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Abstract

State-of-the-art equivariant Graph Neural Networks (GNNs) achieve quantum-
level accuracy for molecular simulations but remain computationally prohibitive
for large-scale applications. Knowledge distillation (KD) presents a solution by
compressing these GNN-based Machine Learning Interatomic Potentials (MLIPs)
into efficient models, yet existing distillation methods fail to capture the physics.
Current KD approaches rely on simplistic atom-wise feature matching, overlooking
the core physical principle of interatomic interactions that define the potential
energy surface (PES). We introduce FORK, First-Order Relational Knowledge
Distillation, a framework that distills relational knowledge from pretrained GNNs
by modeling each interatomic interaction as a relational vector. Through a con-
trastive objective, FORK guides compact student models to preserve the geometric
structure of the teacher’s learned PES. On the OC20 and SPICE benchmarks, our
FORK-trained student outperforms baselines in energy and force prediction, achiev-
ing faithful physical knowledge transfer at a fraction of the computational cost.
In a practical high-throughput catalyst screening application, the distilled model
achieves a 11.9x acceleration while preserving chemical coherency, validating its
efficacy for accelerating large-scale materials discovery.

1 Introduction

The advent of Machine Learning Interatomic Potentials (MLIPs), particularly those based on equivari-
ant Graph Neural Networks (GNNs), has enabled molecular simulations with quantum-level accuracy
at a fraction of the cost of methods like Density Functional Theory (DFT) [Behler and Parrinello}
2007, |Schiitt et al., 2017, [Unke et al.,[2021]]. However, a fundamental trade-off persists: state-of-
the-art MLIPs rely on large parameter counts and complex operations, creating a computational
bottleneck that restricts their use in large-scale applications like high-throughput materials screening
and drug discovery [Liao et al., 2023} |Unke et al., [2021]].

Knowledge Distillation (KD) is a promising strategy to compress these large feacher models into
computationally efficient student models [Hinton et al.| 2015] |Gou et al., 2021]. However, the
direct application of conventional KD to MLIPs is fundamentally limited. Prevailing methods,
which minimize the discrepancy between atom-wise hidden representations, overlook a core tenet
of chemistry: a system’s properties are not defined by isolated atoms but emerge from a complex
network of interatomic interactions [Ekstrom Kelvinius et al., [2023]]. Consequently, these approaches
fail to capture the relational structure of the Potential Energy Surface (PES), the primary object
MLIPs are designed to model.
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This work posits that effective distillation for MLIPs must explicitly transfer the learned physics
governing interatomic potentials. To address this, we introduce FORK, First-Order Relational
Knowledge Distillation, a framework designed to distill this relational physical knowledge (see
Figure[2). FORK operates by first representing interatomic interactions as relational vectors derived
from atomic embeddings. It then employs a contrastive geometric alignment objective, based on
the InfoNCE loss [Oord et al.,[2018]], to align the student’s relational vector space with the teacher’s,
thereby preserving the structure of the learned interaction space.

The primary contributions of this paper are threefold: (1) We propose a novel, physics-informed
distillation framework that directly transfers first-order interatomic relational knowledge. (2) We for-
mulate a contrastive objective that explicitly preserves the geometric structure of the teacher’s learned
PES. (3) We provide empirical validation on standard benchmarks and in a high-throughput catalyst
screening application, where FORK yields a significant computational speedup while preserving
predictive accuracy.

