in two of the three datasets. When we learned the prior jointly with
the other components, we were able to obtain even better results, except for FB15k-237 where the
frequency-based prior remained the best choice. These results make it interesting to further study
the impact of other prior implementations. This should be seen as a good direction for future work.

5.5 LOCAL RANKINGS

For completeness, we also report on the capabilities of our method on local link prediction. More
specifically, Table 5 reports the obtained MRR on traditional query-based link prediction (the results
with hits@k are in Appendix A and B). We emphasise that we do not aim to achieve state-of-
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Table 4: MAP scores using different priors (higher is better).

Prior FB15k-237 WN18-RR OGBLBioKG

Frequency 0.142 0.110 0.408
Uniform 0.046 0.225 0.467
Learned 0.068 0.230 0.587

Table 5: MRR on local query-based link prediction (higher is better).

Type Model FB15k-237 WN18-RR OGBLBioKG

non-probabilistic Complex 0.342 0.471 0.826
NBF 0.415 0.515 0.811

probabilistic (MLE) Complex2 0.300 0.391 0.839
ART (ours) 0.342 0.447 0.824

the-art performance on this task. Indeed, our results indicate that the non-probabilistic baselines
(e.g., NBF Zhu et al. (2022)) have superior performance, although our method remains competitive.
If we restrict to the probabilistic methods, then our method performs better than the other baseline in
two of the three datasets, which makes ours a preferred choice whenever a probabilistic interpretation
is required by the use case at hand.

6 DISCUSSION AND FUTURE WORK

Prior We have shown that it is important to have a prior that resembles the true marginal distirbution
p(S), especially when the frequency of the train facts does not resemble the true underlying distri-
bution. We have overcome this by internalizing the prior in the model. However, future work can
improve performance by learning more complex priors.

Compatibility with PDBs A natural next step in formalizing Complex Query Answering is to use
the extensive theory on PDBs Suciu et al. (2011). PDBs require independent Bernoulli variables for
every triple, that is, every triple is true or false with probability p. When modelling the joint distri-
bution over three categorical random variables, the total probability of all outcomes is one and thus
does not meet the requirement of PDBs. However, when the probabilities are learned independently,
the scores are not calibrated. Applying min-max normalization to unnormalized scores from a joint
distribution, such that every value is between zero and one, and using them as if they represent the
score for a triple that is learned independently, led to better-calibrated scores Loconte et al. (2023).
Learning independent yet calibrated probabilities to meet the requirements of PDBs remains an open
challenge Friedman & den Broeck (2020).

Increasing the model complexity We have shown good performance with a stripped down trans-
former and simple 1D convolutional model on embeddings of rank 150 to emphasise the importance
of learning the joint distribution. Future work can increase the rank to 2000 as Complex in this study
or increase the model complexity towards the level of NBF to future improve performance.

One Joint Distribution A distribution can not be learned if there is insufficient training data. How-
ever, we observe that some relations with sufficient training evidence are not picked up at all by both
probabilistic methods, Complex2 and ARM, please see the Appendix C.4. Why some relations are
considered out-of-distribution, while there is significant training data, is a question that we leave for
future work. Perhaps not all links can be easily captured in a single joint distribution. Next, another
limitation of probabilistic methods is that if a link is missing exactly because it is out-of-distribution,
then it can not be recovered.

To conclude, in this paper we have shown that by sampling the links from a joint distribution
p(S,R,D) we can learn consistent probabilities across the KG, with the additional benefit that
we no longer need negative sampling for learning. Our results show that, unlike other models,
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ours only gives high scores to links for which there is a strong belief they are true. Therefore, the
scores can be reliably used for establishing the final truth value of the links, and consequently for
Knowledge Base Completion. Moreover, our method returns probabilities that can be used as-is
to perform Complex Query Answering systems and thus plugged in existing systems like Complex
Query Decomposition (Arakelyan et al., 2021), which require global consistency to simple queries.

REFERENCES

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering
with neural link predictors, 2021.

Erik Arakelyan, Pasquale Minervini, Daniel Daza, Michael Cochez, and Isabelle Augenstein.
Adapting neural link predictors for data-efficient complex query answering. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 27079–27091. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/55c518a17bd17dcb69aa14d69d085994-Paper-Conference.pdf.
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A HITS@K

Table 6: Performance comparison of different models on Hits@k. In local rankings, NBF and
Complex remain competitive models.

Model FB15k-237 WN18-RR OGBLBioKG
H@1 H@3 H@5 H@10 H@1 H@3 H@5 H@10 H@1 H@3 H@5 H@10

ART 0.2491 0.3778 0.4421 0.5302 0.3907 0.4466 0.4724 0.5124 0.7558 0.8722 0.9092 0.9447
ARC 0.2422 0.3592 0.4191 0.5003 0.3658 0.4405 0.4678 0.5003 0.7256 0.8493 0.8905 0.931
NBF 0.3232 0.4555 0.5144 0.5948 0.4971 0.5721 0.6130 0.6616 0.7441 0.8530 0.8926 0.9382
Complex 0.2466 0.3693 0.4325 0.5203 0.4330 0.4852 0.5108 0.5445 0.7603 0.8788 0.9163 0.9498
Complex2 0.2169 0.3309 0.3889 0.4691 0.3421 0.4233 0.4478 0.4710 0.7744 0.8877 0.9228 0.9538

B ARC

With a very simple 1D convolutional model with shared parameterization, we are able to get compet-
itive results. This shows the importance of learning the joint distribution, and that it can be learned
with a very small model.

Table 7: Local Ranking Performance

Model FB15k-237 WN18-RR OGBLBioKG

ARC 0.328 0.441 0.799

Table 8: Global Ranking Performance

Model FB15k-237 WN18-RR OGBLBioKG
MAP F1* MAP F1* MAP F1*

ARC 0.099 0.197 0.214 0.301 0.489 0.535

C REPRODUCE EXPERIMENTS

We use the evaluation mechanism of TorchKGE Boschin (2020).

C.1 HYPERPARAMETERS

We fix the embedding dimension to 150, the batch size to 1024 and smooth the labels with 0.1.
We use the AdamW optimizer. We randomly search the following range of hyper-parameters: lr
{1e-3, 1e-4, 1e-5, 1e-6, e-7}, dropout {0.4, 0.5, 0.6}, weight decay {0.5−2}, prediction smoothing
{1e-4, 1e-5, 1e-9, 1e-30}. We search the optimal learning rate decrease factor {0.1 − 0.9} after 10
epochs without improvement.

For ART we search the number of blocks {2, 3, 4, 5}, number of neurons {4, 8}. For ART we fix the
kernel size to three, and the hidden dimension to 256.

C.2 TRAINING TIME

All models are trained within two hours. On OGBLBioKG it is competitive within two hours, but
converges within 8 hours. Faster than NBF, but slower than Complex2
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C.3 STATISTICAL SIGNIFICANCE LINK PREDICTION

We test the statistical significance of our best model, ART, and assume the same underlying proba-
bilistic process for ARC. We run with 10 random seeds on FB15k-237 and WN18-RR. Resulting
in two standard deviations, 0.00124, 0.00917, respectively. Due to the small differences, we decided
to omit this test on OGBLBioKG for environmental reasons because the models take longer to train
on this dataset.

C.4 MRR PER RELATION
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Figure 3: Plotting the MRR per relation on FB15k-237 to observe the difference in performance
per relation type. We filter at least 20 facts per relation because MRR for a low number of facts can
lead to extreme scores. The relation IDs are not specified because this figure only aims to visualise
the high variance of MRR per relation in general
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