2 Methods

2.1 Relational Vector Representation

To capture the directional nature of interatomic interactions, we define a normalized relational vector
r, for each edge e = (src,dst). This vector is the difference between the L2-normalized final
atomic embeddings (z) of the constituent atoms for both the teacher (7T") and student (5) models. For
equivariant models, these embeddings (z;) are taken from the rotationally invariant [ = 0 channel.
For each atom 4, we first compute normalized embedding z; = z;/||z;||2. The relational vectors for
the teacher and student models are then defined as:

YTk = ZTsc — ZT,dsty TS,k = 4S,src — 2.5,dst- (n

2.2 Contrastive Geometric Alignment

FORK aligns the student’s relational space with the teacher’s using a contrastive objective based on
the InfoNCE loss [Oord et al.,[2018]|. For a given student relational vector rg j, its corresponding
teacher vector rp j, is the positive sample, while all other teacher vectors in the batch {I‘T’m}m7gk are
negative samples. The FORK loss, Lrork, trains the student to identify the correct positive pair:

exp(rg,krT,k/T)
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where 7 is a temperature hyperparameter. This objective enforces geometric alignment between the
teacher’s and student’s learned interaction spaces.

2.3 Training Objective

The student model is trained end-to-end by minimizing a composite loss function that balances task
performance with relational knowledge transfer:

Liotat = Liask + M1 Lrork + A2 Lkp 3)

The total loss combines the primary L (e.g., MSE on energy and forces), our relational Lrorg
loss, and an optional conventional distillation loss Lkp (e.g., node-to-node feature matching). The
hyperparameters A\; and Ay weight the distillation terms.

3 Experiments

3.1 Comparison with Baseline KD Methods

We evaluated the performance of FORK on the large-scale Open Catalyst 2020 (OC20) dataset for
catalysis [[Chanussot et al.,|2021]] and the SPICE dataset [Eastman et al., [2023[] for small molecules.
The result for OC20 200K subset, SPICE dataset and experimental details are presented in Appendix [B]
and[El



On the challenging O* subset of the OC20 dataset, we evaluated FORK’s ability to distill knowledge
from a large, state-of-the-art teacher model into a compact student with over a 7-fold reduction in
parameters. The student model trained with a combination of FORK and traditional node-to-node
(n2n) distillation consistently achieved the best performance. This combined approach reduced the
energy MAE to 231.7 meV, a substantial improvement over the 252.9 meV from the n2n baseline
alone (see Table[T)). We found that the methods have a synergetic effect, as FORK alone achieves
second-best energy error by capturing the global potential energy landscape, whereas combining
it with n2n yields the best energy and force predictions by grounding local atomic features. This
highlights the clear benefit of incorporating first-order relational knowledge to effectively close the
performance gap to the teacher model.

Table 1: Performance of FORK on O* subset of OC20 dataset. The best results are highlighted in
bold. Second best results are underlined.

Method Params Embedding Energy Force
MAE Cosine Similarity MAE (meV)] MAE (meV/A) 1

Teacher* 153M - - 39.8 5.8
vanilla 22M 0.217 0.205 294.5 59
pretrained 22M 0.311 0.271 263.6 6.1
n2n 22M 0.078 0.839 252.9 5.8
Hessian 22M 1.062 0.073 363.5 26.1
Ours 22M 0.282 0.230 234.1 6.1
Ours (w/ n2n) 22M 0.082 0.820 231.7 58

* The teacher model of EquiformerV2 used for knowledge distillation. Loaded from provided checkpoint.

3.2 Real-World Application: High-Throughput Catalyst Screening

To validate the practical utility of FORK in a real-world scientific application, we conducted a case
study on high-throughput catalyst screening. This task is emblematic of the challenges in materials
discovery, where millions of potential candidates must be evaluated, making the computational
efficiency of MLIPs a critical bottleneck [Abed et al.| 2024, Broderick et al.| |2023]]. Detailed
experimental setups are provided in Appendix [F|

Computational Efficiency and Performance. The FORK-distilled student exemplifies the core
trade-off of knowledge distillation: balancing predictive accuracy with computational efficiency. As
detailed in Table[6] the student achieves a 11.9x increase in inference speed, reducing the average
batch inference time from 166.7 ms to 14.0 ms. Despite a modest trade-off in accuracy, the model’s
predictive power is sufficient for high-throughput screening, which prioritizes the efficient ranking of
candidates from large chemical spaces.

Chemical Coherency. The student model’s performance trends mirror the teacher’s, correlating
directly with the chemical and structural complexity of the catalyst systems (Table[Z). For instance, the
performance gap (AMAE) between models increases from 0.098 eV for simpler binary intermetallics
to 0.164 eV for more intricate L1o/L12 structures. Beyond surface complexity, the student inherits the
teacher’s nuanced chemical intuition. Despite a >30-fold parameter reduction, the student replicates
the teacher’s error trends, and the ranking of adsorbates by MAE is identical for both models.
This demonstrates that FORK transfers a sophisticated understanding of the underlying physics.
Remarkably, the student’s predictions are closer to the DFT ground truth than its 39M-parameter
teacher in 35% of cases, suggesting that distillation can act as a powerful regularizer.

Implications for Accelerated Materials Discovery. The efficiency of the FORK-distilled model
directly accelerates materials discovery. The >10-fold speedup is critical for modern screening
campaigns involving millions of calculations, potentially reducing multi-year projects to months|Abed
et al.|[2024]]. This trade-off is ideal for a hierarchical workflow: the fast student screens millions
of candidates to find a promising subset, which the high-fidelity teacher then re-evaluates for final
validation. This methodology significantly lowers the computational barrier for comprehensive
screening and paves the way for discovering novel materials.



Table 2: Detailed per-adsorbate MAE analysis for FORK Student and GemNet-OC Teacher models
across different chemical species and datasets.

Dataset Surface Type Adsorbate  FORK Student GemNet-OC Teacher AMAE FORK Better
MAE (eV) MAE (eV) (eV) (%)
H 0.214 0.146 0.068 32.8
Alonso et al.  Binary intermetallics (§)H 823? gggg 8?2; ggg
Dataset Avg. 0.565 0.467 0.098 34.5
o 0.356 0.243 0.113 39.5
Saini et al. Transition metal alloys CI\II-I 822; 8§(3)§ 8}?; ggé
Dataset Avg. 0.378 0.260 0.118 34.4
C 0.707 0.527 0.180 36.7
Li et al. Binary alloys (L¢/L12) Cco 0.582 0.435 0.147 39.9
Dataset Avg. 0.645 0.481 0.164 38.3

AMAE = FORK Student MAE - GemNet-OC Teacher MAE (positive values indicate GemNet-OC performs better).
FORK Better (%) indicates percentage of individual reactions where FORK Student outperforms GemNet-OC Teacher.

3.3 Ablation Studies

We conduct a series of ablation studies to validate our key design choices. Further quantitative
ablations, including analysis on the importance of relational contrastive learning and the impact of
the temperature parameter, are in Appendix
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Figure 1: UMAP visualization of final-layer embeddings on the OC20 O* subset, comparing the (a)
Teacher model, (b) a student trained with n2n distillation, and (c) a student trained with our FORK
framework.

Geometric Fidelity of the Distilled Representation. To qualitatively assess the transfer of the
teacher’s learned potential energy surface, we projected the final-layer atom embeddings onto a 2D
manifold using UMAP [McInnes et al, 2018], as shown in Figure[I} The visualization demonstrates
that the FORK model’s embedding space more closely replicates the geometric structure and cluster
separation of the teacher’s space than the disordered embeddings from a student trained with node-
to-node (n2n) distillation. This visual evidence corroborates our quantitative results, highlighting
FORK’s ability to transfer the essential geometric features of the teacher’s learned representation.

4 Conclusion

We present FORK, a First-Order Relational Knowledge Distillation framework that transfers the
physical understanding of a large-scale teacher model to a compact Machine Learning Interatomic
Potential (MLIP). By preserving the geometric relationships between atoms rather than matching
isolated features, FORK enables a student model to faithfully capture the teacher’s learned potential
energy surface. This relational approach outperforms conventional distillation methods in terms of
energy and force prediction accuracy on challenging benchmarks like OC20 and SPICE, and achieves
a 11.9x acceleration in a practical catalyst screening application while preserving chemical coherency.
Future work can extend this framework by incorporating higher-order physical interactions, paving
the way for efficient large-scale molecular simulations.
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A Overview Figure of FORK
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Figure 2: An overview of the FORK, First-Order Relational Knowledge distillation framework. A
student model is trained to replicate the geometry of the teacher’s embedding space (Hr) using a
contrastive objective. For each interatomic interaction, the student’s corresponding relational vector
is "pulled" toward the teacher’s (positive sample) and "pushed" away from others (negative samples).

B Experimental Details

B.1 Experimental Design for Baseline Comparison

Catalytic Systems. We leverage Open Catalyst 2020 (OC20), which is a massive dataset designed
to accelerate the discovery of catalysts for renewable energy applications [[Chanussot et al., 2021[]. We
use two standard subsets for our experiments: the 200K subset, which is a diverse chemical dataset of
200,000 datapoints, and the O* subset, which is specifically designed to test the model to 12,182 O*
adsorption reactions. The teacher is a 153M-parameter pretrained EquiformerV2 [Liao et al., |2023]]
with 20 message passing layers, while the student employs the same architecture reduced to just 2
layers (22M parameters). This architectural consistency enables a ‘pretrained’ baseline, where the
student is initialized directly from the teacher’s first two layers. We show hyperparamters used in
Table 3

Table 3: Key Hyperparameters for Training on OC20 Dataset.

Hyperparameter Value
Optimizer AdamW
Learning Rate Schedule  Cosine Decay w/ Warmup
Peak Learning Rate 5x 1074
Warmup Steps 30,000

Batch Size 4

LFORK weight (A1) 10.0

LKD weight ()\2) 1.0
Temperature (7) 0.15

Small Molecules. We use SPICE dataset, which consists of a diverse set of small, drug-like
molecules [Eastman et al. 2023]). Its focus on smaller, conformationally flexible molecules provides
a complementary challenge to the rigid surfaces of OC20, allowing us to test FORK’s robustness
and applicability in a different chemical domain. We use subset of monomers, solvated amino acids,
and systems with iodine. We distill MACE-OFF Large model as a teacher [Kovacs et al., 2025]], and
GemNet-dT as a student [|Gasteiger et al.l 2021]. We use idential hyperparmeters to train models
provided in|Amin et al.|[2025]], with Lrorx = 100.



Implementation Details. All models were trained using the AdamW optimizer. The learning rate
was warmed up to a peak value of 5 x 10~ over 30,000 steps and then decayed using a cosine
schedule. The batch size was set to 4. The loss balancing hyperparameters were empirically set to
A1 = 10.0 for the FORK loss and A\ = 1.0 for the n2n feature matching loss. Based on our ablation
studies, the temperature for the contrastive loss was set to 7 = 0.15. All experiments were conducted
on one NVIDIA A6000 or L40S GPU, separately.

C Related Works

C.1 Machine Learning Interatomic Potentials

The development of Machine Learning Interatomic Potentials (MLIPs) represents a pivotal advance-
ment in computational science, aiming to bridge the gap between the accuracy of quantum mechanical
methods like Density Functional Theory (DFT) and the efficiency of classical force fields [Behler
and Parrinellol |2007]. Early models such as SchNet introduced deep learning architectures to predict
chemical properties directly from atomic coordinates [Schiitt et al.l 2017]. More recent equivariant
Graph Neural Networks (GNNs), including GemNet-OC and EquiformerV2, have set new standards
in accuracy by incorporating geometric symmetries directly into the model architecture, enabling
highly precise predictions of energy and interatomic forces at a fraction of DFT’s computational
cost [Gasteiger et al., 2022} [Liao et al., [2023]]. However, the computational demands of these state-
of-the-art models motivate the need for effective model compression techniques like knowledge
distillation.

C.2 Knowledge Distillation for Molecular GNNs

Knowledge distillation (KD) has evolved from a general model compression technique into a promis-
ing strategy for deploying deep learning models in resource-intensive scientific applications [Hinton
et alL[2015|Gou et al}[2021]]. For molecular GNNs, KD has shown significant promise in accelerating
simulations. A common approach, known as feature-based distillation, involves training a student
model to mimic the atom-wise hidden representations of a teacher [Ekstrom Kelvinius et al., [2023]].
This is typically achieved by minimizing a regression loss (e.g., L1 or L2 norm) between the student’s
and teacher’s final node embeddings.

Recently, more physically-informed methods have emerged. For instance, Amin et al.|[2025]] proposed
distilling knowledge by matching the Hessians of the energy predictions. This second-order approach
allows the student to learn the curvature of the Potential Energy Surface (PES), which is vital for
modeling vibrational properties. While powerful, these higher-order methods can be computationally
intensive and may not be universally applicable. Our work, FORK, complements these approaches
by focusing on efficiently capturing fundamental first-order relational information.

C.3 Relational Knowledge Distillation

Relational Knowledge Distillation (RKD), pioneered by [Park et al.|[2019], shifted the distillation
paradigm from matching individual data points to preserving the relationships between them. Tra-
ditional RKD computes pairwise relations either between different samples in a batch or between
features within a single instance. While innovative, applying standard RKD to molecular systems
reveals critical limitations. Treating atoms across a batch as samples leads to physically meaningless
comparisons between non-interacting atoms in different molecules. Furthermore, instance-level RKD,
which compares all atom pairs within a molecule, suffers from quadratic complexity and incorrectly
treats all pairs equally, ignoring the fundamental distinction between bonded and non-bonded inter-
actions. These limitations highlight the need for a domain-specific RKD that respects the physical
hierarchies of molecular structures.

C.4 Contrastive Learning on Graphs

Contrastive learning has become a dominant paradigm for self-supervised representation learning
on graphs [[Oord et al.l 2018]]. Methods like GRACE [Zhu et al) [2020] and Deep Graph Info-
max [Velickovi¢ et al., 2018] learn powerful node embeddings by maximizing the similarity between



different augmented views of the same node or graph (positive pairs) while minimizing similarity
with other nodes or graphs (negative pairs).

C.5 Preliminaries

We represent a molecular system as a graph G = (V, £), where V is the set of N atoms (nodes) and
£ is the set of E interatomic interactions (edges) within a given cutoff radius. Each atom ¢ € V is

described by an initial feature vector hgo)’ typically encoding its atomic number. The primary task of
an MLIP is to learn a mapping from the atomic positions x to the total potential energy U (x) and the
per-atom forces F; = —Vy, U(x).

Our knowledge distillation framework comprises the teacher and student model. The teacher Model,
denoted as fr with parameters 0, is a pretrained, high-capacity equivariant GNN. For a given graph
g, it computes a set of final node embeddings Zr = {zr1,...,27 N}, Where each zp; € RPT,
The student model, fg with parameters g, is a more compact GNN architecture. It produces lower-
dimensional embeddings Z'; € RYV*Ps . To facilitate knowledge transfer, a Multi-Layer Perceptron
(MLP) projection head P : RPs — RPT maps the student’s embeddings into the teacher’s latent
space, yielding the projected embeddings Zg = P(ZY).



D Training Algorithm

This section provides the detailed pseudocode for the end-to-end training procedure of FORK, as
described in the main paper.

Algorithm 1 First-Order Relational Knowledge Distillation (FORK) Training

1: Input: Training data loader D, pretrained teacher model fr, student model fg, projection head
P.

2: Input: Hyperparameters: learning rate 7, loss weights A1, Ao, temperature 7.

3: Initialize parameters 65 of fg and 6p of P.

4: Freeze parameters of the teacher model fr.

5: for each training epoch do

6:  for each batch of molecular graphs {G} in D do

7: // Generate embeddings from teacher and student models

8: With no gradient tracking for fr:

9: Zr < fr({G}) {Teacher atom embeddings, size Nygtcr, X D1}
10: Z's + fs({G}) {Student atom embeddings, size Npqicn, X Dg}
11: Zs < P(Z) {Projected student embeddings, size Nyqscr, X Dr}
12: // Compute standard task loss (Energy and Forces)

13: Us, Fs + Predictions from fg
14: [/lask — LOSS((US, FS)7 (Utruea Ftrue))
15: // Compute optional node-to-node KD loss
16: Lyp 5 S0 ||zs.i — 2743
17: // Construct Relational Vectors for all E edges in the batch
18: For each edge e;, = (src, dst):
19: Normalize atom embeddings: z = z/||z||2
20: Compute normalized difference vectors: ry = Zg. — Zqs
21: This yields teacher set {rr } and student set {rg j }.
22: // Compute FORK contrastive loss
1 Epatch exp(rs,krT,k/T
23: Lrork < — yor Dol log Zi@f“(exrﬁ(rs,k~1/fT,)m/‘r)
24: // Compute total loss and update student model
25: Liotal < Liask + M1 Lrork + A2Lkp
26: Update parameters (fg, 0p) using gradient descent on Ly,
27:  end for
28: end for

29: Qutput: Trained student model fg. The projection head P is discarded after training.

10



E Additional Results on Benchmarks

E.1 Performance on the OC20 200K Subset

To further validate our method, we evaluated its performance on the large and chemically diverse
200K subset of the OC20 benchmark. The results, summarized in Table {4} reinforce the conclusions
drawn from the O* subset.

The student model trained with the combined FORK and node-to-node (n2n) distillation strategy
again demonstrated superior performance. This approach decreased the energy MAE to 371.1
meV, significantly improving upon the 412.8 meV achieved by the n2n baseline. The consistent
improvement across both the O* and 200K subsets confirms that our relational distillation approach
robustly enhances the accuracy of the student model across different chemical distributions.

Table 4: Performance of FORK on 200K subset of OC20 dataset. The best results are highlighted in
bold. Second best results are underlined.

Method Params Embedding Energy Force
MAE Cosine Similarity MAE (meV)] MAE (meV/A) 3
Teacher* 153M - - 171.5 124
vanilla 22M 0.309 0.233 474.9 51.8
pretrained 22M 0.181 0.460 410.8 37.6
n2n 22M 0.096 0.816 412.8 34.8
Hessian 22M 0.351 0.180 419.3 48.6
Ours 22M 0.190 0.424 373.8 35.8
Ours (w/ n2n) 22M 0.097 0.811 3711 34.1

* The teacher model of EquiformerV2 used for knowledge distillation. Loaded from provided checkpoint.

E.2 Applicability to Small Molecules

Beyond the large-scale catalytic systems of OC20, we further evaluated FORK’s applicability to
the distinct chemical domain of small, drug-like molecules using the SPICE dataset [Eastman et al.,
2023]). The results, detailed in Table 5] highlight FORK’s ability to act synergistically with other
advanced distillation methods.

On this benchmark, second-order methods that distill Hessian information prove to be particularly
effective, consistently outperforming other student models. This underscores the importance of
capturing PES curvature for small, flexible molecules. However, our key finding is that combining
FORK with Hessian distillation yields the most robust and accurate student. While this combined
model performs on par with the Hessian baseline on simpler subsets, it achieves state-of-the-art
performance on the most challenging "Systems with Iodine" subset, surpassing all other methods in
both energy and force prediction. This suggests that while Hessian distillation effectively transfers
second-order knowledge, supplementing it with FORK’s first-order relational knowledge provides a
critical performance advantage in more complex chemical environments.
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Table 5: Performance of FORK on SPICE dataset. The best results are highlighted in bold. Second
best results are underlined.

Subset Method Params Energy Force
MAE (meV/atom) | MAE (meV/A) |

Teacher* 4. TM 0.65 6.6

vanilla 0.67M 2.2 13.4

M n2n 0.67TM 2.3 14.5

onomers Hessian 0.67M 1.2 8.5

Ours (w/ n2n) 0.67"M 2.1 13.8

Ours (w/ Hessian)  0.67TM 14 8.9

Teacher™ 4.7 1.3 19.4

vanilla 0.67M 1.7 229

. . n2n 0.67M 1.5 214

Solvated Amino Acids Hessian 0.67M 0.4 114
Ours (w/ n2n) 0.67M 1.2 21.3

Ours (w/ Hessian)  0.67M 0.4 11.9

Teacher* 4.TM 1.3 15.3

vanilla 0.67M 3.2 254

Syst ith Todi n2n 0.67M 3.0 259
ystems with fodine Hessian 0.67M 24 19.6
Ours (w/ n2n) 0.67TM 32 25.8

Ours (w/ Hessian)  0.67M 2.2 194

" The teacher model of MACE-OFF Large used for knowledge distillation. Loaded from provided checkpoint.

F Details on Catalyst Screening Experiments

This section provides detailed methodology for the high-throughput catalyst screening experiments
described in the main paper.

F.1 Dataset Preparation and Processing

Data Sources. We obtained three benchmark datasets from the CatalysisHub database [Winther
et al.,|2019]], each representing different catalyst screening applications. The Alonso dataset [Martinez{
Alonso et al., |2024] contains 2,628 DFT-calculated adsorption energies for H*, O*, and OH* on
binary intermetallic compounds with AB, A;B, and A3B stoichiometries, where surface structures
were prepared using the lowest energy facets with biaxial strain considerations. The Li dataset [L1
et al.| [2022] comprises 337 binding energy calculations for C* and CO* adsorbates on binary alloys
with L and L4 crystal structures, specifically curated for CO» reduction reaction screening. The
Saini dataset [Saini et al.,|2022]] includes 441 chemisorption energy calculations for O*, N*, and CH*
on transition metal alloy surfaces with systematic variations in d-band properties.

Data Preprocessing. Each dataset underwent standardized preprocessing to ensure consistency
across evaluations. We first extracted atomic structures from CatalysisHub JSON format and converted
them to ASE Atoms objects with proper periodic boundary conditions. All structures were verified to
meet convergence criteria with force tolerance below 0.05 eV/A. Duplicate structures were identified
and removed based on chemical formula and energy values. Finally, adsorbate positions were
standardized relative to the surface normal to maintain consistent geometric representations across
different surface types.

Distillation Setup. We distilled knowledge from a 39M-parameter GemNet-OC [Gasteiger et al.,
2022], trained on the OC20 and OC22 datasets [Chanussot et al., (2021 |Tran et al., 2023|]. The student
was a compact, | M-parameter GemNet-OC architecture, trained using the FORK framework. The
distillation process was conducted on a 2M subset of the OC20 dataset, chosen to cover a wide range
of adsorbate-catalyst systems.
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F.2 Reaction Energy Calculation Methodology

Energy Computation Protocol. For each reaction in the datasets, we computed reaction energies by
evaluating individual species energies and applying stoichiometric coefficients. Gas-phase molecules
were identified based on system size (fewer than 10 atoms) or unit cell volume (exceeding 8000
A3). For gas molecules, we utilized GemNet-OC energies exclusively for both models to maintain
consistency, as these species typically require different computational treatment than surface-bound
structures. For slab and adslab configurations, both FORK and GemNet-OC models computed ener-
gies independently. Reaction energies were then calculated as AE = 3 i Vilsi = > eocans Vi Ej»
where v represents stoichiometric coefficients and E represents species energies.

Evaluation Metrics. We assessed model performance using multiple complementary metrics
to capture different aspects of prediction quality. Mean Absolute Error (MAE) was computed as

the primary metric: MAE = & 3" |Efrea — Eberls providing an overall measure of prediction
accuracy. Additionally, we tracked per-reaction accuracy through binary indicators showing when
FORK predictions were closer to DFT than GemNet-OC predictions. Spearman’s rank correlation
coefficient p evaluated whether models preserved the correct energy ordering crucial for catalyst

screening.

F.3 Computational Efficiency and Performance Trade-off

A primary motivation for knowledge distillation is to accelerate inference without catastrophically
compromising accuracy. As summarized in Table[6] the FORK-distilled student model achieves a
transformative leap in computational performance. The student model is 11.9x faster than its teacher,
reducing the average inference time per batch from 166.7 ms to just 14.0 ms on identical hardware.
While this acceleration comes with a trade-off in accuracy, the student’s overall Mean Absolute
Error (MAE) is higher than the teacher’s, its performance remains well within a reasonable range for
high-throughput screening, where the primary goal is to rank and identify promising candidates from
vast chemical spaces.

Table 6: High-throughput catalyst screening performance comparison between GemNet-OC teacher
and FORK-distilled student models.

Energy Force

Model Params

Inference Time Speedup
MAE (meV/adsorption) | MAE (meV/A) | (ms/batch)

Teacher 38.9M 107.8 18.4 166.7 1.0x
Student 1.2M 436.1 50.3 14.0 11.9x
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Figure 3: Performance comparison on the Alonso et al. binary intermetallics dataset (2,628 reactions).
Error difference distribution showing FORK outperforms GemNet-OC in 34.5% of reactions despite
higher average MAE. Connected parity plot visualizing individual reaction predictions, with gray lines
connecting FORK and GemNet-OC predictions for the same reaction. Cumulative error distribution
demonstrating the models’ relative error profiles across all reactions. Absolute error distribution with
MAE values of 0.565 eV (FORK) and 0.467 eV (GemNet-OC).
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Figure 4: Performance comparison on the Li et al. binary alloys dataset (337 reactions) for CO-
reduction catalysts. Error difference distribution showing FORK outperforms GemNet-OC in 38.3%
of reactions. Connected parity plot for C* and CO* binding energies. Cumulative error distribution.
Absolute error distribution with MAE values of 0.645 eV (FORK) and 0.481 eV (GemNet-OC).
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Figure 5: Performance comparison on the Saini et al. transition metal alloys dataset (441 reac-
tions). Error difference distribution showing FORK outperforms GemNet-OC in 34.4% of reactions.
Connected parity plot for O*, N*, and CH* chemisorption energies. Cumulative error distribution.
Absolute error distribution with MAE values of 0.378 eV (FORK) and 0.260 eV (GemNet-OC).
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G Additional Ablation Studies

G.1 Importance of Relational Contrastive Learning

The performance of instance-level contrastive loss applied directly to atom embeddings (zs ;, z7 ;)
was compared to FORK’s relational approach. Table|7|shows the results of the experiment conducted
on the O* subset of OC20 dataset. The consistent superiority of the relational method, especially in
energy MAE, validates our central hypothesis: distilling interactions is more effective than distilling
isolated atom features.

Table 7: Performance of instance-level contrastive loss compared to relational-level contrastive loss.
The best results are highlighted in bold. Second best results are underlined.

Method Params Embedding Energy Force
MAE Cosine Similarity MAE (meV) | MAE (meV/A) J
instance-level 22M 0.258 0.210 241.5 6.1
instance-level, w/ n2n 22M 0.081 0.828 235.7 5.8
relational-level 22M 0.282 0.230 234.1 6.1
relational-level, w/ n2n 22M 0.082 0.820 232.0 5.8

G.2 Impact of Temperature in Contrastive Loss

The temperature 7 controls the difficulty of the contrastive task. A low 7 increases discrimination
but risks instability, while a high 7 may wash out important details. An optimal 7 = 0.15 was found
empirically to balance these trade-offs.

Table 8: Performance of FORK with different temperature 7. The top-2 best results are highlighted
in bold.

Embedding Energy Force
T Params
MAE Cosine Similarity MAE (meV) | MAE (meV/A) J

0.05 22M 0.085 0.806 234.0 5.8

0.07 22M 0.084 0.810 232.9 5.8

0.1 22M 0.083 0.814 232.0 5.8

0.15 22M 0.082 0.820 232.0 5.8

0.2 22M 0.082 0.823 2329 5.8
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